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Abstract In this paper, we present local stereological estimators of Minkowski
tensors defined on convex bodies in R?. Special cases cover a number of well-known
local stereological estimators of volume and surface area in R3, but the general set-
up also provides new local stereological estimators of various types of centres of
gravity and tensors of rank two. Rank two tensors can be represented as ellipsoids
and contain information about shape and orientation. The performance of some of
the estimators of centres of gravity and volume tensors of rank two is investigated by
simulation.
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1 Introduction

Local stereology provides estimators of mean particle size without restrictive as-
sumptions about particle shape. It is also possible to stereologically estimate the
particle size distribution without shape assumptions when the size of the individu-
ally sampled particles is determined with sufficient precision (Pawlas et al. 2009).
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However, it is still an open question how to estimate stereologically particle shape
and orientation without initially restricting to a specific class of shapes. A global
stereological procedure for estimating anisotropy is available (Cruz-Orive et al.
1985), but otherwise the focus in the stereological literature has mainly been on esti-
mating shape and orientation of ellipsoidal particles. For the cases of either prolate
or oblate ellipsoids, stereological methods of estimating the bivariate distribution
of the lengths of the two semiaxes from sectional data were already developed by
Cruz-Orive (1976, 1978). Further developments in this direction include Gokhale
(1996); Benes et al. (1997). But, to the best of our knowledge, the general case of
stereologically estimating shape of arbitrary particles has remained an open problem.

In the present paper, we take up this problem. We associate to each particle a
system of Minkowski tensors and develop local stereological methods of estimating
these tensors. The rank zero Minkowski tensors are simply the intrinsic volumes for
which local stereological estimation procedures have already been developed. The
rank one tensors provide information about centres of gravity of different types.
Rank two tensors can naturally be associated to ellipsoids and contain information
about the shape and orientation of the original particle.

Minkowski tensors have been used with success in material science (Beisbart et al.
2002; Denis et al. 2008; Schroder-Turk et al. 2011a, b), but there are also examples
from the biosciences (Beisbart et al. 2006). In these applications, the structure is
observed directly. In the present paper, we use measurements on sections through
the particles instead.

The paper is organised as follows. In Section 2, we give a short introduction
to Minkowski tensors while Section 3 gives the geometric interpretation of the
Minkowski tensors as descriptors of size, shape and orientation. The local stereo-
logical estimators of Minkowski tensors are derived in Section 4 and all the special
cases in 3D are discussed in Section 5. A simulation study is presented in Section 6.
Perspectives and future research are discussed in Section 7.

2 Minkowski Tensors

This section contains a condensed introduction to Minkowski tensors. For a more
comprehensive treatment, see Hug et al. (2008) and references therein.

Let X € R? be a convex and compact subset of RY. For a non-negative integer r,
the volume tensor of rank r is defined by

1
i) = fX X ha(d), (1)

where x” is the tensor of rank r determined by x and A, is the Lebesgue measure
on RY,

For k=0,...,d — 1 and non-negative integers r and s, let
D) = [ A dex ), @
’ rls! W —f+s JRAxSd-1

where wy = 27%?/T'(d/2) is the surface area of S* ! and A, (X, -) is the kth support
measure or generalised curvature measure of X,k =0, ..., d — 1. Furthermore, x"v*
is the symmetric tensor product of rank r + s of x” and u°.
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The support measures Ax(X,-),k=0,...,d — 1, are concentrated on the normal
bundle Nor X of X which consists of all pairs (x, u) where x € 9. X and u is an outer
unit normal vector of X at x. For this reason, the tensors defined in Eq. 2 are called
surface tensors. Forr = s = 0, &4 0,0 = Vi, the kth intrinsic volume, k =0, ..., d.

If 3 X is a regular hypersurface of class C?, then Eq. 2 reduces to

Wd—k

B s(X) = ——
S Wd—k+s

f X u(x) o, (X, dx), 3)
axX

where u(x) is the unique outer unit normal vector of X at x and ¥, (X, -) is the kth
curvature measure of X, k=0,...,d—1.Fork=d -1,

20, (X, A) = H" ' (AN aX),

where H? ! is the (d — 1)-dimensional Hausdorff measure, and Eq. 3 takes the simple
form

Wd—k

Pa1rs(X) = 50—
d-1,5,5(X) 218! wg_jys

/ X u(x)H (dx).
D¢

The tensors defined in Eqs. 1 and 2 constitute the Minkowski tensors. They
are tensor-valued valuations, continuous with respect to the Hausdorff metric and
motion covariant.

3 Minkowski Tensors as Descriptors of Size, Shape and Orientation
of Convex Bodies

Minkowski tensors of rank zero are simply the intrinsic volumes and as such contain
primarily size information. Minkowski tensors of rank one give information about
different types of centres of gravity of the convex body in question, i.e. information
about position. Minkowski tensors of rank two provide additional information about
shape and orientation of the convex body.

To make the latter statement more explicit, let us focus on volume tensors of rank
two. They are defined by the following equation

1
Dyo0(X) = 3 /X X2hq(dx).

Now, suppose that X is an ellipsoid centred at the origin. Then, there exists a
symmetric positive definite matrix A such that

X ={Aw :w e BY),
where B is the unit ball in R?. In this case, we have

|Alkq

q’d,z,O(X) = m

AAY,

where kg = w%?/T'(1 + d/2) is the volume of B¢, | A| denotes the determinant of A
and A* its transpose. If we let A = BA B* be the (unique) spectral decomposition
of A where B is an orthogonal matrix and A a diagonal matrix, we can regard X as
being obtained by rotating an ellipsoid with axes parallel to the coordinate axes with
the rotation B. The ellipsoid has semiaxis lengths equal to the diagonal elements 2;,
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i=1,...,d, of A. Using this decomposition, we can rewrite the volume tensor as
follows
Dyro(X) = [ M g p2 e
N T ) '

Clearly, we can (uniquely) reconstruct X from its volume tensor. The volume tensor
will have a spectral decomposition of the form

®42,0(X) = BAB*
with the same rotation matrix as A and a diagonal matrix with elements J; satisfying

d

~ Ka H/‘:l )"f 2

A= ————X;, i=1,...,d
2(d+2)

Solving these equations we obtain

1

- d+1
(2(d + 2)) QN
—
Kd Y 3+
[Tsi%j

If X is not an ellipsoid centred at the origin, we may still determine its volume
tensor of rank two and associate to X an approximating ellipsoid. Below, we give
two examples.

i =

Example 1 Leta; >0,i=1,...,d,andlet X =[—ay,a;] x --- X [—ay, a4] be a cen-
tred box. Then, &4, ¢(X) is a diagonal matrix with

N Zd—l )
@y0(X)ii = 2i = ?af [[a; i=1.....a

It follows that X is approximated by an ellipsoid with axes parallel to the coordinate
axes. The length of the ith semiaxis of this approximating ellipsoid is

1
d+2\7
x,:zﬁ< +> 4. i=1.....d.

3Kd

Example 2 Letr, h > 0 and let X be a centred spherical cylinder

X:{xeRd:MEKMdEh}

Then, ®,,0(X) is a diagonal matrix with

T2
ittt i <d,
()
Dy20(X)ii = dfl
T2 3 o4
‘=, i=d
3F(d+l)
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It follows that X is approximated by an ellipsoid with axes parallel to the coordinate
axes. The lengths of the semiaxes of this approximating ellipsoid are

V3 + T (g \ 7 |
r, i<d,
. VAJd+1T(45)
(A1) (e,
3 VAT ()

4 Local Stereological Estimators of Minkowski Tensors

Auneau-Cognacq et al. (2013) have derived a new rotational Crofton formula for
so-called integrated Minkowski tensors. Special cases of this formula express the
classical Minkowski tensors as rotational averages; see Auneau-Cognacq et al. (2013,
Corollary 4.4).

In this section, we will use this result to derive local stereological estimators of
Minkowski tensors based on observation in an isotropic p-subspace L, i.e. arandom
p-dimensional linear subspace in R with distribution determined by a normalised
version of the rotation invariant measure on the set [,‘; of all p-subspaces in R. The
rotation invariant measure on Ef) will be denoted by dL;f. Its total mass is chosen
to be

d _
) de = Cd,p,
£P
where
WaWd—1 *** Wd—p+1
Cd,p = .
wpwp71 RN

The isotropic probability measure on p-subspaces is thus de, /Cd.p-

The local stereological estimators of Minkowski tensors presented in the proposi-
tion below are formulated in terms of integrals on the section X N L,. The integrals
are with respect to affine subspaces of dimension p — 1 within L,. The set of such
affine subspaces is denoted by F 57 - The measure dFf 571 used in the integration is
the motion invariant measure on ]—"571. IftF, =x+ L, ,where L, jisa(p —1)-
subspace in L, and x € L;l N L,, then dF;ll = )Ll(dx)dLﬁfl.

At first sight, the formulation in Proposition 1 below may appear to be a very
indirect way of expressing the local stereological estimators of Minkowski tensors.
It turns out, however, that this approach is very powerful because it is general and
it also points to how to determine the estimators in the sections. However, in many
special cases much more explicit formulae are available, as we shall see in the next
section.
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Proposition 1 Let X be a convex body in R and let L, be an isotropic p-subspace.
Then, for 0 <m < p < d, a non-negative integer r and s € {0, 1}

$d+m7p,r.s(X; Lp)

=C"7’P/ @, ") (X N Fp)d(Fpoi, 0)PAF?_| (4)
]:P

m 1,r,s
ud,p—l,m—l,s
is an unbiased estimator of ® 41— s(X). Here,

(p—=2d+m— p)! Wd+m—p+s+2
D@D omns

ad.p—1,m—1,s = Cd—1,p-2

)

the upper index of CDfn” L ,)S indicates that the Minkowski tensor is determined relative

to F,_y and d(F,_,, O) is the distance of the affine subspace F,_ to the origin O.
Furthermore, for 0 < p < d and any non-negative integer r

o~ Cd, (F,
Dyro(X; Ly) = —2L / pPl ;)O(Xm Fp 1)d(Fp_y, OY"PdF)_, (5)
Cd,p—1 Fr

is an unbiased estimator of ®4.,.0(X).

Proof The result follows from the rotational integral geometric identities presented

in Auneau-Cognacq et al. (2013, Corollary 4.4). Thus, if we let ¢ = 1 in Auneau-

Cognacq et al. (2013, (14)), we find for 0 < m < p < d, a non-negative integer r and
€ {0, 1},

cI)d—Hn—p r,s (X)

oFr) B
B /01 /.;:p m— ]J»Y(Xm FP*I)d(prlv O)d de;:fldL{;,

adp 1,m—1,s i

It follows that d>d+m_p,,,S(X) in Eq. 4 is an unbiased estimator of &y, ,s(X).
Similarly, if we let ¢ =1 in Auneau-Cognacq et al. (2013, (15)), it is seen that
6,1’,,0(X; L,) in Eq. 5 is an unbiased estimator of ®,,0(X; L,) for 1 < p <d. In
the case p = 1, Eq. 5 reduces to

Dur0(X; L) = ca l/ x'd(x, ) "a (dx).

XNL,

The unbiasedness of this estimator is a consequence of polar decomposition of
Lebesgue measure in R?

ra(dx) = d(x, 0) ", (dx)d LY.
]
A simplified expression for the estimator @y ,o(X; L p) can be obtained by using
Auneau-Cognacq et al. (2013, Proposition 5.1).

Corollary 1 The estimator in Eq. 5 has the following more explicit form

|
_Gr - f Xd(x, 0)P),(dx). (6)
XNL,

Dy r0(X; Lp) = |
Cd—1,p—1 1
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Proof Using Auneau-Cognacq et al. (2013, Proposition 5.1) with (d, j,©) = (p, p —
1,d — p), we find

Cd,p Cp,p-1 F(d7p+l)r(§)
cap-t o T(5)0(3)
cap 1

= %P _ / xd(x, 0)7Px,(dx).
Ca-1,p-1 " JxnL,

ad,r,O()(; Lp) =

/ xd(x, 0)7Px,(dx)
XNL,

(SN

[m}

Likewise, the estimator @Hm_p,m(X ; L,) may also be simplified. For instance,
fors=0and m=p—1, 6d+m_p,,,S(X; L,) can be expressed as an integral over
the normal bundle of X N L, considered as a subset of L, with respect to the
(p — Dth support measure of X N L,; cf. Auneau-Cognacq et al. (2013, Proposition
5.5). Determining of the estimator in practice, the expression given in Proposition 1
may, however, be more useful because it avoids measurements of angles.

For applications, it is also interesting to derive estimators of Minkowski tensors,
based on an isotropic p-subspace L, containing a fixed g-subspace, 0 < g < p. The

set of such subspaces is denoted by £4 . If we let dL¢ | be the rotation invariant

measure on LZ< o With total mass cq—q, p—g, the probability distribution of an isotropic
p-subspace containing a fixed g-subspace is given by dLZ( o/ Cd—q.p—q- Using that

Cd-1—g.p-1-gha(dx) = d(x, L) Pi,(dx)d LS, .
see e.g. Jensen (1998, Proposition 4.5), it is easy to derive an unbiased estimator of a
volume tensor based on such a subspace. The estimator takes the form

-~ Cd—q.p— 1
Do (X; Lyg) = — 21— / Xd(x, L) P, (dx). (7)
Cd—1—q.p—1-q " JXNL,

5 Local Estimators in 3D

In this section, we will show that Proposition 1 covers, as special cases, a number of
the well-known local stereological estimators of volume and surface area, but also
provides interesting new local stereological estimators of various types of centres of
gravity and tensors of rank two.

Throughout this section we assume that O € X. Below, we explore all the estima-
tors provided by Proposition 1 for d = 3 and r + s < 2. To the best of our knowledge,
the local estimators presented in Sections 5.2 and 5.3 are new.

5.1The Caser+s=0

When d = 3 and r = s = 0, Proposition 1 provides local estimators of volume from
either lines or planes passing through the origin O (p = 1 or 2 in Eq. 5, respectively)
and surface area from planes through O (p = 2 in Eq. 4). In addition, Eq. 7 provides
a local estimator of volume from vertical sections.
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5.1.1 Volume from Isotropic Random Lines: The Nucleator

Lettingd =3,r =0, p = 1 in Eq. 5 or, equivalently, in Eq. 6, we find

P300(X; Ly) =27 f d(x, 0)%(dx).
XnL,
Since O € X and X is convex, X N L; = [x_, x,] is a line segment containing the
origin. It follows that

—~ 2
B;00(X; Ly) = 7”(d<x+, 0)} +d(x_, 0)?). (®)

If X is a ball centred at the origin O, then 53,0,0(X ; L) is identically equal to the
parameter to be estimated, the volume of the ball.

In practice, measurements along two perpendicular lines in a planar section are
performed. This results in an important variance reduction due to an antithetic effect.
The estimator was originally suggested by Gundersen (1988) and has been widely
used in the biomedical sciences ever since. In the applied literature, the estimator is
called the nucleator.

5.1.2 Volume from Isotropic Random Planes: The Isotropic Rotator

Letd =3,r =0, p=21in Eq. 5 or, equivalently, in Eq. 6. Then,

BrooXi Lo =2 [ dix. 0@y,
XNL,
As for the nucleator, 53,0,0(X ; L) is exact for a ball centred at the origin.

This estimator is the method of choice for local volume estimation from isotropic
probes if automatic segmentation of particle sections is available because the estima-
tor has smaller variance than the nucleator. A discretised version of the estimator was
originally suggested by Jensen and Gundersen (1993) under name of the isotropic
rotator. Recently, Cruz-Orive (2012) has shown that 63,0,0(X ; L) is identical to the
so-called wedge estimator, based on the invariator principle. The estimator can also
be obtained from the nucleator by integrating over all rotating lines through O in L.
For this reason, the estimator has also been called the integrated nucleator (Hansen
et al. 2011).

5.1.3 Volume from Vertical Random Planes: The Vertical Rotator

Letd=3,r=0,p=2,q=1inEq. 7. Then,

®3.00(X; Lo = ﬂ/ d(x, L1)X,(dx).
XMLy,
This estimator is exact if X is a body of revolution around L;.
The estimator &3 0(X; Ly(1)) may be discretised, using the following decomposi-
tion of Lebesgue measure in Ly

B300(X; Loy =7 d(x, L)1 (dx)r (dy).

XNL, /XﬁLz(l)n(erLli)

The resulting discretised estimator is called the vertical rotator (Jensen and Gundersen
1993). Vertical sections are useful when it is important to keep track of the structure.
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5.1.4 Surface Area from Isotropic Random Planes: The Flower Estimator

Ifweletd =3,r=5=0,p=2,m=1in Eq. 4, we find
Br00(X: L) =2 [ UXNF) £0)d(F, OWFE
Fi

where 1{-} denotes the indicator function and the integration is with respect to all
lines in L,, intersecting X. The estimator 52,0,0()( ; L) is exact if X is a ball centred
at the origin.

Cruz-Orive (2005) has shown that 62,0,0(X ; L) is equal to two times the area of
the flower set associated with X N L,. Recall that the flower set has the graph of
the support function of X N L, as its boundary. So 52,0,0(X ; L) may be called the
flower estimator.

There are a number of equivalent expressions for this surface area estimator. It
follows from Auneau-Cognacq et al. (2013, Proposition 5.5) that in the special case
where the boundary of X is smooth

D10.0(X; Ly) = / [cos B(x) + B(x) sin B(x)]d(x, O)YH, (dx),

dXNLy

where H, is the one-dimensional Hausdorff measure (length measure) and S(x)
is the angle between span{x} and span{u(x)}. Recall, that u(x) is the unique outer
unit normal vector of X at x. This expression for the estimator reveals its intimate
relation to another local estimator of surface area, the surfactor, that was suggested
25 years ago by Jensen and Gundersen (1987). The flower estimator can thereby be
interpreted as an integrated surfactor (Dvofdk and Jensen 2012).

Cruz-Orive (2005) has shown that the flower estimator can also be expressed as

2

Br00(X; Lo) = | hxnr,(6)*d6,
0

where hynr,(-) is the support function of X N L,. A discretisation of the flower
estimator based on determination of the support function in both directions along
two perpendicular lines in the section plane is very efficient (Dvofdk and Jensen
2012). This discretisation is called the pivotal estimator (Cruz-Orive 2008, 2011).

52The Caser+s=1

When d = 3 and r + s = 1, Proposition 1 provides local estimators of @3 ; ¢(X) from
either lines or planes passing through the origin O (r=1, p=1 or 2 in Eq. 5,
respectively) and a local estimator of @, ; ¢(X) from planes through O (r = 1,5 =0,
m =1, p =2in Eq. 4). In addition, Eq. 7 provides a local estimator of ®3 ; o(X) from
vertical sections.

By combining these estimators with estimators of volume or surface area, we
obtain estimators of the usual centre of gravity @3 o(X)/®3,0,0(X) and a boundary
centre of gravity @, 1,0(X)/P2,0,0(X). Note that, &, = O.
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5.2.1 Usual Centre of Gravity

We can estimate @3 o(X) from isotropic random lines, isotropic random planes, or
vertical random planes, i.e.

D310(X; L)) =27 / xd(x, 0)*1(dx)

XNL,

Ba10(X: Ly) =2 / xd(x, O)ha(cdx)

XNL,

®31.0(X; Loy = 77/ xd(x, L)z (dx)
XN Loy
Note that 53,1,0(X; L) = 53.1.0(X; L,) = O if X is centrally symmetric about O.
The estimator 53, 1.0(X; Lay) is exact for a body of revolution around L. Note also
that in all cases 53,1,0(X; Lpyg) € Lpy),0<qg<p=<2.

The estimator 63.1.0(X ; Ly) can be simplified considerably. Thus, let e be a unit
vector spanning L;. Then, if the endpoints of the line segment X N L; are chosen
such that x points in the direction of e while x_ points in the opposite direction,
then

B310(X; L) = %(dm, 0y — d(x_., O)"e. )

5.2.2 Boundary Centre of Gravity

Proposition 1 provides the following local estimator of @, ; o(X) based on measure-
ments in an isotropic random plane

as2,1,0(X; L) = Zf ( Z x)d(F1, O)dF}.
Fi Y xed(XnFy

The integration is with respect to all lines in L,, intersecting X. Since X is convex,
the sum in the integrand involves at most two points. Note that this estimator also
has the property 52,1,0(X; Ly) € L,.

Proposition 1 also provides a local estimator of @, ;(X) = O. The estimator

D50.1(X; Lo) =2 / ( > u(x))d(Fl, O)dF}
!\ xed(XNFy)
is also identically equal to O since when F) hits X
{u(x) : x € 3(X N F)} = {uo, —uo},

where 1 is a unit vector, spanning Fj.
53The Caser+s =2

When d = 3 and r + s = 2, Proposition 1 provides local estimators of @3, ¢(X) from
either lines or planes passing through the origin O (r =2, p=1 or 2 in Eq. 5,
respectively) and local estimators of ®,,¢(X) and &, 1(X) from planes through
O ((r,s) = (2,0) or (1,1), respectively, m = 1, p =2 in Eq. 4). In addition, Eq. 7
provides a local estimator of @3, ¢(X) from vertical sections.
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5.3.1 Volume Tensors of Rank Two

The local estimator of the volume tensor of rank two, based on measurements in an
isotropic random line through O, is given by

B320(X; L) =7 / x*d(x, 0)*x (dx).
XNL,

With the notation introduced in Section 5.2.1, this estimator reduces to
~ b4
®320(X; L) = 5 (d(xs, 0) +d(x-, 0)) &, (10)

which is a singular random matrix.

It is no surprise that two measurements on a single random line are not enough to
construct a reliable estimate of the volume tensor of rank two which is a 3x3 sym-
metric matrix that contains 6 parameters. One would expect that two measurements
from at least three lines are needed. Thus, let us consider three isotropic, orthogonal
lines L;; = span{e;} where e;,i = 1, 2, 3, are unit vectors, and the combined estimator

: 3
! ) T

i=1

In the special case where X is a ball with radius R centred at the origin

—_

27

3 3
3 Y @i00(X: L) = R Z
P i=1

This estimator takes the form of (277/15) R> times an orthogonal random matrix with
known distribution. The mean of this matrix is the identity matrix I3. A spectral
decomposition of this estimator allows us to exactly reconstruct the ball. For the
estimation of functionals of the volume tensor of rank two such as eigenvalues or
eigenvectors, it is for general convex bodies preferable to work with more than three
lines; cf. Section 6.3.

The volume tensor of rank two may also be estimated from either isotropic
random planes or vertical random planes through O. In the case of vertical random
planes, we have the following estimator

- T
D39,0(X; L)) = E/ x*d(x, L)ra(dx).
XNLa

The estimator based on measurements on one plane is singular. Measurements on at
least two systematic vertical random planes should be used.

5.3.2 Surface Tensors of Rank Two

The result in Eq. 4 of Proposition 1 contains as special cases estimators of two surface
tensors of rank two, @, ¢(X) and &, ;(X). Both estimators use information in an
isotropic random plane L, through O and involve integration over all lines in the
section plane L,, intersecting X. At the moment, it is an open question whether these
integrals may be expressed in a closed form that is suitable for estimation purposes.
In Auneau-Cognacq et al. (2013, Section 7), it is shown that the remaining surface
tensor of rank two, ®,,,(X), can be expressed as a rotational integral with respect
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to planes through O. This result may be used to construct an estimator of & (X)
of a similar type as the estimators mentioned above for @, ¢(X) and @, ;(X).

6 A Simulation Study

The simulation study focuses on the local stereological estimators that are based on
measurements on lines, i.e. the estimators in Egs. 8 and 9 that can be combined to
yield an estimator of the centre of gravity and the estimator in Eq. 10 of the volume
tensor of rank two.

6.1 Systematic Sampling on the Sphere

Taking a systematic random sample of an interval [a, b] on the real line is straight
forward. Let U be uniformly distributed in [0, 1] and set x; = a + (U +i)(b — a)/n,
i=0,...,n—1, where n € N. Then {x;};—...,—1 is a systematic random sample of
[a, b] with n points. On the unit sphere S? it is more difficult to specify what we mean
by a systematic random sample.
some reasonable sense. It is clear that we can create a systematic random sample
from these points by rotating them with a uniform random rotation matrix R €
SO(3). However, there are many ways to sensibly define equally spaced points on
the sphere. For our simulation study we have decided to follow the ideas of Leopardi
(2006). He defines so-called recursive zonal equal area partitions. They are partitions
of S? into nregions Ay of equal area and small diameter. The regions produced by the
algorithm are rectilinear in spherical polar coordinates. We take x; to be the point
with spherical coordinates equal to the mid range of latitudes and longitudes within
Ay, respectively. As we are interested in systematic random samples of lines through
the origin rather than points in S?, we note that it is easy to modify Leopardi’s
algorithm for even numbers n = 2N such that for each x; € {x;}i—o... on—1 We also
have —Xi € {x,‘}i:()
origin.

When we speak of a systematic set of lines (through the origin) in the sequel, we
are referring to the above construction. Figure 1 illustrates systematic random sets of
N = 3,7, 20 lines, respectively.

,,,,,

,,,,,

Fig. 1 Systematic sets of N = 3,7, 20 lines, respectively. The red dots visualise the unit sphere S?
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6.2 Estimation of the Centre of Gravity

The two bodies X that we have considered as examples are an ellipsoid with semiaxis
lengths a =7, b =6, ¢ =5, and a circular cylinder with height 2/ = 6 and radius
r = 2. Both bodies are centred at the origin.

For the estimation of the centre of gravity, we need to choose the origin of our
coordinate system. In applications, one will aim to choose this origin as close as
possible to the true centre of gravity. Therefore, we model the initial guess by a
truncated normally distributed random vector O with mean zero and covariance
matrix o2 15.

We chose o = 0.3c for the ellipsoid, and o = 0.3r for the cylinder, and truncated
the distribution outside a ball centred at the origin with radius c or r for the ellipsoid
and cylinder, respectively. This means that O € X always holds. Let {L;;}i—o... n—1
be a systematic random set of N lines through O. Each line Lj; is spanned by a unit
vector e;. As X is convex and O € X, there are two endpoints (x,;, x_;) of the line

N 07
o
- < —
«©
@
-
= 2
o ° a
o~ -
<
p
[\ A
N
o
o~ ©-
T T T T T 1 T T T T T 1
0 1 2 3 4 5 0 1 2 3 4 5
Norm Norm

Fig. 2 Estimation of the centre of gravity, using systematic random sets of N =3 or N = 7 lines for
the left and right panels, respectively. In the top row, the red dots visualise the ellipsoid; the black dots
are the initially chosen origins distributed according to a truncated trivariate normal distribution.
The green dots show the estimated centres of gravity. The histograms in the second row show the
distribution of the norms of the initially chosen origins (white bars) and of the estimated centres of
gravity (green bars)
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segment X N Lj;, where x; points in the same direction as e;. We estimate the centre
of gravity C(X) = @3 9(X)/P3,0,0(X) by

C(X) = L SN (dess, 0)F — d(x_;, 0)Y)e;
2y X (dxsi, 09 + d(x-i, 0)%)

combining Eqs. 8 and 9. The error that is introduced by approximating the integrals
by discrete sums depends on the size N of the systematic sample but also on the
algorithm chosen to create systematic samples on the sphere; cf. Section 6.1. It is the
subject of future research to assess the precision of the proposed estimators.
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- n
B
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B
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- 2
2z 2 |
2 s "
[
[a]
< |
0 -
0
wn
2
o _| < ]
o o
l T T T 1 l T T T 1
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Norm Norm

Fig. 3 Estimation of the centre of gravity, using systematic random sets of N = 3 or N = 7 lines for
the left and right panels, respectively. In the top row, the red dots visualise the cylinder; the black dots
display the initially chosen origins distributed according to a truncated trivariate normal distribution.
The green dots show the estimated centres of gravity. In the second row, the histograms display the
norms of the initial origins (white bars) and the estimated centres of gravity (green bars)
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The results of 500 simulations are visualised in Figs. 2 and 3 for the cylinder and
ellipsoid, respectively. For both bodies the simulation results are promising. The
estimation procedure generally moves the initially chosen origin towards the true
centre of gravity of the body. However, the results for the ellipsoid are better than
for the cylinder.

6.3 Estimation of the Volume Tensor of Rank Two

The volume tensor of rank two of a body X is defined relative to the origin of the
coordinate system. If we want to use volume tensors to characterise the shape and
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1 2 3 4 5 6 7 1 2 3 4 5 6
Normalised quotient Normalised quotient

Fig. 4 Smallest and largest semiaxes of the estimated associated ellipsoid. The panels in the top
row show scatter plots of the largest and smallest semiaxes for N = 3 lines (in black) and for N =7
lines (in green). The red lines mark the true values. In the bottom row, histograms of the quotient
of the largest over the smallest estimated semiaxes normalised by the true quotient (i.e. the target
value is 1) are displayed as empty bars (N = 3) or green bars (N = 7). The left column corresponds
to the example where X is an ellipsoid, whereas the right column corresponds to the cylinder. The
histogram for the cylinder for N = 3 was cut off at 6. There were observed normalised quotients as
large as 10.73
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orientation of particles in a particle population, we need to specify a centre point (or
origin) for each particle in a unique way. We chose to consider the centre of gravity
as the “true” centre of the bodies (or particles) under consideration.

The volume tensor of rank two is a symmetric, positive definite 3 x 3 matrix M.
For each such matrix M it is possible to construct an ellipsoid Y such that @5, (YY) =
M; cf. Section 3. We call this ellipsoid Y the associated ellipsoid to M or to X, if
®3,.0(X) = M. This association may be regarded as an ellipsoidal approximation to
the original body X. If X is an ellipsoid itself then it is equal to its associated ellipsoid.
When characterizing the shape of X through the volume tensor one can consider
the largest and smallest eigenvalue of @3, ((X) or their quotient. Alternatively, one
can also compare the smallest and largest semiaxes of the associated ellipsoid to
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Fig.5 Smallest and largest semiaxes of the estimated associated ellipsoid for the two-step procedure.
The scatter plots in the top row show the largest vs. smallest semiaxes for N = 3 lines (in black) and
for N =7 lines (in green). The red lines mark the true values. Histograms of the normalised quotient
of the largest over the smallest estimated semiaxes are displayed in the bottom row. Empty bars
correspond to N = 3, whereas green bars correspond to N = 7. The normalization yields a target
value of 1. The left column corresponds to the ellipsoid, whereas the right column corresponds to the
cylinder
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®3,.0(X), which is our method of choice. The reason for this choice is primarily that
the lengths of the semiaxes of the associated (or approximating) ellipsoid are easier
to interpret geometrically. The orientation of X is characterised by the eigenvectors
of @3, 0(X) which are the same as the directions of the semiaxes of the associated
ellipsoid.

The tensor @3, ¢(X) can be estimated from isotropic lines through the origin using
Eq. 10. We assumed that the origin is initially chosen as O, which has a trivariate
truncated normal distribution as specified in Section 6.2. In the first part of the
simulation study, we estimated @3, ¢(X) by

N
Y (d(r1i, 09 + d(x—, 0)°)¢] (1)

i=1

B320(X) =

wn|

1
N

from a systematic random set of lines {Lj;};—o_. n—; of size N=3 or N =7 with
respect to O using Eq. 10 and the notation introduced in Section 6.2. We used the
ellipsoid and the cylinder described in Section 6.2 as examples for X. The results
of 1000 simulations are given in terms of the associated ellipsoid in Fig. 4. The

Fig. 6 Direction of the estimated largest and smallest semiaxes for the two-step procedure as points
on the unit sphere. The black points correspond to N = 3 lines, whereas the green points correspond
to N =17 lines. In the left and right column the results for the ellipsoid and cylinder are displayed,
respectively. The top row corresponds to the direction of the largest semiaxis, whereas the bottom
row corresponds to the direction of the smallest semiaxis

@ Springer



280 Methodol Comput Appl Probab (2014) 16:263-282

eigenvalues of the associated ellipsoid were calculated from 53,2.0()() using the
formulas in Section 3.

In the second part of the simulation study, we used a two-step procedure. First, the
centre of gravity was estimated by C (X) starting from O as described in Section 6.2
using a systematic random set of N lines. Then an independent systematic random
set of lines of the same 51ze centred at C(X) was used to estimate d>g 2.0(X) by
Eq. 11 with O replaced by C(X) The results of 1000 simulations are displayed in
Figs. 5 and 6.

In summary, the two-step procedure clearly outperforms the first approach. It
works well for detecting anisotropy for both the cylinder and the ellipsoid. In Fig. 5 it
can be seen that neither body is ever classified as spherical in 1000 simulations. There
is a marked improvement in estimating the degree of anisotropy by the quotient
of the half axes when working with N =7 instead of N = 3 lines. This increase
in precision is also pronounced for the estimation of the direction of the extremal
semiaxes. The values of the smallest and largest semiaxes are captured well by the
estimates, for both, the ellipsoid and the cylinder.

7 Discussion

Minkowski tensors are a natural extension of intrinsic volumes. They provide
descriptors of size, location, shape and orientation of convex bodies. In material
science their usefulness as summary statistics of populations of shapes has been
demonstrated in the past. In these applications it is usually possible to observe
the entire structure and detect it automatically. In many stereological applications,
especially in the biosciences, it is often impossible to have access to the entire
boundary of a particle of interest.

We believe that Minkowski tensors can provide powerful descriptors of size,
location, shape and orientation in the biosciences. Therefore, this paper presents
local stereological methods to estimate the tensors based on measurements on
sections or lines through the particle. Some of the presented estimators have a long
history and have been widely applied for decades, whereas others are new. We have
chosen to present both, old and new estimators, as the tensorial perspective provides
a unified framework for seemingly different approaches.

In this paper, we have restricted our presentation to convex bodies. However,
some of the old estimators presented here have been considered for more general
set classes. For example, the nucleator (Section 5.1.1) can be defined for compact
sets X € R3. The simple formula in Eq. 8 continues to hold as long as X is star-
shaped with respect to the origin. If X is an element of the convex ring, i.e. a finite
union of convex bodies, then X N L; will be a finite union of line segments and
Eq. 8 has to be replaced with an alternating sum of the distances from the origin to the
endpoints of the line segments. The isotropic rotator (Section 5.1.2) and the vertical
rotator (Section 5.1.3) have also been considered for general compact sets. Cruz-
Orive (2005) has considered the flower estimator (Section 5.1.4) for compact sets
with piecewise smooth boundary. A comprehensive overview of possible extensions
of the flower estimator to more general classes of sets is given in Thoérisdottir and
Kiderlen (2013).
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It is possible to define generalised curvature measures for sets X of positive
reach; see for example Zihle (1987) for details. Therefore, Minkowski tensors can be
defined for such set classes, and it would be interesting to develop local stereological
estimators in this setting. However, the results are likely to become much more
technical, and the interpretation of the tensors for biological applications will pose a
challenge in itself.

In a simulation study we investigate the performance of two of the newly proposed
estimators on two example shapes. The results are promising, however, many applied
statistical questions remain to be addressed. For example, the volume tensor of the
particles is supposed to be used to discriminate whether a particle population shows
a preferred orientation or not. For this purpose, one needs to develop statistical
tests. In this context, it may be preferable to address the estimators in a model based
framework in order to have a suitable model under the null hypothesis. We believe,
that these questions should be answered in close collaboration with practitioners as
in different applications, different functionals of the volume tensor of rank two may
have a meaningful interpretation.
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