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1. Introduction. The theory of local times of a stochastic process was conceived
in the work of Paul Levy on linear Brownian motion [9]. H. Trotter proved the
first major theorem for the Brownian model [11]; and much has been discovered
by many other authors, too numerous to list here. A survey of the theory and a
bibliography are contained in the monograph of Ito and McKean [8]. Local times
have apparently been studied and used for Markov processes only. In this paper,
local times of another class of stochastic processes are examined—a class of
stationary Gaussian processes. Extensions to other processes are also indicated.

In their recent monograph, Cramer and Leadbetter [6] summarized the current
research for stationary Gaussian processes and their sample functions; their book
is mostly about processes whose correlation functions are twice differentiable at
the origin. These processes have absolutely continuous sample functions. The
present paper is about a very different class: the correlation function r(t) satisfies
the following relation for i->0: t2(l — r(t))^- oo. A typical example is: l-r(t) is
asymptotic to a constant multiple of \t\", 0<a<2. The sample functions, though
continuous, are not only not absolutely continuous, but are nondifferentiable at
almost every point; this can be inferred from the work of J. Yeh [12]. It is shown
that such processes have local times with continuous sample functions, and then
the connection between local times and first passage times are revealed. These
results are used to establish the following peculiar property of the Gaussian process:
The values crossed by the sample function finitely many times in an interval form
a set of category 1 in the image ofthat interval. A new inequality for the probability
of first passage is incidentally obtained in §6.

The well-known dichotomy theorem of Beljaev [1] states that the sample func-
tions of a separable stochastically continuous, stationary Gaussian process are
either almost all continuous, or else almost all unbounded; furthermore, a sufiicient
condition for continuity is the boundedness of |log \t\ \a(l —r(t)), t -»• 0, for some
constant a> 1. In §8, a result for the unbounded case is proven: If

liminf |log|i| |(1 -r(t))
t—o

Received by the editors February 26, 1968.
H This paper represents results obtained at the Courant Institute of Mathematical Sciences,

New York University, under the sponsorship of the National Science Foundation Grant
NSF-GP-7378, and NSF-GW-2049.

277

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



278 S. M. BERMAN [March

is positive, then almost all the sample functions spend positive time in every set of
positive Lebesgue measure. This result is shown to provide a probabilistic proof of
a theorem of Carathéodory on measurable functions: There is a measurable
function of a real variable such that the inverse image of every nonempty open
interval intersects every nonempty open interval in a set of positive measure.

One novelty of the present work is the use of Fourier analysis in local time:
In order to "differentiate" the occupation time, the derivative is computed by
means of the inversion formula for the characteristic function.

The author is grateful to the referee for his constructive comments.

2. Occupation time distributions and local times of measurable functions.    Let
f(t) be a real valued measurable function defined on the interval O^zál, and
define D(x) as D(x)=l if xáO, or =0 if x>0. D is a Borel measurable function
so that the composite function of (t, x), D(f(t) — x), is measurable in the pair
(t, x); hence, the integral F(x)=l\ D(f(t) — x) dt is well defined. The function F(x)
is a probability distribution function; indeed, if the unit interval with Lebesgue
measure is considered as a probability space, and/() as a random variable, then
Fis the distribution of/(-). For our purposes it is convenient to call F the "occupa-
tion time distribution" of the function f(t): F(x) is the "amount of time in [0, 1]
spent by /at values less than or equal to x."

For any real valued or complex valued Borel measurable function g, we have

(2-1) Ç g(fi(t))dt= C  g(x)dF(x),
JO J - oo

in the sense that if one of the two integrals exist so does the other and the two are
equal; indeed, this follows by a standard "change of variable" of integration.

Formula (2.1) provides a very convenient expression for the characteristic func-
tion of F:

(2.2) f     exp (iux) dF(x) = f  exp [iuf(t)] dt.
J - oo Jo

Definition 2.1. When F(x) is absolutely continuous, its derivative, denoted by
</>(x), is called the local time of f(t). (By "derivative" we mean the Radon-Nikodym
derivative.)

The characteristic function of F is the main instrument used to probe the local
time. The following lemma on characteristic functions is fundamental for our
study:

Lemma 2.1. Let F be a distribution function whose characteristic function is
square-integrable ; then F is absolutely continuous and its derivative is square-integrable.

Proof. For every square-integrable function g on the real line, let g be its
Fourier transform. Define the linear functional S(g), g e L2, as

S(g)= f  g(u)4(-u)du,
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where <f>(u) is the characteristic function of F. The Cauchy-Schwarz inequality and
the Parseval relation imply that

\S(g)\2S ^   \g(x)\2dx-r   \fcu)\2du;
J — oo J — CO

hence, S is a bounded linear functional. By the representation theorem for such
functionals there exists a function <f> e L2 such that

S(g) = T  g(x)<i(x) dx.
»'-00

If g is the indicator function of a finite interval [a, b], then, by the Parseval relation,

C J.Í \ j         r   exP (iub) - exP (iua) u     \ A        or \4>(x) dx = —Z±—' -h(-u) du = S(g).
Ja J - co ¿I'M

By the inversion formula for characteristic functions, the middle member above is
equal to F(b) — F(a) at all points a, b of continuity of F The function <j> is integrable
over every finite interval because it is square-integrable; therefore, its indefinite
integral is absolutely continuous. It follows from the equation above that F(x)
cannot have any discontinuities and that

Ib
<j>(x) dx = F(b) - F(a)   for all a, b ;

thus, <f> is the derivative of F.
This lemma has an immediate application to local time:

Lemma 2.2. If

[       f exp [iuf(t)] dt
J - oo  I Jo

du < cjo,

then F is absolutely continuous and <f> is square integrable. If

/:
Jo exp [iuf(t)] dt du < oo,

then, there is a version of <j> that is continuous.

Proof. The first assertion is a consequence of Lemma 2.1 and formula (2.2);
and the second is a consequence of the fact that a distribution function has a
continuous derivative if the characteristic function is absolutely integrable [6, p. 94].

Lemma 2.3. If F is absolutely continuous and </> square integrable, then

¡*1 12 foo /»co"

g(f(t))dt\   S \g(x)\2dx-\      \<f>(x)\2dx,
JO J - oo J - oo

for any square-integrable, Borel measurable g.
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Proof. Under the hypothesis, the domain of validity of the equation (2.1)
includes all square-integrable g because the right-hand side of (2.1) is

i
g(x)<f>(x) dx;

thus, the lemma follows by application of the Cauchy-Schwarz inequality.
The properties of the local time are related to those of the function /': If the

former is "smooth," then the latter does not "spend too much time" near any
particular value in its range; for example, if </> is square-integrable, then, by Lemma
2.3,

C exp (-\f(t)-x\)\f(t)-x\-*df
( /•+ » -S 1/2     f f*°° "\ 1/2

S\j   ^exp(-2\y\)\y\-2°dyj    -jj  J<p(y)\2 dyj

for all x, when a < 1/2. This implies that/(') cannot satisfy a local Holder condition
of order greater than 2 at any point of its domain. If <j> is essentially bounded, then

I/«l /*00
I   g(f(t))dt\ S |g(x)|í/x-essup</>

Jo \ J-x

for any absolutely integrable g; in particular,

fexp(-|/(0-x|)|/(/)-x|-aí//á  I""   exp(-|v|)|v|-«i/v-essup^
Jo J -x

for all x, when a< 1. This implies that/(z) cannot satisfy a local Holder condition
of order greater than 1 at any point of its domain.

The rest of this section contains material on the convergence of an approximating
sequence of occupation time distributions; these results will be applied in §7. Let
f(t) be a continuous function with an absolutely continuous occupation time dis-
tribution F(x) with derivative <^(x). Let {/„(')> «=1,2,...} be the following sequence
of functions approximating f(t) on [0, 1] :fin(t) is equal to/(z) at all points of the
form t = k2~n, k = 0, 1,..., 2n, and is linear between any two such successive points.
The sequence {/„} converges uniformly to/. Let Fn(x) be the occupation time dis-
tribution of/n; then, Fn converges weakly (even pointwise) to F; indeed, the charac-
teristic function of F„ converges to that of F:

f exp [iufin(t)] dt -> f exp [iuf(t)] dt.
Jo Jo

because /„ converges to /.
We assume that for every «g 1, no two of the values f(k2'n), k = 0, 1,..., 2",

are equal, that is, the approximating function is nowhere constant. For each «>0,
F„ is absolutely continuous. This is directly visible from the piecewise linearity of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] LOCAL TIMES OF STATIONARY GAUSSIAN PROCESSES 281

/„; or, more formally, from the fact that the characteristic function of F„ is a sum
of expressions of the form

exp (iuct) dt,       c = constant,

each of which is square-integrable, so that Lemma 2.2 implies absolute continuity.
Let </>„(x) be the local time of/n; we now derive a formula for it. For each number x
which is not one of the values f(k2~n), k = 0, 1,..., 2", define ¿;nk(x) as

£nk(x) = 1,    iff(k2~n) — x and f((k- l)2~n)-x are of opposite sign,
= 0,   otherwise, k = 0, 1.2n;

in other words, £mc(x) is 1 if/crosses the level x somewhere in the open interval
((k- 1)2"", k2~n), and 0 if not. Putfnk=f(k2~n)-f((k- 1)2-").

Lemma 2.4. </>n(x) is equal to

(2.3) 2-» J ^Áx)/\fnk\
k = X

at all points x not equal to one of the values f(k2~n), k = Q, 1,..., 2". (It may be
arbitrarily defined at the latter values because the derivative is unique almost every-
where.)

Proof. Let x be a value not equal to any of the specified ones. If it is larger than
max,,./(Ar2~n) or smaller than mmkf(k2~n), put <f>n(x) = 0; otherwise, there is a
finite set of points tu ra,... in (0, 1) such that f(rj) = x, and t¡ lies in some open
interval ((k—1)2-", k2'n),j= 1,2,.... The function/,, is linear as it passes through
the level x at the point t,, and has slope equal to 2nfnk; thus, the Lebesgue measure
of the /-set for wnich \fn(t)-x\ <e is equal to e times the sum of the reciprocals of
the absolute values of the slope at rx, t2, ... if £>0 is sufficiently small. None of
these slopes is 0 because we have assumed that x is not one of the numbers f(k2~n).
It follows that (2.3) is the formula for the derivative of F„ at x.

The weak convergence of Fn to F and the continuity of F imply that

(2.4) \ux)dx->^<b(x)dx

for every interval /. This does not imply that </>n converges to </>(x), or even has a
limit; nevertheless, the relation (2.4) does give information about the relation
between </>„ and </>.

Lemma 2.5. For any interval [a, b], the maximal term of the sum

(2.5) £ 2-   Cj0dx
k=l Ja    \Jnk\

(which is the integral of</>n over [a, b]) tends to 0 as n becomes infinite.
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Proof. Put c = (k— l)2"n and d=k2~n. The function £nk(x) is, by definition, the
function

U(x) = 1 if/(c) < x < fi(d),
= 1 iff(d) < x < fi(c),
= 0   elsewhere;

therefore, its integral over [a, b] is

J" U(x) dx = min(b, f(d)) - max (a, f(c))   if f(c) < fi(d),
= min (b, f(c)) - max (a, f(d))   if fi(d) < fi(c) ;

thus, in either of the latter cases, the integral jba (ink(x)/\fnk\) dx is at most 1 ; hence,
each term in the sum (2.5) is bounded by 2~n.

Lemma 2.6. Let f be a continuous function on a closed interval, with a continuous
local time <j>; then the set of zeros of<f> is nowhere dense in the range off.

Proof. Let the closed interval / be the range of/ The set of zeros of </> is closed
because </> is continuous. This set contains no nonempty open subintervals of /;
indeed, if <f> would vanish throughout such a subinterval /, the (open) set/_1(/)
would have measure 0, and be, therefore, empty; however, this would contradict
the connectedness of the range off.

For each x, the sum 2if=i ^mc(x) is the number of times that the approximating
function /„(/) crosses the level x. The sequence of these sums is monotonically
nondecreasing and converges to a limit A^x) which may be either finite or infinite.
We note that N(x) is at least equal to the number of times that/"crosses" the
value x: If in every neighborhood of a point / there are dyadic rational numbers
c, d : c<t<d such that/(c) —x and f(d) — x are of opposite sign, then /crosses x
at t (cf. [13]).

Theorem 2.1. Let f be a continuous function on a closed interval with a continuous
local time </>. Suppose that each approximating function fn is nowhere constant. The
set of values x where N(x) is finite is of category 1 in the range off.

Proof. For a fixed positive integer m, the set {x : N(x)>m} is an open set. If
A^(x) exceeds m, then there is an integer « sufficiently large so that the sum
2f=i infcW exceeds m, that is, the "broken line"/, crosses x more than m times.
It follows that this broken line must cross every value in some neighborhood of x
more than m times; indeed, the raising or lowering of the level x by a sufficiently
small amount will not decrease the number of crossings. It follows that N(y)
exceeds m for all values of y sufficiently near x.

We conclude that {x : N(x)Sm} is closed.
Now we show that {x : N(x)Sm} contains no nonempty open subintervals of

the range off. If (a, b) is a nonempty open subinterval on which N(x)Sm, then the
sum in (2.5) contains at most m terms; thus, by Lemma 2.5, the integral of </>n over
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(a, b) converges to 0. From the relation (2.4) it follows that the integral of </> over
(a, b) is 0; therefore, by the continuity of </>, </> must vanish throughout (a, b). It
now follows from Lemma 2.6 that (a, b) is not in the range off.

We conclude that the set {x : N(x)Sm} is nowhere dense in the range of/
because it has a closed intersection with the range and no interior points in it. It
follows that the set upon which N(x) is finite is of category I in the range of/
because it is the union of the sets {x : N(x)Sm}, mil.

3. Local times for stochastic processes. Let (il,.W,P) be a probability space
and X(t, to), OStS I, t» e LI, a separable stochastic process measurable in the pair
(t. tu), that is, with respect to the product sigma-field of J^ and the Lebesgue
measurable subsets of [0, 1]. For each pair (x, w), we define the occupation time
distribution of the function X(-, œ):

X, oo) =   (
Jo

F(x.w) =       D(X(l,w)-x)dt.
Jo

For almost every w, F( ■, w) is a distribution function. If it is absolutely continuous
with derivative </>(■, w), then the latter is called the local time of X(t, w), OStS 1.

Let F be the expectation operator corresponding to the probability measure F.
When a function of (/, «,) or (x, co) appears under the expectation or probability
signs, the argument w will be omitted; for example, we shall write EX(t,w) as
EX(t).

The results of §2 on occupation time distributions for measurable functions can
be extended to the stochastic process X(t, w).

Lemma 3.1. If

f   I f Ç Eexp[iu(X(t)-X(s))]dsdt
J - oo   I Jo   Jo

du < oo.

then, for almost all a>, F( ■, w) is absolutely continuous and</>( ■, w) is square-integrable.

Proof. The hypothesis implies that £(/*«, \jl exp [iuX(t)] dt\2 du)<oo; hence,
for almost all w, the characteristic function of F(-,w), f0 exp [iuX(t, w)] dt, is
square-integrable in u. The assertion of the lemma now follows from the first part
of Lemma 2.2.

Lemma 3.2. If for every s, t, OSs. tS 1.

/:
Ee\p[iu(X(t)-X(s))] du < oo.

then the probability density function p(x; t, s) of the random variable X(t. ■)- X(s, ■)
exists and is continuous, and the hypothesis of Lemma 3.1 Is then equivalent to

í   Í P(0;s,
Jo  Jo

t) ds dt < oo.
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Proof. The first assertion is the well-known result that a distribution function
is continuously differentiable if the characteristic function is absolutely inte-
grable [4, p. 94]. The second assertion follows by application of Fubini's theorem
and the inversion formula for the density as an integral of the characteristic
function.

\u\1+e du < oo,

Lemma 3.3. If, for some e>0,

r     f1 f Eexp[iu(X(t)-X(s))]dsdt
J-oo   | Jo    Jo

then, for almost all co, F(-, co) is absolutely continuous and </>(-, w) is continuous.

Proof. The hypothesis implies that

P   E   f  exp [iuX(t)] dt
J-oo Jo

\u\1 + £ du < oo,

which implies that

f°   |w|1+£    Í exp [iuX(t, tu)] dt
J-oo I Jo

du < co,

for almost all co; this, by the Cauchy-Schwarz inequality, implies that

r°°   I r*
exp [iuX(t, co)] dt

J-oo   I  Jo
du < oo

for almost all w. The assertion of the lemma now follows from the second part of
Lemma 2.2.

Example 3.1. Let X(t, w) be a process with stationary independent increments
and with characteristic function

F exp [iu(X(t)-X(s))] = exp [-(z-s)A(M)].

The hypothesis of Lemma 3.1 is fulfilled if the function (1 — e~Mu))/X(u) is absolutely
integrable. The hypothesis of Lemma 3.3 is fulfilled if the modulus ofthat function
times |w|1 + E is integrable. In this example, the results obtained are weaker than
those already known [2].

Example 3.2. Let X(t, w) be a Gaussian process with covariance function
R(s, t) = EX(s)X(t)-EX(s)EX(t). The random variable X(t, )-X(s, ■) has a
Gaussian distribution with mean EX(t) — EX(s) and variance R(s, s) + R(t, t) —
2R(s, t). The hypothesis of Lemma 3.2 is satisfied; thus, a sufficient condition for
the hypothesis of Lemma 3.1 to be satisfied is

(3.1) ' Ç (R(t,t) + R(s,s)-2R(s,t))-ll2dsdt < oo.
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Example 3.3. Let us specialize the previous example to the case of a stationary
Gaussian process, normalized so that EX(t) = 0 and EX2(t)=l; put r(s-t) =
R(s, t). The condition (3.1) is equivalent to

(3.2) f  (l-r(t))-l>2(l-t)dt < oo.

Suppose that 1 —r(t) vanishes only for / = 0; then the condition (3.2) is satisfied if
1 — r(t) approaches 0 more slowly than a constant multiple of |/|a, t -*■ 0, for some
a, 0<a<2; (3.2) is certainly not fulfilled if r"(0) exists. (Here we are assuming that
the process is real-valued so that r'(0) = 0.)

Our first result on the continuity of the local time of the stationary Gaussian
process in Example 3.3 is:

Theorem 3.1. If for some e>0,

(3.3) f (l-KO)-1-8«* < oo,

then, for almost all io, F( ■, to) is absolutely continuous and </>( ■, a>) is continuous.

Proof. The integral in the hypothesis of Lemma 3.3 takes the particular form

i"   (f   f exp[-u2(l-r(s-t))]dsdt)\u\1+edu.
J-co   \Jo   Jo /

Interchange the order of integration : By integrating first with respect to u, we find
that the finiteness of the above multiple integral is identical with the finiteness of
¡l&(l-ris-t))-l-i,mdsdt, implied by condition (3.3).

Theorem 3.1 shows that the local time is continuous when 1— r(t) is bounded
below by a constant multiple of |r|" as / -*■ 0 for some a, 0<a< 1 ; however, the
theorem is not strong enough to cover a, 1 ̂ «<2, to be treated in the next two
sections by more elaborate methods.

4. The local time process and the continuity of its sample functions. Suppose
that X(t, w) is the process defined in §3, and that F(x, co) is absolutely continuous
in x with derivative </>(x, m) for almost all oj. We would like to consider the function
</>(x, to) as a stochastic process on (0, &, P) with the time parameter x, —oo < x < co ;
then prove that a separable version of this process has continuous sample functions;
and conclude that </>(x, co) is continuous in x for almost all co. There are two gaps
in this argument: For each œ, the function </>(x, co) is defined for almost every x,
not for every x, so that <f>(x, ■) is not a well-defined random variable for each x;
and the fact that a separable version of the derived process has continuous sample
functions does not necessarily imply that the original function <f>(x, co) is continuous
in x for almost all w.
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Here are the steps we shall take in filling these gaps and proving that cf>(-, co) is
continuous for almost all co:

1. Construct a stochastic process </<(x, co), -co<x<co, on (LI, ?, P), which,
without loss of generality, may be assumed separable.

2. Prove that if every separable version of </<(.y, co) is (x, oj)-measurable, then
any such version serves as the derivative of F.

3. Note that if every separable version of </>(.y, íd) has continuous sample func-
tions, then every such version is also measurable, and serves as a (continuous)
derivative of F.

4. Find conditions on the finite-dimensional distributions of the process X
which are sufficient for the continuity of the sample functions of a separable
version of the process constructed in step I.

Let X(t. co) satisfy the condition

(4.1) f      i*    if   \Ee\p[iuX(s) + ivX(t)]\dsdtdudv
J-xJ-xJo   JO

<   OO.

In the case of the Gaussian process described in Example 3.2, the condition (4.1)
is equivalent, by the inversion formula for characteristic functions, to

ifJo Jo
[R(s, s)R(t, t)-R2(s, t)YXl2dsdt < co.

In the particular case of the stationary Gaussian process in Example 3.3, the
condition (4.1) is identical with (3.2) because of the relation 1 —r2~2(l — r), r —> 1.

In order to construct a stochastic process 0(.v, co), —co<.v<co, to serve as a
local time "candidate," we write a formal expression for the density of F(x, w)
in terms of the characteristic function inversion formula, and then show that the
formula has validity in the required sense.

Theorem 4.1. Put

i/i„(.y, w) = —        exp (-iux)      exp [iuX(t, co)] dt du.       N = 1.2.
27J-J-.V Jo

If (4.1) holds, then, for each x. there exists a random variable </>(.v, co) such that

(4.2) lim F|</..v(x)-</<(.y)|2 = 0   uniformly in x;
.V-» oo

furthermore, the stochastic process i/>(.\. o>),  — oo<x<oo, may be assumed to be
separable.

Proof. If N> M, then

4>y(x, cu)-i/>„(x. co) = y~ I I       +       I exp (-iux)      exp [iuX(t, w)] dt du:
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thus, by virtue of the inequality |x+v|2á 2|x|2 + 2| y|2 for complex x and y,
L\'/>n(x) — 4'm(x)\2 is dominated by

I     J      /• — M /»l 2
2fU- exp(-z'wx)      exp [iuX(t)] dt du

\2ttJ-n Jo
[N Í-1 2

+ 2F  —       exp(-z'wx)      exp [iuX(t)] dt du   .
| 27T JM J0

The first expression above is dominated by

y       r-M   [•-M   rl   rl
7¿T2\ \Eexp[iuX(s)-ivX(t)]\dsdtdudv,
(2w)    J_w   J_w   Jo   Jo

and the second is dominated by a similar one with integration over u and v from
M to N. By the hypothesis (4.1) each of these expressions converges to 0 (uniformly
in x) as M, N -*■ oo. The conclusion (4.2) now follows from the uniform convergence
ofF|^(x)-M*)|2toO.

By the fundamental separability theorem [7, p. 57] there is a separable stochastic
process </j(x, co), — oo <x<co, on (Ü, ^,P) such that for each x, ^(x, co) = i/i(x, w)
for almost all co. The relation (4.2) remains valid if <J> is substituted for i/>; hence,
the second assertion of the theorem holds.

Theorem 4.2. If the process </t(x, co) is measurable in (x, co), then, for almost every
co, t/j(x, co) is absolutely integrable over every finite x-interval, and

(4.3) F(b,co)-F(a,co)= f  </j(x,w)dx

for every pair of real numbers a, b.

Proof. For each a and b, the integral f"a >/>n(x, co) dx is well defined and

(4.4) lim   i   >/jN(x,co)dx = F(b,w)-F(a,co)
JV-oo Ja

for almost every o>; indeed, the existence of the integral follows from the continuity
in x of </iN(x, to), and the convergence (4.4) is a consequence of the inversion formula
for characteristic functions and the (absolute) continuity of F(x, co) at every x (in
particular at x = a, b).

The function ibN(x, co) is not only continuous in x but also bounded in (x, co)
(by N/ir); therefore, F|</>A(x)|2 is a continuous function of x. Equation (4.2) implies
that E\i/ß(x)\2 is finite for all x and is the uniform (in x) limit of the sequence of
continuous functions {E\</jn(x)\2}; therefore, E\ip(x)\2 is continuous in x; conse-
quently, it is integrable over every finite interval. Fubini's theorem now implies
that t/>(-, co) is square-integrable over each finite interval for almost all w; therefore,
it is absolutely integrable over each finite interval for almost all w; finally, for
almost all co, it is absolutely integrable over every finite interval.
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Now we show that for each a, b, the equation (4.3) holds for almost all co. The
absolute difference between the members on each side of the equation is dominated,
for each N, by

r-b çb
F(b, co) — F(a, co)-     xby(.x, w) dx   +      \xb(x, oi) — ypH(x, ut)\ dx.

Ja Ja

By the result (4.4), the first term above converges to 0 as A' -^ oo for almost all co.
The second term converges to 0 in mean square as/V->oo; indeed, by the Cauchy-
Schwarz inequality, its expected square is dominated by the square root of

\b-a\ f E\sKx)-Mx)\a dx
Ja

which, by (4.2), converges to 0 as N -> oo.
We still have to show that for almost all to, the equation (4.3) holds for all a, b.

By what has just been shown in the preceding paragraph and by Fubini's theorem,
for almost all co, the equation (4.3) holds for almost all a and b. Now, on one hand,
for almost all co, tb(-, to) is absolutely integrable over every finite interval, so that
its indefinite integral is an absolutely continuous function; and, on the other hand,
F(-, co) is, by hypothesis, absolutely continuous for almost all co; hence, for almost
all co, each function on either side of the equation (4.3) is determined for every a
and b if it is determined for almost every a and b. It follows that, for almost all co,
the equation (4.3) holds for every a and b.

Theorem 4.3. If the process xh(x, co) is continuous in x for almost all co, then
xb(-,w) serves as the (continuous) derivative of F(-, w)for almost all co.

Proof. The process xh(x, co) is (x, co)-measurable because it is separable and has
continuous sample functions [7, p. 60]; therefore, by Theorem 4.2, xb(-, co) is the
derivative of F(-, co) for almost all co.

Now we give a condition under which the sample functions of a separable version
of x/> are continuous. The condition of Kolmogoroff for the continuity of the sample
functions of a separable process U(x) is: there are positive constants A, k, and e
such that

E\U(x + h)-U(x)\k S A\h\1+e

for all « and x. Putting U = xb and k = 2m, we have the expression for the 2mth
absolute moment of xb(x + h, -) — xb(x, ■):

E\>P(x + h)->P(x)\2m

= (2tt) - 2m lim F       • • • - ■ •        1 (exp [ - iu¡(x + «)] - exp [ - iUjx\)
iV-oo J_w J-nJo Jo    ¡ml

•(exp [/¿v(x + «)]-exp [ivpc])
m m

YJ exp [iUjX(s,) — iVjX(t,)] T'Y dSj dt¡ du¡ dv¡,
í=i i=i

(4.5)
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where s, and 1, are integrated from 0 to 1, and z/, and v, from  — N to  +N,
,/=l,.. .,«7.

The entire discussion depends in no essential way on the choice of the unit
interval as the domain of the stochastic process X(t, co); the results are valid for
an arbitrary interval on the real line: one has only to modify the domain of
integration in (4.1) and in the subsequent integrals.

5. Continuity of the local time of certain processes with 1 S « < 2. Let X(t, co)
be a real valued separable measurable stationary Gaussian process with EX(t) = 0
and EX2(t)=l, and with covariance EX(s)X(t) = r(s—t). Let r(t) be continuous
with the spectral form

/•oo

r(t) = exp (iut) dG(u),
J-oo

where the spectral distribution G is symmetric about zz = 0. In contrast to §3,
where the assumptions were imposed on the covariance, the pending hypotheses
are more conveniently put on the spectral function. Our first assumption is that
the latter has an absolutely continuous component; this implies that there is no
linear relationship among finitely many random variables of the process. Our
second assumption is about the asymptotic behavior of G for large values. Let a
satisfy 1 iSa<2; and let c be the reciprocal of the constant _f"œ du/(l + |w|1 + a);
then we suppose that

(5.1) f"   M2rff|c(i/)-f f"    i/r/(I + |z'|1+a)|l < oo,
J-00 L | J - X |J

where the Stieltjes integral is taken with respect to the absolute variation of the
difference between the two monotone functions. This condition is satisfied, in
particular, if G is differentiable, and

G'(u) = \u\'1-" + 0(\u\3 + ô)        (|w|->oo)

for some S > 0.
Now we analyze some properties of the particular covariance function

(5.2) r(t) = c ¡     e\p(iut)du/(\+\u\1 + a).
J-oo

For t^O
/•oo

(5.3) 2(l-r(t))~ \t\"c \      11 —exp </u)|s|i/| -1
J — 00

(Proof. The left-hand side is equal to
/•oo

c |l-exp(/zv0|2i/z//(l + |zz|1+a);
J — 00

now change the variable: u -* u/t.)

"du.
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For all t, h and all ß<l

(5.4) \r(t + h)-r(t)\ S2hßc ¡     \u\ß du/(l + \u\1 + a).
J — co

(Proof. Apply the inequality \eix-eiy\S2\x-y\e to the integrand of the integral
form ofr(( + «)-r(i).)

For all t, h, I and all ß<l

(5 5)   W'+*.+0-f(í+A)-Kf+')+'(0!
^ \h\s\l\a-ec T   | exp ( — /w) — 11 Iwl-1-«^^.

J — 00

(Proof. The second order difference is dominated by
/•OO

c |exp (iuh)- 11 • |exp («//)-11 • |w| "1 ~" du,
J — oo

which is at most equal to
/•oo

chB Iw^lexpO'«/)-!!-!«!-1-"^;
J — oo

now substitute u/l for u.)
Two more results about the function r(f) in (5.2) are stated in the following

lemmas.

Lemma 5.1. Let s and t be positive quantities converging to 0 in such a way that
s/(s + t)—> ct>0, í/(s+t)-^- t>0; and let h be a nonnegative quantity such that
h/(s + t) -*■ y (finite or infinite); then

(5.6) (st)-"l2[r(s + h) + r(t + h)-r(s+ t + h)-r(h)]

converges toOify = co, and to

(5.7)    c(ot)-«12 T   exp[-¿M(a + y)](exp(/MCT)-l)(exp(-/MT)-l)|M|
J — CO

du

if y is finite.
Proof. Write (5.6) in spectral form, changing the variable of integration from u

to u/(s+t):

(5.8)

/•oo

exp [iu(s+h)/(s+1 )](exp [iut/(s+1 )] - 1 )
J — co

<       r    •   u   , ,\i    n du ls+t s + tY'2.(exp[-,us/(s+t)]-l)s+ (— ■—j    •

The last factor converges to (ctt) al2. For e > 0, the integral over the portion |w| < e
is at most equal to

J__s_ r        u2du
s+t's+t )-es+t+\u\1+a

<e'
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This is negligibly small with e; therefore, in order to complete the proof, we shall
evaluate the limit of the integral over \u\ ê e.

The function

(5.9) (exp[/Ms/(s+z)]-I)(exp[-/zz//(s + z)]-l)/(s+/+|zz|1+K)

converges, for u^O, to

(5.10) (exp(/Ma)-l)(exp(-/z/T)-l)|M|-1-<';

furthermore, the convergence also holds in the mean of order 1 on the domain
\u\ it; therefore, we are permitted to replace the function (5.9) by its limit (5.10)
before taking the limit of the integral (5.8) over the domain \u\£e. The assertion
of the lemma follows: for y = co from the Riemann-Lebesgue lemma, and for
y<co, from the continuity of the Fourier transform of an integrable function.

Lemma 5.2. Let X(t), OStSt, be a process with the covariance function (5.2);
then the determinant of the covariance matrix of the standardized random variables

is bounded away from 0 on the subset of the cube in n-space:

(5.12) {(tx,...,tn):0S tx<---<tnSl}.

Proof. The determinant is strictly positive on the set (5.12): if it were not so,
then there would be a linear relation among the random variables X(t,), contra-
dicting the absolute continuity of the spectrum. To prove that the determinant is
bounded away from 0 we shall show that if it converges to a limit along a sequence
converging to a point on the boundary of (5.12) outside the set, then the limit is
positive. Such boundary points are those with 0StxS ■ ■ ■ StnS 1 with at least one
equality between /'s.

Our goal is equivalent to proving: if the joint distribution of the random
variables (5.11) converges to a limiting distribution (necessarily Gaussian) as one
or more of the differences tj+1 — t, tends to 0, then the limiting distribution is
nonsingular. From a sequence in (5.12) converging to the boundary we can, by
compactness, extract a subsequence for which the points tx,..., tn and the ratios
(tj+x-t,)l(tk+i — tk) all converge to limits, finite or infinite; therefore, we shall
assume that the original sequence also has this property. As a point in (5.12) moves
toward the boundary the differences t} + x — t,-may be of varying order of magnitude.
By (5.3) the denominator in (5.11) is asymptotic to a constant multiple of
\t,+ x — t,\al2 as the difference tj+l — t, tends to 0. Each standardized increment in
(5.11) for which tt+i —1,-*-0 has limiting correlation 0 with every increment for
which lJ+x — t, is bounded away from 0, and with X(tn); this follows from (5.4)
with ß selected so that a/2<ß< 1. If t,+ x — t, and tk+1 — tk both tend to 0 but the
ratio of the former to the latter tends to 0, then the corresponding standardized
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increments have the limiting covariance 0; this follows from (5.3) and (5.5) with
h = tj+x — tj, I=tk+x — tk, a/2</8< 1. The final case to consider is when two differ-
ences tend to 0 and their ratio converges to a positive finite limit. Suppose tj+x < tk.
lf(tk — tj+x)/(tj+ x — t,) -> oo, the limiting correlation of the corresponding increments
(5.11) is 0; this follows from Lemma 5.1 with y = oo, s = tj+x — tj, h = tk — tj+x. If
(tk-tj+x)/(tj+i-tj) has a finite limit, the corresponding covariance converges to a
limit determined by Lemma 5.1. It is only in this last case that nonzero limiting
covariance arises among the increments in (5.1); we shall show that the limiting
joint distribution of such increments is nonsingular.

For the proof it is sufficient to show: if tx<t2< ■■■ <tn, tn — tx^-0, and the
limits

t¡ = lim (tj+x-tx)/(tn-tx),      j= 1,...,«-1,

satisfy 0<tx< ■ ■ ■ <Tn_i, then the limiting distribution of the increments (5.11)
is nonsingular. By Lemma 5.1 the limit of the correlation of X(tj)— X(tj+X) and
X(tk)-X(tk+X)is

J'-oo (exp (iuTj+x)-exp (wTj))(exp (-iurk+t)-exp (-/«Tfc))|M| -1-" du

jr00ii-exp(A/)iaH-i-»iô/-|T/+1-TyHifc+1-Tfcr

We claim that the limit correlation matrix is nonsingular. Let vx,.. .,vn.x be
complex numbers such that

(.00 71 —J.

J - oo     ,• = i

¡>"»( J. 1 _ ¿>"<«.

- I or/2
/il |'/+1 — Ti\Tij

then, the integrand vanishes for almost all u,  or, equivalently, the function

2 v, | t,+i - Ty| - °"2      " ' exp (iuy) dy
i=i J'j

vanishes for almost all u. The latter is the Fourier transform of the function
taking the value vJ(rj+x — Ti)~a'2 on tTí» Tj+i]\ thus> the transform vanishes for
almost all u only if ^ = 0 for ally; therefore the matrix is nonsingular.

It follows from the analysis just completed that the joint limiting distribution of
the set (5.11) is a product of nonsingular Gaussian distributions; so it is non-
singular.

The essential results for the particular covariance (5.2) are now extended.

Lemma 5.3. Let X(t) be a stationary Gaussian process whose spectral distribution
G satisfies all the conditions up to and including (5.1); then its covariance satisfies
(5.3) and the conclusion of Lemma 5.2 holds.

Proof. Put 2(1-r(t)) in spectral form as the integral of |1 -exp (iut)\2, and
write dG(u) as

(5.13) cdu/(l + \u\1+a) + [dG(u)-cdu/(l + \u\1 + a)].
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The integral with respect to the second term of this differential is, by condition
(5.1) and the inequality 11 —eix\ S \x\, of the order z2; therefore (5.3) holds.

The decomposition (5.13) implies that the covariance of X(t,)—X(t,+ 1) and
X(tk) — X(tk+X) differs from that for the particular process with covariance (5.2) by
a quantity of the order \t,+ x — tj\-\tk+1 — tk\, which is of smaller order than the
product of the standard deviations. A similar result holds for the covariance of
X(tn) and an increment X(t,)— X(t,+ 1). It follows that the limiting nonsingularity
established in Lemma 5.2 holds also for our process.

Before stating the main theorem, we derive an inequality for the characteristic
function of the multivariate Gaussian distribution. Let (Xx,..., Xk) be a random
vector with a multivariate Gaussian distribution with mean vector 0 and covariance
matrix (rif) with determinant |rtffl >0. (We refer to [4, p. 310] for definitions and
fundamentals.) The joint characteristic function of (Xx,..., Xk) is given by

(5.14) Fexp [i(u1X1+ ■ ■ ■ +ukXk)] = exp I --  2   r„UiU,l

Let ch be the cofactor of the diagonal element rhh of(r¡,); ch is positive because it is
a principal subdeterminant of ||ri;||, «= I,.... k. The conditional distribution of
Xh, given all the X,, l+h, is a univariate Gaussian distribution with (conditional)
mean E(Xh \ Xhl^h) and (conditional) variance llfyH/Oi; thus, the conditional
characteristic function of Xh, given Xh Ij^h, is given by the formula

(5.15) F(exp [iuXh] \ X„ I # h) = exp [iuE(Xh \Xltl+ h)-\u2\\r,,\\lch}.

The following is a result about positive definite quadratic forms.

Lemma 5.4. Let (r¡,) be a kxk nonsingular positive definite symmetric matrix and
ch the cofactor of the element rhh ; then

k k

2 W, £ IM-Ar1 J («?/<•,)
1./-1 ; = l

for all vectors (ux,..., uk).

Proof. Let (Xx,..., Xk) be a random vector with a multivariate Gaussian dis-
tribution with mean vector 0 and covariance matrix (ru). Using a standard con-
ditioning process on the joint characteristic function, and the formula (5.15), we
obtain

Fexp Í/2MÍ = FÍF/expr/^VG] \Xi,l¿h\]

= FÍexp íz 2 «;*,lF(exp [iuhXh] \X„I* «)j

= FJexp [/ 2 u,X,-~u2h\\r„\\¡ch + iuhE(Xh \Xul* //)]]•

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



294 S.  M.  BERMAN [March

The expressions above are, by (5.14), real and positive, and the last is dominated
by exp ( — ii/ft ||riy||/cft); in other words, it has been shown that

exp(~2  %   Wt) - exP(-iM*llriill/cft)'       h = I» •■■»*.

or, equivalently,
k

2  Wi = KKK,       h = l,...,k.

The left-hand side of the above inequality is independent of«; hence, the inequality
asserted in the lemma follows by averaging over «= 1,..., k.

Theorem 5.1. Under the conditions up to and including (5.1), there is a local time
</>(x, co) continuous in xfor almost all co.

Proof. We evaluate the expectation (4.5) for this particular process, showing
that the continuity criterion is satisfied. Put n = 2m; then E\xb(x+h) — xb(x)\n is
dominated by

(1/2*)« I*- ■ ■ f P  • • ■ P   fl I1 ~exP (M)l4exp I i 2 "t*(*i))
JO JoJ-oo J - ao   ]=X L V    / -1 /

n du, dt,.

Let 8 be a positive number less than 1 ; its magnitude will be more exactly deter-
mined below. By the inequality |1 — eix\ ¿2|x|a, the above expression is bounded
by hn6(lJTr)n times the integral

¡>X rX    /•» (»oo        n /       n \

(5.16) ... •••        ni«/l4^ exp   i 2 aW
JO JO     J - CD J-OOj-1 1_ \      j - i j

n du, dt,.

The continuity condition is satisfied if there is a sufficiently small S>0 and a
sufficiently large « satisfying «S> 1 such that the integral (5.16) is finite.

It will be shown that the integral (5.16) is finite for all «^2 if

(5.17) 8 < (l/«)-(l/2).
For this purpose integration over the unit cube (with respect to tx,..., tn) may be
replaced by integration over the subset (5.12). Put

o2 = 2(1-r(t,+ x-t,)),       j= l,...,n-l,

and change variables in the inner multiple integral:

«i = Vifoi,   u, = Vj/oj-Vj-i/o,.!,      j = 2,...,n.

Under this transformation the integrand takes the form
n-l n

kiMi" 11 ",ri n ^Pi-vi-xioi-xv>=i i = 2

■ £{eXP     ' \ WT'Wi) - *('/+!» + VnX(Q   X
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By the inequality |x->'|íá |x|ó+|y\6, this is dominated by a linear combination
of terms of the form

iïV-Mnwv«pM S w
> = 1 1 = 1 L      L i.k=l

where the variables 9, assume at most the values 0, 1 and 2, and where (ri}) is the
covariance matrix of the random variables (5.11). Apply the inequality of Lemma
5.4 and integrate over vx,..., vn: the integral is dominated by a constant multiple of

(5.18) n ^'-jí n (2«o,/im)(v+i"z;
i=l h=l

indeed, when the quadratic form in the exponent is replaced by the weighted sum
of squares, the integral becomes a product of« (elementary) integrals. The principal
subdeterminants ch are all bounded by 1 ; by Lemma 5.3, ||r(i|| is bounded away
from 0 on the domain of integration. It follows that the function (5.18) is bounded
by a constant multiple of Fli^i1 a'1'20. The latter is integrable over (5.12) if 8
satisfies (5.17). This completes the proof.

6. Local times and first passage times. We use the local time to derive some
apparently new inequalities for first passage times of stationary Gaussian processes.

Lemma 6.1. Let X(t, m), 0 S t S 1, be a separable stationary Gaussian process with
local time </>(x, co) such that X(t, co) and<f>(x, co) are continuous in t and x, respectively,
for almost all co. The probability that x is not in the range of AY •, co) is less than or
equal to the probability that <f>(x, co) is equal to 0.

Proof. The complement of the range of a continuous function on a compact set
is open; thus, if x is not in the range of X(-, co), the latter spends no time in some
neighborhood of x; hence, the local time must vanish almost everywhere in this
neighborhood, and, as a continuous function, the local time vanishes at x itself.

Corollary 6.1. Under the hypothesis of the lemma and the condition (3.2) the
probability that x is not in the range of the sample function is not greater than

(6.1) f   f  (l-z-2)-1/2exp(z-x2/l+z-)¿/síft-l,
Jo Jo

where r = r(s — t).

Proof. We use a variant of the Chebyshev inequality employed by Cramer [5]:
For any random variable Y with finite variance, we have F{ Y= 0} S Var ( Y)/(E Y)2.
We choose the particular version ^(x, w) of </>(x, w) as constructed in Theorem 4.1,
and put Y=tfi(x, w):

Eftx) = exp [-(x2/2)]/(27r)1'2,

£02(x) = (1/2tt) f   f (l-r2)'li2exp [-x2/(l+r)]dsdt,
Jo  Jo

where r = r(s-t). Direct substitution in the above inequality yields the bound (6.1).
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In view of the closing remarks of §4, we note that Lemma 6.1 and Corollary 6.1
can be extended from a process on the unit interval to one on an arbitrary interval
[0, t]: the domain of integration in (6.1) has to be changed to the square [0, /] x
[0, /], and the integral divided by t2. As an application, we obtain an upper bound
on the probability that the process does not assume the value 0 anywhere in [0, /]:

r»P f [(l-r2(sx-s2))-il2-l]dsxds2.
Jo Jo

This is certainly not greater than

(6.2) (2/t) j\(l-r3(s))-™-l]ds.

If the process is ergodic, then, as a consequence of the ergodic theorem, the process
must eventually pass through 0; thus, the probability that there are no zeros in
[0, /] converges to 0 as t ->oo. In the ergodic case, the bound (6.2) converges to 0
as / -> co. To prove this, we recall our assumption that r(t) is bounded away from
1 outside a neighborhood of / = 0; then, by the law of the mean, (1 — r2)~112 — 1 is
bounded by a constant multiple of r2 for all />0 outside a neighborhood of the
origin; therefore, the convergence of the expression (6.2) to 0 is implied by the
condition

lim/"1 f r2(s)ds = 0.
«-»» Jo

This is exactly the condition for ergodicity.

7. Multiplicity of the values of the sample functions.

Theorem 7.1. Let X(t, co), 0 S t S 1, be a separable stationary Gaussian process
with continuous sample functions and with a continuous local time. Then the set of
values x where X( ■, co) crosses x at most finitely often is of category 1 in the range
of X(-, co) for almost all co.

Proof. For each «, no two of the values X(k2~n, co), k = 0, 1,..., 2\ are the
same for almost all co; thus, the hypothesis of Theorem 2.1 is fulfilled.

8. The values of unbounded Gaussian sample functions. There is an inverse
relationship between the regularity of the sample functions of Gaussian processes
and the regularity of the sample functions of their local times: the former is
enhanced by the quick approach of r(t) to 1 for / -> 0, and the latter by the slow
approach. In this section it will be shown that the local time is an analytic function
ifr approaches 1 slowly enough; in this case, the sample functions of the Gaussian
process are not only unbounded but even spend positive time in every set of positive
Lebesgue measure (cf. §1).

There are well-known results relating the analyticity of a characteristic function
to the rate of decrease of the tails of the corresponding distribution function [10].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] LOCAL TIMES OF STATIONARY GAUSSIAN PROCESSES 297

These results can also be derived in the other direction : If the characteristic function
tends to 0 rapidly enough at infinity, then there is a strip in the complex plane
containing the real line such that the density of the distribution function exists and
may be extended to an analytic function in the strip.

Lemma 8.1. Let </>(u) be the characteristic function of a distribution function F(x)
such that

(8.1) exp (ub)\$(u)\ du < oo

for some b>0. Then F(x) has a density function </>(x) which may be extended to a
function </>(z) of a complex variable z, analytic in the strip |Im z\ <b.

Proof. The proof is analogous to the one given in [4, p. 176], so that we omit
the details. We formally define the function </>(z), z complex, as

</>(z) = x- exp (izu)<f>(u) du.Irr J_œ

Condition (8.1) guarantees the absolute convergence of the integral, the expansion
in power series of the exponential and term by term integration, and analytic
continuation, all in the infinite strip |lm z\ <b. We also use the fact that

\4(u)\ = \4(-u)\.
The condition (8.1) can be put in a form more suitable for our purposes:

Lemma 8.2. The condition (8.1) is satisfied if

(8.2) I"" exp (4ub)\$(u)\2 du < oo.
Jo

Proof. Write the integral in (8.1) as

(exp (2Hz3)|<¿(w)|)(exp (-üb)) dus:
and apply the Cauchy-Schwarz inequality.

Theorem 8.1. Let X(t,w), OStSh be a stationary Gaussian process whose
correlation function r(t) satisfies the condition

(8.3) lim inf|log|i | |(1-/■(/))> 0.
¡-.CO

Then, for almost all co, there exists a version </>(x, co) of the local time whose sample
functions have analytic extensions to a strip in the complex plane containing the real
line.

Proof. Let </>(u, co) be the characteristic function of F(x, co) for each co. We shall
prove that for some b>0, j¿ ™ exp (ub)\<j>(u, co)\2 du<cc for almost all co. (Lemmas
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8.1 and 8.2 then imply the conclusion of the theorem.) It suffices to show that the
expected value of the above integral is finite: and the measurability of X(t, w) in
(/, to) implies the sufficiency of showing that

(8.4) f   exp (ub)E\4>(u)\2 du < ce.
Jo

By definition, the integral in (8.4) is equal to

f   exp(wA) f   |   E exp (iu[X(t)- X(s)]) ds dt du.
Jo Jo  Jo

which is equal to

(8.5) Pexp(u6)f   f  exp (-u2[l- r(s -t)])ds dt du.
Jo Jo  Jo

Interchange the order of integration and apply the formula

P   exp [ub-u2(l -r)] du = [rr/(\ -r))112 exp [b2/4(l -/■)]:
J  — CO

the integral (8.5) is dominated by

(tt)1I2{   f  (I -r(s-t)Y112 exp [b2¡4(1-r(s-t))]dsdt
Jo  Jo

= 2(tt)- 1i2 f  (1 -/)(1 -r(t))112 exp [b2/4(l -r(t))] dt

S 2(7t)12 f  (1 -r)"1'2 exp [b2/4(\ -r(t))] dt.

The finiteness of the latter integral depends only on the values of/•(/) for small /;
therefore, by condition (8.3) it is implied by the finiteness of the integral

C t-»*:B(-\og\t\)112 dt

where F=4 lim inf£^0 —log |/|(1—r(?)). This integral is certainly finite if b2<B;
hence, the condition (8.4) holds for such b>0.

A process with an analytical local time has very erratic sample functions: the
process spends positive time in every set of positive measure. This is seen as follows.
Suppose A is a measurable set. The amount of time spent in A is the integral of the
local time over A. If the integral is 0, then the local time must vanish almost every-
where on A; if, in addition, A had positive measure, then the local time would
vanish on a set of positive measure; hence, as an analytic function, the local time
would vanish everywhere. This contradicts the fact that the integral of the local
time over the whole line is necessarily 1 ; therefore, we conclude that A cannot
have positive measure; therefore, it must have measure 0. We have shown that
if the process spends 0 time in a measurable set, then the set must have Lebesgue
measure 0.
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The results above are valid if [0, 1] is replaced by an arbitrary interval; hence,
for each nonempty open subinterval /of [0, 1] with rational endpoints, there exists
an tu-set N, of probability 0 such that X(t, co), t e I, spends positive time in every
set of positive measure for co outside N,. It follows that if co is outside (J N, (union
over all / with rational endpoints), then the inverse image of a set A of positive
measure under the function X(t, co), OStS I, intersects every / with rational end-
points in a set of positive measure. Since every subinterval of [0, 1] is a monotone
limit of one with rational endpoints, the last result is valid for every interval /.
We conclude: For almost every sample function, the inverse image of a set of
positive measure has an intersection of positive measure with every nonempty open
subinterval of [0, 1]. Since almost every sample function is a measurable function
of /, we have arrived at a probabilistic proof of the theorem of Carathéodory
[3, p. 214].
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