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Abstract—We study the problem of preserving user privacy in the publication of location sequences. Consider a database of
trajectories, corresponding to movements of people, captured by their transactions when they use credit cards, RFID debit cards or
NFC compliant devices. We show that, if such trajectories are published exactly (by only hiding the identities of persons that followed
them), one can use partial trajectory knowledge as a quasi-identifier for the remaining locations in the sequence. We devise four
intuitive techniques, based on combinations of locations suppression and trajectories splitting, and we show that they can prevent
privacy breaches while keeping published data accurate for aggregate query answering and frequent subsets data mining.
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1 INTRODUCTION

Consider a company SmartCard (e.g, a contactless card
company, a bank) that issues electronic money cards (like
the Octopus or the EZ-Link card) or credit/debit cards
(e.g., VISA, MASTERCARD) to its users, to allow cash-
less payments. Assume that the company wants to pub-
lish sequences of transactions for analysis and querying
purposes. We consider as a motivating example, the Oc-
topus (http://www.octopuscards.com/) smart RFID card,
commonly used by Hong Kong residents to pay for their
transportation and for their transactions at PoS services
(e.g., shops, vending machines). Transactions created by the
usage of cards in physical locations have a very important
spatiotemporal aspect; they reveal that a person was at a
certain place in a specific time. SmartCard and similar com-
panies accumulate vast amounts of transactional data that
reveal user trajectories daily, and they are under pressure to
publish or share them with third parties. Such data can be
used to extract movement and behavioral patterns as well
as the causality relationships between geographic locations.
A similar problem can arise in the context of Location Based
Social Networks, where the user trajectory is the sequence
of her check-ins in predefined locations.

Direct publishing of this information, even after hiding
the IDs of users, may easily result in privacy breaches, once
combined with the partial trajectory information, known to
an adversary. The adversaries in the aforementioned setting,
are the companies that collaborate with SmartCard. Any
company that accepts the cards of SmartCard has a small
part of SmartCard’s database, i.e., it has partial knowledge
of numerous trajectories. When a person uses his card to
pay at a convenience store, the company that owns the
store can also keep this transaction in its own database and
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associate it to the person’s identity (e.g., via a loyalty/bonus
card). Large companies that have chains of stores constitute
powerful adversaries, since they might know more than one
points of a published trajectory. Such companies are able to
launch mass attacks against user privacy, i.e., they can re-
identify users at a massive scale, by simply matching their
own database to SmartCard’s database if that is available to
them. At the same time, in the above setting, the data owner
(i.e., SmartCard) knows the part of the database that each
adversary has and can use this knowledge to anonymize the
trajectory data before publication. This is exactly the focus
of our proposed anonymization methodology.

Fig. 1a shows an example of a database T owned by
SmartCard. For the ease of presentation, we model each
trajectory by a sequence of locations, without temporal in-
formation (i.e., timestamps) on the elements. Each sequence
element is a shop address, where the corresponding user
had card transactions. Locations are classified according to
the possible adversaries. For example, all places denoted by
ai (where i is any integer) are assumed to also be tracked
by company and possible adversary A. Fig. 1b shows T A;
the knowledge A has for the exact database of Fig. 1a. It is
easy to see, that by matching this background knowledge
about its customers from T A to the published knowledge of
T , the adversary can infer additional locations visited by its
customers. For instance, the adversary may link trajectories
t1 and tA1 since they are the only ones in T and T A
respectively that contain a1 and do not contain a2 and a3

and, thus, deduce that the user of tA1 also visited locations
b2 and b3.

In this paper, we propose a methodology that allows
anonymizing trajectories, in a way that would prevent
adversaries from using their partial knowledge to infer
locations unknown to them. Our proposal adopts the l-
diversity paradigm, to prevent adversaries from inferring
the connection between their background knowledge about
a person’s whereabouts and specific locations. Our methods
employ both suppression and splitting of trajectories, to
sanitize the data in order to reduce the information loss. The
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id trajectory
t1 a1 → b2 → b3
t2 b1 → a2 → b2 → a3
t3 a2 → b3 → a3
t4 a2 → a3 → b1
t5 a3 → a1 → b1
t6 a3 → a1 → b1
t7 a3 → b2 → a1
t8 a3 → b2 → b3

(a) Original dataset T

id trajectory
tA1 a1
tA2 a2 → a3
tA3 a2 → a3
tA4 a2 → a3
tA5 a3 → a1
tA6 a3 → a1
tA7 a3 → a1
tA8 a3

(b) A’s knowledge T A

id trajectory
t′1 a1 → b2 → b3
t′2 b1 → a3
t′3 a3
t′4 a3 → b1
t′5 a1 → b1
t′6 a1 → b1
t′7 a1
t′8 a3 → b2 → b3

(c) GSUP(T ): Global suppression

id trajectory
t′1 b2 → b3
t′2 a2 → a3
t′3 a2 → a3
t′4 a2 → a3
t′5 a3 → a1
t′6 a3 → a1
t′7 a3 → a1
t′8 b2 → b3

(d) LSUP(T ): Local suppression

id trajectory id trajectory
t′1 a1 → b2 → b3 t′′4 b1
t′2 b1 t′5 a3
t′′2 a2 → b2 t′′5 a1 → b1
t′′′2 a3 t′6 a3 → a1
t′3 a2 t′′6 b1
t′′3 b3 t′7 a3 → b2 → a1
t′′′3 a3 t′8 a3 → b2 → b3
t′4 a2 → a3

(e) SPLIT(T ): The splitting method

id trajectory id trajectory
t′1 a1 → b2 → b3 t′′4 b1
t′2 b1 t′5 a3
t′′2 a2 t′′5 a1 → b1
t′′′2 b2 t′6 a3 → a1
t′′′′2 a3 t′7 a3 → b2 → a1
t′3 a2 → a3 t′8 a3 → b2 → b3
t′4 a2 → a3

(f) MIX(T ): Mixing suppression and splitting

Fig. 1: The original dataset, an adversary’s knowledge and the result of several anonymization methods

application of trajectory splitting is a novel data transforma-
tion that allows our method to handle large trajectories.

Our work makes the following contributions:

• We present a novel data transformation for trajecto-
ries, termed splitting, which splits original trajecto-
ries to new smaller ones.

• We develop four anonymization algorithms, which
employ suppression of locations, splitting of trajec-
tories or both, to assess the impact of each strategy.

• We experimentally demonstrate that our algorithms
protects data, preserve data utility and are efficient.

This work extends the work of [?] by: (a) an improved
global suppression algorithm, coined GSUP, (b) a local sup-
pression algorithm, coined LSUP, (c) the trajectory splitting
transformation and the two algorithms, coined SPLIT and
MIX that exploit it.

2 PRELIMINARIES

In this section, we first define the concepts and the notation
used throughout the paper. Then, we present an algorithm
that identifies privacy threats according to our problem
definition. Finally, we outline the anonymization techniques
used by our approach and discuss its limitations.

Definition 1. Let L be a set of locations. A trajectory t of
length n, is a sequence t = l1 → · · · → ln of n locations
of L, tracking the visits of a user. The size of a trajectory
is denoted by |t|.

A location is a point of special interest on a map (e.g., hospi-
tal, store, bank, touristic site). Fig. 1a shows eight trajectories
defined on locations L = {a1, a2, a3, b1, b2, b3}.
Definition 2. Let t = l1 → · · · → ln and s = `1 → · · · → `ν

be two trajectories defined over locations set L. Trajec-
tory s is a subtrajectory of or is contained in trajectory t,
denoted by s < t, if and only if |s| < |t| and there is
a mapping f such that `1 = lf(1), . . . , `ν = lf(ν) and
f(1) < · · · < f(ν) hold.

For example, trajectories a1, b2, a1 → b2 and a1 → b3 are
some subtrajectories of trajectory t1 = a1 → b2 → b3.

Definition 3. Let T be a set of trajectories defined over
locations set L. An adversary A is a data owner (e.g., a
store chain) controlling a subset of locations LA ⊂ L.
Adversary A can track any user visiting a location in
LA.

For a set of potential adversariesA, we assume that each
adversary A ∈ A controls a non-empty set of locations LA
that is disjoint from the set of locations LB controlled by any
other adversary B ∈ A. More formally, for any A,B ∈ A
such that A 6= B we have LA ∩ LB = ∅. In Fig. 1a there
are two adversaries A and B controlling locations LA =
{a1, a2, a3} and LB = {b1, b2, b3} respectively.

Definition 4. Let L be a set of locations and A be an
adversary controlling locations LA ⊂ L. The projection
of a trajectory t = l1 → · · · → ln to adversary A,
denoted by πA(t), is a (potentially empty) subtrajectory
of t, describing A’s knowledge about trajectory t. More
formally, πA(t) = λ1 → · · · → λν where πA(t) < t and
λ1, . . . , λν are all locations in l1, . . . , ln that belong toLA.

In simple words, to construct πA(t) we remove from the
original trajectory t = l1 → · · · → ln all locations li /∈
LA and preserve the order of the remaining locations. For
example in Fig. 1a, the projection of trajectory t1 = a1 →
b2 → b3 to adversary A (respectively, B) is πA(t1) = a1

(respectively, πB(t1) = b2 → b3).

Definition 5. Let T be a set of trajectories defined over
locations L and A be an adversary controlling locations
LA. The knowledge of adversary A, denoted by T A, is
the projection of every trajectory t ∈ T to A, i.e.,
T A = {πA(t) : t ∈ T }.

For example, Fig. 1b illustrates adversaryA’s knowledge
T A controlling locations LA = {a1, a2, a3} for the original
dataset T of Fig. 1a. The adversary A may explore T A and
the published dataset to associate locations unknown to A
with the trajectories of T A. To this end, A will first associate



3

Algorithm: THREATID
Input: A dataset T , identification probability threshold Pbr
Output: List Q of problematic pairs.

The total number of problems N .
The number of problems n@ST (λ, tA) of every problematic pair
(λ, tA).

1 Q = ∅, N = 0, n@ST = () // Initialize Q, N and n@ST

// Compute n@ST
2 for every t ∈ T and every A ∈ A do
3 if πA(t) 6= ∅ then
4 for every λ ∈ t \ {πA(t)} do
5 n@ST (λ, πA(t))++

// Privacy threat identification
6 for every A ∈ A do
7 for every λ ∈ L \ LA and every tA ∈ T A do

8 if n@ST (λ,tA)

|ST (tA)|
> Pbr then // (λ, tA) is problematic

9 Insert pair (λ, tA) to list Q
10 N = N + n@ST (λ, tA)

11 return (Q, N,n@ST )

the projections in T A with the actual trajectories of the
published dataset as in the following definition.

Definition 6. A trajectory t in a published dataset supports a
projection tA of an adversary A, if tA = πA(t). Reversely,
the support set of a projection tA of A with respect to a
dataset T , denoted by ST (tA), is defined as ST (tA) =
{t ∈ T : πA(t) = tA}.

If a dataset T is published directly (as in Fig. 1a), ad-
versary A is able to infer that ST (a3 → a1) = {t5, t6, t7},
i.e., projection a3 → a1 is one of the following trajectories
(a) t5 = a3 → a1 → b1, (b) t6 = a3 → a1 → b1 or (c)
t7 = a3 → b2 → a1. In two of the above three cases, A is
able to associate the user of projection a3 → a1 with location
b1 that is not controlled by A. This type of attack is captured
by the following definition.

Definition 7. Let T be a set of trajectories,A be an adversary
controlling locations LA and tA be a projection of A. The
number of trajectories in the support set ST (tA) that contain
a location λ /∈ LA, denoted by n@ST (λ, tA), is defined
as n@ST (λ, tA) =

∣∣{s : s ∈ ST (tA) ∧ λ ∈ s}
∣∣. Moreover,

the identification probability, denoted by PT (λ, tA), is the
probability of associating a location λ /∈ LA to the
projection tA and can be computed by:

PT (λ, tA)=
n@ST (λ, tA)

|ST (tA)|
(1)

In simple words, PT (λ, tA) is the fraction of trajectories in
the support set (e.g., ST (tA)) that include λ.

Definition 8. A pair (λ, tA) is called problematic if
PT (λ, tA) > Pbr, where Pbr is a user defined probability
threshold. The number of problems of a problematic pair
(λ, tA) in T is captured by n@ST (λ, tA), i.e., it equals
the number of trajectories in the support ST (tA) that
contain λ. A projection tA is called problematic if it
participates in a problematic pair (λ, tA).

Example 1. Consider Fig. 1a and projection a1 of A. We have
ST (a1) = {t1}, n@ST (b2, a1) = 1 and PT (b2, a1) =
1. Thus, if Pbr = 0.5, pair (b2, a1) is problematic and
its number of problems is n@ST (b2, a1) = 1. Similarly,

(λ, tA) n@ST (λ, tA) |ST (tA)| PT (λ, tA)

(b2, a1) 1 1 1
(b3, a1) 1 1 1

(a1, b2 → b3) 1 2 0.5
(b1, a2 → a3) 2 3 0.66
(b2, a2 → a3) 1 3 0.33
(a2, b1 → b2) 1 1 1
(a3, b1 → b2) 1 1 1
(b3, a2 → a3) 1 3 0.33

(a2, b3) 1 1 1
(a3, b3) 1 1 1
(a2, b1) 1 3 0.33
(a3, b1) 3 3 1

(b1, a3 → a1) 2 3 0.66
(a1, b1) 1 3 0.33

(b2, a3 → a1) 1 3 0.33
(a1, b2) 1 1 1
(a3, b2) 1 1 1
(b2, a3) 1 1 1
(b3, a3) 1 1 1

(a3, b2 → b3) 1 2 0.5

Fig. 2: Algorithm THREATID in operation; the problematic
pairs (set Q) are highlighted in gray

pair (b1, a3 → a1) is also problematic since PT (b1, a3 →
a1) = 2/3 = 0.66.

Definition 9. A dataset T is called unsafe, if it has one or
more problematic pairs; otherwise is called safe. The total
number of problems of an unsafe dataset T is the sum of
the number of problems of every problematic pair in T .

Now, we are ready to define the problem under consid-
eration.
Definition 10. Given a dataset T of trajectories, a user

defined probability threshold Pbr and a set of adversaries
A, construct a safe dataset corresponding to T , with
minimum information loss.

We discuss a heuristic function to estimate the information
loss in Section 4 and we present a series of information loss
metrics in Section 9.

2.1 Identifying privacy threats
In this section, we will present Algorithm THREATID that
identifies potential privacy threats. This algorithm takes as
input a dataset T , the identification probability threshold
Pbr and the background knowledge of adversaries, and
returns (a) a list Q holding all problematic pairs (λ, tA)
(where λ is a location and tA is a projection of adversary
A), (b) the total number of problems N in dataset T and (c)
the number of problems n@ST (λ, tA) by every problematic
pair (λ, tA).

After initializations, THREATID computes n@ST (λ, tA)
by scanning T once (Lines 2–5). Specifically, for each tuple
t ∈ T , and for each adversary A, such that projection
πA(t) is not empty, n@ST (λ, πA(t)) is increased for each
λ ∈ t \ {πA(t)}. Next (Lines 6–10), the algorithm identifies,
i.e., pairs (λ, tA) for which PT (λ, tA) = n@ST (λ,tA)

ST (tA) > Pbr
(Line 8), inserts them toQ (Line 9) and increases the number
of problems in T by n@ST (λ, tA) (Line 10).
Example 2. Let us execute Algorithm THREATID with input

the dataset T of Fig. 1 and Pbr = 0.5. In Lines 2–5, the
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algorithm first considers trajectory t1 = a1 → b2 → b3.
For t1, adversary A knows projection a1, thus, locations
b2 and b3 are the locations in t1 that do not belong to LA,
so n@ST (b2, a1) and n@ST (b3, a1) become 1. Similarly,
for t1, adversary B knows projection b2 → b3, thus,
location a1 does not belong toLB , so n@ST (a1, b2 → b3)
becomes 1. Following, THREATID scans the remaining
trajectories and updates n@ST for all locations and ad-
versary projections; the results are illustrated in column
n@ST (λ, tA) of Fig. 2. Following, Lines 6–10 consider
all pairs in turn to identify the problematic ones. For the
first pair (b2, a1) we have

PT (b2, a1) =
n@ST (b2, a1)

|ST (a1)|
=

1

1
= 1 > 0.5 = Pbr

so, (b2, a1) is problematic (see also Example 1). Thus,
it is inserted into Q and the total number of problems
is increased by 1 (= n@ST (b2, a1)). Similarly all other
pairs are checked. In Fig. 2, the problematic pairs (set Q)
are highlighted in gray. The total number of problems N
is 17; this may be verified by summing up n@ST values
of all problematic (in gray) pairs.

2.2 Eliminating privacy threats

The main idea behind our anonymizing algorithms is to
transform long and detailed projections to smaller and
simpler ones. In doing so, we are able to (i) increase the
supports of projections and (ii) diversify the locations that
are not monitored by adversaries, making thus impossible
for them to infer with high certainty if a trajectory includes
such a point. More specifically, to make dataset T safe,
we will eliminate problematic pairs (λ, tA) by employing
suppression or splitting. Suppression deletes a location λ ∈ t
from a trajectory t. For instance, trajectory t = l1 → · · · →
κ → λ → µ → · · · → ln after suppressing location λ
becomes t′ = l1 → · · · → κ → µ → · · · → ln. On the other
hand, splitting trajectory t at location λ, results in trajectories
t′ = l1 → · · · → λ and t′′ = µ → · · · → ln. In both cases,
before applying a change, we take under consideration the
privacy gain and the information loss..

When we suppress a location λ or split at a location λ
term n@ST (λ, tA) is affected directly while term ST (tA)
indirectly. In our setting, each location has two conflicting
roles. It can either act as a quasi identifier or as a sensitive item
for each adversary. Thus, suppressing a location or splitting
a trajectory at a location may eliminate some but may also
create some other privacy threats. The latter may happen if
the suppression or the splitting operations reissues a previ-
ously eliminated threat. For example, assume that a1 → b1 is
the unique trajectory that violated the Pbr and the algorithm
has already suppressed a1. If, at a latter stage, it examines
a1 → a2 → b1 the algorithm can re-create it by suppressing
a2, if it is not checked.

2.3 Limitations

The proposed approach tackles the threats posed by adver-
saries who own a large portion of the published dataset, but
at the same time they are known to the publisher. This is a
practical scenario, but it also has limitations.

Ad-hoc adversaries and colluding adversaries. We assume
that the background knowledge of the adversaries is known
to the publisher. However, in some cases an adversary can
hold an arbitrary subset of each trajectory. For example, a
person physically followed by an adversary A can reveal
to A a part of her trajectory, regardless the ownership of the
PoS services the person uses. The proposed method does not
protect against such ad-hoc adversaries. Similarly, the pro-
posed method does not provide a privacy guarantee against
colluding adversaries since it does not take into account
their combined background knowledge. In order to apply
our approach in the case of such collusions, the publisher
should treat each disjoint group of colluding adversaries as
a single adversary by merging all their data. Moreover, in
the motivating setting, where card companies are data pub-
lishers and adversaries are commercial companies, collusion
requires sharing of companies’ customer data, which is not
a common practice.

Timestamps and continuity. In this paper, we assume that
timestamp information is removed from the trajectories and
only sequences of locations are published. The proposed
approach uses suppression and splitting as its main data
transformation operators. Both operators are not suitable for
trajectories of timestamped locations, since it is high likely
that each timestamp will be unique and the algorithm will
have to suppress it. If we use some simple generalization
based preprocessing, i.e., we transform timestamps to time-
slots, e.g., 22:23:45 will be reported as 22:00-0:00 timeslot,
then each transaction can be treated efficiently by our al-
gorithms as a spatiotemporal point in the trajectory. This
is exactly the way we have treated the data from Gowalla
network in Section 9. For example point a1 might indicate
a transaction at location a in timeslot 1 and point a2 a
transaction again in location a, but at timeslot 2.

The above modeling of timestamps, together with the
model of predefined locations (which is natural for transac-
tion points) does not lead to trajectories, which are continu-
ous routes, but to semantic trajectories, which are sequences
of discrete points. This model offers protection against min-
imality attacks by adversaries who could observe gaps due
to suppression of points. While for continuous trajectories
(e.g., trajectories created by GPS tracing) suppressing cer-
tain points, would still allow for accurate assumptions by
adversaries due to the continuity of measurements, this is
impractical for trajectories that are created based on arbi-
trary user actions, e.g., card transactions. In the latter case,
any gap or discontinuity can be attributed to user behavior.

Splitting of long trajectories. Splitting is a novel data
transformation operator. Record partitioning strategies have
only rarely been employed in data anonymization literature,
so there is not a large related literature to assess their impact
on large records and large frequent patterns. In our setting,
splitting helps the anonymization algorithm to better pre-
serve the original data, as we experimentally demonstrate in
Section 9. Still, it can cause the omission of long trajectories
in the anonymized data. This effect cannot be denied in
theory, but in practice, splitting helps preserve more fre-
quent patterns than algorithms relying only on suppression.
This happens because long trajectories are often rarer and
they allow the identification of a person. In such cases, the
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the anonymization algorithm has to eliminate the trajectory,
independently of the data transforation operator that will be
employed. If only suppression is available, then a large part
of long trajectories is completely suppressed, whereas split-
ting allows to preserve parts of them unaffected. Moreover,
large patterns are often a lot smaller than long trajectories
in a given dataset, e.g., if we have trajectories with an
average of 10 points a large pattern could have 5-6 points
in practice. In these cases, splitting does not necessarily
destroy the large patterns of a trajectory, since they are
preserved in one of the sub-trajectories that are created. This
is experimentally supported by the superior preservation of
frequent sub-trajectories, as shown in Fig. 8.

3 RELATED WORK

There are numerous works on data anonymization and
many of them focused on the anonymization of location
data [?]. In the following, we survey the recent development
in the field and position our work against them.

Clustering and perturbation. Several methods exist, using
clustering and perturbation, which are applied to time-
stamped trajectories. Never Walk Alone (NWA) [?] creates
cylindrical volumes of radius δ, each one holding at least k
trajectories, enforcing (k, δ)-anonymity. Each cylinder forms
an anonymity group having indistinguishable trajectories.
Domingo-Ferrer et al. [?], [?] showed that (k, δ)-anonymity
does not effectively hide the original trajectory and pro-
posed the SwapLocations algorithm to address this problem.
SwapLocations use microaggregation to group trajectories to-
gether, and it then permutes the locations inside each cluster
to guarantee anonymity. Kopanaki et al. [?], extend the work
of [?] with personalized privacy parameters and with a
technique that partitions trajectories to sub-trajectories. This
partition, unlike our approach, is done as a preprocessing
step and not as part of the main anonymization operator.
Nergiz et al. [?], group and then reconstruct trajectories
in order to protect from identity disclosure. The algorithm
creates a group of size at least k, by matching locations
inside each trajectory. For each anonymity group (i.e., a
bounding box) a set of fake trajectories is reconstructed, that
approximately preserves the distribution and covariance of
the original group. Finally, Lin et al. [?] assume that the
road-network data are apriori known to the data publishers,
and appropriately cluster them to guarantee k-anonymity.

Location generalization and suppression. Yarovoy et al. [?]
assume that for each user there is a different set of POIs
that can be used as quasi identifiers. Thus, each trajectory
is protected differently, using generalization in order to for-
mulate non-disjoint anonymity groups. Poulis et al. [?], [?]
propose methods that protect both from identity disclosure
and attribute linkage, satisfying either the km-anonymity or
the `m-anonymity principle [?]. Monreale et al. [?] presented
the c-safety model, which is based on the notion of l-
diversity. c-safety upper-bounds the probability of linking
sensitive locations to trajectories by c. The proposed al-
gorithm generalize POIs using a predefined locations tax-
onomy. If generalization cannot enforce c-safety, locations
suppression is used. Cicek et al. [?] presents a similar notion,
coined p-confidentiality, that limits the probability that a

user has visited a sensitive location in a trajectory. The
proposed method anonymizes the map first, by grouping
sensitive points to generalized points. Chen et al. [?] focus
on attribute linkage and proposed (K,C)L-privacy: if an
adversary knows up to L locations of a user’s trajectory, a
user is indistinguishable from at least K−1 users, while the
probability of linking a user to its sensitive values is at most
C .

Differential privacy. Methods based on differential privacy
[?] release synthetic datasets, holding most attributes of the
original datasets. These datasets are effective at supporting
specific data analytic tasks, such as count query answering
[?], [?], sequential event publishing [?] and frequent pattern
mining [?]. Chen et al. [?] proposed a method that uses a
context-free, taxonomy tree, to identify the set of counting
queries that should be supported by the noisy summary.
Bonomi et al. [?] use a prefix-tree to identify which loca-
tion patterns will be used in the construction of the data
summary. Andrés et al. [?] propose the notion of Geo-
indistinguishability, a special case of differential privacy,
to protect the exact location of a user in a location-based
system. Their aim is not to completely avoid the inference
of a user’ location, but to limit the increase of the adversary’s
knowledge due to the observation. A significant difference
from our approach is that it focuses on user’s exact location
and not on user trajectories. Jiang et al. [?] use differential
privacy in the publication of trajectories, but they focus
on trajectories in terms of exact coordinates, and not on
semantic trajectories as we do. In [?] a technique based
on differential privacy is proposed for publishing statistics
from infinite location streams. Unlike our work, the focus
is on publishing location counts. In a different approach,
He et al. [?] create synthetic trajectories from a database
of real trajectories, that share similar aggregate properties,
while preserving the privacy of the users using differential
privacy guaranties. Zhang et al. [?], investigate the utility
of location data that have been anonymized with differently
private methods, with respect to location recommendations.
The work that lies closer to our is NGRAMS [?], that proposes
an anonymization method based on differential privacy
for sequential databases. NGRAMS extracts and publishes
variable-length N -grams from the dataset, which in our
context are variable length subtrajectories. NGRAMS allows
the generation of a synthetic anonymous database, that en-
able a wide range of data analytics. In Section 9 empirically
compare our method and NGRAMS [?].

4 A GLOBAL SUPPRESSION ALGORITHM

We propose Algorithm GSUP, a greedy algorithm that iter-
atively suppresses locations, until the privacy constraint is
met. The algorithm simulates the attack from any possible
adversary, and then tackles the identified privacy breaches.
GSUP first extracts the projected database T A of each adver-
sary A ∈A (Line 1) and identifies the projections that lead
to a privacy breach, by scanning T once, using Algorithm
THREATID (Line 2). Then, GSUP runs a loop (Lines 3–
11); while privacy breach problems have been identified, it
attempts to unify a pair of projections (tAR, t

A
r ) of the same

adversary A, at least one of which is problematic.
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Algorithm: GSUP
Input: A dataset T , probability threshold Pbr , locations of the

background knowledge of each adversary in A
Output: An anonymous version of T
Local variable: Array Ugain ; Ugain(tAR, t

A
r ) holds the cost for unifying

projections tAR and tAr of the same adversary A.

1 Construct projection T A for each adversary A∈A
2 (Q, N,n@ST ) =THREATID(T , Pbr)
3 while N > 0 do
4 for every A∈A and every tAR, t

A
r ∈T

A such that tAr 6= tAR do
5 if tAR or tAr is problematic and tAr < tAR then
6 Calculate Ugain(tAR, t

A
r ) for unifying tAR with tAr

7 Let mtAR and mtAr be the projections with the maximum
Ugain(tAR, t

A
r )

8 for every t∈ST (mtAR) do // trajectories supporting tAR
9 Suppress all λ∈ t, λ∈mtAR , λ /∈mtAr

10 Remove mtAR from T A
11 (Q, N,n@ST ) =THREATID(T , Pbr)

12 return T

Two projections tAr and tAR can be unified only if one is
a subtrajectory tAr < tAR of the other (we use tAR to denote
the longer and tAr to denote the shorter). For example, tAR =
a3 → a1 (see tA5 , tA6 and tA7 in Fig. 1b) can be unified with
tAr = a1 (see tA1 ). Technically, the unification results in the
suppression of the points (e.g., a3) in the longer projection
(e.g., a3 → a1) that are not contained in the shorter one (e.g.,
a1) in all trajectories that support the former (e.g., t5, t6 and
t7). The unification is done in a way such that the resulting
projection (e.g., a1) does not violate the privacy of the data.
In other words, if tAR is a problematic projection, then either
tAR is not supported in the transformed database T ′ resulting
from this unification, or PT ′(λ, tAR) ≤ Pbr for all λ /∈LA. In
the example of Fig. 1, after the unification of a3 → a1 with
a1, trajectories t5, t6 and t7 become t′5 = t′6 = a1 → b1 and
t′7 = b2 → a1 and the problems of both a3 → a1 and a1 are
resolved; a3 → a1 is no longer supported in T ′ and a1 does
not map to any B-location with probability higher than 50%
(see also Fig. 3b).

A unification between projections of the same adversary
may also solve problems that other adversaries have. From
the point of view of another adversary B, the appearances
of points that do not belong to the unified projection are
reduced. Subsequently, the confidence of B that a trajectory
includes any of these points is also reduced. For example,
when unifying a3 → a1 with a3 in Fig. 1, a3 is removed from
t5 to t7, and at the same time, a3 appears fewer times in the
trajectories where projection b1 of adversary B is mapped
to. To this end, we re-assess (Line 11) the existing problems
after performing the unification and, while there are more
breaches, we repeat the unification process.

Since it is likely that more than one projections are
problematic, at each loop we choose the one, which is
speculated to be the most beneficiary. Algorithm GSUP uses
an array Ugain , where each element Ugain(tAR, t

A
r ) holds the

benefit resulting from the unification of two projections tAR
and tAr of the same adversary A. To measure Ugain(tAR, t

A
r ),

we consider two factors: (a) the anonymity gain and (b) the
information loss.

Anonymity gain. Let N (respectively, N ′) be the total num-
ber of problems in the dataset before (respectively, after) the
unification of tAR and tAr . The anonymity gain is expressed
as the ratio N−N ′

N . The maximum value of the ratio is 1 and,

naturally, a greater ratio denotes a larger anonymity gain.

Heuristic for information loss.
The unification of tAR and tAr resolves some anonymity

problems, but induces information loss. To compare dif-
ferent solutions we estimate different losses by using the
ploss heuristic function. ploss quantifies the number of
locations pairs in a trajectory that are removed due to
unification. Specifically, if t is the original trajectory and
t′ is the trajectory that result in after the unification, ploss
is defined as ploss(t, t′) = 1 − p(t′)/p(t), where p is the
function that counts the pairs of locations of a trajectory.
Since p(t) = |t| · (|t| − 1)/2, we equivalently have

ploss(t, t′) = 1− |t
′|(|t′| − 1)

|t|(|t| − 1)
. (2)

For instance in the example of Fig. 3, the unification of
a3 → a1 with a1 turns trajectory t5 = a3 → a1 → b1
to t′5 = a1 → b1 (see also Figs. 3a and 3b) resulting a
pairs lost of ploss(t5, t

′
5) = 1 − 2·1

3·2 = 0.66. It is clear that
lower ploss values indicate lower information loss. Several
works in related literature use variations of the trajectory
distortion metric [?], [?], [?], [?], which sums the point-wise
distances between the original and anonymized trajectories
[?]. Others, like [?] use as a heuristic the result of mining
for maximal frequent patterns, but their heuristic is not
invoked frequently. We opted for ploss instead because: (a) it
is computationally cheap (slightly cheaper than distortion),
(b) it is meaningful for measuring information loss caused
both by suppression and splitting and (c) experimentation
showed that it provides superior results for GSUP, than
trajectory distortion. It should be noted, that the basic re-
quirements for a heuristic is to distinguish between a good
and a bad solution and to be computationally cheap, since it
is frequently used in the anonymization algorithm. The de-
tailed evaluation of the quality of the anonymization output
can be performed with more detailed and computationally
expensive metrics (as it is done in Section 9 ).

Overall gain. To compute the overall benefit Ugain(tAR, t
A
r )

of unifying tAR with tAr , we consider the trajectories that are
affected by the unification and combine the anonymity gain
and the information loss using the following formula:

Ugain(tAR, t
A
r ) =

N−N ′

N
· 1∑

t∈S ploss(t, t′)
(3)

where (a) N and N ′ is the total number of problems in
the dataset before and after the unification, respectively, (b)
S ⊆ T is the set of affected trajectories by the unification
of tAR and tAr , (c) t′ is the trajectory corresponding to t after
the unification and (d) ploss(t, t′) is information loss metric
of Equation 2. Note that the gain is maximized when the
anonymity gain (i.e., N−N

′

N ) is maximized and the informa-
tion loss metric (i.e.,

∑
t∈S ploss(t, t′)) is minimized.

To facilitate the efficient execution of our algorithm, we
keep explicit links from each trajectory to the supported
projections and vice-versa. The following theorem ensures
that the algorithm terminates to a safe publication of T .

Theorem 1. Algorithm GSUP derives a safe counterpart of a
dataset T .
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id trajectory
t1 a1 → b2 → b3
t2 b1 → a2 → b2 → a3
t3 a2 → b3 → a3
t4 a2 → a3 → b1
t5 a3 → a1 → b1
t6 a3 → a1 → b1
t7 a3 → b2 → a1
t8 a3 → b2 → b3

(a) Original dataset T

id trajectory
t′1 a1 → b2 → b3
t′2 b1 → a2 → b2 → a3
t′3 a2 → b3 → a3
t′4 a2 → a3 → b1
t′5 a1 → b1
t′6 a1 → b1
t′7 b2 → a1
t′8 a3 → b2 → b3

(b) Unifying a3 → a1 with a1

id trajectory
t′1 a1 → b2 → b3
t′2 b1 → a3
t′3 a3
t′4 a3 → b1
t′5 a1 → b1
t′6 a1 → b1
t′7 a1
t′8 a3 → b2 → b3

(c) GSUP(T )

t loc gain

t1 b2 0.71
t2 b1 0.94
t3 b3 0.35
t4 a2 0.71
t5 a3 0.71
t6 a3 0.71
t7 b2 0.71
t8 a3 0.35

(d) LocMaxGain(t)
= (loc, gain)

id trajectory
t′1 b2 → b3
t′2 a2 → a3
t′3 a2 → a3
t′4 a2 → a3
t′5 a3 → a1
t′6 a3 → a1
t′7 a3 → a1
t′8 b2 → b3

(e) LSUP(T )

Fig. 3: Algorithms GSUP (a-c) and LSUP (d-e) in operation

Proof. First, Algorithm GSUP correctly identifies the pri-
vacy breaches, using THREATID. Each time a unification
is performed between two trajectories tAR and tAr , where
tAr < tAR, the breach for at least one of them is resolved.
On the other hand, there is no way that after a unification,
some P (λ, tA, T ′) will become higher than Pbr since points
are only removed from trajectories and a unification that
would result in a breach is never committed. The removal
of points of an adversary A, may only cause the reduction
of the numerator in Equation 1 for any other adversary
B, thus the Pbr of any adversary B can only be reduced
when removing points from an adversary A. In addition,
a unification of a projection with the empty projection is
possible (if it is unavoidable), so the algorithm will always
terminate to a safe publication.

A subtle thing to note is that after the unification of tAR
with tAr , since tAR is no longer supported in the result, the
adversary A can infer that tAR is unified with tAr . However,
this does not allow inferring anything more specific that
violates the privacy guaranty. Since tAr will not have any
privacy problem, i.e., no point λ /∈ LA violates Pbr for
projection tAr , then nothing additional can be inferred for
tAR, which is supported by the same trajectory set ST (tAr ),
after the unification.

Let us now exemplify Algorithm GSUP with input the
dataset T of Fig. 1a and the identification probability thresh-
old Pbr = 0.5 (similarly to Example 2). The process is
summarized in Fig. 3; for illustration purposes T is also
presented in Fig. 3a. Initially, the algorithm constructs the
projection of adversaries A and B (the projection of A is
illustrated in Fig. 1b). Then, GSUP (Line 2) uses THREATID
to get the list of problematic pairs Q (highlighted in gray
in Fig. 2), the total number of problems N = 17 of the
dataset and the number of problems n@ST (λ, tA) of every
problematic pair (λ, tA) (also shown in Fig. 2). Next, the
algorithm iterates over all possible unifications to identify
that unifying a3 → a1 with a1 results in the greatest gain
(Lines 4–6) and applies this unification (Lines 7–9). This
unification results in the suppression of a3 from trajectories
t5, t6 and t7 (illustrated in gray in Fig. 3a). The result

after the unification is illustrated in Fig. 3b. In a similar
manner, GSUP, unifies a2 → a3 with a3 which results in the
suppression of a2 in trajectories t2, t3 and t4 (illustrated in
gray in Fig. 3b). Following, the algorithm unifies (a) b1 → b2
with b1, (b) b3 with ∅ and (c) b2 with ∅ in turn to produce the
anonymized dataset (depicted in Fig. 3c).

Multiple unifications per loop. In order to improve the effi-
ciency of Algorithm GSUP, we perform multiple unifications
at each while loop (Lines 3–11). At each loop, we select the
top-s independent unifications, in terms of gain, that resolve
problems and apply them simultaneously. Intuitively, this
will decrease the cost of the algorithm proportionally. On
the other hand, some of these unifications could be avoided
if they were performed one at a time, since a unification re-
lated to an adversary A, also affects problematic projections
of all other adversaries B, where A 6= B.

4.1 Computing Ugain
The computation of Ugain is crucial in Algorithm GSUP
since, in every while iteration (Lines 3–11), it is calculated
for every adversary and every problematic pair (Line 6).
According to Equation 3, computing Ugain(tAR, t

A
r ) requires

to compute
∑
t∈ST

diff (t, t′), N and N ′. Computing the
sum is reduced to simple arithmetic operations and can
be performed efficiently. To compute N and N ′ we may
use Algorithm THREATID twice, with input the dataset
before and after the unification respectively. However, since
the unification of two projections tAR and tAr , affects the
problems that pertain to the trajectories that support tAR and
tAr (which are in general a fraction of the dataset), we device
a more efficient computation which:
• subtracts from the total number of problems the number

of problems of all pairs (λ, tAR), as projection tAR is no
longer supported.
• recalculates the problems of all pairs (λ, tAr ). These pairs

are affected, as trajectories supporting projection tAR now
support projection tAr .
• recalculates all pairs (λ, tB), where λ is every location

suppressed from the unification of between tAR and tAr .
This computation drastically improves efficiency, as it con-
siders only the affected trajectories, and users the initial cal-
culation of Algorithm THREATID for unaffected trajectories.

5 A LOCAL SUPPRESSION ALGORITHM

Algorithm GSUP (Section 4) uses global suppression to unify
two projections tAR and tAr . Every location that needs to be
suppressed for this unification is globally suppressed, i.e.,
all its appearances are removed. To further reduce informa-
tion loss, we propose a local suppression approach, which
suppresses a location λ from a single trajectory t at a time.

Any location λ may act at the same time as a sensitive
location for an adversary A and as a quasi identifier for
some other adversary (Section 2.2). Thus, suppressing a lo-
cation λ from a single trajectory t (unlike global suppression
of a location), does not guarantee a reduction in the privacy
threats. To evaluate the effect of suppressing location λ in
trajectory t of a dataset T , we introduce the suppression effect
gain, denoted by Pgain(λ, t) that is defined as:

Pgain(λ, t) =
N −N ′

N
· 1

ploss(t, t′)
, (4)
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Algorithm: LSUP
Input: A dataset T , probability threshold Pbr , locations of the

background knowledge of each adversary in A
Output: An anonymous version of T
Local variables: Set Π holds trajectories t ∈ T that have problematic pairs

Array LocMaxGain ; for every trajectory t,
LocMaxGain(t) = (loc, gain) holds the location loc
of t that when removed from t gives the maximum gain

1 (Q, N,n@ST )=THREATID(T , Pbr)
2 while N > 0 do // There are still problems
3 Π = ∅, LocMaxGain = ()
4 Insert into Π every trajectory t ∈ T that has problematic pairs
5 for every t ∈ Π do
6 for every λ ∈ t do
7 Calculate Pgain(λ, t) for suppressing location λ from

trajectory t

8 Let λ′ be the location such that Pgain(λ′, t) is maximum
9 LocMaxGain(t) = (λ′,Pgain(λ′, t))

10 Let tm be the trajectory where LocMaxGain(tm)=(locm, gainm)
stores the maximum gainm

11 if gainm ≤ 0 then return GSUP(T , Pbr)
12 Suppress location locm from trajectory tm in T
13 (Q, N,n@ST )=THREATID(T , Pbr) // Reassess dataset T

14 return T

where N and N ′ are the total number of problems before
and after the suppression of location λ, respectively, and
ploss(t, t′) is the pairs lost metric (Equation 2). Negative val-
ues of Pgain denote that suppressions increase anonymity
threats. In general, greater values of Pgain indicate better
suppression choices. More specifically, for a given trajectory
t (where N is fixed), Pgain(λ, t) is maximized for the lo-
cation λ, which when suppressed from t, solves the larger
number of problems, i.e., when N ′ is minimized. When we
compare different trajectories, Pgain(λ, t) takes into account
the number of initial problems N and the pairs lost metric
ploss , promoting trajectories t having high N and low ploss .
Promoting low ploss values is a natural choice; we also
promote trajectories with many problems N since they are
more likely to change in order to fulfill the anonymity
guaranty than trajectories with fewer problems.

Our local anonymization method, illustrated in Algo-
rithm LSUP, takes as input an unsafe dataset T and itera-
tively removes a location until dataset T becomes safe. LSUP
algorithm uses set Π storing trajectories with problematic
pairs. The algorithm also uses array LocMaxGain that, for
every trajectory t, stores at LocMaxGain(t) a pair (loc, gain)
where gain is the maximum suppression effect gain for
trajectory t, and loc the location corresponding to that gain.

Initially, LSUP calls THREATID to compute the list of
problematic pairs Q, the total numbers of problems N and
array n@ST . If problems exist in T (i.e., N > 0), Line
4 stores in set Π the trajectories with problematic pairs
(trajectories with no problematic pairs are considered safe
and are excluded). Then, LSUP scans all trajectories t ∈ Π,
to compute array LocMaxGain that stores the maximum
gain and the corresponding location (Lines 5–9). Specifically,
for every location λ of trajectory t, LSUP computes the gain
Pgain(λ, t) of suppressing λ in t (Line 7). The maximum gain
and the corresponding location of each trajectory t is stored
at LocMaxGain(t) (Lines 8–9). Following, the algorithm
finds the trajectory tm for which the corresponding pair
LocMaxGain(tm) = (locm, gainm) has maximum gainm
(Line 10). If there are no possible suppressions decreasing
the total number of problems, i.e., gainm ≤ 0 (Line 11),
LSUP calls Algorithm GSUP to fix the remaining problematic

pairs and produce the anomymized dataset. As shown in
Section 4 and Theorem 1, GSUP always provides a safe
counterpart of a dataset. If gainm > 0 (Line 12), Algorithm
LSUP suppresses the location locm from tm. Additionally, it
recalls THREATID to reassess the number of problems and
update list Q (Line 13). LSUP repeats the above process
(Lines 2–13) until all problems are resolved and returns a
safe dataset T .

Let us execute Algorithm LSUP having as input dataset
T of Fig. 1a and identification probability threshold Pbr =
0.5 (similarly the previous examples). The process is sum-
marized in Figs. 3d–3e; for illustration purposes T is also
presented in Fig. 3a. Initially, Algorithm LSUP (Line 1) uses
THREATID to get the list of problematic pairsQ (highlighted
in gray in Fig. 2), the total number of problems N = 17
of the dataset and the number of problems n@ST (λ, tA)
of every problematic pair (λ, tA) (also shown in Fig. 2).
Following, the algorithm (Line 4) inserts to Π all trajec-
tories of T (since all have problematic pairs). Next, LSUP
evaluates the first trajectory t1 = a1 → b2 → b3 and
computes Pgain(a1, t1) = 17−15

17
1

0.33 = 0.35, Pgain(b2, t1) =
17−13

17
1

0.33 = 0.71 and Pgain(b3, t1) = 17−13
17

1
0.33 = 0.71.

Thus, the algorithm sets LocMaxGain(t1) = (b2, 0.71). In a
similar manner, Algorithm LSUP calculates LocMaxGain(t)
for the remaining trajectories in Π (the final result is de-
picted in Fig. 3d) and Algorithm LSUP (Line 12) suppresses
from trajectory t2 location b1 having maximum information
gain (Fig. 3). Algorithm LSUP proceeds in a similar manner
to produce the anonymized result of Fig. 3e.

Multiple suppressions per loop. In order to improve the
efficiency of Algorithm LSUP, we perform multiple sup-
pressions at each loop of Lines 2–13. Specifically, we select
the top-s trajectories, in terms of gain, and provided that
the gain is greater than 0, we simultaneously suppress the
corresponding locations. If none such trajectory exists, we
revert to Algorithm GSUP.

Computing Pgain . We calculate Pgain without revisiting the
data, as we did for Ugain in Section 4.1. This computation
considers the suppression of location λ from trajectory t
(resulting in trajectory t′) and calculates:
• the effect of suppression for adversary A controlling

location λ. Suppressing λ from t reduces the support of
πA(t) by 1 (πA(t) is no longer supported by t). On the
other hand, the support of πA(t′) is increased by 1. Thus,
we only recalculate problems for the pairs of projections
πA(t) and πA(t′).
• the effect for every other adversary B. As suppressing

location λ from t only affects pair (λ, πB(t)), our com-
putation simply recalculates the number of problems for
this affected pair.

6 A SPLITTING ALGORITHM

In Sections 4 and 5 we have described two anonymization
methods that are based on suppression of locations. Al-
though these transformations produce safe datasets, they
need to suppress an increasingly large percentage of the
dataset’s locations, as the trajectories grow in size. With
this problem in mind, we developed a third method that
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id trajectory
t1 a1 → b2 → b3
t2 b1 → a2 → b2 → a3
t3 a2 → b3 → a3
t4 a2 → a3 → b1
t5 a3 → a1 → b1
t6 a3 → a1 → b1
t7 a3 → b2 → a1
t8 a3 → b2 → b3

(a) Original dataset T

id trajectory id trajectory
t′1 a1 t′′4 b1
t′′1 b2 → b3 t′5 a3 → a1
t′2 b1 t′′5 b1
t′′2 a2 t′6 a3 → a1
t′′′2 b2 t′′6 b1
t′′′′2 a3 t′7 a3
t′3 a2 t′′7 b2
t′′3 b3 t′′′7 a1
t′′′3 a3 t′8 a3
t′4 a2 → a3 t′′8 b2 → b3

(b) Naive split of T

Fig. 4: Splitting

keeps the distributions and the number of locations intact,
by employing trajectory splitting.

A naive approach would split trajectories in a way
that every trajectory contains only locations of the same
adversary. For instance, for the original dataset of Fig. 4a
the naive method would have resulted in the dataset of
Fig. 4b. Although this dataset is safe, it does not withstand
the whereabouts of users. Instead, we propose a method
that measures the effects of each trajectory split and selects
splits that solve anonymity problems and, at the same time,
minimize trajectory changes.

Initially, to evaluate the effect of splitting a trajectory t at
location λ of a dataset T with respect to the anonymity gain,
we introduce the splitting effect gain (Sgain(λ, t)) defined as:

Sgain(λ, t) =
N −N ′

N
, (5)

where N and N ′ are the total number of problems before
and after splitting trajectory t at location λ. Naturally,
greater values of Sgain indicate better splitting choices
and negative values denote that the splittings increase
anonymity threats.

Similarly to suppression, spiting also affects the co-
appearances of distinct locations in the same trajectory.
To measure this distortion, we extend the ploss(t, t′)
metric (Equation 2) as follows. If a trajectory t is split
into trajectories t′ and t′′, we define ploss(t, t′, t′′)=1 −
(p(t′)+p(t′′))/p(t) where p(t) is the a function that counts
the pairs of locations in a trajectory. Equivalently, we have:

ploss(t, t′, t′′) = 1−|t
′|(|t′|−1)+|t′′|(|t′′|−1)

|t|(|t| − 1)
. (6)

For instance, splitting trajectory t1 = a1 → a2 → b2 at
location a2 results in two trajectories t′1 = a1 → a2 and t′′1 =
b2 and a pairs lost metric of ploss(a2, t1) = 3−1−0

3 = 0.66.
Our splitting method, illustrated in Algorithm SPLIT,

takes as input an unsafe dataset T , and iteratively splits
trajectories until dataset T is safe. SPLIT uses set Π that
holds the trajectories that have problematic pairs. It also
uses array SplitMaxGain that, for every trajectory t, stores
at SplitMaxGain(t) a pair (loc, gain) where gain is the
maximum splitting effect gain Sgain for trajectory t, and loc
the location corresponding to that gain. Also SPLIT takes as
input a parameter s which use will be clarified shortly.

Initially, SPLIT calls THREATID to compute the list of
problematic pairs Q, the total numbers of problems N and
array n@ST . If there are problems in T (i.e., N > 0), Line
3 stores in Π the trajectories with problematic pairs. Then,
Algorithm SPLIT scans all trajectories t ∈ Π, to compute

Algorithm: SPLIT
Input: A dataset T , probability threshold Pbr , locations of the

background knowledge of each adversary in A
Output: An anonymous version of T
Local variables: Set Π holds trajectories t ∈ T that have problematic pairs

Array SplitMaxGain ; for every trajectory t,
SplitMaxGain(t)=(loc, gain) holds the location loc
of t that when t is split at loc gives the maximum gain

Parameter: Number s

1 (Q, N,n@ST )=THREATID(T , Pbr)
2 while N > 0 do // There are still problems
3 Π = ∅, SplitMaxGain = ()
4 Insert into Π every trajectory t ∈ T , |t| ≥ 2 that has problematic

pairs
5 for every t ∈ Π do
6 for every λ ∈ t do
7 Calculate Sgain(λ, t) for splitting trajectory t at location λ

8 Let λ′ be the location such that Sgain(λ′, t) is maximum
9 SplitMaxGain(t) = (λ′,Sgain(λ′, t))

10 Let ti, 1 ≤ i ≤ s, be s trajectories where SplitMaxGain(ti) =
(loci, gaini) stores the top-s values for gaini

11 if all the above trajectories have gaini < 0, 1 ≤ i ≤ s then return
GSUP(T , Pbr)

12 Let tm, 1 ≤ m ≤ s, with SplitMaxGain(tm)=(locm, gainm) be
the trajectory such that (a) gainm > 0 and (b) when tm is split at
locm results in the minimum pair loss

13 Split trajectory tm at location locm in T
14 (Q, N,n@ST )=THREATID(T , Pbr) // Reassess dataset T

15 return T

array LocMaxGain that stores the maximum gain and the
corresponding location (Lines 5–9). Specifically, for every
location λ of trajectory t, LSUP computes the gain Sgain(λ, t)
of suppressing λ in t (Line 7). The maximum gain and
the corresponding location of each trajectory t is stored
at SplitMaxGain(t) (Lines 8–9). Following, the algorithm
finds s trajectories (where s is the user’s parameter) that
their corresponding SplitMaxGain(ti) = (loci, gaini) pairs
have the top-s values for gaini (Line 10). If none of these
top-s values is positive, SPLIT reverts to GSUP (Line 11)
since splitting cannot improve the anonymity of dataset T .
Otherwise, SPLIT chooses the trajectory tm, 1 ≤ m ≤ s,
with SplitMaxGain(tm) = (locm, gainm) satisfying that (a)
gainm > 0 and (b) when tm is split at locm results in the
minimum pair loss (Line 12). Following, the algorithm splits
tm at locm (Line 13) and recomputes Q, N and n@ST (Line
14). SPLIT repeats the above process (Lines 2–14) until all
problems are resolved and returns a safe dataset T (Line
15).

For example, let us execute Algorithm SPLIT with input
the dataset T of Fig. 1a, the identification probability thresh-
old Pbr = 0.5 (similarly to the previous examples), and
s = 2. The process is summarized in Fig. 5; for illustration
purposes T is also presented in Fig. 5a. Initially, SPLIT uses
THREATID to get the problematic pairs Q (highlighted in
gray in Fig. 2), the total number of problems N = 17 and
the number of problems n@ST (λ, tA) of every problematic
pair (λ, tA) (also shown in Fig. 2). Then, the algorithm (Line
4) inserts to Π all trajectories of T (since all have problematic
pairs and their size is greater than 2). Following, SPLIT eval-
uates the first trajectory t1 = a1 → b2 → b3 and computes
Sgain(a1, t1) = 17−15

17 = 0.12 and Sgain(b2, t1) = 17−17
17 = 0.

Thus, the algorithm sets SplitMaxGain(t1) = (a1, 0.12)
(Line 9). In a similar manner, Algorithm SPLIT calculates
SplitMaxGain for the remaining trajectories in Π; the final
result is depicted in Fig. 5b. Next, in Line 10, algorithm
selects trajectories t5 and t6 and calculates their respective
ploss (depicted in Fig. 5b). Since for both cases the pair loss
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id trajectory
t1 a1 → b2 → b3
t2 b1 → a2 → b2 → a3
t3 a2 → b3 → a3
t4 a2 → a3 → b1
t5 a3 → a1 → b1
t6 a3 → a1 → b1
t7 a3 → b2 → a1
t8 a3 → b2 → b3

(a) Original dataset T

ti loci gaini ploss

t1 a1 0.12 -
t2 b1 0.24 -
t3 b3 0.06 -
t4 a2 0.12 -
t5 a3 0.41 0.66
t6 a3 0.41 0.66
t7 b2 0.18 -
t8 a3 0.12 -

(b) SplitMaxGain(t)=(λ, gainm)
and ploss

id trajectory
t′1 a1 → b2 → b3
t′2 b1 → a2 → b2 → a3
t′3 a2 → b3 → a3
t′4 a2 → a3 → b1
t′5 a3
t′′5 a1 → b1
t′6 a3 → a1 → b1
t′7 a3 → b2 → a1
t′8 a3 → b2 → b3

(c) First step of SPLIT

id trajectory id trajectory
t′1 a1 → b2 → b3 t′′4 b1
t′2 b1 t′5 a3
t′′2 a2 → b2 t′′5 a1 → b1
t′′′2 a3 t′6 a3 → a1
t′3 a2 t′′6 b1
t′′3 b3 t′7 a3 → b2 → a1
t′′′3 a3 t′8 a3 → b2 → b3
t′4 a2 → a3

(d) SPLIT(T ): The splitting method

Fig. 5: Algorithm SPLIT in operation (Pbr = 0.5 and s = 2)

is the same Algorithm SPLIT choose one randomly and (Line
13) splits trajectory t5 at location a3 having minimum ploss .
The result is depicted in Fig. 5c. SPLIT proceeds in a similar
manner; the final result is illustrated in Fig. 5d.

Multiple splittings per loop. In order to improve the ef-
ficiency of Algorithm SPLIT, we perform multiple suppres-
sions at each loop of Algorithm SPLIT (Lines 2–14) similarly
to the suppression cases.

Computing Sgain . In a nutshell, splitting trajectory t de-
creases the support of πA(t) by one (trajectories t′ and t′′ do
not support πA(t)) and increases the support of projections
πA(t′) and πA(t′′) by one (projections πA(t′) and πA(t′′) are
supported by trajectories t′ and t′′ respectively). Thus our
computation simply recalculates the problems for all pairs
of projections πA(t), πA(t′) and πA(t′′).

7 A MIXED ALGORITHM

SPLIT has the advantage of publishing the same number of
locations as the original dataset, but in some cases LSUP
solves problems with less information loss. To combine
the advantages of both strategies, we developed Algorithm
MIX, where its main difference to SPLIT algorithm is in
Step 13. In more details, at each iteration MIX finds the
best splitting location λ of a trajectory t as in Step 12 of
SPLIT. Next, it calculates the problems of trajectory t after
suppressing location λ. If the final problems of trajectory t
are resolved with suppression then MIX suppresses location
λ from t, otherwise it splits trajectory t at λ. The intuition
behind this approach, is that splitting a trajectory t to t′

and t′′, decreases the number of total problems, but also
introduces two new trajectories t′ and t′′ which may be
problematic. On the other hand, suppressing λ from t results
in a problems free trajectory.

8 COMPLEXITY ANALYSIS

Let A be the set of adversaries, T A be the subset of the
trajectories in T owned by an adversary A, t be a trajectory
in T A, and N be the number of anonymity problems.

Algorithm THREATID iterates over all locations of all
trajectories of all adversaries. This results in an overall
complexity O(|A| · |T A| · |t|) time. The most expensive
loop of Algorithm GSUP is done in Lines 3–6. In the worst
case, GSUP iterates over all anonymity problems N , over all
adversaries in A and over all pairs of trajectories in T A to
compute Pgain (that requires scanning T A). In total, GSUP

requires O(N · |A| · |T A|3) time. Algorithms LSUP, SPLIT
and MIX in the worst case execute GSUP, thus, they also

have an O(N · |A| · |T A|3) time complexity. Note, that this
is worst case complexity, in practice the algorithms behave
a lot better. As we see in the results for our real-life dataset
Fig. 11, the behavior of all algorithms is almost linear to the
size of D. Moreover, we can regulate the actual performance
of the algorithms by adjusting m (the number of trajectories
that are transformed in each iteration).

9 EXPERIMENTAL EVALUATION

All algorithms were implemented in C++ and tested on
an Intel Core i7 at 2.2 GHz with 6 GB of RAM. We also
compared our methods with the NGRAMS approach from
[?], which is based on differential privacy.

Datasets. We used two datasets: Oldenburg and Gowalla.
Oldenburg was created using Brinkhoff’s data generator [?]
and contains synthetically generated trajectories of objects
moving on Oldenburg’s city map. Oldenburg contains 18,143
trajectories passing from 100 distinct locations and having
average length 4.72. Gowalla contains real user check-in
data from the Gowalla social network [?]. The Gowalla
dataset contains 59,994 trajectories of average length is 7.95,
connecting 513 distinct locations in New York city. Each
trajectory corresponds to the check-ins of a user within
24 hours. The timestamp granule is set to hours; i.e., each
spatiotemporal point of a trajectory corresponds to a check-
in to a certain location at a certain hour, i.e., a location
visited in different hours would create different points and
a location visited k times within the same hour it would
create k duplicate entries of the same point.

9.1 Measuring utility

Estimating the utility of the anomymized dataset is chal-
lenging, since it highly depends on its intended use. Thus to
evaluate our methods, we use different utility metrics that
capture trajectory changes but also measure the impact on
count queries and frequent patterns. The latter two, are the
basis for utility metrics in several related works [?], [?], [?].

Average locations appearance ratio. The first metric mea-
sures the level of suppression performed by each method.
We calculate the change in the number of appearances of
locations in the original and the anonymized dataset. For
every location l, we define the locations appearance ratioR(l),
as the ratio of the appearance of l in the original dataset T
to the appearance of l in the anonymized counterpart T ′.
The values ofR(l) are in [0, 1]; a value of 0 means that l was
completely suppressed in the anonomymized dataset while
a value of 1 means that l was unaffected.
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Fig. 6: Average locations appearance ratio R (higher is better)

Frequent sequential patterns published. We also evaluate
the performance of our methods in sequential pattern min-
ing. We use Prefixspan [?], to obtain the frequent sequential
patterns (i.e., the sequential patterns having support larger
than a threshold) in the original and the anonymous ver-
sions of the dataset. Then, we calculate the percentage of
the frequent sequential patterns of the original dataset that
are preserved in the anonymous counterpart.

AREL. The Average Relative Error (AREL) measure [?]
estimates the average number of trajectories that are
retrieved incorrectly due to anonymization, as part of the
answers to a workload of COUNT queries. Lower AREL
scores indicate that the anonymized data estimate more
accurately the number of co-occurrences of locations. AREL
is used in many anonymity methods [?], [?]. To measure the
AREL, we issue a query workload on the original and the
anonymous datasets. Our query workload selects the 200
most frequent ordered subsequences. Such queries are of
the following form:
SELECT COUNT(*) FROM trajectories t WHERE t
contains locations a, b and in that order.

Pairs lost. Our algorithms use ploss to heuristically measure
the effect of a trajectory change. We calculate ploss on
the dataset level, but taking into account the difference in
the total number of pairs in the original and the anonymized
dataset. Unfortunately, ploss on the dataset level is not that
informative, since it only reflects the sum of all pairs lost in
the anonymization process, independently of their value for
data analysis. Note, for instance, that the removal of a very
frequent pair would not affect the statistical distribution
of the dataset as the removal of a less frequent pair. The
removal of a very rare pair is frequently not important
either, since it does not reveal a trend. To this end, we do not
use ploss as a main evaluation metric, but for completeness,
we report it in Fig. 9a.

9.2 Results
We evaluate our algorithms by varying the following:
• The probability threshold Pbr (default value 50%).
• The number of adversaries |A| (default value 4). We

have examined two models for the adveraries. In the
Oldenburg adversaries are equal; all locations of the
original dataset have been uniformly distributed to the
adversaries. In the case of Gowalla, we partitioned all
locations of the original dataset to adversaries, according
to skewed, zipfian distribution.

• The size of the dataset |D|. We have created smaller
datasets, by taking parts of the original ones, e.g., the
first 5k trajectories, the first 10k trajectories etc.
• The average size of the trajectory |t|. We create datasets

by truncating all trajectories of the original dataset at a
certain point, e.g., we only keep the 7 first points in each
trajectory. With some experimentation we can regulate
accurately the resulting average trajectory size.
• The number of trajectories m that are changed (unified or

split) in each algorithm iteration (default value 10).
We first evaluate our algorithms using the Oldenburg

dataset. Figs. 6a–6d show the average appearance ratio
R for variable number of adversaries, probability breach
threshold, dataset size and average trajectories length, re-
spectively. Algorithm SPLIT, that is based on splitting, has
R(l) = 100% (Fig. 6a) that means that it published the exact
number of locations as in the original dataset. Algorithm
MIX that favors splitting but may also use suppression,
achieves an R that is on average 5.11% lower than SPLIT.
Algorithms GSUP and LSUP, that are exclusively based on
suppression, have lower R. Specifically, LSUP (that is based
on local suppression) publishes on average 39.56 more loca-
tions than GSUP (that is based on global suppression). Both
these algorithms publish on average 53.65% fewer locations
than SPLIT.

Next, we test the AREL scores of our methods (Figs. 7),
varying the number |A| of adversaries (Fig. 7a). AREL is low
for very few adversaries, because there are more projections
per adversary, and thus, our methods have more flexibility
in selecting the most beneficiary problematic pair. As the
number of adversaries increases, AREL scores gradually
increase and then decrease again, since if there are many
adversaries, the chances of finding problematic projections
decrease. Between our methods, MIX has the lowest AREL,
as splitting preserves the number of published locations,
while suppression reduces the number of iterations in or-
der to produce the anonymized dataset. The AREL scores
of MIX are on average 52.34%, 43.64% and 6.18% better
than GSUP, LSUP and SPLIT respectively. We then evaluate
AREL against the identification probability threshold Pbr
(Fig. 7b). As expected, increasing Pbr leads to less prob-
lematic pairs and thus, in better AREL scores. Similarly to
the previous experiment, MIX is slightly better than SPLIT,
but significantly better than GSUP and LSUP. In Fig. 7c we
observe that AREL scores improve for larger datasets. The
reason is that as |D| increases, the initial supports of the
projections increase in size (i.e., the probability that two
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Fig. 9: (a) ploss for varying Pbr(b) Top-2% frequent sequences , (c) AREL and (d) Efficiency (sec·102) for varying m

trajectories have the same projection increases) and, thus,
the number of problematic pairs is reduced. Finally, AREL
scores decrease as the average trajectories length increases
(Fig. 7d), as a dataset comprised of small trajectories has
fewer problematic pairs (i.e., each trajectory holds only a
small combination of locations).

Following in Fig. 8, we evaluate the percent of the pub-
lished frequent sequential patterns. In our experiments, we
set the frequent patterns threshold to 2% that considers
as frequent the sequential patterns that appear at least in
the 2% of trajectories of the original dataset. In Fig. 8a,
we report the percentage of preserved frequent patterns
for various values of |A|. As seen in the previous experi-
ment, more adversaries decrease the probability of finding
problematic pairs, thus, the number of frequent published
subsequences increases. Algorithms SPLIT and MIX have
the best preservation percentage, LSUP follows and GSUP
comes last. Fig. 8b presents the percent of the published
frequent sequential patterns for variable Pbr . Larger values
of Pbr, result in fewer problematic pairs. Thus, all methods
manage to preserve more frequent sequential patterns for

larger Pbr. SPLIT preserved on average 4.45% more frequent
sequential patterns than MIX algorithm and up to 2.3 and
4.34 times more frequent sequential patterns that LSUP and
GSUP respectively. In a similar manner, SPLIT and MIX
outperform the other algorithms for varying dataset sizes
and average trajectories length (Figs. 8c–9d).

Finally, in Fig. 9a we present the algorithms performance
with respect to pair loss (ploss), when we vary Pbr. We
calculated dataset ploss based on the difference in total num-
ber of pairs in the original and the anonymized dataset. LSUP
appears as the algorithm which preserves ploss better, since
ploss penalizes splitting more than suppression. At the same
time, as the previous experiments show, LSUP provides
less accurate answers to count queries and preserves less
frequent itemsets.

Effect of m. Figs. 9b-9d highlight the importance of param-
eter m in the performance of the proposed algorithms. We
see that increasing m up to 100 only decreases utility by
4.5% on average. On the other hand, all methods are at least
100 times faster for m = 100 (Figs. 9d). Thus, we can use
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Fig. 11: (a) Average locations appearance ratio, (b) ARE, and (c) Top frequent sequences published for varying Pbr

large values ofm to significantly improve efficiency, without
compromising utility.

Time performance. Fig. 10a shows the efficiency of our
methods for various numbers of adversaries. As expected,
increasing the number of adversaries, reduces the runtime
of our methods. Also, GSUP is the fastest between our
methods, as it employees global suppression, solving more
problems at each loop. On the other hand, Algorithm LSUP
is slightly faster than SPLIT, as suppression eliminates more
problems than splitting, with a great cost in utility. Finally,
MIX is the slowest of our methods, as it has to evaluate every
location for both splitting and suppression. Lower runtime
cost was achieved for higher values of Pbr (Fig. 10b) as well.
Again, GSUP performs best, being on average 2, 2.1 and 3
times faster that LSUP, GSUP and MIX respectively. Finally,
we evaluate the runtime of our methods for various input
dataset sizes and average trajectory lengths (Figs. 10c-10d).
Increasing the dataset size or the average trajectories length,
results in higher runtime, as our methods has to evaluate
more and larger trajectories. Again, GSUP algorithm is the
fastest algorithm, as the global suppression scheme it entails
favours efficiency. Algorithm LSUP appears 22.14% faster
than SPLIT on average, while MIX is 1 to 3 times slower
than the other methods.

Gowalla and comparison with NGRAMS We complement
our empirical evaluation with experiments on the Gowalla
dataset and a comparison with NGRAMS, a method based on
differential privacy. For NGRAMS we have used as parame-
ters the default parameters of [?]: lmax = 20, nmax = 5 and
e = 0.1. For Gowalla, we use the same default parameters as
for Oldenburg, but we experiment with a skewed (zipfian)

distribution of the locations to adversaries. The first result
from Fig. 11 is that the behavior of the algorithms on Gowalla
is consistent with their performance on Oldenburg. MIX
remains the best algorithm and the comparative picture of
the algorithms remains the same. Because the real data are
more skewed, AREL and frequent pattern results are better
than for Oldenburg.

An important reason we opted for a syntactical
anonymity approach is the sparse multidimensional nature
of our data, which forces methods based on differential
privacy to add substantial noise to the result. At the same
time differential privacy is not immune to attacks [?]. The
comparison with NGRAMS backs up our decision, since it
shows the superiority of our approach in terms of utility. Al-
most all algorithms in all settings outperform the NGRAMS
algorithm for all utility metrics. NGRAMS adds significant
noise; as shown in Fig. 11a, it doubles the points in the
dataset. NGRAMS’s results, in terms of AREL and preserved
frequent itemsets, are also inferior to all proposed algo-
rithms. This behavior is expected, since differential privacy
cannot easily preserve accurate counts when subtrajectories
are considered. The sparse multidimensional nature of the
data results to low counts for subtrajectories and NGRAMS
adds substantial noise to preserve the privacy guaranty.

Summary of the evaluation. The experimental evaluation
confirms that the performance of methods that rely solely
on generalization and suppression greatly decreases as size
of the trajectory grows (which is consistent with most
anonymization methods). On the other hand, the relevant
experiments in (Figs. 6.d, 7 and 8) show that SPLIT, manages
to address this problem, and moreover that MIX efficiently
combines the best behavior of SPLIT and LSUP.
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10 CONCLUSIONS

In this paper, we studied the problem of protecting datasets,
holding user movements, from adversaries who can use
their partial knowledge to infer locations unknown to them.
We proposed four anonymization algorithms, employing
locations suppression, trajectories splitting, or both suppres-
sion and splitting, to protect such datasets. Finally, we ex-
perimentally showcased the effectiveness of our algorithms,
in terms of data utility preservation and efficiency.
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