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A B S T R A C T
From the parallaxes and proper motions of a kinematically unbiased subsample of the
Hipparcos Catalogue, we have re-determined as a function of colour the kinematics of
main-sequence stars.

Whereas the radial and vertical components of the mean heliocentric velocity of stars show
no trend with colour, the component in the direction of Galactic rotation nicely follows the
asymmetric drift relation, except for stars bluer than B ¹ V ¼ 0:1 mag. Extrapolating to zero
dispersion yields, for the velocity of the Sun with respect to the local standard of rest (LSR) in
km s¹1, U0 ¼ 10:00 6 0:36 (radially inwards), V0 ¼ 5:25 6 0:62 (in the direction of Galactic
rotation) and W0 ¼ 7:17 6 0:38 (vertically upwards).

Parenago’s discontinuity is beautifully visible in a plot of velocity dispersion against colour:
the dispersion, which is essentially constant for late spectral types, decreases towards early
spectral types blueward of B ¹ V < 0:61 mag.

We determine the velocity dispersion tensor j2 as function of colour. The mixed moments
involving vertical motion are zero within the errors, while j2

xy is non-zero at about ð10 km s¹1Þ2

independently of colour. The resulting vertex deviations are about 208 for early-type stars and
108 6 48 for old-disc stars. The persistence of the vertex deviation to late-type stars implies
that the Galactic potential is significantly non-axisymmetric at the solar radius. If spiral arms
are responsible for the non-axisymmetry, they cannot be tightly wound.

Except for stars bluer than B ¹ V ¼ 0:1 mag, the ratios of the principal velocity dispersions
are given by j1:j2:j3 < 2:2 : 1:4 : 1, while the absolute values increase with colour from
j1 < 20 km s¹1 at B ¹ V ¼ 0:2 mag to j1 < 38 km s¹1 at Parenago’s discontinuity and
beyond. These ratios imply significant heating of the disc by spiral structure and that
R0=Rd . 3 to 3:5, where Rd is the scalelength of the disc.

Key words: stars: kinematics – Galaxy: fundamental parameters – Galaxy: kinematics and
dynamics – solar neighbourhood – Galaxy: structure.

1 I N T RO D U C T I O N

The kinematics of stars near the Sun has long been known to
provide crucial information regarding both the structure and the
evolution of the Milky Way. Karl Schwarzschild (1908) already
interpreted the distribution of random velocities as forming a
triaxial ‘velocity ellipsoid’, which Oort, B. Lindblad and Strömberg
were able to relate to the large-scale structure of the disc. In the
early 1950s Parenago (1950), Nancy Roman (1950, 1952) and
others pointed out that stellar kinematics varies systematically
with stellar type, in the sense that groups of stars that are on average
younger have smaller velocity dispersions and larger mean
Galactic rotation velocities than older stellar groups. Spitzer &
Schwarzschild (1953), Barbanis & Woltjer (1967) and Wielen
(1977) explained these correlations in terms of the diffusion of
stars through phase space as the Galactic disc ages – for recent

studies of these processes see Binney & Lacey (1988) and Jenkins
(1992).

The Hipparcos Catalogue ESA 1997 provides an important
opportunity to re-examine the fundamental data of solar neighbour-
hood kinematics by providing the first all-sky catalogue of absolute
parallaxes and proper motions. From the Hipparcos Catalogue we
can, moreover, extract samples that are completely free of the
kinematic biases that have plagued similar studies in the past.
Binney et al. (1997) obtained some preliminary results from a
sample of 5610 stars around the South Celestial Pole. Here we
extend these results in three ways.

(i) We have joined the relatively deep sample of Binney et al.
(1997) to a sample that covers the whole sky but has a significantly
brighter limiting magnitude. The combined sample gives signifi-
cantly better statistics for earlier spectral types.
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(ii) Since we now have some all-sky coverage we are able to
impose a stricter limit on parallax errors: we use only stars with
jp=p # 0:1, whereas Binney et al. accepted stars with jp=p # 0:2.

(iii) Whereas Binney et al. only reported the solar motion and a
single estimate of random velocity for each spectral type, we derive
the lengths of the axes of the velocity ellipsoid and analyse its
orientation.

Section 2 describes the new sample. Section 3 explains how we
have analysed the sample. Section 4 gives the results, and Section 5
discusses them.

2 T H E S A M P L E

Our sample has to meet several criteria if it is accurately to
determine local stellar kinematics as a function of stellar age.
First, it must be kinematically unbiased, i.e. faithfully represent at
each point in the Hertzsprung–Russell diagram the kinematics of
all nearby stars. Secondly, it should be confined to main-sequence
stars, since only for these is there a one-to-one relation between age
and either colour or absolute luminosity. Thirdly, it should be based
on accurate astrometry, and, fourthly, it should contain no multiple
stars because their kinematics contains additional motions.

We ensured satisfaction of the last two criteria by taking only
single stars with relative parallax errors smaller than 10 per cent.
This is small enough that the non-linear dependence of tangential
velocity on parallax does not create a strongly skewed distribution
of tangential velocity errors, which would greatly complicate the
analysis. A 10 per cent parallax error cut-off automatically excludes
remote stars, and leaves just 18 860 of the 118 218 stars in the

Hipparcos Catalogue. The Hertzsprung–Russell diagram of the
selected stars is shown in Fig. 1, which also shows the division lines
that we used to select main-sequence stars; there are 16 054 stars
between these lines. However, given the very heterogeneous nature
of the Hipparcos Catalogue, they almost certainly do not comprise a
kinematically unbiased sample. The only reliable way to extract
such a sample is to isolate a magnitude-limited subsample.

According to its vol I, p. 4, the Hipparcos Catalogue comprises
some 60 000 objects complete to about 7:3 to 9 mag depending on
Galactic latitude, b, and stellar type. Actually, however, 59 stars
brighter than VT ¼ 7:0 (the subscript T denotes the passbands used
by Tycho, the starmapper of Hipparcos) are absent from the
Catalogue (see the table on p. 142 of vol. I). We used the Tycho
Catalogue ESA 1997, which is essentially complete to 11 mag, to
construct an almost complete subsample of Hipparcos stars.
For each of 16 × 16 × 10 uniformly spaced bins in sin b, Galactic
longitude, ,, and BT ¹ VT, we took all Hipparcos stars brighter (in
V) than the second brightest star per bin that is contained in the
Tycho but not the Hipparcos Catalogue. This gives a subsample
with 95 per cent completeness (as compared with the Tycho
Catalogue) and 47 558 stars (compared with 60 000 claimed), of
which 10 706 have jp=p # 0:1 and lie between the lines in Fig. 1.

Another kinematically unbiased subsample is given by Hippar-
cos Proposal 018: all stars spectrally classified in the Michigan
Catalogues by 1982 (Houk & Cowley 1975; Houk 1978, 1982) that,
judged from their spectral classification, should be within 80 pc
from the Sun – this ‘SCP’ sample is the one analysed by Binney et
al. (1997). It contains 6845 stars south of d ¼ ¹288 (covering 26.5
per cent of the sky), of which 3172 are single and have jp=p # 0:1
and lie between the lines in Fig. 1.

Whereas most of the stars in the all-sky sample are of early type
and intrinsically luminous, the SCP sample contains many late-type
dwarfs. The union of the samples is kinematically unbiased and has
11 865 entries. It is this combined sample that we analyse below.
Fig. 2 shows its Hertzsprung–Russell diagram.

3 A N A LY S I S T E C H N I Q U E

Hipparcos provides us with parallax measurements of unprece-
dented accuracy, and proper motions the accuracy of which is only
comparable to that of ground-based astrometry on account of the
short duration (3:3 yr) of the Hipparcos mission. Unfortunately, the
Hipparcos astrometry mission was not complemented by a pro-
gramme to measure the radial velocities of the same stars, so we do
not know the space velocities of most sample stars. As Binney et al.
(1997) have demonstrated, the stars with known radial velocities
form a kinematically biased subsample. Hence we have to discard
the known radial velocities and work with the Hipparcos data alone.

3.1 The projection equation

The velocity of a star relative to the Sun can be divided into three
components: (i) the peculiar velocity of the star, (ii) that of the Sun,
and (iii) the contribution from Galactic rotation. Here we are
dealing with the first two parts, and correct for Galactic rotation
before further analysis. Given observed values mðobsÞ

, and mðobsÞ
b , the

corrected values are

m, ¼ mðobsÞ
, ¹ A cosð2,Þ ¹ B;

mb ¼ mðobsÞ
b þ A sinð2,Þ cos b sin b:

ð1Þ

We used the values of A and B derived by Feast & Whitelock
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Figure 1. Hertzsprung–Russell diagram (MHp is the absolute magnitude in
Hipparcos’s own passband) of the 18 860 single Hipparcos stars with
relative parallax errors less than 10 per cent. The lines are used to select
the main sequence and have 16 054 stars between them.
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(1997) from Hipparcos Cepheids: A ¼ 14:82 km s¹1 kpc¹1 and
B ¼ ¹12:37 km s¹1 kpc¹1.

Let us introduce a Cartesian coordinate system such that x̂ points
towards the Galactic Centre, ŷ in the direction of Galactic rotation,
and ẑ towards the North Galactic Pole. We consider a star with
parallax p and heliocentric velocity v, and define the star’s proper
motion velocity p to be

p ;
1au
sin p

¹ sin , cos b m, ¹ cos , sin b mb

cos , cos b m, ¹ sin , sin b mb

cos b mb

264
375: ð2Þ

Then p and v are related by

p ¼ A·v; ð3Þ

where the matrix A is defined by

A ; I ¹ r̂ ⊗ r̂; ð4Þ

with r̂ the unit vector to the star. A projects velocities on to the
celestial sphere. It is symmetric and, as every projection operator,
obeys A2 ¼ A and is singular. Hence we cannot invert (3); we
needed the radial velocity to recover v.

3.2 The mean motion

The solar motion relative to any given group of stars is simply minus
the mean motion of that group with respect to the Sun, v( ¼ ¹ vh i.
For a kinematically unbiased sample of nearby stars we can safely
assume that the positions on the sky r̂ are uncorrelated with the
velocities v. With this assumption, taking the sample mean of
equation (3) yields p


 �
¼ Ah i· vh i, which can be inverted to give

¹v( ¼ vh i ¼ Ah i¹1· p

 �

: ð5Þ

It is easy to show that for a group of stars that is isotropically

distributed over a celestial hemisphere Ah i ¼ 2
3I, where the factor 2

3
arises from the fact that we only know two of the three velocity
components for each star. Let us denote the motions relative to the
mean by

v0 ; v ¹ vh i;

p0 ; p ¹ A· vh i;
ð6Þ

and consider the quantity

S2 ; jp0j2

 �

: ð7Þ

It can be shown that the choice of vh i given by (5) minimizes S2, and
(with equations 3 and 4) that

S2 ¼ jv0j2

 �

¹ ðv0·r̂Þ2
 �
: ð8Þ

Hence S2 is a measure for the velocity dispersion of the group.

3.3 The velocity dispersion tensor

Similarly to the mean velocity, the second-order moments of the
space velocities can be inferred. From equation (3) we can obtain

p0 ⊗ p0 ¼ ðA·v0Þ ⊗ ðA·v0Þ ¼ ðA ⊗ AÞ·ðv0 ⊗ v0Þ: ð9Þ

The velocity dispersion tensor j2 is the sample average of ðv0 ⊗ v0Þ,
so after averaging (9) we can solve for j2, exactly as we did for vh i

above, and the same holds, in principle, for the velocity moments of
higher orders.

However, if we were to solve the expectation of equation (9)
for j2, we would in general find that the recovered tensor j2 was
not symmetric, because AijAkl


 �
Þ AkjAil


 �
. Since we know a

priori that j2 is a symmetric tensor, with six rather than nine
independent elements, it is advantageous to impose this symmetry
by solving

p0
ip

0
k


 �
¼ 1

2

X
jl

AijAkl þ AkjAil


 �
jjl: ð10Þ

For the computer this is more conveniently written as uh i ¼ B· sh i,
where uh i and sh i are vectors containing the six independent
components of p0

ip
0
j


 �
and jij, respectively, whereas B is the

corresponding 6 × 6 matrix. With this notation the dispersion
tensor is estimated via

sh i ¼ Bh i¹1· uh i: ð11Þ

Somewhat surprisingly, for an isotropic sample the matrix Bh i¹1 is
not diagonal, in contrast to Ah i¹1. It turns out that the diagonal
terms of j2 are coupled. Quantitatively,

j2
x

j2
y

j2
z

0B@
1CA ¼

3
14

9 ¹1 ¹1

¹1 9 ¹1

¹1 ¹1 9

0B@
1CA·

hp0
xp0

xi

hp0
yp0

yi

hp0
zp

0
zi

0B@
1CA; ð12Þ

while all other off-diagonal terms of Bh i¹1 average to zero for an
isotropic sample.

3.4 Errors

In the equations derived so far, we have ignored the effects of (i)
Poisson noise, as well as (ii) systematic and (iii) random uncertain-
ties in the Hipparcos data.

3.4.1 Poisson noise

The finite sample size is by far the dominant source of uncertainties
in the derived kinematic quantities. The resulting variances for vh i,
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Figure 2. Hertzsprung–Russell diagram for the stars in our kinematically
unbiased sample of 11 865 single main-sequence stars.
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S2 and sh i can be estimated by, respectively,

Vð vh iÞ ¼ N¹1 Ah i¹1 jp0j2

 �

; ð13Þ

VðS2Þ ¼ N¹1 jp0j4

 �

¹ jp0j2

 �2

� �
; ð14Þ

Vð sh iÞ ¼ N¹1 Bh i¹1 ju ¹ B·sj2

 �

: ð15Þ

In Section 4 we only give the diagonal elements of these variance
matrices (i.e. the standard errors of the quantities evaluated); the
correlations between the parameters are generally very small (a
few per cent), except for the diagonal elements of j2, as shown
above.

3.4.2 Systematic errors in the Hipparcos data

3.4.2.1 Proper motion. The Hipparcos reference frame may
rotate systematically with respect to inertial space by up to
0:25 mas yr¹1 (ESA 1997). This corresponds to dv ¼ 0:085 km s¹1

at the mean stellar distance of 72 pc for our sample.
The apparent tangential velocity induced by this rotation has

opposite signs in directions r̂ and ¹r̂, and for an isotropic sample
no net effect is expected. Anisotropies in our sample are small, of
the order of 10 per cent (that is the fraction of stars exclusively
from the SCP sample covering a cap around the South Celestial
Pole), so the induced error is expected to be less than 0:1dv, i.e.
completely negligible.

For the velocity dispersions, there is no cancellation and
the effect contributes fully. However, since it adds to j2, the
resulting error in a dispersion j is ðdvÞ2

=2j, i.e. again completely
negligible.

3.4.2.2 Parallax. Even though Hipparcos’s instrumental
configuration and observations were designed to give absolute
parallaxes, a systematic error could have been introduced through
a certain thermal coupling between the satellite and the solar
illumination. In this case, one expects a constant offset dp limited
to be less than 0:1 mas in modulus (Perryman, private communica-
tion). Such an offset would imply that the tangential velocities p are
systematically too small (large), and with them the derived mean
motion and velocity dispersions. To quantify the effect, we will
apply our numerical apparatus to the data with the parallaxes
artificially raised or lowered by 0:1 mas. The size of the resulting
deviations is about a quarter of the uncertainties due to Poisson
noise (see Section 4 below).

3.4.3 Random measurement uncertainties

The uncertainties in proper motion and parallax are much larger
than those in position, which can be ignored for our purposes. Our
sample is restricted to stars with parallax errors less than 10 per
cent, so we can use simple error propagation and ignore higher-
order effects introduced by the non-linear dependence of the
velocities on parallax. For the variance VðpÞ of the tangential
velocity this gives

VijðpÞ ¼
X

kl

∂pi

∂yk

∂pj

∂yl
VklðyÞ; ð16Þ

where y ; ðp; cos d ma; mdÞ are the observed astrometric parameters
and VðyÞ is their variance, which can be derived from the errors and
correlations given in the Hipparcos Catalogue.

With knowledge of VðpÞ for all stars, we can obtain corrected
values for the dispersions by subtracting the errors in quadrature.

The resulting correction terms are

DS2 ¼ Tr Vðp0Þ

 �� �

; ð17Þ

Dj2 ¼ Bh i¹1· u½Vðp0Þÿ

 �

; ð18Þ

where u½Vÿ denotes the six independent elements of V, while

Vðp0Þ ¼ VðpÞ þ A·VðhviÞ·A; ð19Þ

with VðhviÞ given in equation (13). In the application to the data
below, the corrections are less than 1 per cent, as expected for a 10
per cent effect added in quadrature.

The contribution of random measurement uncertainties to the
errors is of the order of these corrections divided by the sample size,
i.e. negligible compared with the Poisson noise.

4 R E S U LT S

We will now apply the formulæ from the last section to our sample.
The analysis technique relies heavily on taking averages of the
various observed kinematic quantities. Unfortunately, averages are
sensitive to outliers such as halo stars, and rejection of them is an
important issue. Here, we will use an iterative method: in the
solution for the various quantities we rejected stars that contribute
to S2 (equation 7) by more than k2 times the value of S2 obtained in
the previous iteration. Convergence is usually obtained after a few
iterations (or never if k is too small). The results prove to be
insensitive to k in the range of 3 to 4. Below we used k ¼ 4, which
led to the rejection of 22 stars (out of 11 865) compared with 7
expected for a Gaussian distribution.

4.1 The solar motion and Parenago’s discontinuity

We have binned the stars in B ¹ V , such that the bins are no smaller
than 0.02 mag and contain no fewer than 500 stars. For each bin,
Fig. 3 plots the solar motion with respect to the stars in the bin,
v( ¼ ¹ vh i, and S, which is a measure for the bin’s velocity
dispersion, versus the mean colour. As usual, U, V and W denote
the components of v( in the x̂, ŷ and ẑ directions as defined in
Section 3.1. U and W do not vary significantly between bins, while
both V and S increase systematically from early to late spectral
types. The points in S display very beautifully Parenago’s (1950)
discontinuity: around B ¹ V . 0:61 mag there is an abrupt change
in gradient from a strongly positive value to about zero. The same
discontinuity is visible, although less clearly, in the data for V.
Parenago’s discontinuity is thought to arise from the fact that the
mean age of stars decreases as one moves blueward of the
discontinuity, while it is independent of colour redward of the
discontinuity: scattering processes cause the random velocities of
stars to increase steadily with age (e.g. Jenkins 1992). Hence
velocity dispersion reflects age, and decreases as one moves blue-
ward from the discontinuity through ever younger stellar groups,
while remaining constant with mean age redward of the disconti-
nuity. The discontinuity itself should occur at the colour for which
the main-sequence lifetime of a star equals the age of the Galactic
disc. However, since stars change colour during their life on the
main sequence, detailed modelling of stellar populations is neces-
sary, to infer the age of the stellar disc from this datum (Binney &
Dehnen, in preparation).

4.2 The Sun’s velocity with respect to the LSR

Fig. 4 is a plot of U, V and W versus S2. For S * 15 km s¹1, this
clearly shows the linear dependence of V on S2 that is predicted by
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Strömberg’s asymmetric drift equation [e.g. equation (4-34) of
Binney & Tremaine (1987, hereafter BT)]. That is, V increases
systematically with S2 because the larger a stellar group’s velocity
dispersion is, the more slowly it rotates about the Galactic Centre
and the faster the Sun moves with respect to its lagging frame.

For very early-type stars with B ¹ V & 0:1 mag and/or S&
15 km s¹1, the V-component of vh i decreases with increasing S,
colour, and hence age contradicting the explanation given in the last
paragraphs. However, the stars concerned are very young, and there
are several possibilities for them not to follow the general trend.
First, because of their youth these stars are unlikely to constitute a
kinematically well-mixed sample; rather, they move close to the
orbit of their parent cloud; many will belong to a handful of moving
groups. Secondly, Strömberg’s asymmetric drift relation predicts a
linear relation between V and S2 only if both the shape of the
velocity ellipsoid, i.e. the ratios of the eigenvalues of j, and the

radial density gradient are independent of S. Young stars probably
violate these assumptions, especially the latter one.

The radial and vertical components U0 and W0 of the velocity of
the Sun with respect to the LSR (the velocity of the closed orbit in
the plane that passes through the location of the Sun) can be derived
from hvi estimated for all stars together. The component in the
direction of rotation, V0, may be read off from Fig. 4 by linearly
extrapolating back to S ¼ 0. Ignoring stars blueward of
B ¹ V ¼ 0 mag we find

U0 ¼ 10:00 6 0:36 ð60:08Þ km s¹1
;

V0 ¼ 5:25 6 0:62 ð60:03Þ km s¹1
;

W0 ¼ 7:17 6 0:38 ð60:09Þ km s¹1
;

ð20Þ

where the possible effect arising from a systematic error of 0:1 mas
in the parallax is given in brackets. When we use this value of the
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Figure 3. The components U, V and W of the solar motion with respect to stars with different colour B ¹ V. Also shown is the variation of the dispersion S with
colour.

Figure 4. The dependence of U, V and W on S2. The dotted lines correspond to the linear relation fitted (V) or the mean values (U and W) for stars bluer than
B ¹ V ¼ 0:
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solar motion to calculate values of hvyi relative to the LSR for
our stellar groups, Strömberg’s asymmetric drift equation is found
to be

vy


 �
¼ ¹j2

xx=k; ð21Þ

where k ¼ 80 6 5 km s¹1 and we have used S2 . 1:14j2
xx.

4.3 The velocity dispersion tensor

We divided the 11 865 stars of our sample into nine bins in B ¹ V
with equal numbers of stars in each bin, and determined j2 as
described in Sections 3.3 and 3.4.3. The results are displayed in
Fig. 5 and Table 1. The errors correspond to the 15.7 and 84.3
percentiles (1j error) and have been evaluated via Monte Carlo
sampling assuming a multivariate Gaussian distribution in the j2

ij

with variance evaluated via equation (15). In the upper panel of
Fig. 5 the three diagonal velocity dispersions and hvfi ; hvyi þ V0

are plotted versus B ¹ V . Parenago’s discontinuity is visible in all
three jii and hvfi, although, owing to the larger bin size, less clearly
than in Fig. 3 above. The ordering between the diagonal compo-
nents of j2 is the same for all colour bins: jxx > jyy > jzz.

The lower three panels of Fig. 5 show

j0
ij ; signðj2

ijÞ
��������
jj2

ijj
q

ð22Þ

for the mixed components of the velocity dispersion tensor j2.
Evidently, the mixed moments involving vertical motions vanish
within their errors. This is to be expected for essentially all possible
dynamical configurations of the Milky Way. On the other hand, the
mixed dispersion in the plane, j2

xy, differs significantly from zero,
which is not allowed in a well-mixed axisymmetric Milky Way.
Thus the principal axes of j2 are not aligned with our Cartesian
coordinate frame. We diagonalized the tensor j2 to obtain its
eigenvalues j2

i . The square root of the largest of these as well as
the ratios to the smaller ones are given in Table 1. The ratio
j1=j2 . 1:6, whereas j1=j3 . 2:2 with a trend for smaller values
at redder colours.

Also given in Table 1 is the ‘vertex deviation’, commonly used to
parametrize the deviation from dynamical symmetry. This is

392 W. Dehnen and J. J. Binney

q 1998 RAS, MNRAS 298, 387–394

Figure 5. Velocity dispersions for stars in different colour bins. The top
panel shows the mean rotation velocity (negative values imply lagging with
respect to the LSR) and the three main velocity dispersions. In the three
bottom panels j0

ij ; signðj2
ijÞ jj

2
ijj

1=2 is plotted for the mixed components of
the tensor j2

ij.

Table 1. Eigenvalues of j2 for the nine colour bins and all stars beyond Parenago’s discontinuity
(last row).

bin ðB ¹ VÞ min; max j1 j1=j2 j1=j3 ,v

1 ¹0:238 0.139 14:35þ0:49ð0:20Þ
¹0:40ð0:15Þ 1:52þ0:16

¹0:14 2:63þ0:94
¹0:28 30:2þ4:7

¹5:3

2 0.139 0.309 20:17þ0:50ð0:20Þ
¹0:43ð0:20Þ 2:11þ0:13

¹0:28 2:51þ0:83
¹0:10 22:8þ2:8

¹3:0

3 0.309 0.412 22:32þ0:56ð0:15Þ
¹0:47ð0:18Þ 1:89þ0:14

¹0:20 2:40þ0:66
¹0:14 19:8þ3:2

¹3:4

4 0.412 0.472 26:26þ0:80ð0:21Þ
¹0:59ð0:01Þ 1:66þ0:12

¹0:15 2:16þ0:52
¹0:15 10:2þ5:0

¹5:4

5 0.472 0.525 30:37þ0:96ð0:22Þ
¹0:70ð0:21Þ 1:66þ0:13

¹0:15 2:28þ0:77
¹0:18 6:9þ5:1

¹5:3

6 0.525 0.582 32:93þ1:09ð0:22Þ
¹0:75ð0:21Þ 1:51þ0:13

¹0:12 2:19þ0:64
¹0:19 1:9þ6:0

¹6:1

7 0.582 0.641 37:64þ1:37ð0:23Þ
¹0:94ð0:23Þ 1:61þ0:07

¹0:18 1:78þ0:48
¹0:04 10:2þ5:6

¹6:0

8 0.641 0.719 38:13þ0:71ð0:23Þ
¹0:31ð0:22Þ 1:60þ0:10

¹0:15 1:84þ0:42
¹0:08 7:6þ5:9

¹6:0

9 0.719 1.543 37:20þ1:41ð0:16Þ
¹0:93ð0:15Þ 1:44þ0:12

¹0:12 2:04þ0:61
¹0:16 13:1þ6:7

¹7:6

— 0.610 1.543 37:91þ0:79ð0:20Þ
¹0:63ð0:20Þ 1:54þ0:07

¹0:09 1:86þ0:21
¹0:08 10:3þ3:9

¹3:9

j1, j2, j3 are the roots of the largest, middle and smallest eigenvalues of the velocity dispersion tensor
j2. ,v is the vertex deviation (equation 23). Units are mag, km s¹1 and degrees for B ¹ V, ji and ,v

respectively. The errors given correspond to the 15.7 and 84.3 percentiles, i.e. 1j error. The maximum
deviations resulting from a systematic error of 0:1 mas in the parallaxes are given in brackets (only for
j1; for all other quantities listed the deviations are neglible compared with the uncertainties).
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defined to be

,v ; 1
2 arctan

�
2j2

xy

j2
xx ¹ j2

yy

�
; ð23Þ

and is the angle by which one has to rotate our Cartesian
coordinate system around its ẑ axis such that the resulting
velocity dispersion tensor is diagonal in the vxvy plane. Hence
,v is the Galactic longitude of the direction of j2

1, the largest
eigenvalue of the velocity dispersion tensor. Fig. 6 shows ,v as a
function of colour. Blueward of Parenago’s discontinuity, there is
a clear trend of ,v decreasing with B ¹ V . Redward of Parena-
go’s discontinuity, stellar kinematics is independent of B ¹ V
and it makes sense to group all 3330 stars into a single bin. The
results are given in the last row of Table 1. The hypothesis that
,v # 0 for this group of stars is excluded at the 99.5 per cent
confidence level.1

5 D I S C U S S I O N

We have analysed a kinematically unbiased sample of nearly 12 000
main-sequence stars for which the Hipparcos satellite measured
parallaxes that have errors smaller than 10 per cent. From this
sample we have re-determined most of the key kinematic para-
meters of the solar neighbourhood with unprecedented accuracy.

On account of the unusually small accidental and systematic
errors of the Hipparcos data, our errors are dominated by Poisson
noise; we are characterizing the distribution of stars in three-
dimensional velocity space from samples of typically 500 stars.
From this fact it follows that our error estimates may be considered
reliable.

Equation (20) gives the velocity of the Sun with respect to
the LSR. In common with several recent studies (Mayor
1974; Gomez & Messenier 1977; Oblak 1983; Bienaymé &
Sechaud 1997) this has a smaller azimuthal component
(V0 ¼ 5:2 6 0:6 km s¹1) than Delhaye’s (1965) classical value,
12 km s¹1. A contributory factor to this discrepancy is probably
the fact that stars bluer than B ¹ V . 0 have anomalous values
of both vx


 �
and vy


 �
, presumably because they are not yet well

mixed. We have ignored such stars in our determination of the
Sun’s motion with respect to the LSR.

Equation (21) quantifies the asymmetric drift. As is well known,
the coefficient k that occurs in it constrains the radial gradients of
stellar density and the velocity dispersion tensor, j2. Quantitatively,
if Rd is the scalelength of the disc, and n the mid-plane stellar

density, with equation (4-34) of BTwe may infer from equation (21)
that

R0

Rd
. ¹1

2

∂ ln nj2
xx

∂ ln R

����
R0

¼
vc

k
þ 1

2

�
1 ¹

j2
yy

j2
xx

þ̇
�

1 ¹
j2

zz

j2
xx

��
. 3:0 þ̇ 0:4:

ð24Þ

Here the first equality involves the assumption that j2
xx ~ n, which is

based on the observation that disc scaleheights vary little with
radius, and the term that follows the symbol þ̇ may or may not be
required, depending on whether the longest axis of j2 points to the
Galactic Centre or remains horizontal as one moves above the plane
[cf. section 4.2.1(a) of BT]. The numerical values given are based
on Table 1, R0 ¼ 8 kpc and the Feast & Whitelock values of the
Oort constants. The relatively short scalelength implied by
equation (24) is consistent with recent infrared-based studies of
the Galaxy (Kent, Dame & Fazio 1991; Malhotra et al. 1997).

The shape of the velocity ellipsoid does not vary significantly
with B ¹ V ; to within the errors its axial ratios are constant at
j1=j3 . 2:2 and j1=j2 . 1:6. The ratio j2

yy=j
2
xx . 0:4 is intimately

connected with the values of the Oort constants, being naı̈vely given
by Oort’s equation ¹B=ðA ¹ BÞ . 0:45. Unfortunately, Oort’s rela-
tion is significantly in error for typical star samples (Binney 1986),
but Cuddeford & Binney (1994) argue that ¹B=ðA ¹ BÞ can be
accurately determined from j2

yy=j
2
xx if modified rather than normal

moments are employed. We hope soon to evaluate these modified
moments from the present sample.

The ratio j1=j3 constrains the nature of the scattering process that
is responsible for the increase in stellar velocity dispersion with age
(e.g. Jenkins 1992). The value determined here is consistent with
previous values, and implies that both spiral structure and scattering
by molecular clouds contribute significantly to heating of the local
disc. We find a hint of smaller values of j1=j3 for redder colours,
which is the trend expected if heating by spiral structure is less
efficient relative to cloud scattering for dynamically hotter stellar
populations.

We have shown that one principal axis of the velocity ellipsoid
coincides with the direction b ¼ 908. The angle by which the
longest axis of the velocity ellipsoid deviates from the direction
to the Galactic Centre, the vertex deviation ,v, decreases from large
values (,v * 208) for early types up to the colour of Parenago’s
discontinuity, and is then consistent with being constant at ,v . 108.

Two factors probably contribute to the vertex deviation: (i) the
likelihood that a significant fraction of young stars belong to a
small number of moving groups, and (ii) any large-scale non-
axisymmetric component in the Galactic potential, such as would
be generated by either a bar or spiral structure. Spiral arms will
contribute to the vertex deviations of all stellar groups, but their
contribution will be largest for the populations with the smallest
velocity dispersions, because stars with epicycle amplitudes
comparable to or larger than the inter-arm spacing will respond
weakly to the spiral’s potential. Hence the more tightly wound the
arms are, the more strongly the effect will be confined to the
earlier spectral types. The fact that we see a significant vertex
deviation to the latest spectral types implies that the causative
agent is either a bar or rather open spiral arms. To quantify
this point, let X be the epicycle amplitude of a typical late-type
star. Then the star’s radius is RðtÞ ¼ Rg þ X cosðktÞ, where
k ¼ 2

�����������������
B2 ¹ AB

p
. 36:7 km s¹1 kpc¹1 is the epicycle frequency

and Rg the guiding centre of the star. To a reasonable approxi-
mation we may equate the time average of Ṙ2 to
j2

1 . ð38 km s¹1Þ2. Hence X .
���
2

p
j1=k . 1:5 kpc and the star
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Figure 6. The vertex deviation ,v versus B ¹ V colour. The error bars
correspond to the 15.7 and 84.3 percentiles (i.e. 1j error) and have been
obtained assuming a multivariate Gaussian distribution in the j2

ij with
variance evaluated via equation (15).

1It is important to bear in mind that the errors in ,v are not distributed as a
Gaussian.
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moves ,3 kpc in each epicycle period. We would not expect
spiral arms with inter-arm spacing D & 3 kpc to have much effect
on the orbit of such a star. It is clearly important to quantify this
interesting conclusion more precisely. Kuijken & Tremaine
(1991) give an estimate of the magnitude of the vertex deviation
that would be generated by a component of the Galaxy’s gravita-
tional potential proportional to exp½iðmf ¹ qtÞÿ.

Finally it seems worth remarking that, in characterizing the
distribution of stars in velocity space by its first few moments, we
in no way imply that the distribution is similar to Schwarzschild’s
ellipsoidal distribution, as given, for example, by equation (7-91) of
BT; the velocity ellipsoid is a formal construct which need have no
physical counterpart. From these data it is possible to map the
distribution of stars in velocity space and discover how closely it
resembles Schwarzschild’s paradigm, but that topic is reserved for a
future paper (Dehnen 1998).
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