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Abstract This paper deals with the implementation of the local meshless numerical method (LMM) 

on general purpose graphics processing units (GPU) in solving partial differential equations (PDE). The 

local meshless solution procedure is formulated in a way suitable for parallel execution and has been 

implemented on multiple GPUs. The implementation is tested on a solution of diffusion equation in a 2D 

domain. Different setups of the meshless approach regarding the selection of basis functions are tested on 

an interval up to 2.5 million of computational points. It is shown that monomials are a good selection of 

the basis when working with a high number of nodes. The results are presented in terms of error analysis, 

convergence analysis and computational performance measurements.   

Keywords:  Local Meshless Method, LRBCFM, DAM, Dirichlet jump, GPU, CUDA, dynamic 

balancing,  

1 Introduction 

The developments in numerical modeling and computer science are tightly coupled scientific disciplines. 

Regardless the numerical method the solution algorithms are executed on computers and in most cases the 

accuracy of a computed solution is limited by the capacities of the available computer resources and the 

efficiency of computer implementation. One of the challenging tasks in the computational mechanics 

community is the effective implementation of novel numerical solution procedure in an effective way 

[Kirk and Hwu, (2010)]. The developments in the computer technology are extremely vivid. Almost all 

modern computer platforms are nowadays parallel; most computers use several computing cores sharing 

the same memory. For more complex computations computer clusters are used. Moreover, use of 

graphical processing units (GPUs) for accelerating the numerical simulations is becoming more and more 

attractive. Recently there have been several publications regarding the acceleration of computationally 

intensive programs with GPUs, e.g. cellular automata based lattice-Boltzman simulations [Rinaldi, Dari, 

Vénere and Clausse, (2012)], wave propagation [Molero and Iturrarán-Viveros, (2013)], environmental 

studies [Abouali, Timmermans, Castillo and Su, (2013)], turbulence modeling [Yokota, Narumi, 

Sakamaki, Kameoka, Obi and Yasuoka, (2009)], gas simulations [De Vuyst and Salvarani, (2013)], etc. 

GPU computing has already been adopted in the meshless context in connection with generalized 

meshless Finite Difference Method (FDM) methods [Bollig, Flyer and Erlebacher, (2012)] and particle 

based methods [Yokota, Narumi, Sakamaki, Kameoka, Obi and Yasuoka, (2009)].  

From the implementation and execution point of view the simplest and most effective numerical method 

is explicit FDM since it is completely local and computationally simple. However, the FDM is limited 

only to consideration of simple domains and it has limited possibilities for upgrades. The promising 

alternative is a class of the local point interpolation meshless methods (LPIM) [Wang and Liu, (2002)]. 

The LPIM is based entirely on the approximation constructed over the local sub set of scattered 

computational points. In general, the meshless methods do not require any topological relations between 

points making treatment of complex geometries elegant, which, in the case FDM, might not even be 
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possible. The LPIM can be also easily upgraded or altered to treat anomalies such as sharp discontinues or 

other obscure situations, which might occur in complex simulations. The LPIM offer countless options 

for upgrades, e.g. straightforward adaptation [Kosec and Šarler, (2011)], basis augmentation [Zhang, Sim, 

Tan and Sung, (2006)], conditioning of the approximation [Lee, Liu and Fan, (2003)], etc. The popular 

variant of LPIM where the Radial Basis Functions are used is also referred to as the Local Radial Basis 

Function Collocation Method (LRBFCM) [Šarler, (2005); Šarler, (2007)]. Another variant with the 

weighted least squares approximation and a monomial basis is referred to as Diffuse Approximate 

Method (DAM) [Wang, Sadat and Prax, (2012)]. To avoid confusion we use term Local Meshless 

Method (LMM) when referring to the local strong form meshless method. Meshless methods originate in 

the seventies when the Smoothed Particles Hydrodynamics (SPH) have been developed for astrophysical 

problems [Gingold and Monaghan, (1977)]. Many meshless methods have been developed, e.g. Element 

free Galerkin method, Meshless Petrov-Galerkin method, Point Interpolation Method, Point Assembly 

Method, Finite Point Method, Reproducing Kernel Particle Method, and Kansa [Kansa, (1990); Atluri and 

Shen, (2002a); Atluri and Shen, (2002b); Atluri, (2004); Gu, (2005); Fasshauer, (2006)] since then. The 

most general and “truly” meshless method is the weak form Meshless Local Petrov-Galerkin method 

(MLPG) [Atluri, (2004)]. The strong form meshless alternatives such as LRBFCM or DAM are simpler to 

handle and offer better possibilities for effective parallel execution since they do not require numerical 

integration [Trobec, Šterk and Robič, (2009)]. The intense development in a field of the meshless 

methods continues, which is reflected also in several relevant recent publications [Bourantas, Skouras, 

Loukopoulos and Nikiforidis, (2010); Stevens and Power, (2010); Guo, (2011); Bustamante, Power, Sua 

and Florez, (2012); Li, (2012); Wang, Sadat and Prax, (2012); Wen and Aliabadi, (2012); Arefmanesh, 

Najafi and Musavi, (2013); De Chowdhury and Sannasiraj, (2013); Duan and Rong, (2013); Techapiroma 

and Luadsonga, (2013)]. 

In this paper we explore the implementation of LMM on a GPU in solving the two dimensional transient 

partial differential equation (PDE). We deal with the solution of the time dependent second order partial 

differential equation. The numerical solution of identical problem has been recently published in [Trobec, 

Kosec, Šterk and Šarler, (2012)], where Finite Element Method (FEM), Meshless Local Petrov Galerkin 

Method, and DAM are compared in different regimes. The main message in [Trobec, Kosec, Šterk and 
Šarler, (2012)] is comparison of weak form and strong form methods. The results indicate that strong 

form methods perform comparable to the weak form methods in tested cases. It has been shown that 

DAM provides good results despite its simplicity. In this paper we extend the solution of a well-accepted 

benchmark problem to a much higher number of computational points, up to 2.5 million. We also analyze 

behavior of the LMM when working with different basis functions. Furthermore, the GPU acceleration 

performance is analyzed both; on a single and multiple GPUs, where different load-balancing approaches 

are tested in order to minimize communication overheads. We show that the method is very suitable for 

implementation on GPU based systems. The numerical methodology used in this paper has been recently 

tested on much more demanding technological related problems [Vertnik and Šarler, (2006); Kosec, 

Založnik, Šarler and Combeau, (2011); Vertnik and Šarler, (2011)] and also in connection with Cellular 

Automata [Lorbiecka and Šarler, (2010)].  

2 Local meshless method 

The general idea behind local meshless method is the use of local sub clusters of discretization points, 

termed as local support domains, to construct an approximation of a considered field, which can be 

further manipulated with differential operators. The discretization points are often also referred to as 

computational nodes or just nodes. In general, there is no need to create a mesh or any kind of other 

topological relations between nodes. The nodes can be arbitrarily distributed within the computational 

domain and its boundary (see Figure 1).  
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The approximation function is constructed as a linear combination of basis functions  
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where  , and , ,b n n x yN p p  p  stand for the number of basis functions, the approximation coefficients, 

the basis functions and the position vector, respectively. The selection of basis functions is general; 

however, the most used basis functions are Hardy’s multiquadrics (MQ) 

  
2

2

0

1MQ n

n

Cr
  

p
p , (2) 

Gaussians  

  
2

2

0

expG n

n

Cr

 
   
 
 

p
p , (3) 

and monomials 

 

 
20 0 0

0 0 0

2
0 0 0

0 0 0

[1, , , ,...

... , ,...]

xx y yM x x

n

y y y y x x

p - p p - p p - p

r r r

p - p p - p p - p

r r r

 
   

 

    
           

p

, (4) 

with  

    2 n n

n
   p p p p p , (5) 

and 
0, ,n

C r p  standing for free shape parameter, position vector of n-th support domain node and support 

normalization radius (Figure 1), respectively. The introduced free parameter 
C  can be used to shape the 

basis functions and their influence on the approximation function. 
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Figure 1: The scheme of local meshless principle. 

The stability of the approximation is characterized through the condition number, which can be controlled 

with the basis shape parameter  C . It has been shown, by numerical experiments, that using more 

sensitive interpolation system results in better accuracy [Lee, Liu and Fan, (2003)]. The phenomenon has 

been also theoretically confirmed by Schaback [Schaback, (1995)], who showed the uncertainty relation 

between attainable error and the condition number of the system. However, the condition number of the 

interpolation matrix should be kept below a critical value. The interpolation system becomes too ill 

conditioned for practical computations roughly at condition number over 1410 . With the approximation 

function created, the arbitrary spatial differential operation L  can be applied on it  

  
1

( )
BasisN

n n

n

L L 


 p p . (6) 

The applicability of the differential operator on the approximation functions is limited only by the 

selection of the basis functions. If the operator can be applied on all basis functions then it can be applied 

also on the approximation function. In general, the approximation system has to be solved only at the 

beginning of the solution procedure or when the support domain topology changes, thus the computation 

can be optimized further. The computation of the coefficients and the evaluation of the differential 

operators can be combined in a single operation  
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where the differential operator L

m  vector is introduced as 
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The introduced formalism holds in general and therefore the general notation for partial differential 

operator L  is used. The formulation is convenient for implementation since most of the complex 

operations are performed in the pre-processing phase. During the simulation each numerical evaluation of 

an arbitrary operator L  requires only 
sN  floating point operations. More details about the presented 

method can be found in [Kosec and Šarler, (2011)]. 

The temporal discretization is done through a two-level explicit time stepping 

 0

t t

  


 
, (9) 

where the zero-indexed quantities stand for the values at the previous time step and the time step is 

denoted with t .  

One of the most convenient features of the presented meshless spatial discretization is its generality. One 

can change the number of basis functions, the shape of basis, the size of influence domain, position of 

computational points, etc, in order to treat numerical anomalies or problematic parts of the domain, 

without any kind of special treatment, either of the solution procedure or the program implementation. All 

information about the numerical scheme and topology of computational nodes is stored in partial 

differential vectors. Such an approach is also very suitable for GPU implementation since it is similar to 

filtering the image with spatially dependent filter.            

3 GPU implementation 

GPU accelerator hardware has been adopted widely in many areas of scientific, technical, and even 

financial computing. Current GPUs sport large numbers of Processing Elements (PE), usually in the range 

of 512 (e.g. NVIDIA GTX 580) up to some 2700 (e.g. NVIDIA Tesla K20) which have to be 

programmed in a highly data-parallel way. Processing elements are grouped into multi-processors in 

which teams of 32 PEs act as a Single Instruction/Multiple Data (SIMD) processor. Memory bandwidth 

on GPUs tends to be at least one order of magnitude larger than on traditional CPU-based systems, but 

memory latency is a big issue as a single access to on-board GPU-memory takes some 400 to 600 cycles 

whereas one floating point operation takes 1-2 cycles. To effectively harness the enormous computational 

capabilities of GPUs one is inclined to employ massively (data-) parallel algorithms which helps to hide 

memory latencies and thus fully utilize both the processing elements as well as available memory 

bandwidth. 

We have implemented the presented LMM numerical solver for single-, dual-, and quad-GPU setups, all 

based on the Compute Unified Device Architecture (CUDA) for C. As necessary data structures for 

numerically feasible problem sizes fit into on-board GPU memory, we can copy relevant data to the GPU 

once and leave them there during a whole run.  

In each time step the GPU kernel is invoked by the main (CPU-based) application. The GPU kernel 

multiplies the local partial differential vector and the values of the field in the local support domain (see 

equation (8)) in order to update the considered field. According to the explicit time stepping (9) the 

transfer of the “current” results into the “previous” time step is performed by alternating the pointers to 

“previous” and “current” time step data between consecutive kernel invocations.  
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Workloads are parallelized by assigning a single CUDA thread to each point of the array 
DN . Current 

GPU hardware based on NVIDIA designs is structured as a collection of multi-processors (MP) that 

incorporate a multitude of processing elements (PE), which again form an entity called Warp. On our 

given hardware Warp-size is 32, that is, 32 PEs act as a single instruction/multiple data (SIMD) 

processor. PEs have access to both global and local memories, thus allowing distributed and shared 

memory programming paradigms at the same time. At the CUDA software layer the actual use of MPs 

and PEs is controlled by the so-called block-size. This block-size parameter reflects the number of threads 

which act in SIMD-mode on each multi-processor. Interestingly, its value may be much larger than the 

actual number of physical PEs. In conjunction with very low latency task switching and asynchronous 

memory transfers this setup allows the system to hide memory stalls in the physical PEs. In order to fully 

exploit the capabilities of a GPU, proper definitions of block-sizes is a key. If chosen too small, PEs will 

in general tend to stall, if chosen to large, other effects such as register-spilling might hinder top 

performance. In several tests with block-sizes being multiples of the Warp-size of 32 PEs a block-size of 

128 CUDA threads showed best performance, thus the number of necessary CUDA blocks is set by 

/128B N . On the NVIDIA pre-Kepler architectures the implementation is limited to 65536B  , thus 

resulting in up to 65536x128 array points.  

3.1 Multiple GPU implementation 

We have chosen a coarse grained parallelization scheme in which we simply divide the workspace 
DN  

into a lower half  0, / 2 1DN  and an upper half  / 2, 1D DN N  . Each GPU employs the same data 

structures as in the single GPU implementation but its workload is restricted to one of the two partitions.  

Each GPU also gets the memory addresses of the data its sibling has stored in its local memory. By means 

of the recently introduced CUDA Unified Virtual Addressing (UVA) mode, memory access to non-local 

memory is viable without any direct CPU intervention. This feature is important as it enables the kernel to 

access memory that is stored on another GPU in a very fine grained fashion. Practical experiments with 

CPU governed block memory transfers between two GPUs resulted in no speedup at all; therefore we 

have concluded that use of UVA is absolutely mandatory in order to gain speedups from multi-GPU 

setups. In the quad GPU implementation we employ a very similar scheme in which each of the four 

GPUs is responsible for the computation of a quarter instead of a half of the total workload. The scheme 

of the implementation is presented in Figure 2. 

3.2 Optimization 

In general, the LMM introduces scattered memory accesses, which are distributed unevenly over the 

workspace size 
DN . These scattered accesses undermine naive load-balancing on multiple GPUs in which 

one would simply attribute evenly sized parts of workspace 
DN  to the participating GPUs. We approach 

this problem by choosing a coarse-grained partitioning of the total workspace with the intent to reflect this 

imbalance of memory access operations between the co-acting GPUs. In other words, we aim to hide the 

inherently varying numbers of memory access operations for evenly distributed partitions on multiple 

GPUs by introducing unevenly-sized workloads. Due to the complexity of the problem, which depends on 

multiple parameters such as GPU memory bandwidth/latency, cache hierarchies and also speed and type 

of the underlying host-PCI bus, a solution in closed form is not possible. Therefore we turn to an auto-

tuning approach in which at least parts of the search space are being explored automatically.   
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We introduce an auto-tuning phase in which we check out all possible tilings 
nt  of two partitions 

0 1,P P  

that together cover the entire workspace
1 0DN P P  , with  0 10, nP t  ,  1 , 1n DP t N   with 

 0, 1n Dt N  . The computational complexity grows linearly with workspace size 
DN  in the dual GPU 

setup. Each tiling 
nt  is benchmarked and the tiling corresponding to the minimal run time will be taken as 

the performance-optimal setup for all further computations on that given hardware setup. Clearly, the 

possibly time consuming auto-tuning phase needs to be run only once for the hardware setup and its 

results can be reused from then on. We observed typical run times for auto-tuning in the range of minutes 

( 410DN  ) to several hours ( 610DN  ). 

In the quad GPU setup we cannot explore the search space exhaustively anymore, as the computational 

complexity grows with  3

DO N . Therefore we turn to random sampling in a Monte Carlo fashion. 

Random partitions of the form  0 10,P s ,  0 1 21,P s s ,  3 2 31,P s s  and  3 3 1, 1DP s N   with 

1 3s Ds s s N    are generated, repeatedly tested and benchmarked. The tiling that corresponds to the 

minimal execution time is being preserved for further production runs of the solver. Auto-tuning 

obviously takes away the burden of proper workload-parameterization from the user and it should work 

well on heterogeneous setups of different (CUDA-enabled) GPU models, although this has not been in 

the scope of our practical experiments. 
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4 Test problem 

The two dimensional second order PDE, describing the heat transfer phenomenon, is considered as a test 

problem 

 
2T

D T
t


 


. (10) 

We deal with the numerical implementation performance and thus the heat diffusion coefficient D  is set 

to 1 and a square domain of dimensionless size 1 1 with Dirichlet boundary conditions and uniform 

initial conditions is considered. The initial dimensionless temperature is set to 1 and at all the boundaries 

to 0, i.e.  

 ( , 0) 1T t  p . (11) 

 ( , ) 0T t p , (12) 

with p  and p  standing for interior and boundary nodes, respectively. Equation (10) with given 

boundary conditions (11) and initial state (12) can be evaluated in a closed form by a double series 

summation  

 
 2 2 2

2

1 16
( , ) sin( )sin( )

n m t

a x y

n m

T t np mp e
nm

 


 
p , (13) 

where andm n  are odd integers, and 
aT  stands for a closed form solution of the temperature field. With 

the known closed form solution the numerical accuracy and stability is assessed through the maximal 

error defined as   

  max ( , ) ( , )aE T t T t  p p , (14) 

where all domain nodes are taken into account. The symmetry of the problem can be exploited to assess 

the behavior of the method when working with Neumann boundary conditions by considering just one 

quarter of the domain. It is commonly accepted that the “quarter domain case” is more demanding due to 

the Neumann boundaries, however it has been showed in [Trobec, Kosec, Šterk and Šarler, (2012)] that 

this does not hold for LMM approach. The numerical error for the proposed test has a maximum at the 

beginning of the simulation where the steep gradients occur near boundaries. The intense time dynamics 

due to the high second derivatives of the temperature, together with the error from construction of the 

approximation function and its derivatives result in high errors. However, the error diminishes rapidly 

with time and therefore a suitable simulation time, where the results are to be analyzed, has to be chosen 

in order to get as much information about the behavior of the method as possible. With this in mind the 

dimensionless time 0.005t   is chosen for further analysis. The same time for analysis is chosen in 

[Trobec, Kosec, Šterk and Šarler, (2012)]. Scheme of the problem and its closed form solution are 

presented in Figure 3. 
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Figure 3: Scheme of the test problem (left) and closed form solution at t=0.005 (right). 

5 Results 

5.1 The convergence behavior 

Since the presented diffusion problem has been already analyzed in the past, we focus only on topics 

related to the present research. One of the main messages of this paper is the analysis of the solution 

procedure on the multiple GPU, which are designed to process huge amounts of floating point operations. 

In order to fully exploit the power of GPUs the number of computational nodes has to be as high as 

possible, but before we can move to the analysis of the GPU efficiency we have to analyses numerical 

solution in such computational regimes. For the sake of readability of the paper we will limit some LMM 

parameters. In this paper we use the simplest 5 nodded support domain with a collocation approach. 

When the RBFs, i.e. the MQs or Gaussians, are used for a basis the methods is known as LRBFCM. 

There are several papers proposing the MQs are suitable basis selection, starting with Kansa in [Kansa, 

(1990)] and latter in [Zhang, Song, Lu and Liu, (2000); Young, Jane, Lin, Chiu and Chen, (2004); Vertnik 

and Šarler, (2011)]. In this paper we extend the tests with the computations based on the monomial basis. 

In Figure 4 convergence rate for calculations with different basis functions are presented. In the left plot, 

the MQs, Gaussians and monomials are compared; in the right plot influence of MQ shaping is presented. 

The shaping of the basis is directly connected with the conditioning of the approximation system, the 

higher is the shape parameter  C  the higher is the condition number of the local approximation system. 

On the first plot it can be seen that all three setups perform well as long as the number of nodes is “small” 
(up to 510DN  ), which is also the case in [Kansa, (1990); Zhang, Song, Lu and Liu, (2000); Young, 

Jane, Lin, Chiu and Chen, (2004); Vertnik and Šarler, (2011)]. For higher number of nodes the RBF 

based computations start losing accuracy. From the right plot it is evident that the effect is much more 

pronounced when low 
C  is used or in another words, with good conditioned systems the results are 

poorer. Increasing the 
C  and consequently the condition number improves the convergence behavior. 

On the other hand, too high 
C  

results in ill-conditioned systems, and consequently unstable divergent 

numerical solution. The monomial based computations are stable on a whole interval. Based on the results 

we decide to use simple monomials without any free parameters as such configuration shows good 

convergence rate.  The monomials are, from the computational point of view, much simpler to compute 

and do not require any kind of special treatment, such as system conditioning, to achieve good results.  
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Figure 4: Convergence rate for different types of basis functions with 150C   (left) and convergence 

rate with MQ basis for different shape parameters. 

Next analysis is focused on the time step effect on the convergence rate. Previous analysis has been done 

with time step 810dt
 . To create a better insight on the topic we also test the influence of the data type 

used in the simulations, as it is generally accepted that GPUs perform much better with a single precision 

data type (32 bit) in comparison to double precision (64 bit) data type. However, before we can speculate 

about impact of the computational precision on the performance, the impact on the accuracy should be 

discussed. In Figure 5 convergence plots regarding the data type and temporal discretizations are 

presented. The conditional stability of the explicit stepping can be recognized on both plots; sudden 

extreme increase in error indicates the unstable solution. It is evident that for computations with more 

than 510DN   nodes and time step 610t
   diverges, similar for 6.210DN   even 710t

  does not 

suffice anymore. The behavior is in accordance to the expectations since the LMM can be understood as a 

meshless generalization of the FDM. In the present context, where 5 nodded regular support domains are 

used, the stability problems should be similar to FDM. Second message from Figure 5 is focused on the 

impact of data type on the accuracy. It is well known that accuracy of computer simulation is governed by 

interplay of rounding and truncation error [Heath, (2002)]. Refining the spatial discretization causes the 

reduction of the truncation error, but on the other hand it increases the rounding error. It is also important 

to note that with refining the temporal discretization the number of iterations is increased and 

consequently the rounding error is increased. All this is confirmed in Figure 5. The single precision 

computations cover the simulations with time step down to 610t
   and spatial discretizations up to 

510DN  . The finer discretizations require finer time step, but with finer time step, the rounding error 

becomes more important than the truncation error. Double precision data type, conversely, covers much 

higher interval and the rounding limit is not reached anymore in our present analysis. Slight decrease in 

the convergence rate in a high 
DN  is not a consequence of a rounding error. The rate drops due to the 

numerical limitations of the solution of the meshless approximation system, but this is already out of the 

scope of the present paper.   
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Figure 5: Convergence rate for different time steps and data types. Left plot presents the results 

computed with 32 bit and right plot with 64 bit data type. 

5.2 Execution performance 

In previous section the accuracy and stability of the numerical integration have been covered, whereas the 

present section focuses on the computational efficiency. The results of the execution performance analysis 

are presented in terms of computational times and speedups regarding the CPU execution. We use the 

following computer setup for testing: SuperMicro server with dual AMD Opteron(TM) Processor 6274, 

2.2 GHz, 128 GB RAM, NVIDIA Tesla S2050 GPU (4 GPUs), RocksCluster 6.0 Linux, and NVIDIA 

CUDA 5.0. Although the multicore CPU is used for the computations, only single core computations are 

used for a reference, since the memory architecture of the test machine introduces several anomalies 

(accumulating caches, bandwidth limitation, etc.) in the CPU execution timings which would severely 

distort the speedup representation if all cores would be involved. The resulting performance from CPU-

only code (Figure 6, left diagram) is directly proportional to the number of nodes. The differences 

between single and double precision arithmetic is negligible. In the single-GPU case we observe two 

different regimes of execution times. In the first regime all the data needed for the computations fits into 

2nd level GPU cache which can be accessed with maximum speed by the processing elements operating 

in SIMD lockstep fashion of groups of 32 PEs. Hence, it makes no significant difference whether a data 

sets occupies only one third or all of the cache. For larger data sets which do not fit entirely into the 

caches, an increase of execution times can be seen that is solely governed by the number of nodes, which 

is an indication for the problem to be memory- rather than compute-bound. The timings are done for 5000 

time steps, where we measured the whole process presented in Figure 2, except the numerical pre-process, 

which has been computed in advance and stored as a set of filters.  
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Figure 6: CPU timings and GPU timings  

Unified Virtual Addressing (UVA) allows seamless integration of multiple GPUs, but use of the 

underlying PCI-bus introduces additional latency and bandwidth limitations for inter-GPU 

communications. In our case this performance-adverse effect can be overcome by choosing increased 

problem sizes, as can easily be seen in Figure 7, where data sets beyond 5.510DN   points clearly benefit 

from the use of two and four GPUs. 

 

Figure 7: GPU execution speedup regarding the CPU execution.  

Figure 8 displays the achieved additional speedups which are governed by the optimization techniques we 

discussed in section 3.2. Auto-tuning in a setup of four GPUs (upper curve) typically yields better 

speedup than in a setup of only two GPUs. This is a result of the higher degree of freedom (DOF) that the 
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auto-tuning algorithm is able to exploit, as we see a DOF=1 in two GPUs acting together versus a DOF=3 

in a setup of four GPUs. 

 

Figure 8: Optimized GPU execution speedup regarding the straightforward GPU execution.  

Our method for auto-tuning proper work distributions for four GPU setups and optimal work distributions 

for two GPUs, shows rather high variations in the gained speedups (Figure 8). This is not being caused by 

the type of the tuning algorithm but it is a consequence of the high variation of the distribution of support 

domain nodes within the support domain. Auto tuning of the load results in additional speedups against 

the standard GPU algorithm in the range of 10-40%.  

6 Conclusions 

In the present paper we have introduced a convenient formulation of the LMM and have analyzed its 

behavior on the GPU accelerated computer system. The implementation has been tested on a well-known 

diffusion problem and since the problem has a closed form solution an accurate convergence analysis has 

been done. We have shown that the LMM based on the RBFs experiences problems if a high number of 

nodes is involved; however, changing the basis to monomials or using almost ill-conditioned 

approximation improves the performance of the method. The performance could be also improved by 

adding monomials to the RBF basis, i.e. augmentation of the basis, but this introduces unnecessary 

complications and computational overheads. The convergence has been also tested with respect to the 

time step where instabilities due to the explicit stepping are clearly identified. As expected the five 

nodded LMM behaves similar to the explicit FDM. Using wider support domain with more nodes would 

ease the stability criterion but would also introduce severe computational overheads. In addition, we have 

presented convergence with respect to the data type used for computations, where the interplay between 

rounding and truncation error, which play an important role, especially in cases of high number of nodes, 

has been clearly shown.  

We have shown that LMM is amenable for computation on modern GPU hardware with speedups in the 

range of 50 compared to a server class Opteron CPU single core execution. Furthermore, we have shown 

that additional high speedups can be gained from multi-GPU setups. This result seems quite counter-

intuitive since the algorithm is memory bound due to its high degree of small, scattered memory access 
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operations, which generally pose a difficulty for GPU memory subsystems in terms of the high inherent 

access latency of some 400-600 cycles. Thanks to peer-to-peer computing and unified virtual addressing 

modes in CUDA 4 implementation gets a lot easier and performance becomes very competitive compared 

to the CPU. Scattered and unevenly distributed data access imposes imbalances of the load which is an 

obstacle towards high speedups. By automatically tuning proper workload distribution of the parallel 

implementation for two and four GPUs, we have observed additional speedups. The high variances in the 

additional speedups achieved by auto-tuning are an indication of the high complexity of the optimization 

problem. The absolute speedup gained from auto-tuning has been found to be in the range of 10-40%, 

which obviously can be helpful when it comes to the repeated solution of large problems. Auto-tuning of 

workload sizes on multiple GPUs hence proves to be a valuable tool, especially when we recall that the 

described auto-tuning phase can be implemented easily and has to be executed only once for a given set 

of nodes.  
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