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Local Stabilization for Discrete-Time Systems with
Distributed State Delay and Fast-Varying Input
Delay under Actuator Saturations

Yonggang Chen and Zidong Wang

Abstract—This paper is concerned with the local stabilization problem be achieved via some typical approaches such as pole placement, pa-
for discrete-time systems with both distributed state delay and fast- rameterized Riccati equation and |0W_and_high gain design methods
varying input delay under actuator saturations. By introducing some [7], [30]. In case the open-loop system is exponentially unstable, the
terms concerning the distributedly delayed state and the current state, ’ » . . . L
a novel polytopic model is first proposed to characterize the delayed local/regional analysis and synthesis can be carried out by using the
saturation nonlinearity. Then, by incorporating a piecewise Lyapunov Polytopic models and the generalized sector condition [21], [32].
functional and some summation inequalities, a sufficient condition is For control systems subject to both time delays and actuator sat-
IeStab"Shed by nlnear|1|s of linear maltlrix i”eﬁua"“es under ‘a’hiCh tZe Closid‘ urations, some pioneering results have appeared in the literature [1]
oop system is locally exponentially stable. Moreover, the conditions for ) ’
two special cases with single state delay and single input delay are [21, 5], [8], [9]’ 16, [1.7.]' [:!'9]' [20], [23], [28], [31].' For .examplle,
proposed. Subsequently, certain optimization problems are formulated the local/regional stabilization problem has been investigated in [1],
with aim to maximize the estimate of the region of attraction. Finally, [5], [28] for continuous-time saturated systems with state delays. For
two examples show the effectiveness and values of the obtained results. giscrete-time state-delayed systems with saturating actuators, some

Index Terms—Local stabilization, discrete-time systems, distributed remarkable results have been proposed in [2], [16], [17], [19], [23].

state delay, fast-varying input delay, actuator saturations. In [9], the solution bounds have been obtained within the first-
delay-interval for input-delayed systems and the regional stabilization
I. INTRODUCTION problem has been subsequently solved under actuator saturations.

. . Nevertheless, it is worth pointing out that most existing results have
Time delays are often encountered in many real-world control s\gse, gprained for saturated control systems witingle state delay,
tems and their existence is likely to lead to performance degradatmgut delay or output delay. Moreover, in [9], the time-varying input
or even instability of a control system. As such, the analysis and sydlélay has been assumed toshemy-varying and the technique used
thesis for time-delay systems have gained significant attention oygthandje the saturation nonlinearity is a bit conservative. Up to now,
the past three decades, see. e.g, [4], [12], [22], [24]. Overall, thrigee pest of our knowledge, the local stabilization problem has not

types of time delays have been addressed in the literature, namglyay gufficiently examined for saturated control systems with both
discrete delays, distributed delays and neutral delays. In the con e and input delays, not to mention the case that the distributed

of linear matrix inequalities (LMIs), many advanced techniques ha%’?ate delay and the fast-varying input delay are also involved.

been developed for the convenience of controller/fiter design base%otivated by the above discussions, this paper is devoted to

on the utilization of some inequalities including Wirtinger-based iny,q nyestigation of the local stabilization problem for discrete-time
equalities [13], [14], free-matrix-based inequalities [25], [26], Bessely stems witthoth distributed state delagnd fast-varying input delay

Legendre inequalities [29] and reciprocally convex inequalities [15deer actuator saturationghe main contributions of the paper are
[27]. However, it is noted that most available results have be%[]mrrarized as follows. 1) The traditional constraint on the time-
concerned with a single discrete delay. For distributed delay systerpé,ying input delay is removed for saturated input-delay systems
some recent results can be found in [3], [10], [11], [18]. and a novel analysis approach is proposed. 2) By introducing the

Due to unavoidable physical constraints, actuator saturations g(&riputed del ay terms and the current state term, a new polytopic
commonly encountered in practical feedback control systems, whigljq i s proposed to characterize the delayed saturation nonlinearity.

is another source of performance degradation and system instabiki}gy.-l-he local stabilization condition and the optimization problem are
For more than two decades, the stability/performance analysis lished for saturated systems with both state and input delays.

control design have been extensively studied for linear systems withygtation. P > 0 (> 0) denotes thatP is a real, symmetric

saturating actuators [6], [7], [21], [30], [32]. If the open-loop system,y nositive definite (positive semi-definite) matrk” is the n-
is not exponentially unstable, the semi-global/global stabilization c@}ensional Euclidean spacky; (P) is the maximum eigenvalue of
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wherez (k) € R™ denotes the system staigk) € R™ is the control To handle the actuator saturations within the intefiialas in [6],
input with u(k) = 0 for k& < 0; ¢(k) € R™ is the initial condition; we define the dead-zone nonlinearityu(k)) = u(k) — sat(u(k)).
A, Aq, and B are known real constant matrices; the summatioAdding and subtracting(k — 7) in the right side of (1) yields

S wiw(k — 1) represents the distributed state-delay term; and Joo

denotes the time-varying input delay satisfyiog< 7 < 7 (7 is a z(k+1) =Az(k) + BKz(k — 11,) + Aqg Zuﬂ(k —i)
positive integer). Heresat(u) = [sat(u1) sat(uz) --- sat(um)]” i=1

is the standard saturation function with unity saturation level, where — By(u(k — 1)), k€T,. )

sat(w;) = sgn(u)min{|u|, 1}, I € [1, m].
The initial conditiong(k) is assumed to belong to the set

={ek) : maxllok)ll2 < p1, max||A¢(k)]2 < p2} - (3)

Moreover, the following (classical) sector condition holds [6], [21]:
&7 (ulk = ) H [y (u(k — 7)) — Ka(k — 7)) <0, k€ T, (8)

- where H € R™*™ is any positive diagonal matrix.
whereAg¢(k) = ¢(k+1) —¢(k), andp: andp; are positive scalars.  Next, we will introduce two important lemmas.

Of course, we can also assume thigt) belongs to the set Lemma 1: [32] Letv € R™ be such thaf|v||oe < 1 wherein =
7 2{6(k) : max||¢(k)||> < p} (4) m2™~ 1. Let the elements i.,, be labeled a®; (i € [1,2™]) where
P = . = .

D, is a set ofim x m diagonal matrices with diagonal elements being

Remark 1: For local stabilization of saturated systems, the exagitherl or 0, and the functionf,, be defined ag(0) =0 and
characterization of the region of attraction is very difficult. In this {fm(i )41, D;+D;#ILn, Vjel[l,i
paper, the estimate of region of attraction is characterized by the set fm (i) = . ' ' . T
2, or Z,. For the setZ),, the constrains on the 2-norms@fk) and Fm (), Di+ Dj =Im, 3j€[1,1]
its variation A¢(k) are requwed However, there is no requirementhen, for anyu € R™, there holdssat (u) € co{D u+Djv: i c
on A¢(k) for the set.,. If one setsp = 2p1 £ pin 2, the [1,2™]}, where “co” denotes the convex hull arit; € R™X g
set 2, is recovered [2], [19]. Whenp(k) is slowly-varying with defined asD; = eym—1 [, iy ® Dy With Dy =1 — D;.
pa < 2p1, the setZ, is less conservative thafi, in characterizing Lemma. 2: [2] [18] Let 0 < Z € R™*"™, 2, ¢ R" and the scalars
admissible initial conditions. Some other effective characterizations >0,\ >0 (i,j=1,2,---) be given. Then, we have

of admissible initial conditions have been presented in [16], [19]. e
In this paper, we employ the state feedback controller = TR
D Do) Z( D i
u(k) = Kz(k), k>0 (5)
+oo +oo
where K € R™*" is the controller gain matrix. S(Z”i)‘;1> (Zumﬁzm),
For the system (1), we make the following assumptions. i _ i=1 _
Assumption 1. For given scalarg; > 0 (i = 1,2,...), there exists I
a positive scalaf) < A < 1 such that (Z Z”J ) Z(Z Z”jxi)
14i=1 j=114i=1
R oo j +oo j
STEED ) HESED) B IERRT (St ) (T watze)
j=11i=1 =1 j=11i=1 =1 i=1 =1 i=1

Assumption 2: There exists a time sequence Now, letU, V and W be m x n matrices and denote that

oo k-1
v(k) éUx(k)—!—Vme( —1 —|—I/V§:uJ Z x(i).  (9)
=1

O=ki<ki<ka<ka< <k <kr=k"<r7

swch that the following relationship holds:

i=k—j
k—1, <0, keTy; k—1 >0, ke T, U[K™, +00) Assume that the following constraint condltlon holds:
where lo(k)lleo <1, k€ [k, 400). (10)
Ti 2 [ky, k1) U k2, k2) U=+ U [kr, Ky), Then, from Lemma 1sat(u(k — 7%)) can be represented as

om

sat(u(k — 7)) = Y @b [Dsu(k — %) + Dy v(k)] (11)
Remark 2: In Assumption 2, the time sequence does not have to be s=1

exactly known. Here, we only reguire thiat is known.((_)r unknown wherek € [k*, +00), @ >0 (s € [1,2™]) and Zi:l "

but upper-bognded .by a.known integer < 7). In 9], itis assumed We are now ready to present the closed-loop system as follows:

that there exists anique integerk* such thatk — 7, < 0 for k €

[0,k*) andk — 7, > 0 for k € [k*,+00). Such an assumption 2"

requires the input delay, to be slowly-varying with 74,41 —7%| < 1. (k+1) = Z

71 £ [El, k‘z) U [EQ, k‘g) J---u [l;)rfl,kr).

wf{(A + BD; U)z(k) + BDK

From Assumption 2, it is seen that can be fast-varying in this paper o=t too
since the constraintr+1 — 7 |< 1 is no longer necessary. x z(k — ) + (Ag + BD; V) Zuz‘l’(k‘ — i)
Under Assumption 2, there will be no control signal (hék — =
1) = 0) within the interval7; due to the time delay of the control 400 k—1
input. In this case, the system (1) is equivalent to +BD;W Yy az(i)}7 ke [k*,+o00). (12)
Loo j=1  i=k—j
z(k+1) =Az(k) + AdZuim(k‘ —1), ke T (6) Remark 3: To deal with the delayed saturation nonlinearity in a

i=1 less conservative framework, the distributed-delay-dependent terms
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DV YL ww(k —i) and Dy W 3y S5 (i) are addi-
tionally introduced in the polytopic model (11). Furthermore, it is
worth mentioning that, different from the sector condition used in
[4] (pp. 239), our proposed polytopic model (11) utilizes terent
state z(k) of the system (1), thereby facilitating the reduction of the
possible conservatism. In addition, it is worth mentioning that the
closed-loop system has different representations within the intervals
T, and [k*, +00). Using the model (7), the global analysis can be
performed within7; and using (12), the local analysis can be done
in a less conservative manner for the multiple-input case [32].

This paper aims to design the controller (5) such that the closed-
loop system (12) is locally exponentially stable with an estimate of
the region of attraction that is made as large as possible.

Il1. M AIN RESULTS

For the purpose of exponential stability analysis, we first propose
the following piecewise augmented Lyapunov functional:

V(b = {Vl(k)’ ok 13)
Va(k), k€ 0,k™)
where
Valh) =n () Pan(k) + 3 A1 (1)Quer(i)

i=k—T

+Zug Z Aot (1) Sar (i)
Jj=1 i=k—j

+o0 k-1
+Zmz Z N T (1) S o (i)

le —J

+TZ Z A"y (@) (Rar + Ra2)y (i)

j=—T i=k+j
l

+oo —1
+3 > > AT 6) Zay(), @ =
I=1  j=1i=k—j

with P, > 0, Qo > 0, Sa1 > 0, Sa2 > 0, Ra1 > 0, Ra2 > 0,
Zo > 0,0 <X <1, X > 1, ylk) = z(k+ 1) — z(k), and
n(k) = [="(k) Si5 2" @) S5 2T (0)]

For convenience of subsequent presentation, we define

I 0 O 0 0 0 I 0
2o 0 -1 71 0 0 0 0,
<l 0 0 0 -1 I 0 0
[ I 0 0 0 0 0 0n><(n+m)
Ly21—=1 0 0 71 0 0 Opxinim) | >
L 0 0 0 0 0 1 Onx(n+m)
[T 0 0 0 0 I
I's2({o0 —-I #I 0 0 0],
<l 0 0 -1 I O
(I 0 0 0 0 O
Ie=|—-1 0 71 0 0 O
L0 0 0 0 I O
(1 —I 0 0 0 Onx3n
AL 1 (U 0 Onx3n
P, = ,
0o I -1 0 0 Onx3n
0 I I 0 =21 Opxsn
¢2 é[/{] 0n><4n _I OnxQn}7
A (1 -1 0 0n><(4n+m)
s = _O 1 —1 0n><(4n+m)
R R S e
I 0 T =21 Onugsnim
®5 £ I::‘{I Onxsn —1 0n><(2n+m)] )
2’ (1 -1 0 Onx3n 2
q:'6 - _I I Y 07L><3n 5 Ra = Ral + Ra27
oy é[l‘f—l Onx2n —1 OnXZnL Ra £ Ral + Ra27
q)g é[7’I —I OannL (Pgé [H‘I Onxgn —I],

—+oo —+oo —+oo

A ~ A —1 A .
ffzg iy Ha:E uma70':§ ki

i=1 i=1 i=1

+oo J
Ga éZZuj)\;i7 Sym(E) £ £+ &7,
j=11i=1
AN —1 s (1=22)T = Ao+ 277!
Y1 = ; P4 = )
)\2 -1 ()\2 - 1)2
+oo J ) too 1 J )
ra 20D ik psa 3D i
j=11i=1 1=1j=11i=1

fké’rk—kl, ’ﬁcéT—Tk%-l %é7+1

+oo k—1 T
é[zmw i) zm RO
) i=k—j
—Tk) xT(k—T)
k—T1p
1 T
Tk Z r

i=k—T

() ¢ (k)] 7
(k) 2T (k- 7)

B v (k- ) §

&s(k) 2 [aﬂk) (k1)

i=k—T1
I 0 0 0 0 0 0 I
r, & [0 —I —I #I #&%I 0 0 o0f,
kI 0 0 0 0 —-I I 0
I 0 0 © 0 0 0 0
I, & [—I —I 0 #I #%I 0 0 O0f,
0 0 0 © 0 0 I 0

Theorem 1. Let the scalard) < A\ < 1, Ao > 1, v > 0, the

integerk™ > 1 and the matrixX" be given. Assume that there exist
matrices0 < P, € R¥%" 0 < Qo € R™", 0 < So; € R™*™,
0 < Roj € R, 0 < Zo € R, Ty € RV (ov,j = 1,2,
i=1,2,3), Mi € R*">, M, e RV, U € R, V € R™X™,
W e R™*", and the diagonal matriR < H € R™*™ such that,
for 7o = 0,7,V s € [1,2], V [ € [1,m], the matrix inequalities

Mo

>

A2 [ﬁ% A}gll] >0, Ay £ []]\Z% sz > 0, (14)
E1(1k,s) 2TTPIT — M5 Ty — A[®T A ®y
— ®3 (Z1/61)®2 + Sym(Ti %) + ¥y < 0, (15)
Sy 2 T2 Pol's — Ao(D'] Poly + &3 Ao®3 + ] Ri,Py)
— @5 (Z2/52)®5 + Sym(TaSs + TySa) + Up < 0,  (16)
B3 2 T2 Pal's — Aol'2 PoTg — Mo®L RS
— ®7(Z2/52)®7 + Sym(T333) + W3 < 0, 17)
{P1 SvP, Q1 <vQ2, S1; < vSay, (18)
Ri; <vRoj (j=1,2), Z1 < vZs,
— 1/(vA N
=) = [ /gvmz : diag{Pl,O(}l)—i- v/ 20 (19)



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TAC.2020.2991013, IEEE Transactions on Automatic Control

FINAL VERSON 4

are satisfied, wheréV;) = [Uyy 0 Wy Vi) and 263 (k)T2X26a(k) =0, k € Ty, (26)

(2% :diag{Q1 + KkS11 + 0512,0, —A7Q1,0, 2£§(k)T323€3(k) =0, keT;. (27)
0,—S11/f1, —S12/61,7°R1 + 0 Z1}, In addition, it is seen from the sector condition (8) that

¥z =diog{Q + £Bu1 + 052, 0, =X 0, G, — 26 (TiSata(k) > 0, K€ T, (28)

= Sa1/Ra, =S /02,7°Ra + 02,0} Adding the left-hand side of (25) (& Vi (k), and using (21) and
T T Ing‘ e left-nana side o 1 ana using an
U3 =diag{Q2 + £S21 + 0522, —A\3Q2,0, oo SN wiy(k — i) = ka(k) — S5 pyx(k — i), we obtain

— o1 /fiz, =S /G2, T2 Ra + 0 25}, =
U, =diag{0, (\]/7)Q1, S12/51, S11/R1}

L AVi (k <Zws§1 )E1 (7, 8)1(k), k€ [k7, +00)  (29)
-|—(2)\71—/7:)(1:'8,Rl(bs—‘y—(1/5’1)(13'921(1997

T1 =[T], Onxen Tis)"y Ts = [T51 Onxan Tia”, where 2, (11, s) is defined in (15). Similarly, adding the left-hand
Ty =[T5 Onxsn T Onxm]®s Ti = [Omxrn HT]T sides of (26) and (28) té\V>(k) and using (22)-(23), we have
1 =[A+BD,;U~1I BD;K Onxsn AVa(k) < & (k)E2ba(k), k€T, (30)

Aa+BD,V BD;W -1, where=, is given in the matrix inequality (16). Also, adding the left
Y2 =[A—1 BK Onx2n Ad Onxn —I1 —BJ, side of (27) toAVz(k) and applying the inequality (24) yields

s =4 =T Oncan Aa Oocn — 1], AVa(k) < €1 (K)Zas(k), k€ T (31)

Y4 =[0mxn K Omxsn — 1], Ri = diag{R1,3R1}, ) ) . . .
BT Ading! Ro. 30- Ry, B 2 diagd Ros. 30 R where the matrix2; is denoted in the inequality (17).
2 =diag{Rs,3p- Ra}, Ry = diag{Ra2, 3pr Rao}, Forr, = 0,7 andV s € [1,2™], if the matrix inequalities (14)-(17)

(pr 2 (r+1)/(1=1) (1>1), 1 2 1). are satisfied, then we can obtain from (29)-(31) that
Then, for any initial conditionp(k) € 2, satisfyingV2(0) < 1, the Vi(k+1) < \MVi(k), k € [k, +00), (32)

cosedloop sy (12) s ogonertly sale. oA D <, el @
by calculations and using Lemma 2, it follows that Moreover, it is seen from the matrix inequalities in (18) that
AVa(k) <" (k+ 1) Pan(k+1) = Xan” (k) Pan(k)
2" (k)(Qa + KSa1 + 0Sa2)z(k) +y” (k)
X (T°Ra + 0 Za)y(k) — Moz (k — T)an(k 7)
— G (k )( al/ﬁea)cl( ) = G2 (k)(Sa2/a)Ca(k)

Vi(k) < vVa(k), k> 0. (34)
Using the inequalities (32)-(34), it follows that
Vi(k) <AS M A VR (0)), k€ [k, +00). (35)

On the other hand, noting the following facts:

—Tha Z — (3 (k)(Za/5a)G5 (k) (20) .
) e Zu] Z £(0) Zujf(k—
Where/\l = )\T, Ao = )\2, (1(]{)) ZL 1 HiT (k — i), CQ(k) = i=k—j j
+oo ; +oo .
> py(k — i), andGs(k) = S0 ST pyy(k — ). =
sting the discrete Wirtinger—based]lnequality [2], [14] and the Zmz Z f(@) Z Z
reciprocally convex combination inequality [14], and noting the fact j=li=k—j =1 j=1
Y () =i, () + (), we have where f(i) is a positive real function, and using Lemma 2 and the
Jensen inequality [2], one has the following inequality:
T
T Z OR(@) 2 G RPMDGE) @Dy 57 (k)[diag{ Py, 0) + Wa/MJi(R), k€ (K, +o0) (36)

subject to the constrainf\; > 0 (the first inequality in (14)). whereW, is given in (19) andj(k) £ [n” (k) 35 piz™ (k z‘)]T
Similarly, using the Jensen inequality [2] and the reciprocally convex Applying Schur complement to (19), it is clear that
combination inequality [14], it follows that

o diag{P1,0} + W4/ > vAS N\ Ny, L€ [1,m].  (37)

T Yy (D) Ray(i) > & (k)D3 AoPsa(k) (22)  Then, one obtains from (35)-(37) that
i=k—T 2 .T T ~ E*
where the matrixA» given in (14) satisfies\» > 0. In particular, (k)" = (k)N(l)N(”Z(k) < (1/(wAz )Va(k),
using Wirtinger-based inequality directly, one obtains <V2(0), L€ [1,m], k € [k", +00). (38)
. For any initial condition¢(k) € %, satisfying V2(0) < 1,
T T T P
T Z y" (i) Raay (i) > &5 (k) @5 Rap@ata(h), (23) it is clear from (38) that the constraint condition (10) is ensured.
ik T Moreover, one can conclude from (35) that the closed-loop system
. T 12) is locally exponentially stable and this completes the pramf.
R > &5 (k)D§ RIPels(k). 24y (
T,L_:kz;y (D)R2y (i) 2 & (k)P 13 Pota (k) (24) Remark 4: In the proof of Theorem 1, the global analysis is per-

formed within the intervall; by using the classical sector condition
(8) sinceT, is generally small and not exactly known. Considering
that the open-loop of the system (1) might be unstable, the functional
26T (k)T 2161 (k) = 0, k € [k, +00), (25) Va(k) along the closed-loop system (7) is required to be increasing.

Noting the matriced; andX; (i = 1,2, 3) that are denoted in the
statement of the theorem, we obtain from (12), (7) and (6) that
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Of course, if the sequenda, k1, k2, ko, - - -, kr, k,» in Assumption

2 is known, one can perform the less conservative local analysis.

Next, we will discuss the controller design in terms of LMIs.
Theorem 2: Let the scalar® < A1 <1, A2 > 1, v >0,d; #0

Performing some congruence transformations to LMIs (39)-(44)
(see [2], [28]), and using the notations in (45), the matrix inequalities
(14)-(19) in Theorem 1 can be, respectively, obtained. [ ]

If the input delayr: is not incorporated in the system (1), the

(: =1, 2,3) and the integek™ > 1 be given. Assume that there existcorresponding closed-loop system can be written as

matrices0 < P, € R*3" 0 < Q. € R™*™, 0 < S,; € R™*™,
0< Raj ER™™ 0< Zy € R (a,5 =1 ,2), M, € RQ"“"
M, € ]R”X” X e R Y ¢ R™", U ¢ ]R’”X” Ve ]R’”X”
W e ]R’"X", and the diagonal matrift < A € R™*™ such that for
7 = 0,7,V s €[1,2"], Ve [1,m], the following LMIs hold:

- R, My « o [Ra M
A N 0, Ao = | - — 0 39
P O o TR
E1 (Tk, S) = F’{Plrl — )\1F§151F2 — )\Iq)’{/_\lq)l
— (195(21/5'1)(192 + Sym(T121) + \i’1 <0, (40)

Sy 2 T2 Pol's — Ao(['] Pol'y + &3 Ao®3 + ] Ro,Py)

— B2 (Z2/52)®5 + Sym(TuSe + TuSs) + T2 <0,  (41)
S5 2T PoTs — AoTE PoTs — Mo ®E R

— &7 (Z2/52)®7 + Sym(T333) + U3 < 0, (42)

P <vPs, Q1 <vQ2, Sij < vSsj, 43)
le < Z/sz (] = 1,2), Zl < Z/ZQ7
= 1/(1/)\2 ) N
S0 2 o Ne T a4
a(l) = [ N(l) diag{P1,0} + W4/ (“4)

where Ny, = [Uyy 0 Wy Vi) and
Uy =diag{Q1 + £S11 + 0512,0, —ATQ1,0,
0,—S11/R1, —S12/61,7°R1 + 0 Z1},
U, =diag{Q2 + kS21 + 0522,0, —A3Q2, 0,
— So1 /Ra, —822/G2, 7> Ra + 0 Z2, 0},
U3 =diag{Q2 + kS21 + 0522, —A5Q2, 0,
— So1/Ra, —5'22/&2,7'21352 + 02>},
U, =diag{0, (A\]/7)Q1, S12/51, 511 /F1}
+ (2] /7)®§ R1®s + (1/61) P9 Z1 Do,
Ty =[I Onxen 011", Ts=[I Opxan 831]7,
T [I Onxsn 021 Onxm]T, T4 = [0m><7n I]T7
$1=[(A-DX" +BD;U BD;Y Onxsn
AqgX" +BD,;V BD;W —X"],
=[(A-DX" BY 00 AsX" 0 —X" —BH],
=[(A=DX" Onxan AaX" Opxn — X7,
S0 =[0mxn Y Omxsn — H], Ry 2 diag{Ri,3R:},
R} 2diag{R2, 3¢, R2}, Ri, 2 diag{Ra2, 3¢, Rao}
(pr £ (T+D/(1=1) (1>1), pr 21).

Then, for anyg(k) € %2, satisfyingV2(0) < 1, the system (1) can
be exponentially stabilized by the controller (5) with=Y X 7.

Proof: If the LMIs (40)-(42) are feasible, it can be seen that th

matrix X is invertible. Then, we can define

Py 2 X 'P, X7 (X 2 diag{X, X, X}),

Qo 2 X'QuX T, Soj 2 X715, X7 T,

Roj 2 X 'Ro; X T, Zo 2 X' Z, X7,

Th 2 XY T2 6,X7 Y a,j=1,2, i=1,2,3, (45)
M, 2 XM X7 (X 2 diag{X, X}),

Mo2 X 'MoX T HA2F T K2YX T,
UAUX T, vAVX T, wawx T,

a(k+1)=>" wf{[A + B(DsK + D, U))z(k)
=1 .
+(Aa+ BD; V)Y pia(k — i)

“+oo k—1

+BD;W D ;> :c(i)}7 k>0. (46)

j=1  i=k—j
Choose the following augmented Lyapunov functional:

V (k) :ﬁT( )diag{X*l X "} Pdiag{X~ ", X "Yij(k)

+ZMZA‘“1T )X 1S X (i)

i=k—j
537 3 DR EEEITESE R
=1 j=1li=k—j
+oo l k—1 ) B
> my YN XTI ZX Y6 (47)
=1 j=1li=k—j

wheredj(k) = [27 (k) Y/ u; 200 2T(0)]". Then, it is easy
to obtain the following control design condition.

Corollary 1: Let the scalard) < Ay < 1 andé # 0 be given.
Assume that there exist matrices< P € R?"*?" ( < §; € R™*",
0< 8 eR™, 0<ZeR™, X eRY, Y eR™",
UeR™™ V eR™™ W eR™™, such that fov s € [1,2™],
V I € [1,m], the following LMIs are feasible:

él(s) éfirpfl — Alfgpr + \i’1

— &7 (Z/51)®1 + Sym(Ti31) < 0, (48)
. 1 N,
O T O >0 49
2() [N({) diag{P,0} + s/\ | = (49)

where Ny = [Ugy Wqy Vi) and
I 0 o0 I - I 00 0
LJ -1 I 0}’ 2:{0 0 I 0}’
&y =[kI —1 Opxzn], Ti =[I Onxzn OI]7,
=[(A-DX" + B(D;U + DY)

A4 XT +BD;V BD;,W — X",
U, :diag{/-sgl + 05, —5'1//%1, —5'2/571,02},
Wy =diag{0, S2/61, S1/f1} + (1/51)

X[kl 0 —1"Z[xI 0 —1I].

—»

1

Then, for any$(k) € 2, satisfyingV;(0) < 1, the system (1) can
Be exponentially stabilized by (5) with = Y X7,

Remark 5: In recent years, the local stablllzatlon problem has
been sufficiently addressed for discrete-time systems with time delays
under saturating actuators [2], [16], [17], [19]. Different from such
recent results where a single discrete state delay is involved, our
obtained results are concerned with the discrete-time systems with
both distributed state delagnd fast-varying input delays. In fact,
distributed delays are often encountered in various applications such
as engineering systems, traffic flow models, biological systems and
neural networks [4], [18], [22]. Moreover, almost all practical control
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systems are subject to input delays (e.g., actuator and transmission &, — I =1 0 0 . By = [TI —I] ,
delays). The results presented in Theorem 2 and Corollary 1 serve as I r =21 0
indispensable complements of the existing results. For systems with ¥} =diag{Q1,0, —A\]Q1,0,0, 7R, },
finite distributed delayZ?:1 uiz(k — 1), the corresponding results By =diag{Q2,0, ~A\5Q2,0, 72 R, 0},
can be readily obtained by revising the notations of, <. anda.. Fe —di S —\2Ob. 0. 72 R
For the case that the distributed state delay is not involved in (1), s =diag{Q2, —A>(2, 0,7 Fz},

one can select the following Lyapunov functional: U, =diag{0, Q1/7} + (2/7)®3 R1®s,
. U, =diag{0, \]Q1/7, S12/61, S11 /R
) Vi(k), k€ [k*, +00), ! { o 1T/_ 12/61 fl/ 3
Vi(k) = Va(k), k € [0, k%) (50) + (2A]/7)Pg Ri1Ps + (1/51) P9 Z1 Do,
2 ) ) ~ ~
Ti =[I Opxan 01117, Ts =[I Onxon 631]7,
where To =[I Onxszn 021 07, Ty = [Omusn 1]V,
Vo (k) =07 (k)diag{X ', X "} P, diag{ X", X " T}5(k) S =[(A-DNX"+BD;U BDsY Onxan
k-t - XT] ZV:4 = [Omxn Y 0m><3n - F[]
)\k*i*l T -Xfl *aXfT . 3 ) o
- Z_:zk; = @ XX () S2 =[(A= X" BY Ouxzn —XT —BH],
-1 k-1 S =[(A—-DXT Opxan —XT).
)\kfifl Ty X71RO¢X7T . B
+ Tj;”_;k;j ¢ vy (®) y(@) Then, for anyg(k) € Z, satisfyingV2(0) < 1, the system (1) can
be exponentially stabilized by (5) with = Y X7,
with 7(k) = [«" (k) S xT(i)]T and Ry, = Ra1 + Rao. Remark 6: Recently, the local stabilization problem has been
Then, the following sufficient condition is readily obtained. studied in [9] for linear input-delay systems with saturating actuators.

Corollary 2: Let the scalar® < A1 <1, \a > 1, v >0, 6; # 0 Unlike [9], the constraint on the time-varying input delay is removed

(i = 1,2,3) and the integek* > 1 be given. Assume that there existin this paper. Furthermore, the analysis approach proposed in [9] is
matrices0 < P, € R 2", 0 < Qo € R™", 0 < R,; € R™*™ NO longer applicable because of the existence of multiple intervals

(a,j =1,2), My € R**2" M, e R™*", X e R™*", Y ¢ R™*",  with zero control signal and two dynamics within the interjealk™).
U € R"*", and the diagonal matrit < H € R™*™ such that, for In this paper, the more flexible piecewise Lyapunov functional (50)

e =0,7,V s e€[1,2™],V 1 e[l,m], the LMIs (39) and is proposed to characterize the possible state evolutions of different
5 D P 5 dynamics within the whole time interval. Moreover, different from
E1(1k,8) 2T PITy — M3 Pl + 0y the techniques used in [9], the augmented Lyapunov functional, the

—A[®TA &) + Sym(T1%) <0, (51) Wirtinger-based inequality and the current-state-dependent polytopic

model are utilized together in this paper to reduce the conservatism.
Remark 7: In case the saturation level is non-unity, thatsist(u;)

[1]¢

2 217 Pol3 — Az(fzpzfzx + <i>2T/_\2<i>2) + Uy

— X2®3 R, &5 + Sym(Th%s + Tu¥s) <0, (52) = sgn(w)min{|w|, @}, the matricesB andY" in Theorem 2 and
B3 2T Pol's — Aol'g Pol' + s Corollaries 1-2 should be substituted By= [t1b1 T2bz -+ Umbm]
oA . [T T /e . .T /= 1T ; ;
— Ae®T R34 + Sym(Th5s) < 0, (53) andY = [y; /a1 ys /U2 ym/Gm]" , respectively, wheré, is the

_ o _ _ ) [-th column of B andy; is thel-th row of Y. Also, if the integerk™
P <vP, Q1 <vQ2, Rij <vRgj, j=1,2, G4) s unknown,k* in LMIs (44) and (55) should be replaced by

2.(0) 2 1/(vA5) Ua 0] -0 (55) In the subsequent part, we will address the maximization problem
- - [Ta O]T Pr+ AT, T of the initial condition setZ,. First, let us introduce the LMI

hold, whereR,, R3, R}, are denoted in Theorem 2 and Py < diag{J1, o, Ja} (Ji > 0,1 =1,2,3). (56)

Using (56) and Lemma 2, and noting (45), it follows that

B 1T o o o o0 I
R [ S SR A A V2(0) < P (X TTAX D) + (X T RXTT)
p,—[1 0 0 0 0 0} + o A (X T TBXTT) + oA (X T2 X
:_I -1 0 #l 7l 0 + oo (X '8 X7 +@32AM(X71§22X7T)}p§
- I 0 O 0 I O 15 v-T —17 yv—T\ .2
5 = A (X TR X 322 M (X" Z2 X . 57
Bs=lo 0 -1 #1 o0 0} : + [padm( 2 X70) 4 pa2 An( 2 X" )]p2. (87)
. (I 0 0 0 Oniinim To estimatel/(0) in Corollary 1, we introduce the LMI
F4 — - n n—+m :| , B
=1 0 0 7L Onxnim) P < diag{J1, T2} (J; > 0,5 =1,2). (58)
§ I 0o o0 I - I 0 0 0 L
I's = 0o —I #I ol s = 7 0 #I ol CorrespondinglyV/(0) can be enlarged as follows:
T -1 0 0 0 0 V(0) <Pu(XTTAX T + oA (XTI RXTT)
$, = é ; OI _gl 8 8 7 + oA (X 15X ) + s A (X 15X T
0 I I 0 -2 0 P+ s (X ZXT)pj (59)
. [T =T 0 Opxianim Next, we introduce the matrix inequality * X 7 < ol (z > 0
02 = o 1 -I 0n><(2n+m):| ) is a scalar) [1], which can be guaranteed by the following LMI:
. — -I 0 —I 0 Onx(n+m) xl I
P= 00 T 2 Opiurm) I x+xtg =" (60)
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Moreover, we introduce the following two sets of LMIs: TABLE |
) _ THE ADMISSIBLE BOUNDS(p) OF THE INITIAL CONDITION SET £},
jigpi—[77':172737 Q2§q17 (61)
So; < 8;1, Roy <151, j=1,2, Zo < 21, by 0.90 0.93 0.95 0.87 1.0
_ ) _ Prob.2 743899 82.8034 89.5207 97.3417 110.5246
Ji <pil, S; < sil, i=1,2, Z <zl (62) Prob.2’ 60.1129 69.6121 76.7917 84.7264  98.1399
Then, it is seen that the maximization of the admissible initial
condition setZ, in Theorem 2 and Corollary 1 can be, respectively, TABLE I
formulated by the following convex optimization problems: THE ADMISSIBLE RADII () OF THE INITIAL BALL
Prob.l.  min X1, T 3 4 5 6 7
Pa,Qa,Saj RajiZa,Ma,X,Y,U,V,W,H,T;,2,p;,4,85,75,% 9] 2.2616 1.9100 1.5745 1.2022 infeasible
s.t., LMIs in Theorem 2 and LMIs (56), (60), (61) hold, Prob.3 25263 22977 2.0391 16340  0.969%4

Prob.2. min X2, S.t.,
Pa,80j, 20, X YUV, W,T;,2,pj,5,2

LMIs in Corollary 1 and LMIs (58), (60), (62) hold

wherex: = ez +p1 +72p2 + 023+ p1q+ 2251+ Q3252+ pars +
@ara + @32z and 2 = €z + p1 + 0°p2 + Y2151 + Y3152 + Y312
(the scalare > 0 is a weighting parameter).

Remark 8: In this paper, our obtained results are based on the
novel polytopic models. If the same research is performed by using
traditional polytopic model, the corresponding optimization problems
are directly obtained by setting = W = 0 in (40) and (48), which
are referred to aBrob.1’ andProb.2’, respectively, in this paper.

For the case that the system (1) has a single input delay where ‘ ‘ ‘ ‘ ‘
u(k) = 0 for k£ < 0, we can see that the solution of (1) does not 0 v e e
depend on the values af(k) for £ < 0 [9]. Then, we can define
x(k) = ¢(k) = 2o, —7 < k < 0. In this case, we assume that theFig. 1. The state evolutions of the closed-loop system.
initial condition zo belongs to an ellipsoid as follows [9]:

The system state x(k)

A n T
& £{zo € R" : 3o Pxo < 1}. (63)  above controller gain, the state evolution of this system is plotted in
From (50), it is seen thal2(0) can be written as Fig. 1. In the simu!ation, the initial condition is sellectedds(:z}:) =

5 e A [70 87 € Z,. Noting that the open-loop system is not stable, it is

V2(0) =z X" PX ™" z0 = 20 Pzo. (64)  seen from Fig. 1 that our proposed control scheme is effective.
where P = [I 71]Bo[I 71)7 + ¢1Qo. Let the LMI Example 2: Consider the discrete time-delay system (1) where

- _ _ 1.11  —0.06 0.1

P=[I NPl 71" +1Q2 < pI (65) A= [0.05 0.9 } . B= [0_1] L Asa=0,
be given. Then, the maximization of the admissible initial condition 41 =5 0<7 <7, k" is unknown.

set& involving in Corollary 2 can be described as follows:
g y For this example, by solving the optimization problems in [9] and

Prob3. ~  min  ex+p, s.t., Prob.3 of this paper, we obtain some maximum admissible paéii
FooQafa Mo, X VLU o 1/ (P) of the initial ball contained in the region of attraction,
LMIs in Corollary 2 and LMIs (60), (65) hold. which are listed in Table II. In particular, when= 5, we have

0.3683  —0.1136
~0.1136  0.0350 } zo < 1} (19)),

0.2196  —0.0677
—0.0677  0.0209

K =[-2.1527 0.6683] ([9]), K = [-2.1379 0.6545] (Prob.3).

IV. NUMERICAL EXAMPLES X &{zyeR a5 {
Example 1: Consider the system described by (1) where

L1 015 0 —0.1 1
A= {0.03 0.8]’ Aa = {0 0 ] B= {0.1]’

pt=2"" =15 0< 1 =24 (—1)" < 3.

& 2{mo € R? : zg { } zo < 1} (Prob.3),

In solving the optimization problem in [9], we selekt= 1, u =

For this example, we first consider the special case without inpu3, 3 = 1, ¢ = 0.001 ande = 12. In solving Prob.3, we choose
delay. By solving Prob.2 and Prob.2’ with= 1.5 ande = 2 x 10°, §;, =10, 82 =05 =8, A1 = 1, A2 = 1.23, v = 0.9 and e = 100.
the admissible bounds of the initial condition s&}, (o1 = p2 = p)  In Fig. 2, we plot part bounds of the sets and & and some state
can be readily obtained for different (> 1/2), which are given in trajectories of the closed-loop system. It is seen from Table Il and
Table I. Recalling that Prob.2’ is based on the traditional polytopi€ig. 2 that our proposed result can provide a larger estimate of the
model, Table | shows that our proposed distributed-delay-dependesgion of attraction than that in [9]. Moreover, we notice that two
polytopic model is really effective in reducing the conservatism. trajectories starting not so far from the setdiverge. In addition, it

Next, we consider the more general case. By solving Prob.1 wihworth mentioning that our result removes the constrainton
1 =8 =8 =4, e=2x10° A\ =1, \o = 1.24 andv =
0.97, it is found that the initial condition se#,, can be bounded by V. CONCLUSIONS
2.0116p7 + 1.7704p3 < 10* with K = [-0.1695 — 0.0397]. In In this paper, the local stabilization problem has been addressed
particular, we havep, < 70.5065 for the casep, = 0. Using the for discrete-time systems with both distributed state delay and fast-
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Fig. 2. Part bounds of the set& and & and the state trajectories.

varying input delay under saturating actuators. By using a novel po{ -

[12]

this paper

(23]

[14]

[15]

[16]

[17]

18

topic model, the piecewise Lyapunov functional and some summatiti9]
inequalities, a local stabilization condition has been established in
terms of LMIs. The special cases with either state delay or input
delay have also been addressed. The proposed results in our paRErs. Tarbouriech, J. M. Gomes da Silva Jr, and G. Garcia, “Delay-
can be easily extended to the case with discrete state delay. Also, it dependent anti-windup strategy for linear systems with saturating inputs
is interesting to consider the local stabilization problem for saturated
systems with distributed input delay, which is our future work. 21]
Here, it is worth mentioning that the techniques dealing with t#e
time delays in this paper are somewhat conservative. By using the
recent developed inequalities [11], [15], [26], [29], one can establi$?]
some more effective results, which is our further research. In addition,

itis noted that the our results are based on the assumption {that=
0 for £ < 0. In case the past states can be used for feedback,

fre

LMI A2 > 0 in (39), LMIs (41)-(43), LMIs (52)-(54) should be
removed, the termi/(v\5" ) in LMIs (44) and (55) should be set as[24]
1. Moreover, the constrains ofi(k) in Theorem 2 and Corollary 2

should be revised ak; (0) < 1 and V4 (0) < 1, respectively.
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