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Abstract—Mechanical ventilation is not only a life saving
treatment but can also cause negative side effects. One of the
main complications is inflammation caused by overstretching
of the alveolar tissue. Previously, studies investigated either
global strains or looked into which states lead to inflamma-
tory reactions in cell cultures. However, the connection
between the global deformation, of a tissue strip or the whole
organ, and the strains reaching the single cells lining the
alveolar walls is unknown and respective studies are still
missing. The main reason for this is most likely the complex,
sponge-like alveolar geometry, whose three-dimensional
details have been unknown until recently. Utilizing synchro-
tron-based X-ray tomographic microscopy, we were able
to generate real and detailed three-dimensional alveolar
geometries on which we have performed finite-element sim-
ulations. This allowed us to determine, for the first time, a
three-dimensional strain state within the alveolar wall.
Briefly, precision-cut lung slices, prepared from isolated rat
lungs, were scanned and segmented to provide a three-
dimensional geometry. This was then discretized using newly
developed tetrahedral elements. The main conclusions of this
study are that the local strain in the alveolar wall can reach a
multiple of the value of the global strain, for our simulations
up to four times as high and that thin structures obviously
cause hotspots that are especially at risk of overstretching.

Keywords—Alveoli, Finite-element method, Local strains,

Synchrotron-based X-ray tomographic microscopy.

INTRODUCTION

Acute Lung Injury (ALI) and Acute Respiratory

Distress Syndrome (ARDS) are severe diseases with a

high mortality rate.27 An initial release of inflamma-

tory mediators triggers a diffuse inflammation of the

lung parenchyma, leading to hypoxia and frequently to

multi-organ failure. It is known that ARDS and its

lighter form ALI can be caused by either direct lung

injury, like pneumonia or aspiration, or indirect lung

injury, like sepsis or severe trauma. The introduction

of protective ventilation protocols, including positive

end-expiratory pressure (PEEP) and a decrease of tidal

volume has led to a reduction in these mortality rates,

but they still remain unsatisfactorily high.27 Using

PEEP should prevent the lungs from partly collapsing,

by not letting the pressure drop to zero at the end of

expiration. The reduction of tidal volume should pre-

vent the tissue from being overstretched during venti-

lation (volutrauma). Due to the fact that the lungs of

ARDS patients are normally injured inhomoge-

neously, the air distributes unevenly throughout the

lungs and the optimal level of PEEP, tidal volume etc.

are hard to find for individual patients. This can lead

to an overextension of the healthy parts, causing

further complications, known as ventilator-induced

lung injury (VILI). These complications include both

mechanical damage of the tissue and activation of an

inflammatory signaling cascade (biotrauma). How the

ventilation exactly induces its deleterious effects is still

unclear. Studies both in vitro and in vivo have found

that both the pattern and the degree of stretch are

important.6,9,10

A major problem is that there is no possibility to

measure local deformations in vivo. For this reason a

connection between the global deformation of a tissue

strip or the whole organ and the strains reaching the

single cells lining the alveolar walls is needed. How-

ever, due to the complex alveolar geometry the deter-

mination of this relationship is not straightforward.

Only a few papers addressed this topic so far. For

instance, Wilson and Bachofen35 presented a two-

dimensional model for the relationship between sur-

face and force bearing elements in the alveolar duct.

This model allows an analysis of the relationship
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between the surface area, recoil pressure, lung vol-

ume, and surface tension. However, the alveolar wall

thickness is neglected, i.e. there is no information

about the deformation within the wall. A similar

approach was used by Maksym et al.17 where they

idealized individual septal walls in lung tissue strips as

a two-dimensional network of elastin and collagen

fibers arranged in parallel. As with the model of

Wilson and Bachofen35 they only have one-dimen-

sional wall deformation. Brewer et al.1 investigated

immunofluorescently labeled alveolar walls in small

tissue strips and followed their extension and changes

in angle under uniaxial stretching, utilizing a fluores-

cence light microscopy. By comparing the micro-

strains, the relative length change in the wall

segments, with the angle change they found a con-

siderable heterogeneity. However, due to the imaging

technique the authors were only able to investigate

two-dimensional images of a three-dimensional

deformation state. Furthermore, the alveolar walls

were modeled as one-dimensional line elements,

meaning bending effects were completely neglected. A

similar method was used by Cavalcante et al.2 They

investigated the influence of the tissue constituents in

the alveolar wall. Among others, they compared the

local extension of the alveolar wall with the global

deformation by utilizing the same method as Brewer

et al.1 DiRocco et al.8 investigated the dynamics of

rat alveoli in vivo. They utilized videomicroscopy to

image the alveoli located directly under the pleura.

The change in area between inspiration and expira-

tion of manually outlined alveoli was calculated for

healthy and diseased lungs. The imaging technique is

again two-dimensional and additional only subpleural

alveoli can be investigated, which are pathologically

not as important during ARDS. Perlman and Bhat-

tacharya20 utilized real-time confocal microscopy to

determine the micromechanics of alveolar perimeter

distension in perfused rat lungs. They were able to

image a 2-lm-thick optical section 20 lm under the

pleura. Five to eight segments were identified within

each alveolus, which is in contrast to the above

mentioned authors who claim in their work that the

alveoli always have six segments. The average length

of these segments was compared for normal and hy-

per inflation. They found the segment distension to be

heterogeneous within the single alveolus. Two short-

comings of this technique are that the alveolar

extension is measured only in two dimensions and due

to the imaging technique only alveoli located close to

the pleura could be included. Another approach is to

simulate the deformation of the alveolar wall utilizing

the finite-element (FE) method. Gefen et al.12 per-

formed a simulation on realistic two-dimensional

alveolar geometries. The major advantage of this

method is that it allows the investigation of the strain

distribution within the alveolar wall, whereas the

above-mentioned experimental methods only look at

overall wall extension. Despite these advantages in

this article they used a very simplified linear elastic

constitutive model and a two-dimensional simulation

for a three-dimensional problem. There are also sev-

eral other groups investigating the mechanical

behavior of artificially generated three-dimensional

geometries.7,15,16 However, because of missing realistic

images of alveolar geometries all these methods used

symmetric octahedra and miss the complexity of the

real geometry. In summary, none of the above-men-

tioned studies were able to determine the local three-

dimensional deformation state of the alveolar wall.

In this article we present a FE simulation of

synchrotron-based X-ray tomographic microscopy

(SRXTM) scanned alveolar geometries. This scanning

method gives us, for the first time, high resolution

three-dimensional images of alveoli located in the

central regions of the lungs. Due to the high resolution

we are able to model the alveolar walls in three

dimensions, including the actual wall thickness. This

allows us to gain a detailed insight into the behavior of

single alveolar walls.

MATERIALS AND METHODS

To perform a FE analysis on SRXTM-based alve-

olar geometries several steps were necessary. First,

precision-cut lung slices (PCLS) were prepared from

isolated rat lungs as previously described.18,23 Second,

the slices were scanned in the TOMCAT beamline of

the Swiss Light Source (SLS). Third, a three-dimen-

sional volume representation of the scanned images

was created. Fourth, the three-dimensional volume

was discretized with a volume mesh and boundary

conditions were applied and finally, the problem was

solved utilizing our advanced and well validated

in-house research software platform BACI.31 In the

following these steps are explained in more detail.

Rat Lung Sample Preparation

The samples have been prepared according to

Schittny et al.23 The lungs of a rat at postnatal day 36

was intratracheally filled with 2.5% glutaraldehyde

(CH2(CH2CHO)2) in 0.03 M potassium phosphate

buffer (pH 7.4) by instillation via tracheotomy at a

constant pressure of 20 cmH2O. In order to prevent

recoiling of the lung, we maintained this pressure

during glutaraldehyde fixation. Subsequently, the

lungs were dissected free and immersed in toto in the

same fixative at a temperature of 4 �C for at least 24 h.
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The samples were postfixed with 1% osmium

tetroxide (OsO4) and stained with 4% uranyl nitrate

(UO2(NO3)2) to increase the X-ray absorption con-

trast. After dehydration in a graded series of ethanol

we embedded the samples in Epon 812 using acetone as

intermedium. The lung samples were glued onto small

metal rods of 3.2 mm diameter using AralditeTM.

The handling of animals before and during the

experiments, as well as the experiments themselves,

were approved and supervised by the local authorities.

Beamline and Tomographic Imaging

The experiments were performed at the TOMCAT

beamline25 at the SLS, Paul Scherrer Institut, Villigen,

Switzerland. The samples were scanned at a beam en-

ergy of 12.601 keV, corresponding to a wavelength of

1 Å. After penetration of the sample, the X-rays were

converted into visible light by a scintillator, magnified

by diffraction limited microscope optics (109 magni-

fication) and digitized by a high-resolution 2048 9

2048 pixel CCD camera (pco.2000, PCO AG, Kelheim,

Germany) with 14 bit dynamic range. The detector was

operated in 2 9 2 binning mode. As a result, each

recorded projection had a size of 1024 9 1024 pixels

with a size of 1.48 lm, the exposure time was 108 ms.

We recorded 1501 projections at equiangular posi-

tions between 0 and 180 �C. The projections were post-

processed and rearranged into flat field-corrected

sinograms prior to being reconstructed into tomo-

graphic slices on a 16-node computing cluster using

a highly optimized filtered back-projection routine.

Details of the imaging workflow and reconstruction

setup have been described by Hintermüller et al.13 The

resulting tomographic data set was a stack of 1024 16

bit tiff images, see Fig. 1.

Segmentation

In the next step the images were segmented utilizing

the commercially available software Amira 4.1.2

(Mercury Computer Systems). For the segmentation

itself we found the ‘magic wand’ tool, which is a

combination of a threshold and region growth, to be

the most efficient. In order to assess the accuracy of the

segmented geometry, we compared the air-tissue ratio

with previously published data.29 Our ratio showed

good agreement (data not shown).

Meshing and Boundary Conditions

After creating the geometry a mesh was generated

with the STL meshing package Harpoon (Sharc). Due

to the complexity of the geometry, a new uniform

nodal strain tetrahedral element with isochoric stabil-

ization has been developed and used for the calcula-

tions, see Fig. 2. The element is based on linear

interpolation of a classical displacement-based tetra-

hedral element formulation but applies nodal averag-

ing of the deformation gradient to improve mechanical

behavior, especially in the regime of near-incompress-

ibility where classical linear tetrahedral elements

perform very poorly.11

In a refinement study, we compared four different

meshes, a summary of mesh details is given in Table 1.

The base level represents the average size of one side of

a regular tetrahedron. Example slices through the

meshes with base levels of 4.23 and 2.11 lm are shown

in Fig. 2. The study showed that with a base level of

3.17 lm the solution was mesh converged (data not

shown).

To evaluate the influence of boundary effects, two

different cubes, one with 158.57 lm and the other one

FIGURE 1. SRXTM image of rat lung parenchyma. The specimen was imaged in the TOMCAT beamline of the Swiss Light Source
with a voxel size of 1.48 3 1.48 3 1.48 lm.
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with 317.14 lm side length, were compared, see Fig. 3.

These cubes will be referred to as the small and the

large cubes, respectively.

For our simulations we applied uniaxial tension and

shear deformation to the samples. In both cases, the

deformation was applied as a Dirichlet boundary

condition. While the deformation of the bottom

FIGURE 2. Cut through the mesh (a) with base level 2.11 lm and (b) with base level 4.23 lm.

TABLE 1. Alveolar meshing statistics.

Base level (lm) Elements Degrees of freedom

5.29 577990 397020

4.23 1164023 750297

3.17 2727686 1669446

2.11 8573680 5003121

FIGURE 3. Location of 1st principal strain hotspots. Due to geometric complexity only strains larger than 10% are highlighted for
5% uniaxial elongation.
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surface was completely constrained, the top surface

was either pulled upwards or pushed in the transverse

direction, representing uniaxial tension and simple

shear, respectively, see Fig. 4.

Simulation

The computation was performed with our advanced

and well validated in-house multiscale and multiphys-

ics research software platform BACI.31 The governing

equation for the nonlinear mechanical behavior of the

alveolar tissue is

q
D2x

Dt2
¼ r � ðF � SÞ þ qb ð1Þ

in which q is the density, x are the current positions,

F is the deformation gradient tensor, which itself is

defined as F ¼ @x
@x0

with x0 denoting the reference

position, S is the second Piola-Kirchhoff stress tensor,

and b is the body force.

For the hyperelastic material model we postulate a

strain energy density function (SEF)

W :¼ WðCÞ; ð2Þ

with C being the right Cauchy-Green deformation

tensor, given by

C ¼ FT � F: ð3Þ

We obtain the corresponding second Piola-Kirchhoff

stress tensor (S) through the first derivative of W(C)

with respect to C

S ¼ 2
@WðCÞ

@C
: ð4Þ

Tissue and Material Model

The alveolar tissue is represented by the walls

between the airspace (alveolar septa). These walls are

covered on both sides by an epithelial monolayer of

alveolar type I and type II epithelial cells. The core of

the walls contains a network of collagen fibrils and

elastin fibers. In addition, it contains a sheet like net-

work of capillaries.22 It was shown by Yuan et al.36,37

that collagen and elastin dominate the macroscopic

elastic and dissipative properties of alveolar tissue,

whereas the contribution of interstitial cells seems

marginal. Previous studies24,28 suggest that the orien-

tation of the fibers in the alveolar tissue is isotropic.

This means we can formulate a hyperelastic SEF based

only on invariants,

WðCÞ ¼ WðI1; I3Þ: ð5Þ

where I1 and I3 are the first and the third invariant of

the right Cauchy-Green deformation tensor, respec-

tively, defined as

I1 :¼ trC; I3 :¼ detC: ð6Þ

In our simulations we are utilizing a Neo-Hookean

formulation14

WðCÞ ¼
Eð1� 2mÞ

4mþ 4m2
ðI

� m

1�2m

3 � 1Þ þ
E

4� 4m
ðI1 � 3Þ ð7Þ

with E and m being a Young’s modulus like parameter

and the Poisson’s ratio, respectively. Due to the fact

that the tissue mainly consists of water, it is considered

as nearly incompressible (m = 0.49). The value for E

was fitted to experimentally determined curves

(E � 6.75 kPa), details of the experimental protocol

can be found in Rausch et al.21

It is worthy to note that the SEF fulfills the prin-

ciples of objectivity, material symmetry and also the

requirements of polyconvexity and a stress-free refer-

ence state. Additionally, we make the assumption that

due to the negative hydrostatic pressure in the pleural

space the tissue is under tension all the time.26 This

means tissue folding and unfolding at lower volumes is

not considered.

FIGURE 4. The tested deformation states are uniaxial tension and simple shear deformation.
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RESULTS

In a first step we identified strain hotspots meaning

the regions of the tissue cube, with the highest strain

values. Figure 3 shows a comparison of the strain

hotspots for both cube sizes under 5% uniaxial elon-

gation. Due to the complex geometry only the 1st

(largest) strain eigenvalues larger than 0.1 are shown,

the remaining tissue is set to be transparent.

The most important finding was that local strains

are much higher than the global extension of the cubes.

This was of course expected but now is quantified for

the first time. It turned out that the local strains are up

to four times higher than the global strains. Addi-

tionally, we found the strain hotspots to occur within

the thinnest parts of the cube. This seems feasible

since there is less tissue to resist the deformation. This

leads to an uneven strain distribution throughout

the parenchymal tissue. Thin regions become over-

stretched, whereas regions with tissue accumulation

remain unchallenged. We further observed higher peak

strains in the larger cube than in the smaller cube. This

was potentially due to boundary effects (see later). This

hypothesis is supported by the fact that in both cubes

the hotspots occurred predominantly in the central

regions.

In a next step a local hotspot was investigated in

more detail. Figure 5 shows the distributions of the 1st,

2nd, and 3rd strain eigenvalues. The 1st eigenvalues

are positive, whereas the 2nd and the 3rd eigenvalues

are both negative and of a much smaller magnitude.

However, the strain patterns are similar for all three

eigenvalues, i.e., the peak values occur in the thinnest

part of the structure.

The corresponding eigenvectors, for a slice through

this hotspot show the 1st eigenvectors pointing to-

wards the pulling direction, whereas the 2nd and 3rd

eigenvectors lie within the normal plane of the pulling

direction (data not shown). It is also noteworthy that

within the plane the eigenvectors do not follow a pre-

ferred direction. This behavior can be explained by the

incompressibility of the tissue, i.e., if the tissue is

stretched in one direction it has to be compressed in

another direction. The compression seems to be quite

evenly distributed within the normal plane of the

pulling direction, therefore we do not see any preferred

direction within this plane.

We also compared uniaxial tension with simple shear

deformation, see Fig. 4. In both cases we have a defor-

mation of 5% of the initial side length of the cube in the

transversal direction for the shear deformation and in

axial direction for the tensile deformation, see Fig. 6.

Clearly the peak strain values are much higher for

the uniaxial tension than for the shear deformation.

However, they occur in similar regions within the

geometry, i.e., the above-mentioned thinner parts of

the structure. These observations are valid for all three

strain eigenvalues. Additionally, we investigated the

distribution of the eigenvectors in a strain hotspot

(data not shown) and found the same distribution for

the shear as for the tensile displacement, albeit of a

differing magnitude.

Finally, to evaluate the influence of the boundary

conditions we compared the strain distributions of four

different cases. First, the small cube under 5% uniaxial

elongation (small cube), second, the large cube under

5% uniaxial elongation (large cube), third, the small

cube under 5% shear deformation (shear) and fourth,

the strain distribution within the center region of the

large cube, i.e., the region of equivalent size to the

small cube in the center of the large cube, which is

challenged with 5% uniaxial elongation (center re-

gion), see Fig. 7. The boxes extend from the 25th to the

75th percentile, the red line in the middle indicates

the median, and the whiskers range from the 0.01 to

the 99.99% percentile. The additional dots within the

boxes mark the location of the mean strain. It is

obvious and expected that all distributions are skewed

FIGURE 5. 1st, 2nd, and 3rd strain eigenvalues of a hotspot with the arrow indicating the direction of the uniaxial stretch. Due to
better comparison the color maps of the 2nd and 3rd strain eigenvalue are inverted.
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towards lower strain values, since we have only a few

strain hotspots. One of the main findings is that even

though the mean and the standard deviation are higher

for the small cube, the extreme values are higher for

the large cube, see Table 2. When we consider only the

central region of the large cube, the mean, standard

deviation and median are higher than all other sce-

narios. Additionally, the difference between the mean

and the median which can be seen as a measurement of

the skewness of the distribution, is greatest. This backs

up our assumption that more strain hotspots are

developed in the larger cube, due to a reduction of

boundary effects. However, to put this in perspective it

has to be mentioned that this mainly affects the out-

liers whereas the main distributions are rather similar.

Another interesting fact is that the mean values of

all four evaluated distributions are at least twice as

small as the 5% global strain. Furthermore, 90% of

the local strains are below 5%. This shows clearly that

there are only certain hotspots in the tissue, which are

overstrained, whereas the majority of the tissue

remains within a healthy deformation state.

Finally, for the shear deformation, we found the

distribution to have a much smaller mean and stan-

dard deviation. The smaller standard deviation was

expected due to the more uniform deformation in the

cube and the lower mean arose due to the smaller

amount of hotspots.

DISCUSSION

In this article, we have presented FE simulations on

SRXTM-based alveolar geometries. This method

allowed us, for the first time, to determine local three-

dimensional strain states in real highly resolved alve-

olar geometries.

Comparing our method to previous experimental

approaches,1,2,8,20 which can only calculate an aver-

aged extension for each of the alveolar walls, our

method is able to determine a three-dimensional strain

state throughout the thickness of the tissue.

FIGURE 6. Comparison between uniaxial tension and shear deformation of the small cube (side length 158.57 lm). The colors
indicate the first (largest) eigenvalue of the strain tensor.

FIGURE 7. Comparison of the 1st principal strain distribu-
tions for four different cases. First, the small cube under 5%
uniaxial elongation (small cube), second, the large cube under
5% uniaxial elongation (large cube), third, the small cube
under 5% shear deformation (shear), and fourth, the strain
distribution within the center region of the large cube, i.e., the
region of equivalent size to the small cube in the center of the
large cube, which is challenged with 5% uniaxial elongation
(center region). The whiskers include 99.98% and the boxes
50% of all measurement points (outliers are not shown). The
red lines in the center of the boxes are the medians and the
dots are means.

TABLE 2. Comparison of the 1st strain distributions.

Mean ± sd Median

Small cube 0.0212 ± 0.0191 0.0162

Large cube 0.0200 ± 0.0178 0.0152

Shear 0.0073 ± 0.0074 0.0054

Center region 0.0247 ± 0.0199 0.0191
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Adirect comparison with other numerical approaches

is difficult, since the studies in literature are mainly

investigating the effects of very specific compo-

nents,2,7,8,12,20 rather than developing a general model.

Additionally they are investigating these effects on very

regular artificially generated geometries, which of course

reduces the heterogeneity of the strain field. The only

other FE study on real alveolar geometries was per-

formed by Gefen et al.12 and is limited to two-dimen-

sional geometries.

A further advantage of our method is the quality of

our newly developed stabilized node-based uniform

strain tetrahedron. This element allowed us to discretize

ourmodels with tetrahedral elements. The problemwith

normal tetrahedral elements is that they produce para-

sitic stresses for nearly incompressible materials (volu-

metric locking), leading to too stiff behavior. However,

due to the complex geometry it is impossible to mesh the

models with hexahedral elements.

From the simulation results we have two main

conclusions; first there are certain hotspots in the

alveolar geometry which are especially at risk for

overstretching. These obviously tend to be at the

thinnest regions. Second, a small global strain can lead

to significant larger local strains, for uniaxial tension it

can rise up to the fourfold. These conclusions were

found to be independent of the loading type.

Looking at in vitro experiments on alveolar type II

cells3,5,19,30 there is a wide diversity of howmuch stretch

causes inflammatory reactions. The numbers range

between strains of 0.05 up to strains of 0.3. Comparing

these values with the local peak strains found in our

simulations we find a global strain of 0.05 would be

sufficient to cause inflammation in all of those cases.

This presents an interesting observation as it suggests

that the amount of stretching done in these experiments

may not be representative of the in vivo environment or

at the very least maybe an underestimation. This large

increase in strain from the global to local level shows

that inflammatory reactions potentially initiate much

earlier than previously thought.

For a further verification of the dependency on

boundary effects, we want to include the surrounding

alveolar tissue in our simulations. For this reason we

are working on including the presented simulations

within a multiscale approach for alveolar ensemble.33

This allows us to project the global parenchymal

deformation down to the level of a single alveolar

ensemble in order to provide realistic boundary con-

ditions. This method has the advantage that we will be

able to measure local alveolar strain fields in large

geometries, for example living precision cut rat lung

slices (PCLS). Dassow et al.6 recently measured cal-

cium fluxes, which are known to be induced by venti-

latory lung stretch, within the alveolar wall of these

PCLS using a bioreactor. With this experimental

approach and our computational models we would be

able to compare the local strain fields in PCLS directly

with the locations of increased calcium fluxes, hence

providing a mechanical–biological pathway for the

initiation of ventilator-induced lung inflammation.

Furthermore, by combining an inverse analysis21with

this multiscale approach we want to determine a more

sophisticated constitutive model for individual alveolar

walls. This combinedmethodwill utilize the resolved real

alveolar geometries embedded into experimentally tested

specimens. Finally we will also combine our surfactant

model34 with these simulations of realistic alveolar

geometries.Due to the fact that thepresentedmodel does

not include any surface tension, we would expect an

overall stiffer behavior after the inclusion of our surfac-

tant model, even though the surfactant molecules reduce

the surface tension. Performing a simple thought exper-

imentwherewe simplify the regions of the strain hotspots

as incompressible cylinders we can calculate that when

the length of the cylinder increases by 10% the surface

area of the cylinder increases by 4.88%. This increase of

the surface area leads to a counteracting force arising

from the existing surface tension. Additionally, the

deformation happens within a small time scale, which

could lead to a temporal reduction of the concentration

of surfactant molecules, leading to even higher surface

tension in the regions of larger deformations.

In the future we also want to modify artificially

generated alveolar geometries, so that they result in

similar strain distributions as the real alveolar geom-

etries. This has the advantage, that these models could

much simpler and more efficiently be included in our

overall lung model.32

With this model it will be possible to investigate how

novel ventilation strategies, e.g., how variable tidal

volume ventilation affect the deformations at the

alveolar level. This will be done by first considering

how the airflow distributes in the large airways,4 how

this couples down to the more peripheral levels

and then finally via the aforementioned multiscale

approach the deformation in the alveolar wall.

Understanding the influence of such ventilation strat-

egies on local strain in the individual alveolar walls is

of central importance as it indicates, by implication,

locations where the onset of inflammation may occur.
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