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Local Time Asymptotics for Centered Lévy
Processes with Two-Sided Reflection

Lars Nørvang Andersen † Søren Asmussen †

Abstract

The present paper is concerned with the local times of a Lévy process re-
flected at two barriers 0 and K > 0. The reflected process is decomposed into
the original process plus local times at 0 and K and a starting condition, and
we study ℓK , the mean rate of increase of the local time at K when the re-
flected process is started in stationarity. We derive asymptotics (K →∞) for
ℓK when the Lévy process has mean zero. The precise form of the asymptotics
depends on the existence or non-existence of a finite second moment, paral-
leling the difference between the normal and the stable central limit theorem.
To achieve the asymptotic results, we prove a uniform integrability criterion
for Lévy processes and a continuity result for ℓK , which are of independent
interest.
Keywords continuity of the local time, finite buffer, Lévy process, reflection,
loss rate, Skorokhod problem, stable central limit theorem, stable distribution,
uniform integrability.

1 Introduction

A Lévy process S = {St}t≥0 is a real-valued stochastic process on R with station-
ary independent increments which is continuous in probability and has X0 = 0
a.s. We reflect the Lévy process at barriers 0 and K > 0. The reflected process
V K = {V K

t }t≥0 can be constructed as part of the solution to a two-sided Skorokhod
problem, which yields a representation:

V K
t = y + St + L0

t − LK
t (1.1)

of the reflected process started at y ∈ [0, K], where L0 = {L0
t} and LK = {LK

t }
are the local times at 0, K respectively. More precisely,

(
V K , L0, LK

)
is a triplet of

processes such that V K
t ∈ [0, K] and

∫ T

0

V K
t dL0

t = 0 ∀T and

∫ T

0

(K − V K
t ) dLK

t = 0 ∀T . (1.2)
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The process V K is regenerative (as a cycle, take e.g. an excursion from 0 to K
followed by an excursion from K to 0). Also such a cycle clearly has an absolutely
continuous distribution, and it follows by general theory (Asmussen [3] VI.1) that
there exists a unique stationary distribution πK such that the distribution of V K

t

converges to πK weakly and in total variation. The object of the present paper is
asymptotic properties as K →∞ of the stationary rate of growth ℓK := EπKLK

1 of
the local time

Besides its intrinsic probabilistic interest, this problem has a long applied moti-
vation. Two-sided reflected processes may be used to model waiting time processes
in queues with finite capacity (Bekker and Zwart [5], Cohen [9], Cooper et al. [10],
Daley [11]), or a finite dam or fluid model (Asmussen [3] , Moran [23], Stadje [28]).
Furthermore, they are used in models of network traffic or telecommunications sys-
tems involving a finite buffer (Jelenković [15], Kim and Shroff [17] , Zwart [31]), and
in this context the loss rate can be interpreted as the bit loss rate in a finite data
buffer.

In view of this applied literature, we shall henceforth refer to ℓK as the loss rate
(at the upper barrier K). In the Lévy process context, it is the object of study of
the recent papers Asmussen and Pihlsg̊ard [4] and Andersen [1]. In [4], an explicit
expression for ℓK in terms of the characteristic triplet of the Lévy process is provided
and used to derive the asymptotic behavior of ℓK as K tends to infinity in the case
where the Lévy process is light-tailed and the mean is either strictly positive or
strictly negative. Furthermore, in [4] the loss rate of a strictly stable Lévy process
is explicitly calculated. The case of negative mean and heavy tails case is treated in
Andersen [1]. In this paper we derive loss rate asymptotics when the mean is zero,
i.e. ES1 = 0.

The main contribution of this paper is Theorem 2 which provides an asymptotic
expression as K → ∞ for the loss rate in the zero-mean case. The basic intuition
behind this is simple: ES1 = 0 implies that the Lévy process after appropriate
scaling and time change has a limit which is Brownian motion in the case of finite
variance and (subject to a condition on regular variation) is stable in the case of
infinite variance. For these limits, explicit expressions for the asymptotic loss rate
have been derived in Asmussen and Pihlsg̊ard [4], so the main technical problems
becomes to establish continuity of ℓK = ℓK(S) as function of S. This is of some
of independent interest and is formulated in Theorem 3. A uniform integrability
property is required, and conditions for this are given as Theorem 4.

The paper is organized as follows: In Section 2, we give some background on Lévy
processes, the Skorokhod problem, and the stationary distribution. In Section 3 we
state the main results of the paper, and the proofs are given in Sections 4, 5 and 6 .
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2 Preliminaries

To every Lévy process S = {St}t≥0 is associated a unique characteristic triplet
(θ, σ, ν), where θ ∈ R, σ ≥ 0 and ν is a measure (the Lévy measure) which satisfies∫∞
−∞(1 ∧ y2)ν(dy) <∞ and ν({0}) = 0. The Lévy exponent is defined by

κ(s) := θs+
σ2s2

2
+

∫ ∞

−∞

[
esx − 1− sI(|x| ≤ 1)

]
ν(dx)

and is defined for s in Θ := {s ∈ C | Eeℜ(s)S1 < ∞}. The Lévy exponent is the
unique function satisfying EesSt = etκ(s) and κ(0) = 0, and we have

ES1 = κ′(0) = θ +

∫

|y|>1

y ν(dy) (2.1)

(the mean is assumed to be well-defined and finite for all Lévy processes encountered
in the paper). We use the cadlag version of {St}, which exists because of stochastic
continuity. Standard references for Lévy processes are Bertoin [6], Kyprianou [21]
and Sato [26].

We will also need weak convergence properties:

Proposition 1. Let S0, S1, S2, . . . such that Sn has characteristic triplet (θn, σn, νn).
Then the following properties are equivalent:
(i) Sn

t
D−→ S0

t for some t > 0;
(ii) Sn

t
D−→ S0

t for all t;
(iii) {Sn

t }
D−→ {S0

t } in D[0,∞);
(iv) ν̃n → ν̃0 weakly, where ν̃n is the bounded measure

ν̃n(dy) := σnδ0(dy) +
y2

1 + y2
νn(dy) (2.2)

and cn → c0 where

cn := θn +

∫ (
y

1 + y2
− yI(|y| ≤ 1)

)
νn(dy)

See e.g. Kallenberg [16] pp. 244–248, in particular Lemma 13.15 and 13.17. If one
of (i)–(iv) hold, we write simply Sn D−→ S0.

The existence and uniqueness of a solution to the Skorokhod problem is proved
in Tanaka [29] and in a more pragmatic manner in Asmussen [3] XIV.3. Verbally,
the condition (1.2) states that {L0

t} can only increase when Vt = 0 and {LK
t } can

only increase when Vt = K, which supports our interpretation of ℓK = EπKLK
1 as a

loss rate in a system where the “free traffic” is modeled by {St}.
The stationary distribution has the representation

πK(y) = πK [y,K] = P
(
Sτ [y−K,y) ≥ y

)
, 0 ≤ y ≤ K, (2.3)

where τ [u, v) = inf
{
t > 0 | St /∈ [u, v)

}
, see Asmussen [3] pp. 393-394 as well as

Lindley [22] and Siegmund [27]. This implies that the Laplace transform of πK can
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be found in closed from whenever the scale function of S is explicitly available. For
examples of this, see Hubalek and Kyprianou [14].

From Theorem 3.6 in Asmussen and Pihlsg̊ard [4], we have the following expres-
sion for the loss rate, in terms of the characteristic triplet of the Lévy process and
the stationary distribution:

ℓK =
ES1

K

∫ K

0

πK(x) dx+
σ2

2K
+

1

2K

∫ K

0

πK(dx)

∫ ∞

−∞
ϕK(x, y)ν(dy), (2.4)

where

ϕK(x, y) =





−(x2 + 2xy) if y ≤ −x
y2 if − x < y < K − x

2y(K − x)− (K − x)2 if y ≥ K − x

(2.5)

For a graphical illustration, see Fig. 1 that depicts ϕ(x, y) in the region (x, y) ∈
[0, K] × R relevant for (2.4) (note that y is on the horizontal axis and x on the
vertical).

Figure 1: The function ϕ(x, y)
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One should note that various explicit expression for L0
t and LK

t have been derived
(in part independently) by a number of authors, see Andersen and Mandjes [2],
Borovkov [8], Cooper et al. [10], Kruk et al. [18] and Kruk et al. [19]. However, they
all have a form that is so complicated that they do not appear to be of use neither
for deriving (2.4), (2.5) nor for the present purposes.

3 Main results

Our main result provides the asymptotics in the case ES1 = 0 of zero drift.

Theorem 2.
(a) Let {St} be a Lévy process with characteristic triplet (θ, σ, ν) and E[S1] = 0,∫∞
−∞ x

2 ν(dx) <∞. Then

ℓK ∼ 1

2K

∫ ∞

−∞
y2ν(dy) +

σ2

2K
, K →∞ . (3.1)

(b) Let {St} be an Lévy process with characteristic triplet (θ, σ, ν). Assume ES1 = 0
and that for some 1 < α < 2, there exists slowly varying function L0(x), L1(x) and
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L2(x) such that for L(x) := L1(x) + L2(x) we have

ν(x) = x−αL1(x), ν(x) = |x|−αL2(x), (3.2)

lim
x→∞

L2(x)

L(x)
=
β + 1

2
, lim

x→∞
L0(x)

αL(x) = 1. (3.3)

Then, setting ρ = 1/2 + (πα)−1 arctan(β tan(πα/2)), d = (β + 1)/2 and c =
(1− β)/2 we have ℓK ∼ γ/(Kα−1Lα

0 (K)) where

γ =
cB(2− αρ, αρ) + dB(2− α(1− ρ), α(1− ρ))

B(αρ, α(1− ρ))(α− 1)(2− α)

The parameter ρ defined in Theorem 2 is known as the positivity parameter as
it satisfies ρ = P(St > 0) when S is a strictly α-stable Lévy process, see Zolotarev
[30].

We note incidentally that Theorem 2 also gives the asymptotics of ℓ0 = EπKL0
1

because a balance argument together with (1.1) gives 0 = ES1 + ℓ0 − ℓK so that
ℓ0 = ℓK in the mean zero case ES1 = 0.

To prove Theorem 2, we will use the fact that by properly scaling our Lévy
process we may construct a sequence of Lévy processes which converges weakly to
either a Brownian Motion or a stable process. Since ℓK has been calculated for both
Brownian Motion and stable processes in Asmussen and Pihlsg̊ard [4], we may use
this convergence to obtain loss rate asymptotics in the case of zero drift, provided
that the loss rate is continuous in the sense that weak convergence (in the sense of
Proposition 1) of the involved processes implies convergence of the associated loss
rates. To state our result:

Theorem 3. Let {Sn}n=0,1,... be a sequence of Lévy processes with associated loss

rates ℓK,n. Suppose Sn D−→ S0 and that the family (Sn
1 )∞n=1 is uniformly integrable.

Then ℓK,n → ℓK,0 as n→∞.

We shall also need:

Theorem 4. Let {Xn}n=1,2,... be a sequence of weakly convergent infinitely divisible
random variables, with characteristic triplets (θn, σn, νn). Then for α > 0:

lim
a→∞

sup
n

∫

[a,a]c
|y|ανn(dy) = 0 ⇔ {|Xn|α | n ≥ 1} is uniformly integrable

The result is certainly not unexpected, but does not appear to be in the literature;
the closest we could find is Theorem 25.3 in Sato [26].

4 Proof of Theorem 3

We consider a sequence of Lévy process {Sn} such that Sn D−→ S0 and use obvious
notation like ℓK,n, πK,n etc. Furthermore, we let τn(A) denote the first exit time of
Sn from A. Here A will always be an interval.

We first show that weak convergence of Sn
1 implies weak convergence of the

stationary distributions.
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Proposition 5. Sn D−→ S0 ⇒ πK,n D−→ πK,0.

Proof. According to Theorem 13.17 in Kallenberg [16] we may assume ∆n,t :=

supv≤t |Sn(v)− S0(v)| P→ 0. Then

P
(
S0

τ0[y+ǫ−K,y+ǫ) ≥ y + ǫ, τ 0[y + ǫ−K, y + ǫ) ≤ t
)

≤ P
(
Sn

τn[y−K,y) ≥ y, τn[y −K, y) ≤ t
)

+ P(∆n,t > ǫ)

≤ P
(
Sn

τn[y−K,y) ≥ y
)

+ P(∆n,t > ǫ) .

Letting first n→∞ gives

lim inf
n→∞

πK,n(y) ≥ P
(
S0

τ0[y+ǫ−K,y+ǫ) ≥ y + ǫ, τ 0[y + ǫ−K, y + ǫ) ≤ t
)
,

and letting next t→∞, we obtain

lim inf
n→∞

πK,n ≥ πK,0(y + ǫ) . (4.1)

Similarly,

P
(
Sn

τn[y−K,y) ≥ y, τn[y −K, y) ≤ t
)
≤ P

(
S0

τ0[y−ǫ−K,y−ǫ) ≥ y
)

+ P(∆n,t > ǫ) ,

lim sup
n→∞

P
(
Sn

τn[y−K,y) ≥ y, τn[y −K, y) ≤ t
)
≤ πK,0(y − ǫ) . (4.2)

However,

P
(
τn[y −K, y) > t

)
≤ P

(
τ 0[y − ǫ−K, y + ǫ) > t

)
+ P(∆n,t > ǫ) ,

so that
lim sup

n→∞
P
(
τn[y −K, y) > t

)
≤ P

(
τ 0[y − ǫ−K, y + ǫ) > t

)
.

Since the r.h.s. can be chosen arbitrarily small, it follows by combining with (4.2)
that

lim sup
n→∞

πK,n(y) = lim sup
n→∞

P
(
Sn

τn[y−K,y) ≥ y
)
≤ πK,0(y − ǫ) .

Combining with (4.1) shows that πK,n(y) → πK,0(y) at each continuity point y of
πK,0, which implies convergence in distribution.

We will need the following lemma.

Lemma 6. The function ϕ(x, y) in continuous in the region (x, y) ∈ [0, K]×R and
satisfies 0 ≤ ϕ(x, y) ≤ 2y2 ∧ 2K|y|.

Proof. By elementary calculus. For continuity, check that the expressions for ϕ(x, y)
on the regions x+y ≤ 0 and x+y ≥ K equal y2 on the lines x+y = 0 and x+y = K.
The claimed inequality is clear for 0 ≤ x + y ≤ K. Consider x + y < 0. Then
ϕ(x, y) ≤ −2xy ≤ 2y2 and ϕ(x, y) ≤ −2xy ≤ 2K|y|. Similarly for x + y > K, we
have ϕ(x, y) ≤ 2y(K−x) which yields ϕ(x, y) ≤ 2y2 and ϕ(x, y) ≤ −2xy ≤ 2Ky.

We are now ready to prove Theorem 3.
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Proof of Theorem 3. Recall the definition (2.2) of the bounded measure ν̃ and let
ϕ̃K(x, y) := ϕK(x, y)(1+y2)/y2 for y 6= 0, ϕ̃K(x, 0) = 1. The continuity of ϕ implies
ϕ(x, y) ∼ y2 as y → 0 and it easily follows that ϕ̃(x, y) is continuous jointly in x, y.
We also get ∫ ∞

−∞
ϕ̃(x, y)ν̃n(dy) = σ2

n +

∫ ∞

−∞
ϕ(x, y)νn(dy)

so that

an := σ2
n +

∫ K

0

πK,n(dx)

∫ ∞

−∞
ϕ(x, y)νn(dy)

=

∫ K

0

πK,n(dx)

∫ ∞

−∞
ϕ̃(x, y)ν̃n(dy) .

Let ν̃1
n, ν̃

2
n denote the restrictions of ν̃n to the sets |y| ≤ a, resp. |y| > a. Then

0 ≤ ϕ(x, y) ≤ 2K|y|, and uniform integrability (Theorem 4) imply that we can
choose a such that

0 ≤
∫

[−a,a]c
ϕ̃(x, y)ν̃2

n(dy) < ǫ

for all x and n (note that ν̃n ≤ νn on R\{0}). We may also further assume that a
and −a are continuity points of ν0 which implies ν̃1

n → ν̃0 weakly. In particular,

sup
n
ν̃1

n([−a, a]) <∞. (4.3)

Define

fn(x) =

∫ a

−a

ϕ(x, y)νn(dy) + σ2
n =

∫ a

−a

ϕ̃(x, y)ν̃1
ndy

so that fn(x) → f0(x). Being continuous on the compact set [0, K] × [−a, a],
ϕ̃K(x, y) is uniformly continuous. Together with (4.3) this implies that given ǫ1,
there exists ǫ2 such that |fn(x′) − fn(x′′)| < ǫ1 for all n whenever |x′ − x′′| < ǫ2.
I.e., the family (fn)∞0 is equicontinuous and uniformly bounded. In particular, the
convergencefn(x) → f0(x) is uniform in x ∈ [0, K]. Together with

∫
f0 dπK,n →∫

f0 dπK,0 this implies
∫
fn dπK,n →

∫
f0 dπK,0 (see also Pollard [24] Example 19

p. 73 for related arguments). Putting this together with the uniform integrability
estimate above and letting ǫ→ 0 gives an → a0.

By uniform integrability ESn
1 → ES0

1 , and further πK,n D−→ πK,0 implies
∫ K

0
πK,n →∫ K

0
πK,0. Remembering an → a0 and inspecting the expression (2.4) for the loss rate

shows that indeed ℓK,n → ℓK,0.

5 Proof of Theorem 4

The result proposition is standard:

Proposition 7. Let p > 0 and let Xn ∈ Lp, n = 0, 1, . . . , such that Xn
D−→ X0.

Then E|Xn|p → E|X0|p if and only if the family {|Xn|p}n≥1 is uniformly integrable.
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Theorem 4 is proved through several preliminary results. First, we prove Lemma
8 which essentially states we may disregard the behavior of the Lévy measures on the
interval [−1, 1] in questions regarding uniform integrability. It is therefore sufficient
to Theorem 4 for compound Poisson distributions, which is done in Proposition 10
and Proposition 11.

We start by examining the case where the Lévy measures have uniformly bounded
support, i.e., there exists A > 0 such that νn([A,A]c) = 0 for all n. We know from
Lemma 25.6 and Lemma 25.7 in Sato [26] that this implies the existence of finite
exponential moments for Xn and therefore EXm

n exists and is finite as well for all
n,m ∈ N.

Lemma 8. Suppose Xn
D−→ X0 and the Lévy measures have uniformly bounded

support. Then EXm
n → EXm

0 for m = 1, 2, . . . In particular (cf. Proposition 7) the
family {|Xn|α}n≥1 is uniformly integrable for all α > 0.

Proof. By Lemma 25.6 of [26], the characteristic exponent κn(s) of Xn is defined for
all s ∈ C, and we can work with the moment generating function R ∋ t→ EetX ∈ R,
which the by the Levy-Khinchine representation can be written as EetXn = eκn(t)

where

κn(t) = θnt+ σ2
nt

2/2 +

∫ A

−A

(
ety − 1− tyI(|y| ≤ 1)

)
νn(dy) (5.1)

With the aim of applying Lemma 13.15 in Kallenberg [16], we rewrite (5.1) as

κn(t) = cnt+

∫ A

−A

(
ety − 1− ty

1 + y2

)
1 + y2

y2
ν̃n(dy) (5.2)

where ν̃n is as above and

cn = θn +

∫ A

−A

(
y

1 + y2
− yI(|y| ≤ 1)

)
νn(dy)

According to Lemma 13.15 in [16], the weak convergence of {Xn}n≥1 implies cn → c0
and ν̃n

D−→ ν̃. Since the integrand in (5.2) is bounded and continuous, this implies
that κn(t) → κ0(t), which in turn implies that all exponential moments converge. In
particular, the family {eXn + e−Xn}n≥1 is uniformly integrable, which implies that
{|Xn|α}n≥1 is so.

Next, we express the condition of uniform integrability using the tail of the
involved distributions. We will need the following lemma on weakly convergent
compound Poisson distributions.

Lemma 9. Let U0, U1, . . . be a sequence of positive random variables such that
Un > 1, and let N0, N1, . . . be Poisson random variables with rates λ0, λ1 . . . Set
Xn :=

∑Nn

1 Ui,n (empty sum = 0) with the Ui,n being i.i.d for fixed n with Ui,n
D
= Un.

Then Xn
D−→ X0 if and only if Un

D−→ U0 and λn → λ0.

Proof. We use the continuity theorem for characteristic functions. The characteristic
function of Xn is EisXn = exp{λn(EisUn − 1}. From this the ‘if’ part is immediately
clear. For the converse, we observe that exp(−λn) → exp(−λ0) = P(X0 < 1/2)
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since 1/2 is a continuity point of X0 (note that P(X0 ≤ x) = P(X0 = 0) for all
x < 1). Taking logs yields λn → λ0 and the necessity of Un

D−→ U0 then is obvious
from the continuity theorem for characteristic functions.

Using the previous result, we are ready to prove part of our main result for a
class of compound Poisson distributions:

Proposition 10. Let U0, U1, . . . , N0, N1, . . . , and X0, X1, . . . be as in Lemma 9.
Assume Xn

D−→ X0. Then for α > 0.

lim
a→∞

sup
n

E
[
Xα

n I(Xn > a)
]

= 0 ⇒ lim
a→∞

sup
n

E
[
Uα

n I(Un > a)
]

= 0 .

Proof. Let Gn(x) = P(Xn ≤ x), Fn(x) = P(Un ≤ x), F n(x) = 1 − Fn(x), Gn(x) =
1−Gn(x), and let F ∗mn (x), G∗mn (x) denote the m’th fold convolutions. Then

Gn(x) =

∞∑

m=1

λm
n

m!
e−λnF

∗m
n (x) x > 0

which implies Gn(x) ≥ λne−λnF n(x). Letting β = supn eλn/λn, which is finite by
Lemma 9, we get: F n(x) ≤ βGn(x). Therefore:

E[Uα
n I(Un > a)] =

∫ ∞

0

αtα−1P(Un > a ∨ t)dt

= aαF n(a) + α

∫ ∞

a

tα−1F n(t)dt

≤ βaαGn(a) + βα

∫ ∞

a

tα−1Gn(t)dt

= βE[Xα
n I(Xn > a)] .

Taking supremum and limits completes the proof.

Next, we prove the converse of Proposition 10.

Proposition 11. Under the assumptions of Proposition 10 we have, for α > 0:

lim
a→∞

sup
n

E
[
Uα

n I(Un > a)
]

= 0 ⇒ lim
a→∞

sup
n

E
[
Xα

n I(Xn > a)
]

= 0 .

Proof. We use the notation of Proposition 10. By Lemma 9 we have F ∗1n
D−→ F ∗10

and by the Portmanteau lemma F ∗mn
D−→ F ∗m0 . We note that the assumption of

uniform integrability of the Uα
n implies that E

(∑m
i=1 Ui,n

)α → E
(∑m

i=1 Ui,0

)α
, since

the Ui,n are i.i.d in i and Ui,n
D
= Un. Fix m ∈ N. Since

(∑m
i=1 Ui,n

)α ≤ mα
∑m

i=1 U
α
i,n

and the family
(
mα

∑m
i=1 U

α
i,n

)
n≥1

is uniformly integrable, we have that also the

family
(∑m

i=1 Ui,n

)α

n≥1
is uniformly integrable. As noted above we have

∑m
i=1 Ui,n

D−→∑m
i=1 Ui,0, so Proposition 7 implies E

(∑m
i=1 Ui,n

)α → E
(∑m

i=1 Ui,0

)α
.
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We next show EXα
n → EXα

0 and thereby the assertion of the proposition. We
have:

lim
n

EXα
n = lim

n

∞∑

m=0

E
( m∑

i=1

Ui,n

)αλm
n

m!
e−λn

=
∞∑

m=0

lim
n

E
( m∑

i=1

Ui,n

)αλm
n

m!
e−λn

=

∞∑

m=0

E
( m∑

i=1

Ui,0

)αλm
0

m!
e−λ0 = EXα

0 ,

where we used dominated convergence with the bound

E
( m∑

i=1

Ui,n

)αλm
n

m!
e−λn ≤ γmα+1βm/m!

with γ = supn EUα
n and β = supn λn.

Proof of Theorem 4. Using the Lévy -Khinchine representation, we may write

Xn = X(1)
n +X(2)

n +X(3)
n (5.3)

where the
(
X

(i)
n

)
n≥1

are sequences of infinitely divisible distributions having charac-

teristic triplets (0, 0, [ν]{y<−1}) , (θn, σn, [νn]{|y|≤1}) and (0, 0, [νn]{y>1}), respectively.
Assume the family

(
|Xn|α

)
n≥1

is uniformly integrable. We wish to apply Proposi-

tion 10 to the family
(
(X

(3)
n )α

)
, and therefore we need to show that this family is

uniformly integrable. First, we we rewrite (5.3) as Xn−X(2)
n = X

(1)
n +X

(3)
n and use

Lemma 8 together with the inequality |x − y|α ≤ 2α(|x|α + |y|α) to conclude that

the family
(
|Xn−X(2)

n |α
)

n≥1
is uniformly integrable, which in turn implies that the

family
(
|X(1)

n +X
(3)
n |α

)
n≥1

is uniformly integrable.

Assuming w.l.o.g. that 1 is a continuity point of ν0, we have that X
(1)
n is weakly

convergent and therefore tight. This implies that there exists r > 0 such that
P
(
|X(1)

n | ≤ r
)
≥ 1/2 for all n, which implies that for all n and for all t so large that

(t1/α − r)α > t/2, we have:

(1/2)P
(
(X(3)

n )α > t
)
≤ P

(
|X(1)

n | ≤ r
)
P
(
X(3)

n > t1/α
)

P
(
|X(1)

n | ≤ r,X(3)
n > t1/α

)
≤ P

(
X(1)

n +X(3)
n > t1/α − r

)

= P
(
|X(1)

n +X(3)
n |α > (t1/α − r)α

)
≤ P

(
|X(1)

n +X(3)
n |α > t/2

)
.

This implies that
(
(X

(3)
n )α

)
is uniformly integrable, since

(
|X(1)

n + X
(3)
n |α

)
is so.

Applying Proposition 10 yields

lim
a

sup
n

∫ ∞

a

yανn(dy) = 0 (5.4)

10



Together with a similar relation for
∫ −a

−∞ this gives

lim
a→∞

sup
n

∫

[a,a]c
|y|ανn(dy) = 0 .

For the converse, we assume lima supn

∫
[a,a]c

|y|ανn(dy) = 0, and return to our

decomposition (5.3). As before, we apply Lemma 8 to obtain that the family(
X

(2)
n

)
is uniformly integrable. Furthermore, applying Proposition 11, we obtain

that the families
(
|X(1)

n |α
)

and
(
|X(3)

n |α
)

are uniformly integrable, and since |Xn| ≤
3α

(
|X1

n|α + |X2
n|α + |X3

n|α
)
, the proof is complete. 2

6 Proof of Theorem 2

First we note the effect that scaling and time-changing a Lévy process has on the
loss rate:

Proposition 12. Let β, δ > 0 and define Sβ,δ
t = Sδt/β. Then the loss rate

ℓK/β(Sβ,δ) for Sβ,δ equals δ/β times the loss rate ℓK(S) = ℓK for S.

Proof. It is clear that scaling by β results in the same scaling of the loss rate. For
the effect of δ, note that the loss rate is the expected local time in stationarity per
unit time and that one unit of time for Sβ,δ corresponds to δ units of time for S.

Proof of Theorem 2 (a). Define SK
t := StK2/K. Then by Proposition 12 we have

KℓK(S) = ℓ1(SK)

By the central limit theorem we have SK
1

D−→ N(0, ψ2) as K →∞, where

ψ2 = Var(S1
1) = σ2 +

∫ ∞

−∞
y2ν(dy) .

By Proposition 1, this is equivalent to SK D−→ ψB where B is standard Brownian
motion. We may apply Theorem 3, since

E
[
(SK

1 )2
]

= Var(S1
1) ,

that is, {SK
1 }∞K=1 is bounded in L2 and therefore uniformly integrable, and we obtain

limK KℓK(S) = limK ℓ1
(
SK

)
= ℓ1(ψB) = ψ2/2, where the last equality follows

directly from the expression for the loss rate given by (2.4).

Proof of Theorem 2 (b). First we note that the stated conditions implies that the
tails of ν are regularly varying, and therefore they are subexponential. Then by
Embrechts et al. [12] we have that the tails of P (S1 < x) are equivalent to those
of ν and hence we may write P (S1 > x) = x−αL1(x)g1(x), and P (S1 < −x) =
x−αL2(x)g2(x) where limx→∞ gi(x) = 1. i = 1, 2. The next step is to show that the
fact that tails of the distribution function is regularly varying allows us to apply the
stable central limit theorem. Specifically, we show that the assumptions of Theorem
1.8.1 in Samorodnitsky and Taqqu [25] are fulfilled.
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We notice that if we define M(x) := L1(x)g1(x)+L2(x)g2(x) then M(x) is slowly
varying and

xα(P (S1 < −x) + P (S1 > x)) = M(x) . (6.1)

Furthermore:

P (S1 > x)

P (S1 < −x) + P (S1 > x)
= L2(x)g2(x)/M(x) ∼ L2(x)/L(x) → 1 , x→∞

(6.2)

since L(x) ∼ M(x). Let L#
0 (x) denote the de Bruin conjugate of L0 (cf. Bingham

et al. [7] p. 29) and set f(n) := n(1/α)L#
0 (n(1/α)). Let f← be the generalized inverse

of f . By asymptotic inversion of regularly varying functions (p. 28-29 [7]) we have
f←(n) ∼ (nL0(n))α and using (3.3) we have

f←(n)L(n)

nα
∼ (nL0(n))αL(n)

nα
= L0(n)αL(n) → 1

and since f←(f(n)) ∼ n we have

nM(f(n))

f(n)α
∼ nL(f(n))

f(n)α
∼ f←(f(n))L(f(n))

f(n)α
→ 1 (6.3)

and therefore, if we define σ = (−Γ(1− α) cos(απ/2))1/α.

nM(σ−1f(n))

(σ−1f(n))α
∼ nM(f(n))

(σ−1f(n))α
→ σα (6.4)

using slow variation of M. By combining (6.1), (6.2) and (6.4) we may apply the
stable CLT Theorem 1.8.1 [25]1 to obtain SK/f(K)

D−→ X where X is a r.v. with
c.h.f. ϕ, where

ϕ(t) = exp(−|σt|α(1− iβ sgn(t) tan(απ/2))

Recalling that κ is the characteristic exponent of S1, this is equivalent to

eκ(t/f(K))K → ϕ(t)

and therefore

eκ(t/f(f←(K)))(KL0(K))α ∼ eκ(t/f(f←(K)))f←(K) → ϕ(t)

that is, for SK
t = St(KL0(K))α/f(f←(K)) we have SK

1
D−→ X. Setting d = (β + 1)/2

and c = (β − 1)/2 we may use formula (3.37.13) in Hoffmann-Jørgensen [13] to
obtain

− |σt|α(1− iβ sgn(t) tan(απ/2) (6.5)

= −|σt|α(1 + i(d− c) sgn(t) tan(απ/2) (6.6)

= dα

∫ 0

−∞
(eivt − 1− ivt)(−t)−α−1 dt (6.7)

+ cα

∫ ∞

0

(eivt − 1− ivt)t−α−1 dt (6.8)

1Note that the constants there should be replaced by their inverses.
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That is, the characteristic triplet of X is (τ, 0, ν), where

ν(dt) =

{
αc

(−t)α+1 dt t < 0
αd

tα+1 dt t > 0
(6.9)

and τ is a centering constant.
We wish to use Theorem 3 and have to prove uniform integrability. Since f(f←(K)) ∼
K we haveK/2 < f(f←(K)) for large enoughK, and for theseK and 1 < r < α < 2,
we find, using Khinchine’s Inequality (eg. (4.32.1) in [13])

−|E
∣∣SK

1

∣∣r ≤ 2r

Kr
E
∣∣∣∣

[(KL0(K))α]∑

i=1

Si − Si−1 + S(KL0(K))α − S[(KL0(K))α]

∣∣∣∣
r

≤ 2r+1

Kr
E
∣∣∣∣

[(KL0(K))α]∑

i=1

Si − Si−1

∣∣∣∣
r

+ 2rE
∣∣S(KL0(K))α − S[(KL0(K))α]

∣∣r

≤ 2r+1

Kr
E
∣∣∣∣

[(KL0(K))α]∑

i=1

Si − Si−1

∣∣∣∣
r

+ 2rE |S1|r

≤ 2r+2

Kr
[(KL0(K))α]

r
2
−1

[(KL0(K))α]∑

i=1

E|Si − Si−1|r + 2rE |S1|r

=
2r+2

Kr
[(KL0(K))α]

r
2 E|S1|r + 2rE |S1|r

≤ 2r+2Kr(α
2
−1)L0(K)

αr
2 E|S1|r + 2rE |S1|r

so that {SK
t }∞K=1 is bounded i Lr. We may therefore apply Theorem 3 and Propo-

sition 12 to obtain

Kα−1L0(K)αℓK(S) ∼ Kα−1L0(K)αℓf(f←(K)(S) = ℓ1
(
SK

)
.

Letting K → ∞ and using the expression for the loss rate of a stable distribution
which is calculated in Example 3.2 in Asmussen and Pihlsg̊ard [4] (see also Kyprianou
[20]), yields the desired result.
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