
 
 

 

  

Abstract—The K-local hyperplane distance nearest neighbor 
(HKNN) algorithm is a local classification method which builds 
nonlinear decision surfaces directly in the original sample 
space by using local linear manifolds. Although the HKNN 
method has been successfully applied in several classification 
tasks, it is not possible to employ distance metrics other than 
the Euclidean distances in this scheme, which can be 
considered as a major limitation of the method. In this paper 
we formulate the HKNN method in terms of subspaces. 
Advantages of the subspace formulation of the method are two-
fold: First, it enables us to propose a variant of the HKNN 
algorithm, the Local Discriminative Common Vector (LDCV) 
method, which is more suitable for classification tasks where 
classes have similar intra-class variations. Second, the HKNN 
method along with the proposed method can be extended to the 
nonlinear case based on subspace concepts. As a result of the 
nonlinearization process, one may utilize a wide variety of 
distance functions in those local classifiers. We tested the 
proposed methods on several classification tasks. Experimental 
results show that the proposed methods yield comparable or 
better results than the Support Vector Machine (SVM) 
classifier and its local counterpart SVM-KNN. 

I. INTRODUCTION 
LTHOUGH being a very old and simple classification 
method, the Nearest Neighbor (NN) approach is among 

the most successful and robust methods for many 
classification problems. In this naïve approach, a query 
sample is assigned to the same class which includes the 
closest prototype sample. Various distance functions can be 
used to measure the closeness, such as the Euclidean or 
Mahalanobis distance. It was theoretically shown that for 
large number of samples in the training set, the NN rule 
exhibits good performance. In particular, the error 
committed by the NN rule is at most twice the Bayesian 
error. Additionally, it was empirically observed that the NN 
classifier with a well chosen distance metric outperforms 
more sophisticated classifiers in many situations [1-3]. 

Despite its advantages, the NN algorithm tends to yield a 
poor generalization ability with limited number of samples 
in high-dimensional spaces. Hole artifacts occur in the 
decision surface for such cases, which in turn introduces 
severe bias and reduces the generalization performance [4]. 
In order to overcome this pitfall, various methods have been 
proposed in the literature [4], [5], [6], [7]. Among these, the 
HKNN method was shown to work well in several 
classifications tasks [4], [8]. In this approach, each class is 
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considered as a low-dimensional smooth manifold 
embedded in a high-dimensional space. In this setting, it is 
reasonable to assume that these manifolds are locally linear. 
In the case of limited training data, new points are fantasized 
to approximate each manifold locally. This process is 
accomplished using the nearest neighbors in the vicinity of a 
query sample to construct local linear manifolds for each 
class. Then the query sample is classified based on the 
distances from these local linear manifolds. In this way 
negative effects of the sparseness of the training data are 
reduced, and a significant improvement is obtained in 
recognition accuracies. Zhang et al. proposed a similar local 
classifier method called the SVM-KNN [5]. In this method 
they train an SVM classifier on the nearest neighbors using 
various distance functions. While utilizing various distance 
metrics may sound appealing, a further decrease of available 
prototypes through SVM is undesirable since the extracted 
support vectors may not model the decision boundaries 
correctly.  

Recently, the development of specialized distance 
functions for some classification tasks has emerged as a 
fruitful line of research. Consequently, significant 
improvements were achieved by incorporating task specific 
distance metrics [5], [9]. For instance, the HKNN algorithm 
achieved the best recognition rate among all methods 
discussed in [5] for the Euclidean distances, but it was 
outperformed by the SVM-KNN method utilizing alternative 
distance metrics. Zhang et al. [9] reported that the Chi-
Square and Earth Mover’s distances show a significant 
improvement over linear kernels for classification of image 
histograms. All these results verify the hypothesis that some 
distance metrics are better suited for special classification 
tasks and one should exploit the advantages of using various 
distance functions in a classification task. However, the 
standard HKNN algorithm operates in the original sample 
space and it is not possible to utilize distance functions other 
than the Euclidean distances in this scheme.  

In this paper we propose an elegant nonlinearization 
process which extends the capability of the HKNN method 
such that a wide variety of distances can be utilized in this 
scheme. As a consequence, the nearest neighbors can be 
transformed into a more discriminative feature space which 
in turn improves the recognition accuracy. Moreover, since 
the classification problem is cast in a higher-dimensional 
space, the linearity assumption of the manifolds is more 
likely to be satisfied. The nonlinearization process also 
enables us to apply the HKNN approach to new 
classification tasks in which direct application is not 
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feasible. Although the constructed manifolds correspond to 
nonlinear structures in the original sample space, finding 
distances to these manifolds is still straightforward due to 
their linear nature in the mapped space. In this study, we 
also introduce a variation of the HKNN method, called the 
Local Discriminative Common Vector (LDCV) method, 
which is more suitable for classification tasks where classes 
have similar variations. Then, it is extended to the nonlinear 
case using the same nonlinearization process. 

The remainder of the paper is organized as follows: In 
Section 2, we formulate the HKNN method in terms of 
subspaces and generalize it to the nonlinear case using the 
kernel trick. In Section 3, the LDCV method is introduced 
and kernelized. Section 4 describes the data sets and 
experimental results. Finally, we draw our conclusion in 
Section 5.  

II. KERNELIZATION OF THE HKNN METHOD 
We can map the nearest neighbor samples into a higher-

dimensional space ℑ  to extend the standard HKNN method 
to the nonlinear case. A major advantage of the 
nonlinearization process is that it allows using distance 
metrics other than the Euclidean distances during 
transformation. The Euclidean distances may not be 
compatible for some classification tasks as demonstrated in 
the experiments, and the nonlinearization process offers the 
capability of incorporating different distance functions in 
such cases. In order to incorporate different distance metrics 
in the HKNN method, we first formulate the method in 
terms of subspaces. Then, the method is extended to the 
nonlinear case using subspace concepts and the kernel trick. 

A. Formulation of the HKNN Method in Terms of 
Subspaces 
In the HKNN method, the first step is to find the closest K 

neighbors to a query sample for each class. Then these 
neighbors are used to construct the local linear manifolds of 
the classes. Finally the query sample is assigned to the class 
associated with the closest manifold. Next, we will show 
that the HKNN method can be seen as a local subspace 
classifier.  

Suppose there are C classes in the training set. Let 
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where i
mz  are the linearly independent vectors obtained 

from the difference vectors },...,,{ 21 i
i
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i
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i xxx µµµ −−− . Here 

il  represents the number of linearly independent difference 
vectors and 1−≤ Kli . Note that there is no constraint on the 
sum of new coefficients i

mβ . The linearly independent 
difference vectors i

l
ii

i
zzz ,...,, 21  span the difference subspace 

of the local vector set )( q
K

i xV  [10]. It can be shown that the 
difference space and the range space of the covariance 
matrix of samples in )( q

K
i xV  are equivalent spaces [11]. 

In order to classify a query point qx , the minimum 
distances between the query vector and the local manifolds 
must be computed. Then the query sample is assigned to the 
class whose manifold is the closest to qx . The minimum 
distance between qx  and each manifold is computed by, 
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where )(iZ  is the matrix whose columns are the independent 
difference vectors and )(iβ  is the column vector of the 
coefficients i

mβ . Here ||.|| denotes the Euclidean norm. 
Minimization of the above equation leads to  
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It should be noted that the matrix TiiTii ZZZinvZ )()()()( )(  
defines an orthogonal projection operator and in our case it 
is the orthogonal projection operator of the difference 
subspace of )(xV K

i . Thus, we can rewrite (3) as 
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where I is the identity matrix and )(iP  is the orthogonal 
projection operator of the difference subspace of the i-th 
class. The matrix )( )()( ii

NS PIP −=  is called the orthogonal 
projection operator of the indifference subspace (the null 
space of the covariance matrix) of )(xV K

i  [10]. Notice that 
the difference and indifference subspaces are orthogonal 
complements of each other. The projections of all samples 
and their affine combinations in )(xV K

i  onto their 
corresponding indifference subspace produce a unique 
vector i

comx  representing that vector set. More formally, 
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test vector from each manifold can be written as  



 
 

 

  ||||))(,( )( i
comq

i
NSq

K
iq xxPxLHxd −= , Ci ,..,1= .        (7) 

The above formula shows that the minimum distance from a 
query sample to each local manifold constructed using the 
K-nearest neighbors is equal to the Euclidean distances 
between the local common vector of each class and the 
projection of qx  onto the local indifference subspace. Thus 
the problem can be seen as a subspace problem where each 
local subspace is modeled with the associated indifference 
subspace of the nearest neighbors in the vicinity of the query 
sample. It is clear that each class is represented with a 
unique vector obtained removing intra-class variations 
among the local neighbors in this setting. In that sense the 
distance from the query sample to each class manifold is 
similar to the Mahalanobis distance and it may be 
considered as a variant of the Mahalanobis distance for rank 
deficient covariance matrices. As a result, the decision 
function for a given query sample qx  can be written as 
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Since the projection matrices are idempotent, i.e., 
)(2)( )( i

NS
i

NS PP = , the above classification rule yields quadratic 
decision boundaries around the query sample. 

B. Kernelization Process 
Before introducing the kernelization of the HKNN 

algorithm, we need the following definitions. The local 
scatter matrix K

iS  of nearest neighbors belonging to the i-th 
class is defined as 
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Note that the HKNN algorithm utilizes the null spaces of 
these local scatter matrices for classification of the query 
samples. Similarly, the local total scatter matrix K

TS  of all 
neighbors in the vicinity of the query sample is defined as 
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where µ  is the mean of all neighbors.  
We use the kernel trick in order to map the data into 

higher-dimensional space as in the Kernel PCA [12] 
approach. However the kernelization of the HKNN 
algorithm is not trivial since the method utilizes the null 
spaces of the covariance matrices of the mapped samples 
rather than the range spaces. In this case the HKNN 
algorithm cannot be formulated in terms of the dot products 
of the mapped samples as in the Kernel PCA approach. 
Therefore we will modify the original HKNN algorithm 
such that it can be formulated in terms of the dot products of 
the mapped samples in ℑ . To this end, it should be noticed 
that the null space )( K

TSN  of the local total scatter matrix of 
all nearest neighbors does not contain any discriminative 
information for classification. This is because the 
projections of all neighbors onto this subspace give rise to 
the same vector [13]. Therefore, without loss of generality, 
this subspace can be discarded from our consideration in the 
HKNN method. Then, the new local subspace representing 

each class around the vicinity of the query sample can be 
defined as the intersection of the local null space of that 
class’ scatter matrix and the range space of the local total 
scatter matrix, i.e., )()( K

T
K
i SRSN ∩ , Ci ,...,1= . 

In order to use the intersection subspaces for classification 
of query samples, we have to compute the projection 
matrices )(
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since the projection matrices of )( K

iSN  and )( K
TSR  

commute. Here P represents the projection matrix of 
)( K

TSR . Notice that, in general, the projection matrix of any 
intersection can not be obtained using (11) if the projection 
matrices of the associated subspaces do not commute. As a 
result, we can first project all nearest neighbors onto )( K

TSR  
and find the null spaces of the projected samples in the 
transformed space so as to compute the basis vectors 
spanning the local intersection subspaces. In order to extend 
the HKNN algorithm to the nonlinear case we are going to 
apply this procedure in the mapped space as described 
below. 

C. Nonlinear HKNN (NHKNN) Method 
This method consists in mapping the nearest neighbors 

around the query sample into an implicit higher-dimensional 
space ℑ  using a nonlinear kernel mapping function and then 
applying the above procedure in the mapped space. Using 
intersection subspaces in the mapped space allows us to 
formulate the method in terms of the dot products of the 
mapped samples. Kernel functions are used to compute 
those dot products as in the other methods using the kernel 
trick. As a result, the mapping function and the mapped 
samples are not used explicitly, which makes the method 
computationally feasible. 

Let ], ... ,,[ )()2()1( CΦΦΦ=Φ  represent the matrix whose 
columns are the mapped nearest neighbors in ℑ  where 
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mapped neighbor samples of the i-th class. Suppose 
CKM =  is the total number of neighbors around the query 

sample. The local scatter matrix Φ
iS  of each class and the 

scatter matrix Φ
TS  of the pooled samples in ℑ  are given by 
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where Φ
iµ  is the mean of mapped nearest neighbor samples 

in the i-th class, Φµ  is the mean of all mapped neighbors in 
the vicinity of the query sample. Here KK

K
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whose elements are all 1/ K  and MM
M

×ℜ∈1  is a matrix with 
entries M/1 . The kernel matrix of the mapped data is given 
as 
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In the above equation (.,.)k  represents the kernel function, 
and one can easily create different decision boundaries 
around the query sample by simply employing various 
distance metrics in the kernel function evaluations. 
 Our aim is to find the basis vectors for the intersection 
subspaces )()( ΦΦ ∩ Ti SRSN , Ci ,...,1= , for each class. To find 
these basis vectors, we follow the previously mentioned 
steps; we first transform all nearest neighbor samples onto 

)( Φ
TSR  and then find the null spaces of classes in the 

transformed space. The transformation of nearest neighbors 
onto )( Φ

TSR  can be done easily by employing the Kernel 
PCA method. Then we find the vectors spanning the null 
spaces of the scatter matrices of the transformed samples.  
 The algorithm for the nonlinear HKNN method can be 
summarized as follows: 
Step 1: For each class, find the K closest samples to the 
query sample qx . 

Step 2: Transform all nearest neighbors onto )( Φ
TSR  using 

the Kernel PCA. Let G
~  be the kernel matrix of the centered 

mapped samples [12]. If we apply eigen-decomposition to 
G
~ , we obtain 
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where Λ  is the diagonal matrix of nonzero eigenvalues and 
U is the matrix of normalized eigenvectors associated to Λ . 
The matrix that transforms the samples onto )( Φ
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Step 3: Compute the local scatter matrix of each class in the 
transformed space. The new scatter matrix rr
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Here, the matrix KMiG ×ℜ∈)(~  is written as 
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where the matrix KMiG ×ℜ∈)(  is given by 
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Step 4: For each class, find a basis of the null space of Φ
iS

~ . 
This can be done by an eigen-decomposition. The 
normalized eigenvectors corresponding to the zero 

eigenvalues of Φ
iS

~  form an orthonormal basis for the null 
space of Φ

iS
~ . Let )(iQ  be a matrix whose columns are the 

computed eigenvectors corresponding to the zero 
eigenvalues, such that 
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Step 5: The matrix of basis vectors )(iW , whose columns 
span the intersection subspace of the i-th class, is 
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The number of basis vectors spanning the intersection 

subspaces is determined by the dimensionality of )
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each class. After performing the feature extraction, all 
samples in )( q
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i xV  give rise to the local common vector of 

that class, given as 

   
,,...,1 ,,...,1  ,

~
        

)(
2/1)(

)()(

KmCilUQ

xW
i

m
TTi

i
m

Tii
com

==Λ=

=Ω
−

φ
       (21) 

where Mi
mM

i
m

i
m lll ℜ∈−= )1(

~  and Mi
ml ℜ∈  is a vector with 

entries 
Kn
Cj

i
m

j
n xxk

,...,1
,...,1),(

=
= . Note that the common vector given 

in (21) is independent of the sample index m, and hence one 
can choose any sample from )( q

K
i xV  to obtain the 

corresponding local common vector. To recognize a given 
query sample, we compute the feature vector of the query 
sample by 
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distances between the common vectors and the feature 
vector of the query sample for each class using (8), and the 
query sample is assigned to the class that minimizes this 
distance. 

III. LOCAL DCV METHOD AND ITS KERNEL COUNTERPART 
We get a variation of the HKNN when the local 

difference subspace of each class is constructed using 
pooled linearly independent difference vectors of all classes. 
This approach assumes all classes have similar local 
variations since they are represented by the same subspace 
around each query point. As a result, linear decision 
boundaries are obtained around the query points in contrast 
to the HKNN algorithm in which the quadratic decision 
boundaries are obtained.  

It is known that the local difference subspace of each 
class is equal to the range of the scatter matrix K

iS  of 
samples coming from )( q
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i xV . Therefore the new pooled 

difference subspace is equal to the range of the within-class 
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indifference subspace is the null space of the within-class 



 
 

 

scatter matrix of the neighbors. When the nearest neighbors 
are projected onto the null space of the within-class scatter 
matrix, they give rise to unique common vectors 
representing classes as in the HKNN method. In that case, 
the decision function for a given query sample is written as 

  ||))((||minarg)(
,...,1

iqNS
Ci

q xPxg µ−=
=

,                 (23) 

where NSP  is the orthogonal projection operator of the null 
space of the within-class scatter matrix. 

This approach has been applied to the face recognition 
problems globally and it has been called as the 
Discriminative Common Vector method [11]. Therefore, we 
will call the new local approach as the local Discriminative 
Common Vector (LDCV) method. The keen reader can refer 
to [11] for a detailed explanation on the DCV method. 

The LDCV method can also be extended to the nonlinear 
case using the kernel trick similar to the NHKNN. Details of 
the kernelization of the global DCV method can be found in 
[13]. Note that the kernelization was done for global DCV in 
that paper, thus one should use the closest prototype samples 
in the nonlinear LDCV (NLDCV) approach instead of using 
all available training data. 

IV. EXPERIMENTS 
In order to assess the performance of the proposed local 

methods, we tested them on 2 data sets. We compared the 
proposed methods to the NN, SVM and its local counterpart 
SVM-KNN. In all experiments, the one-against-all 
procedure has been used to extend classic two-class SVM 
problem to the multi-class recognition problem. To find the 
best parameters (kernel function parameters and K) of 
algorithms we followed the procedure described in [13]. 

A. Experiments on the USPS Database 
The USPS database contains 9298 gray-scale images of 

handwritten digits where 7291 images are allocated for 
training and the remaining 2007 are allocated for testing. 
The size of each image is 16x16 and the human error rate is 
reported as 2.5% on this database [1]. Some samples from 
the USPS database are shown in Fig. 1. We employed the 
Euclidean and tangent distances in our experiments as in [5]. 
In order to incorporate the tangent distances in the nonlinear 
approaches, we used the generalized Gaussian kernel 

)/),(exp(),( qyxTDyxk −=  where ),( yxTD  denotes the two-
sided tangent distance between two image vectors x and y. 
The employed kernel function does not satisfy the Mercer 
conditions, thus the kernel matrix is not necessarily a 
positive semi-definite matrix. There are different ways to 
handle this situation. In our case we computed the most 
negative eigenvalue and added its absolute value to the 
diagonal of the kernel matrix in order to make the kernel 
matrix positive semi-definite. The computed error rates are 
given in Table I. 

As can be seen in the table, the best recognition rate is 
achieved with our proposed method NHKNN. It is 
interesting that it is even better than the human recognition 
performance reported in [1]. All nonlinear approaches 

employing tangent distances show an improvement over 
their classical counterparts employing the Euclidean 
distances, which justify our initial claims on employing task 
specific distance metrics. 

 

 
Fig. 1. Some samples from the USPS database. 

 

TABLE I 
ERROR RATES ON THE USPS DATABASE 

Methods Error Rates (%) 
NN 4.98 
NN (TD) 3.03 
HKNN, 10=K  4.13 
LDCV, 2=K  5.19 
Linear SVM 6.32 
Nonlinear SVM NA 
NHKNN, 15=K , 54 += eq  2.44 
NLDCV, 7=K , 54 += eq  2.93 
SVM-KNN, 8=K , (Zhang et al. [5]) 2.59 

 

B. Experiments on the Image Segmentation Database 
The Image Segmentation Database [14] consists of 

samples randomly drawn from a database of seven outdoor 
images. The images are hand segmented to create a 
classification for every pixel. Each sample has a 3x3 region 
and 19 attributes. There are a total of 7 classes each having 
330 samples. In our experiments, the attributes were 
normalized to lie in interval [-1,1] and 10-fold cross 
validation procedure has been used to assess the 
generalization performance of the methods. We tested both 
linear and nonlinear SVM classifiers. The Gaussian kernel 
has been employed in the proposed methods as well as in the 
nonlinear SVM and SVM-KNN. The recognition rates and 
standard deviations are given in Table II. 

 

TABLE II 
RECOGNITION RATES ON THE IMAGE SEGMENTATION DATABASE 

Methods Recognition Rates (%) 
NN 96.36, 92.0=σ  
HKNN, 2=K  96.88, 81.0=σ  
LDCV, 2=K  95.67, 98.0=σ  
Linear SVM 95.50, 18.1=σ  
Nonlinear SVM, 75.0=q  97.01, 03.1=σ  
NHKNN, 15=K , 15.0=q  97.23, 17.1=σ  
NLDCV, 7=K , 25.0=q  96.71, 15.1=σ  
SVM-KNN, 75=K , 5.0=q  97.10, 15.1=σ  

 

In terms of the recognition accuracy, the best recognition 
rate is obtained by the proposed nonlinear method NHKNN. 
Both nonlinear subspace classifiers outperform their linear 
counterparts. As stated in Section 2, the dimensionality of 
the sample space must be larger than the number of nearest 
neighbors (K) to apply the HKNN method. Similarly, the 
dimensionality of the sample space must be larger than the 
total number of nearest neighbors (CK) for the LDCV 



 
 

 

method. It was reported that the subspace methods perform 
best when the dimensionality is large compared to the 
number of data samples. Notice that the dimensionality of 
the sample space is 19 for the Image Segmentation database. 
Therefore, we could not employ many nearest neighbors in 
the local linear subspace approaches. As a result, the LDCV 
method performed worse than the NN method. On the other 
hand, this limitation does not exist in the nonlinear 
approaches since the nearest neighbors are mapped into a 
higher-dimensional feature space. Consequently, we 
employed more nearest neighbors in the nonlinear 
approaches, which improved the recognition rates. 

C. Discussion and Future Work 
The proposed classifiers share the same advantages of 

other prototype based classifiers (no training required, ideal 
for fast adaptation, natural handling of the multi-class case) 
However, the testing time is very slow as in those methods 
since the query sample must be compared to all available 
data samples to find the closest neighbors. Other 
computations for obtaining the subspace parameters of the 
nearest neighbors is negligible compared to finding the 
closest neighbors. Therefore the real-time efficiencies of the 
proposed methods depend on the training set size. In [4], the 
authors used a smaller but representative subset of the 
training data to speed up the HKNN algorithm. In particular, 
they employed support vectors obtained using an SVM 
classifier with the Gaussian kernel. They reported similar 
recognition accuracy obtained using all data.  

A further improvement can be achieved by a similar 
procedure. In this scheme, we first train an SVM classifier 
and extract representative support vectors. Then, we treat 
each support vector as a query point and compute the local 
subspace parameters using the nearest neighbors around the 
support vectors. Note that all these computations are 
performed offline. In real-time classification of a test 
sample, we find the closest support vector and use the 
associated subspace parameters for classification of the test 
sample. More than one support vector can be employed in 
this approach. Since the test sample is compared to only 
support vectors and all subspace parameters are pre-
computed in this approach, a significant improvement on the 
real-time efficiency can be obtained. However, the effects of 
this procedure on the recognition performance must be 
checked before a possible application. We are currently 
working on this approach.  

V. CONCLUSION 
In this paper we first showed that the HKNN classifier 

can be formulated using subspaces. Then, based on the 
subspace formulation, the HKNN method was extended to 
the nonlinear case using the kernel trick. However, the 
nonlinearization of the method was not trivial. The HKNN 
method needed to be modified before the nonlinearization. 
In addition we introduced a variant of the HKNN method, 
which is called as the LDCV method. Then, the LDCV 
method was also extended to the nonlinear case using the 
same nonlinearization process. We tested the proposed 

nonlinear methods on two data sets. Experimental results 
demonstrate that the nonlinearization of the discussed 
subspace classifiers results in novel elegant methods, which 
can find broad applications in classification areas where the 
Euclidean distances are not compatible. 
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