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Introduction
The present paper arose out of an earlier draft, submitted in 1954 under

the title Homotopy and singular homology in "local" topology, whose purpose
was to consider relationships between the local groups occurring in the Vie-
toris, singular and homotopy theories. The referee suggested that the local
"C" and "D" groups occurring in the theory and defined in [5] and [6] (here-
after referred to as LTI and CTM respectively), were not "functorial" in
the sense that the isomorphisms connected with them were merely "ab-
stract," not induced by maps of one space into another and so not natural.
He outlined a new approach using inverse and direct systems of groups, and
in many cases the limits of these were isomorphic to the corresponding "C"
and "D" groups; but in some cases the limits gave the "wrong" results. To
overcome this, he suggested the idea of a stable system, where to postulate
stability is to postulate something rather stronger than, but often equivalent
to, existence of the "C" and "D" groups. (In locally Euclidean spaces and the
generalized manifolds of Wilder [15], stability occurs at each point in each
dimension.) We have therefore re-cast the whole of our previous theory in
terms of these new concepts, thereby obtaining a more harmonious theory
than before; and many of the results of the earlier draft together with
analogues of results in LTI and CTM are here obtained. The plan of the paper
is as follows. There are four sections: in §1 we prove all the basic results we
later need on inverse and direct systems of groups, concerning their "stability"
under mappings of various sorts. §11 is devoted to a discussion of certain
relationships berween Singular and Vietoris homology. In §111, we derive
certain results concerning homotopy, which are applied in §IV with the
earlier ones to prove theorems concerning the local groups there. Corollaries
of theorems in II and III give useful global results of the form:—if XCY,
then under certain conditions and with different values of the functor G,
the image of the injection G(X)—>G(Y) is finitely generated (see 2.33,3.14,
3.15). §IV is concerned essentially with three matters: first the proof that the
Wilder manifolds, as mentioned above, have the stability property; second,
implications between the various types of local connectivity, with some
pathology; and third, proofs that for Singular and Vietoris homology, all the
local groups we define (using stability) give the same end-product, i.e. the
same class of manifolds,—with a similar but more restricted result for ho-
motopy. Moreover, a "local" theorem of Hurewicz type is proved in 4.35.
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I. Abstract theorems on inverse and direct limits
In this section we shall prove several theorems on Inverse and Direct

limits of groups. When given topological interpretations, these theorems will
become the topological theorems of the later sections. We shall normally use
the notation and terminology of [4, Chapter VIII ] (in future we denote this
reference by E-S).

1.1. Let M be a set directed by ^ and let (P, P)m or simply (P, p), be
an inverse system of groups P« and homomorphisms p„: Pp-^>Pa, for each
a, 8 in M such that a^8. By definition

(i) p„ — identity on Pa, all a E M,
B y

(ii) pao pp = pa, if a t% B g y in M.

Hence, if in M, a, 8, y, 8 satisfy

(iii) a^/3^7,        a ^ 5 ^ y

we have a diagram

Py-+Ps
|   \   1

Pp-^Pa

and using (ii) twice we have
7 i  t        0  t

pa  =   papS   =   Papp,

i.e. the diagram is commutative.
In the interpretations, the p's will usually be injections of homology or

homotopy groups, and for our purposes it is the images of these which are
important. We therefore now consider the groups

(iv) Ppy = pypPy C Pp.

From the above diagram we obtain

Pay = plPy - pi(pJPy) (by (ii))
Q piPh

and so

(V) Pay C  Pap.

Moreover, write temporarily

qa   = pa\ Pay,

so that
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Py p   7
qa Ppy   =   PappPy

y (by (n))
— papy

=   Pay.

Thus

By
(vi) the homomorphism qa ■ Ppy —* Pay is onto.

Further, by (v) and (vi)

By
qa Pay =  Pot CI Pah,

and so we can write
By

(vii) qa : Ppy —> Pat-

Hence, if X, pEM satisfy X^5, p^a, p^\, then

<?„ '■ Pas —* Pu\

and
By

qn : Pey —* Pu\,

and one can verify that
By ai       By

(viii) oM   = qu o oa .

For typographical reasons, we shall denote the Inverse limit of the system
(P, £) by

Ilim(P, p).

Now, this limit depends not so much on the actual groups P„ as on the images
of the form Pap. This causes us to consider the set M of pairs (8, y), with
B^y in M, and we make M into a quasi-ordered set by writing (a, 8) ±s(8, y)
whenever (iii) holds, so that then we can form the above diagram. Since M
is directed, it can be verified that ~M is directed also. Next, for each pEM,
of the form p = (B, 7), define

(ix) Ptt   =    Ppy

and for each pair X^/u in M, with \ = (a, 8), take

(x) pl: Pu - Px

to be the homomorphism in (vii), i.e.

u 0y
p\ = qa : Ppy —* PaS-

Condition (i) holds for p~ since it holds for p, of which p is a restriction. Con-
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dition (ii) holds for p~ by (viii) above; and #1 is always defined if X^u in M.
Hence (P, p) is an inverse system over M. Moreover, we can identify M
with the diagonal of M by means of the correspondence a—>(a, a). Since M
is directed, it follows that Mis cofinal in M. But, by (i), Pa=Paa, and there-
fore there is a natural isomorphism

(xi) Ilim(P, f)s « Him(P, p)M-

The previous discussion shows that the homomorphisms p in (ix) are either
inclusions or onto; hence the system (P, p) is "tidier" than (P, p).

(P,P) = (P,p).
Thus repetition of the construction of (P, p) from (P, p) yields nothing new.

1.2. Stability. Recall that a subset A of a directed set (B, ^) is cofinal
in B, written A cof B, whenever given 8GB there exists aGA with /3:2a.
Define the saturation A' of ^4 to be the set of all 8GB, such that there exists
aGA and a^8. Clearly A QA' and if A cof B then .4' cof B also.

With (P, ^) on I as in 1.1, we shall say that "(P, p) is stable rel A" if
and only if A is a cofinal subset of M, and for all X, uGA with \^a then

(i) fx: P, » Px.
In this event, of course,

(ii) Ilim(P, p)u « Ilim(P, £)A « P\, X <E A.
Clearly,

(iii) if AQA and A cof M, then (P, p) is also stable rel A.

1.21 Theorem. If (P, p) is stable rel A, then it is stable rel A'.

To prove this result we need the

1.22. Lemma. // \^p^v in M, and X, vGA, then px and p*^ are isomor-
phisms.

Proof. Let X = (a, 8), v = (y, 5), n=(a, t). Then we have a commutative
diagram

a      (a, b)      b
(a, 8) <-«-1-Z^

(a,r)*-(<r,T)   /
e   /       /

,,     /h   / i

d  f/
(«, J8)lr
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in which p\ = h, p"u = g, etc. Then (dc)(ab) -i, by l.l(ii); but i is an isomor-
phism, by stability, (dc) and (ab) are a monomorphism and epimorphism
by 1.1 (v) and (vi), and so each is an isomorphism. Hence a, b, c, d are allO)
iso, since o, 6 are epi, and c, d are mono. Also by 1.1 (ii) hg = i, whence g is
mono, and h epi. Next, eg = cab, and so eg is epi whence the monomorphisms
e, g are each iso. Finally, since h — dc, and d, c are iso, so is h. This completes
the proof of the lemma.

The proof of Theorem 1.21 now proceeds as follows. We have to show
that given X, pEA.' with \^p, then p£ is an isomorphism. By definition of
A", there exists a^X in A, and since A cof M, there exists y with m=y£A.
Then

p«p\pu = pa

and pa is iso by stability on A, while pa and pyu are iso by Lemma 1.22. Hence
px is an isomorphism as required. Thus, the theorem is established.

If pEM, let A„ denote the set of all X£A with p:^X. Then a Corollary
of 1.22 is immediately

1.23. Lemma. // (P, p) is stable rel A, and A cof M, then for each XEA,
(P, p) is stable rel Ax.

Thus, given any two cofinal subsets of M, then if (P, p) is stable on one,
it is stable on "almost the whole" of the other. Hence the stability is essen-
tially independent of the cofinal subsets of M, and from now on we can say
merely that (P, p) is stable.

1.3. Direct limits. Let [P, p) denote a direct system of groups P" and
homomorphisms pa: P"—>>PB on the directed set (M, :§). Thus, by definition,
pa is defined whenever a^B; and l.l(i) and (ii) are replaced by

a tt
(i) pa ~ identity on P , all a £ M;

7   0 7
(h) pBpa = pa, it a S B ^ y in M.

By analogy with the treatment in 1.1, we define

aB B     a B
P     = paP   C P , (a£P)

qlB = pl\Pa\ (a£l3^y);

and then using (ii) it can be verified that we get, when a£B£y,

(iii) qap: P   —* P    is an epimorphism,
(iv) PayQP?\

(l) For brevity, we define "9 is epi, mono, or iso" to mean that* is respectively an epi-
morphism, a monomorphism, or an isomorphism.
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Note that these are the "duals" of l.l(v) and (vi), respectively, in the sense
of MacLane [12].

With M as in 1.1, we now form a new direct system, \P, p} on M by
taking

r = P'\        M = 08, 7),
Pl = ql,:t-,r

whenever Xg/i in M, and X=(a, 5); and recalling that (a, 8)^(8, y) means
that (iii) of 1.1 holds. As before, we have, from (iii) and (iv) that repetition
of the construction of {P, p} from {P, p] yields nothing new;

{P,p} = {P,p},
and we identify M with the diagonal of H, and use (i) to write Pa = P<*a.
Hence there is a natural isomorphism of the direct limits

(v) Dlim [P, p}M « Dlim {T, p}jj.

By analogy with 1.2 we say that \P, p} is "stable rel A" if and only if
A is a cofinal subset of M such that whenever X, uGA and X ̂ u, then

(vi) £: Px « P„.

We then have

1.31. Theorem. The statements of 1.21, 1.22 and 1.23 hold whenever (P, p)
is replaced throughout by {P, f}.

Proof. Using the same inequalities in M as in the original proofs, we ob-
tain the same diagrams as before, except that the directions of all arrows are
reversed while inclusions and epimorphisms are interchanged (by (iii) and
(iv)). Hence, by the "duality" described in MacLane [12] the theorem fol-
lows.

1.4. Mappings of systems. In locally compact spaces, one often obtains
commuting diagrams of groups and homomorphisms of the form

GX -*   Gy

Kx \    /      \. riy

HX—>  Hy

for each pair x, y with x<y in some ordered set. The G's and 77's may form
either an inverse or a direct system over the set, and one wants to conclude
that the jfe-homomorphism induces an isomorphism of lim GX on lim Hx. In
this paper we shall need two particular theorems of this sort, and both are
for inverse systems; but the omitted proof of 2.32 below requires both 1.42
and its analogue for direct systems.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1958] LOCAL TOPOLOGICAL INVARIANTS, II 207

1.41. Let then (P, p), (Q, q) be inverse systems over If with the property
that, for each aEM, there is a homomorphism cp„: Pa—*Qa satisfying

B B
(l) qa<t>B   —   <Papa,

whenever a ^8. We then say that there is a homomorphism cp: (P, p)—>(Q, q);
and [4, p. 223] there results an induced homomorphism

(ii) <b„:Ilim(P, p)-+Ilim(Q, q)

defined for each {x«} £Ilim (P, p)t by

<P*,{xa]   =   {cbaXa}-

Further, if (a, 8)EM, then P«^CP„ by definition, and

cba(Pap)   =  4>apaPB  =   AjP/3 (by  1.41)
B

^ qaQa  =   QaB-

Thus, for each X ̂ p in M, cp induces homomorphisms

(hi) ^Px-^Qx,       $u:Pu->Qu
such that, using 1.41,

(iv) q\$u = $\Pi.

Let J denote the set of integers >0, directed by the natural ordering Sj.

1.42. Theorem. Let (P, p), (Q, q) be inverse systems over J, and letcp: (P, p)
~*(Q, <z) be a homomorphism. Suppose that for each jEJ, there is a homo-
morphism \{/j: Qj+i-^>Pj such that the diagram

P

<Pii \ l*y+i
Qi*-Qi+i

o

commutes (where p = pj+1, <z = gj+1). Then

cbx: Him (P, p) « Ilim (Q, q).

Proof. To prove cpx has kernel zero, suppose ^{xy} =1, for some {xy}
GIlim (P, p). Then since cpx{xj} = [cpjXj], we have <pyXy=ly (the unit of Qj)
for all j. Hence

l^y+iXy+i = 1/ (unit of Pj)
= pj    Xj+i

by the commutativity of the diagram above. By definition of {xy}, pj^Xj+i
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= Xj. Hence for all j, Xj=lj, and therefore \Xj} is the unit of Him (P, p),
i.e. 4>°o is mono as required.

To prove that <j>x is epi, let y,£llim (Q, q). We define Xi, x«, ■ ■ ■ , x,-, ■ ■ • ,
inductively as follows. Put Xi=\f/iy2, so that

<t>ixi = </>i^iy2

2 .    .
= qO'i by commutativity

= yi by definition of yj.

Now suppose that Xi, ■ ■ ■ , Xj-i have been defined to satisfy

Xi G Pi,        <t>iXi = y„ 1 £ « £ i — 1

and

Pi   xi+i = Xi, 1 S* * </ — 1.

Define Xj to be ^yJ+i, so that XjGPj and <f>jXj=<f>j\l/jyj+i—q>t+1yj+i by com-
mutativity, = Tj by definition of {y,}. Hence, the inductive definition of x,
is justified, and

Xi G Him (P, />)    and    ^{a:,}  = {0,x.}  = {y.}-

Thus </>oo is epi, and the proof is complete.
A stability theorem. A "stable" form of 1.42 is the following result.

1.43. Theorem. Let (M, ^) be directed by <, let (P, p), (Q, q) be inverse
systems on M and let <£: (P, p)~^(Q, q) be a homomorphism. Suppose that for
each a, 8GM with a<8, there is a homomorphism

&ZQe -»P.
so that the diagram

p

*              \
Qa<-~Q,

1

commutes, i.e.

(i) ^-<t>e = Pa,

and
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p        p
(ii) Cbata  =  qa-

Then, if A, B cof M, and if (P, p) is stable rel A, there is a subset A cofinal in
the saturation A' of A, such that (Q, q) is stable rel A; and conversely; and the
inverse limits of the two systems are isomorphic.

Proof. Consider the diagram

?&-*— Ppi-Py<-P,

r       ^\        <b o\        cr x\ P

Qa*-Qb*-Qy*-QhQ r

where a<8<y<8 in M; these latter exist unless M is empty (when the
theorem has no content) since M is directed by <. Then

iqQy = HBQy by (ii)
= pBQy by (i)
C pPp  =   Pap.

Thus by restriction, ip induces a homomorphism if/': Qpy—*PaB-
Now suppose that (P, p) is stable rel A. We construct a ACJlf such that

(Q, q) is stable rel A as follows. Choose (a, a')EA and define A to be the set
of (8, 8)EM for which there exists y with

a ^ a' < 8 < 7 < 8;

it is easily verified that A cof M and (since (a, a') g (8, 8)) that ACA*. Hence,
by 1.21, (P, p) is stable rel A. Moreover, (a, a')i^(a, 8)^(8, y) and so
(a, 8), (8, y) EA' since (a, a') EA. Hence there is an isomorphism p: Pap—+Ppy,
so that by (i) xf/'cp'' ~P, where ^' is defined above and—using 1.41 (iii)—cp\Ppy
=</>': Ppy—>Qpy- Therefore cp' is mono and \j/' is epi. Similarly, since M is
directed by <, we have on putting cpB=cp\Ppi, that

(a) <t>o:Pps-+Qps

is mono. We assert that cp0 is also epi. For, from the above diagram,

Qb{ = qrQs = qcrxQi = <PsxQt Q 4>sPy = cbPpy,

while by stability and 1.21, Ppy=PpS because (a, a')^(j3, 7)^08, 8) in A«.
Therefore Qp&-cpPpi=cpoPps, which proves <p0 to be epi. Thus we have shown
that for each X(EA, the maps $x of 1.41 (iii) are isomorphisms; and hence by
the commutativity relation 1.41 (iv), q~\ is an isomorphism if X^/x in A, since
<2>x, $u and px are. Hence (Q, q) is stable rel A and by 1.2(H) cp induces an iso-
morphism Him (P, p) «IIim (Q, q) as required.
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To prove the converse, assume that (Q, q) is stable rel A. Since (a, a')
^ (a, 8) g (8, y) by the above inequalities, then (a, 8), (8, y) are in As. Hence
there is, by 1.21, an isomorphism q: Qpy-^>Qafs, so that with \p': Q$y^>Pap as
above and d>i = T\PaB (see diagram), we have d>iip' = q, by (ii). Similarly there
is an epimorphism </>0: Ppj—»(?#, which we shall now prove to be mono. For,
suppose </>0* = 0, xGPps- Then x = st(y) for some yGPs, and so from the dia-
gram we get

0 = 4>ost(y) = qrp(y).

But (a, a') g(B, 5) g (7, 5), so that (8, 8), (7, 5)GA«; hence by 1.21 and the
stability of (Q, q) rel A8, rp(y) =0. Thus

0 = rp(y) = al(y) = 0*t(y) = st(y) by (ii),

whereat <po is mono, as required. We have proved, then, that <p induces iso-
morphisms Px~Q\ for each XGA, and hence by the commutativity relation
1.41 (iv),  (Q, q) is stable rel A; and then <j> induces an isomorphism

Ilim (P, P) « Ilim (Q, q).

This completes the proof of the theorem.
1.5. Non-Abelian groups. For application to the local Fundamental groups

on a space, we shall need the following result. Let cp': (P, p)-^(Q, q) be as in
1.41, with the additional properties that for each aGM,

(i) Ker <pa = [pa, Pa]

= commutator subgroup of Pa;

(ii) Im (j>a = Qa,

(thus, Qa is Pa made Abelian). Then

1.51. Theorem. If (P, p) is stable rel A there exists a subset A cof M, such
that (Q, q) is stable rel A, and

Ilim (Q, q) is Ilim (P, p) made Abelian.

(The converse is false: see 4.37 below.)
Proof. Consider the diagram

C0Q p^Qf,
Pi     4<?

CyQPy-+Qy
P'i i

CSQPS-+ Qs

where 8 ̂ 7 ^8 in M and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1958] LOCAL TOPOLOGICAL INVARIANTS, II 211

Cp = [Pp, Pp],        6 = <pp etc.

As in 1.41 (iii) we have a homomorphism

cbyp: Pyp —» Q70.

Then 0T/3 is onto; for, any element u in Qyp is of the form qx, xEQb, while
x = 6y for some yEPp (by (ii)), so that

u = qdy = cbpy (by 1.41 (i))

= <M/>;y)>
which establishes the assertion.

We shall now prove

(iii) if there exists p E M such that y ^ p ^ B then

Ker <pyp = [Pyp, Pyp\.

For let vEPyB be such that 0.^ = 0. Then v is of the form pw, w£Pa, so that

0 = 4>yppw = cbpw,
whence

^GO (by(i)).
Therefore pw is of the form

pw = [xi, yi][x2, y2] • • • [xn, yn] = H[x,-, yt],

where xit ytEPy, 1 ̂ i^n. Hence

(iv) P'p™=n.[p'xi,p'yi].
Fix (a, a')EA, and suppose a' ^5. Then (a, a') = (5, 7)S=(o\ /3), and so
(5, 8), '(8, 7)GA"; then by 1.21 and the stability of (P, p), the inclusion
PspQPsy (see 1.1 (iv)) is an equality. Hence there exist ait btEPp such that

p'xi = p'pai,       p'yi = p'pbi (1 g i ^ «).

Therefore (iv) becomes

(v) #'#w = P'(T[[F«» #&<)]■
Now, by definition of p in (iii) we have (a, a') ^ (5, 8) ^ (7, (3); hence by 1.21
the epimorphism

ir: Pyp —> Psp

defined by ir = p'\Pyp, is an isomorphism. Then in (v), p'(pw) =ir(pw), so that,
since ir is mono,

pw =]J[pai, pbi] = pJl[ai} bt]
EpCp.
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But

PC? = p[P,,, Ps] = [pP,,, pPf,}
—  [Py», Py»],

so that v = pwG[Pyfi, Pyp], i.e.

Ker 4>7e = [Py8, Pyfl],

as asserted in (iii).
Now let A be the set of all pairs (7, 8)GM for which there exists u with

y^u^B and (a, a') ^(7, 8). One verifies that A cof M and ACA*, and so
(P, £) is stable rel A. We have shown that if

Cyfi =   [Pyp, Py»],
then for all (7, 8) :S (r, a) in this subset A we have a diagram

Cyf) C  P7? —> Qyg
pt      u

where ^=</>T0, \p' =<f>ra, p and a are homomorphisms belonging to the systems
(P, P), (Q< <l) respectively, and p is an isomorphism (since (P, p) is stable
rel A). It now follows easily, using (iii) and the fact that p~~lCyp=C„, that q
is also an isomorphism. Thus (Q, q) is stable rel A, and the proof is complete.

1.6. Abstract relative theory. For use with relative homology and homo-
topy, consider the following situation. Let (M, g) be the basic directed set
as usual, and if ££37 is of the form £ = (a, /S), define

Suppose that (R, r) is an inverse system over M, (A, a) an inverse system
over M, and that for each £GM there is a homomorphism

d(: Pf-> Av

such that the diagram

d
R(-+AV

ri        fa | < )j in 57,

Rn-fAf,di

is commutative, i.e.

(i) a]-dn = dtr\.
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Suppose further that there is a monotone(2) map p: M-+M such that for
each yEM and all 8EM with p(y)^8, the homomorphism

(ii) d(:R(^As,       £=(/,,«),

is onto.
Finally suppose that there is a second monotone map q: M—>M, such that

for each pEM and all aEM with q(p) ga, the above diagram satisfies

(iii) Ker (dr) C Ker (/,), f g f g v

whenever £, f are of the forms (a, 8), (p, y), respectively.
For each cr, tEM of the forms <r = (p, p), r = (a, a) with o-gr define

Ou Kb, Su '     rg,

so that (S, s) is an inverse system over M. As in 1.2 we identify M with the
diagonal of "M, so that M cof M, and therefore using 1.1 (xi)

(iv) Ilim (S, s)m ~ Him (S, s)M «Ilim (P, r)*.

We shall prove the following result.

1.61. Theorem. If (5, S) is stable rel A, then there is a subset A cofinal in
A" such that (A, a) is stable rel A; and conversely. In both cases

(v) Ilim (S, s) « Ilim (A, a).

Proof. From the diagram preceding (i) we obtain

d

s I        [a p g a in M,
Sa —* Au

di

and so we obtain an induced homomorphism

C*ua '. *J/ia      * Ana

given by
dua = dl I Un-

pick (cr, X) EA and define A to be the set of all pairs (p, a) EA' for which there
exists BEX such that \£p^q(p) g/3ga (with q as for (iii)). Define Ao to be
the set of all pairs (p, a)£A* for which there exists BEM such that Xgg(X)
^pt^B^p(B) ga (p as in (ii)). It is easily verified that A, Ao cof T3. From the
commutativity of the last diagram (following from (i)), we obtain

(vi) d,s, = d<,dr, <r ̂  r in M,

(») I.e. for alia, «S £(<*).
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and therefore the stability of (S, s) on A will follow if we can prove d„a an
isomorphism for each (u, a)£A; and similarly for (A, a) on A0.

We shall therefore prove

ft   ■ S    « A

provided (a) (u, a)GA and (A, a) is stable rel A, or (b) (pt, a)GA0 and (S, s)
is stable rel A, and then by (vi) it follows immediately that

dM: Ilim (S, s) ~ Ilim (^4, a),

as required'by (v).
Proof for (a). d„a is onto. For, since Mis directed, there exists BGM such

that

P ^ a g p(a) g 8,

giving a diagram of the form

b       b'
R(a,0) —> Sa^> Sp

d[ [d'
Af> -> Aa—>• A„

a a

Let uGAMa- By 1.1 (iv), A^QA^, and since (p., 8), (p., a)£A", the inclusion
is an equality, by the stability of (.4, a). Hence there exists vGAp, such that
u=a'av. Since a^p(a)^8, we can apply (ii) of 1.6, to say that d is onto.
Hence there exists wGR{.a,p) such that v = dw; and so u=a'adw — d'b'bw
= d'b'(bw) —d'uo say, where Uo = b'(bw)GSlia since bwGSa. But then d'uo
= duaUo, whence d„a is onto, as required.

Let us now prove that fL.a is mono. Since (p,, a) GA, there exists by defini-
tion BGM such that u^q(pi) ^B^a, giving a diagram of the form

b b'
Sa —* R<ji,P)  —* "S'jl

dii        [d id'

Aa-+ A8 —-* A„
a a

Let xGS^a be such that d„ax = 0. Then x is of the form b'by, yGSa, so that

0 = dpaX = d'x = d'b'by = a'adiy.

Now the homomorphism

6: Apa —* A,ia

defined by 8 = a'\Afia, is an isomorphism because (/3, a), (u, a)GA" and (A, a)
is stable rel A. Thus
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0 = a'(adiy) = 6(adiy)

and so adxy = 0 because 6 is mono, giving dby = 0. Since p,gg(p;)ga the con-
ditions of 1.6(iii) are satisfied with 7=p:. Hence y£Ker (db)C.Ker (b'b) and
so x = 6'6y = 0. Thus dua is mono, as asserted. With the previous result, this
proves d^ to be an isomorphism.

Proof for (b). If (p, a)£A0, then by definition there exists 8EM such that
H=-B^p(B) ga, giving the following diagram:

r s s'
Sa-'-^ F(3a-> Sp  -> Su

/d d'

Aa-> Ap—-*A.
a a

To prove that 3Ma is onto, let xEAua, so that x is of the form a'ay, yEAa.
Since p(B)^a we can apply (ii) of 1.6 to assert that d is onto; and so y=dz
for some zERaa- Hence

x = a'adz = d's'sz — d's'u, say,

where u =szESp. Now, since (S, s) is stable rel A, the inclusion SuaQSap is an
equality. Thus w = s'uESup = Sua and

X   =   d'w   =   duaW (dua   =   d' | Sua),

whence dua is onto.
Lastly, to prove dua is mono, let xESua be such that d„ax = 0. By definition

of Ao, there exists X£Af such that Xg$(X) ^p^a, so that we have a diagram

5       s'

I       Id
A a      '  *±u

a

Because xESaa, there exists yESa such that x = sy; and then duaX=dsy, since
dua = d\Sua- Hence yEt^er(ds)C.Ker(s's), for (iii) can be applied with ??
= (a, a), £ = (m> m). T = (X( X), respectively, since q(K) gp:. Therefore s'sy = 0.
But 5' induces a homomorphism

<T: 0^a      > 0\a

defined by cr = s'| 5Ma; and since (p, a), (X, a)£A*, and (S, s) is stable rel A',
then a is an isomorphism. Now 0 = s'(sy) =cr(sy), whence sy = 0 because cr is
mono. Therefore x = sy = 0, whence 3^„ is mono, as required.

By the remarks preceding (a) and (b), the proof of the theorem is now
complete.
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II. Vietoris and Singular homology
We shall later wish to compare the local invariants in a space, defined

in each of the Vietoris and the Singular theories. To bring out better the
relationships, we shall here express the singular groups as inverse limits, in
the spirit of Lefschetz [ll] with his Vietoris singular complex, and then treat
the Vietoris groups similarly. Throughout, R will denote a fixed commutative
ring with unit. We let (M, < ) denote the set of all non-negative real numbers,
where

X ■< u in M means p ^ X.

2.1. The singular inverse system. As in [E-S, Chapter VII] let A, de-
note the unit g-simplex in Euclidean space Rq+1, and let X be a fixed metric
space. If YQX define CqS(Y, X) to be the free P-module generated by all
singular g-simplexes T: At—*Y, such that

(i) diam T(Aq) < X.

If q<0, there are no such simplexes, and CqS(Y, X) =0. From the definition
of the singular boundary operator in [E-S, p. 186], it follows that

dq:CqS(Y,\)-^Cq.lS(Y, X),

and so (CqS(Y, X), dq) is a chain complex whose homology groups we denote
by HqS(Y, X). In the notation of [E-S, p. 197] our CtS(Y, X) is the group
Cq(Y, F) where F is the covering of Y consisting of all open sets of diameter
<X, and Theorem VII 8.2, op. cit. proves that the inclusion

(ii) C,S(7,X)CCV>(F)
induces a homotopy equivalence in each dimension. Moreover, if p.GM and
0 </x ^X, there is an inclusion

(Hi) C9S(Y,p)QCrS(Y,\)
and an obvious modification^) of the proof of [4, VII 8.2] shows that this
inclusion also induces a homotopy equivalence in each dimension. We there-
fore have a commuting diagram

HqS(Y,X)^HvS(Y)
M /T U

HqS(Y,u)-*HqS(Y)

where HqS(Y) is the ordinary a-dimensional singular homology group of Y,
g is the identity map, a\ and a„ are homomorphisms induced by inclusions of
the sort (ii), and f=f\ a homomorphism induced by the inclusion (iii). Owing

(») In fact, replace Tin X" on p. 198, line 11 of op. cit. by Tin X'GF\."
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to the homotopy equivalence in (ii), a\ and a„ are isomorphisms; hence pass-
ing to the limit we get

(v) a„:Ilim (HqS(Y,\),fbM ~ HqS(Y).
2.2. The Vietoris inverse system. Now let F be a compact subset of X,

and let A° denote the set of vertices of Aq. Define a "Vietoris g-simplex," or
(V, o+simplex, of F to be a map r: A°—>P, so that using (V, g)-simplexes in
place of singular cells in 2.1 (i), we obtain analogously a chain-complex
Q(F, X) = (C912(F, X), a„) of free F-modules. If FQK, K compact, then we
regard every (V, g)-simplex of F as being one of K, so that fl(F, X) is a sub-
complex of 12(F, X). Forming the quotient complex

0(F, F, X) = Q(K, X)/0(F X),
we obtain an exact sequence of homology groups

(i)    • • • -4 Hta(F, X) -► Hqn(K, X) -» HqQ(K, F, X) —-i Hq_iQ(F, X) -» • • •.

Moreover, if pEM and 0<p;gX, there is an inclusion

CqQ(F, p) C C,Q(F, X)

inducing an injection d**: Hn&(F, p)^>Hq&(F, X); and it is easily seen that
the usual Vietoris <?th homology group of F is identical with

(ii) HqQ(F) = Ilim (HqQ(F, \),4>1)m,

and similarly for HtU(K, F). Ii A is any subset of X, we define

(iii) HqSl(X, A) = Dlim{Hafi(F, F), wkfJs
where ? is the system of all compact pairs (K, F) with FC.KQX, FQA,
directed by inclusion, and WRf is induced by the inclusion (K, F)C(Jr, E).
Since singular theory has compact carriers, it is well known that

(iv) H^X, A) = Dlim {H^K, F), s"p}t,

where s^r is induced by inclusion.
Given a singular g-cell T:Aq—>P in CqS(F, X), the restriction crT=T\Aq

defines an element of C4i2(F, X), and if we extend by linearity we get a homo-
morphism
(v) a: C<S(F, X) -* CqQ(F, X)

which commutes properly with boundaries and injections. Hence, from (iii)
and (iv), there is an induced homomorphism

(vi) a*: HJ(X)-+H,Q{X)

which is natural. We shall next consider restrictions on X which will enable
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us to assert cr* to be an isomorphism. These restrictions concern the local
connectivity of X.

2.3. Local connectivity. Let x be a fixed point in the space X, and let
U denote the set of all neighborhoods^) of x, directed by < , where

(i) U <V-<^-V CU.
We shall suppose that X is locally compact at x, so that the set Uc of all com-
pact neighborhoods of x satisfies

U. cof U.

With U, V as above and with co and s as in 2.2 (iii) and (iv), respectively,
let Sy = sr'fi (0=empty set), and similarly for co; define

L<S(x) = Ilim (H^U), sl)vu,00
LqQ(x) = Ilim (HqQ(U), Jv)vic.

We write, whenever U< V

(iii) 77,5(F| U) = 5^77,5(7),        HqU(V \ U) = JuHqil(V).
Then X is said(5) to be q — lc,[q — lcr] at x if and only if to each UGVL, there
exists F£U, such that VC.U and, using augmented homology in dimension
zero,

(iv) HqS(V\U)=0,        [HMV\U)=0].
X is lcj at x if and only if it is r — lc„ O^r^q, and X is lc? if and only if it is
lc* at all its points. Similarly for lcj.

For brevity we shall write

(v) 2UV = H£{V\ U),        Uuv = HqQ(V\ U)

and

(vi) LtS(x) =■ 0

whenever, in the notation of 1.2, there is a subset A of(6) U2 such that (2, s)
is stable rel A; and similarly for LqQ(x). It is then easily verified that

X is q — lc, at x ■ <=> ■ LgS(x) = 0;
(vii)

X is q — lc„ at x■ <=* ■ Lqtt(x) = 0.

Begle [l, 3.1] has given a very useful definition of local connectivity which
in our notation can be written as:

(4) Following Bourbaki: U is a neighborhood of x means xGInterior (£/).
(') Our lc. is the "H.L.C." of Cartan [2].    _
(6) For typographical reasons, we write theM of 1.1 (ix) as M2.
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(viii) X is (V, q)—lc at x-<=>- given [/£tt, and e>0, there exist VEVic
(depending only on U) and n>0 such that every cycle in C<fil( V, rf) is homologous
to zero in CqSl(U, e).

Begle proves that when X is compact metric—and his proof requires only
minor modifications if X is locally compact—then X is lcj if and only if it is
(V, r)—lc, Ogrgg. We therefore formulate the analogue of (viii):

(ix) X is (S, q)—lc at x-<=>- given UEUC and e>0, there exist VElXc
(depending only on U) and tj > 0 such that every cycle in CqS( V, rf) is homologous
to zero in CqS(U, t).

2.31. Lemma. X is q — lcs at x-<=>-A" is (S, q) —Ic at x.

Proof. Consider the diagram
6

H£(U, e) -> HqS(U)
<T T*

H^V, V) -> HqS(V)
c

where VC.JJ in Uc, 0<?/ge, s and t are injections, and 6 and c are isomor-
phisms of the sort ox in 2.1 (iv). Thus sc = bt. If U, Fare as in (v), s = 0. Hence
bt = 0, and so t = 0 since 6 is an isomorphism. Therefore q — lcs implies (S, q)
— lc. Conversely, if U, V, e, -q are as in (ix), t = 0. Hence sc = 0, and so 5 = 0
because c is an isomorphism. Thus (S, q) — lc implies q — lcs, and the lemma is
proved. '

The pair (V, rf) in (viii) is clearly a function of the pair (U, e), and
similarly in (ix); let us therefore write, respectively,

(x) V = \q(U), V = ^(U,e); V = \q(U), r, = \q(U,e).

We can now assert the following result concerning the homomorphism o*
of 2.2 (vi).

2.32. Theorem. // the locally compact metric space X is both lc\ and lc\,
then

oV HrS(X) « HrQ(X), 0 g r g q.

We shall not digress to give a proof; a full treatment will be given elsewhere.
Added in proof, September 1958. In a forthcoming paper by S. Mardesic

(See Notices Amer. Math. Soc, April, 1958, p. 210, Abstract 544-14) it is
proved that the theorem holds for a paracompact Hausdorff, lc" space X and
that in dimension re + 1, a* is onto.

The relationships between the types of local connectivity will be discussed
further in 4.2 below. Suffice it to say for the present that the conclusion of the
theorem would hold if X were LCa, thus generalizing Lefschetz [ll, 22.1],

With the notation Hq(X\ Y) of 2.3 (iii), a useful consequence of 2.32 is:
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2.33. Theorem. If X is locally compact metric, l<% and l<%, if G is any
neighborhood of a compact set FQX, and ifO^q^n, then

H<S(F\G)
is finitely generated, O^q^n.

Proof. Since X is locally compact, there is a compact neighborhood W of
F such that WQG. Let U = interior W. We have a commutative diagram

w g
HqQ(U) -» HqQ(W) A HqQ(G)

*T U
H&U)-> HqS(G)

s

where the horizontal arrows are injections and cr, r are isomorphisms of the
sort cr* in 2.32 (they exist since U, G are open in X). Then by Newman
[13, Theorem l], P = gHqQ,(W) is finitely generated. Therefore, if u = gw,
then

Q = uHqQ(U) C P

and so Q is finitely generated since all groups are Abelian. But

uHqQ(U) = uo-HqS^) since a is an isomorphism,

= tsH^U)

and so, since r is an isomorphism, sHqS(U)^Q and is therefore finitely
generated. Now, since PC U,

H^F | G) C H,S(U | G) = sHeSW)
and the required result follows.

III. Homotopy
3.1. In order to prove a "local" version of Hurewicz's theorem we shall

in this section discuss certain modifications of Eilenberg [3], Let X, Y be
subsets of a topological space, with XC.Y, and let xGX be taken as base-
point of homotopy groups until further notice. Thus we write wn(X) for
irn(X, x). Following Eilenberg, we denote by S(X) the singular complex of
X, and by S„(X) the subcomplex of S(X) consisting of all singular simplexes
T:A—>X such that all the faces of A of dimension <n are mapped by T
into x. Thus

(i) S(X) = So(X) 2 Si(X) D • • • 2 Sn(X) D • • •
and

Sn(X) C Sn(Y), « = 0, 1, 2, •••.
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We denote the image of the injection of rn(X) in 7r„(F), by

fn(X\   Y).

If we look at Eilenberg's proof, op. cit., of 31.1, p. 440, we see that if "irn(X)
= 0" is replaced by "trn(X\ P")=0," then in that proof we have to replace
p. 441, 1.7 and 31.4 respectively by "RT:sXl->Y" and "RT is in Sn+i(Y)."
We therefore obtain instead of his 1.5, 1.7 on p. 442 the following result.

3.11. Lemma. Suppose ir„(X\ F)=0. Then there is a diagram

Sn(X)-^-^Sn(Y)

VX \   P 1\Y

Sn+l(X)—>Sn+i(Y)
Jn+l

such that

(i) Pvx = jn+l,

(ii) rirpc^jn rel x

where rjx, Vy, jn, jn+i are injections, and p is the analogue of Eilenberg's tt.

3.12. Ii we have a chain of subsets

X = A0Q AiQ ■ ■ ■ C An = Y
such that

irT(Ar\ Ar+i) =0, r = 0, 1, • • • , re — 1,

it will be convenient to write

X <„_, Y.

The last lemma now enables us to prove the following theorem, which be-
comes the Hurewicz Theorem when X = Y.

3.13. Theorem. If X<n-iYand re>l, there is a commutative diagram (for
integer coefficients)

HnS(X)—^>HnS(Y)
*r    \ T

hx        \   rr       hY

Tn(X)-—>   TTn(Y)
J

where i, j are injections, the h's are natural Hurewicz homomorphisms, and w
is to be constructed.
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Proof. By Eilenberg [3, p. 443], there is, since n>l, a commutative dia-
gram

k
HnSn(X) -^HnSn(Y)

"it T "2
TTn(X)->TTn(Y)

J
where k is the injection, and the v's are isomorphisms. It therefore suffices by
commutativity to show the existence of a commutative diagram

77„5(Z)-*—>HJ(Y)
T^    \

X       \o p,

HnSn(X)-—^HnSn(Y)
k

where X, p, are injections of the sort given by 3.1 (i), and

(ii) hx = Xd, hY = uvi,        w = v2 q.

Since X<„_iF, there is a chain X = A0Q ■ • • QAn= Y, as in 3.12, and
so by 3.11 we can form the following diagram, which is commutative in each
square and triangle (by (i) and (ii) of 3.11); in it, the a's, B's and p's cor-
respond to the Vs, j'& and p of 3.11. The diagram is:

So(Ao)-^So(Ai) -*L+. -. •■■  ^S0(An)

aoi ^\ i>i an a"i

Si(Ao)     ffl1   ,Si(Ai)     ffl2  > • • • • • •   ^Si(An)

T IV .1
T T xt T

Sn^(A0)->5»_i(.4i)-->• • •  -iSn-i(An-i)->S„-.i(An)
t T t    \ T

aon aln «„_!,„ \Pn Ctnn

Pnl .       . fini fri.n-l       , Pnn*
Sn(Av)-*Sn(A.) -» • •-*Sn(An-i)->Sn(An)

By induction on m (O^m^n) we obtain, on using the commutativity
of the diagram below and above the diagonal respectively,

(ill) PmmBmm-l   "   "   - Bml   =   (pmpm-1   '   '   ■  ^l)(aoiO;02   '   '   "  CtOrri),

(iv) BomBom-i  • • • |8oi — (amiam2 • ■ • amm)(pmpm-i • ■ -pi).
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Now HnS(X) =HnSo(A0), so that in diagram (i) above, k is induced by
8nnBn„-i ■ ■ ■ Bni; and similarly, i is induced by B0„B0n^i ■ ■ • /30i, X by
aoia02 ■ • • a0„, and p by a„ian2 • • • ann- Hence, at the level of homology
groups, (iii) and (iv) with n=m give respectively

k — ir\,       i = p7T

where ir is induced by pnpn-i • • • pi- This proves the existence of a com-
mutative diagram of the form (i) and hence the theorem follows.

3.14. Corollary. If in Theorem 3.13, Y is locally compact, l<% and lc", and
if we have also a compact set U such that

U C Interior (X).

then TTn(U\ Y) is finitely generated («>1).

Proof. By 3.13, we have a commutative diagram

HnS(V)-^r HnS(X)->HnS( Y)

hu hx      \t

*-„(£/)-ricn(X)-^->7r„(F)
« J

where u, v are injections, and hu is the Hurewicz homomorphism. Now

*n(U\ Y) = juG, G = rr„(U)

= irhxuG = irvhuG

C TrvHnS(U).

Our hypotheses enable us to invoke 2.33, which asserts that vHnS(U) is
finitely generated: hence so is its image irn(U\ Y), and the proof is complete.

To extend 3.14 to the case re = l, we have the following result. First, if
X is a locally compact metric space, of which F is a compact subset, then there
exists k = k(F)>0 such that the closure F«, of the K-neighborhood of F, is
compact; and then for any X<k, F\ is also compact.

3.15. Lemma. In the locally compact metric(7) LC1 space X, let F be a com-
pact subset, G a neighborhood of.F. Given f >0 such that Ff is compact, FQFt
CG, and

(0 Tri(F\G,yo)=Ti(Ft\G,yo)

relative to some base-point yoEP, then iti(F\ G, y0) is finitely generated.

Proof. Since X is LC1 and locally compact metric, there is, by [LTI, 7.1],

(') The LC1 property is defined in 4.21 below.
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a function r)(T, 8, «)>0, defined for any compact subset T oi X and all e,
5>0, with this property: every partial realization^) in T, oi mesh <-q, of a
finite 2-dimensional complex, can be extended to a full realization, in the
5-neighborhood of T, of mesh <e. Now with f as above, let

e = 4-»n(Pr, cr, o-),       8 = 4-y/7, f, e)

where

<r = 2-1dist(Fr, X - G).

Let 7£ be the 2-skeleton of the nerve of a finite covering { U(x{, 8)} oi F,
where Xi=yo and each XiGF. Ii p denotes the (1-1) correspondence £;—>:£,■
between the vertices ki of K and the points xt of P, then p, as a partial realiza-
tion in F of K, is of mesh <28<rj(F, f, e). By definition of the ??-function
above, p can now be extended to be a full realization of K in Ft, of mesh
<«, i.e. p: K—>Ft is a mapping. We therefore have homomorphisms

lA 7
iri(7sr, &i) -* 5ri(Ff, *0 -> tti(G, *0

where \p is induced by p, and j is the injection, giving

# = 0:*i(JT,*i)-*«'i(*r|G,xi).
We shall shortly prove

(ii) ri(F | G, *i) £ 6wi(K, *0 (£ xi(Ff | G, *0)
which, with the above hypothesis (i) gives

jti(P| G, xi) = ewi(K, ki).

Now K is a finite complex and so has a finitely generated "Kantenweggruppe"
(see Seifert-Threlfall [14, p. 158]) isomorphic towi(K, ki). Since 6 is a homo-
morphism, iti(F\G, xi) is therefore finitely generated(9).

To prove (ii), let /: El, 7?1—>F, x be a loop in F and let { U(xi(r), 8)},
r = l, • • • , 5 + 1, cover/(Ti1), where we assume the numbering to be such
that

U(xHrh 8) n U(xi(r+ih /3) ?= 0, r = 1, • • • , s;

and i(l) = i(s + l) = l. For each r = l, • • •, s, choose a point ZrGE1, such that
/(£r) = yTGf(El)r\U(xiiT), B) with yi=Xi=y,+i. Then if the metric in X is p,

p(Vr, yr+l)   ^ p(yr,   *«r)) + p(*«r),   *i(r+l)) + p(*i(r+l>,   5V+l)

g        ,3 + 20 + 3
=      4/9.

(8) The terms employed are denned in Lefschetz [11, Chapter II].
(•) If tti(F\G, x) was Abelian, the hypothesis (i) would not be necessary, by (ii). A sub-

group of a finitely generated, non-Abelian group may well not be finitely generated.
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Hence, if Xr(£) =/(£r+£r+i(£—£r)/(£r+i — &■)) denotes the part of the curve
/(Fl) between yr and yr+i, then X, is a path in F of diameter <4/3. Also,
p(xar), Jr) <8<r)(F, f, e), and so we may join x,» to yr by a path pr of diam-
eter <e in Ff. Since x,-(d = yx=xx — xi(B+X) we take pi=p,+i to be the point Xi\
and since U(xi(r), B)r\U(xi(r+X), 8) ?^0, then xtCr) is already joined to x<Cr+i) by
a path v,—the image by p of an edge of K (r = 1, • • • , s). The diameter of vT
is <e, and therefore the loop Xr— Pr+i~Vr+i+P-r is an image, say by/r, of F2
in Fj-, and of diameter <3e+48<4e = r)(F(, cr, tr), (for 8 = n(F, f, e)/4<e/4).

Hence fT may be extended to a mapping// of the disc E2, of diameter <cr
and so in Ft+^QG. Using the deformation dt of E1 given by dt(%o, £i) = (£o> <£i)
(Og/gl), Xr is deformable in // (E2)QG to vT+i, with end-points on — pr+i
and — j'r+i; hence by combining these deformations in the obvious way,

.+i
(iii) /^E'vinG,

r=l

and this homotopy is rel yo since vi = vs+i =Xi. But by definition of vr, zZvr is
the image by p of a closed edge-path

7  =   £»(1)&»(2)   •   •   •  ki(t)ki(l)

on K. Denoting homotopy classes in Xi(G, Xi) by [h], we thus have from (iii)

[/] = [E»v] = [H = Mt] = am,
and since [f] is the class of/ in iri(F\G, xx), this proves (ii), and completes
the proof of the lemma.

If we put F = X in 3.15, we get:
3.16. The fundamental group of a compact metric LC1 space is finitely

generated. Neither the "compact" nor the "LC" can be omitted: for counter-
examples see Griffiths [9, p. 470 ].

IV. Local topology
We are now ready to apply the results of the previous sections to the

various local groups at a point x of the space X, which is always taken to be
locally compact metric.

4.1. Local Betti numbers. If U denotes the system of all neighborhoods
of x in X, directed as in 2.3 (i), we shall denote by Uo, Uc respectively the
systems of open and of compact members of U, so that(10)

(i) Uo, Uc cof U.

Apart from local connectivity, the earliest algebraic local invariant to be
considered in Topology was the Alexandroff-Cech "local Betti number"
p"(x), defined for coefficients in a field J; and the important case is when

(10) cof was defined at the start of 1.2. For typographical reasons we write the M of 1.1 as
Jlf».
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pn(x) is finite. This occurs, as we see from(n) 6.11 of Wilder [15, p. 192], if
and only if there is a subset © cof Uo such that for every pair (P, Q)GD, the
image of the injection

iPQ: Hnil(X, X - P) -> HnQ(X, X - Q)

is a vector space over fF of dimension pn(x). Putting

BP = Hn(X, X - P),        b% = iPQ,

it follows that [B, b} is a direct system over Uo, and in the notation of 1.3,

(ii) pn(x) finite <=* dim 73p« = pn(x), if (P, Q) G D.

Since we are here dealing with vector spaces, (iii) and (iv) of 1.3 imply
that if TGUo and P^T^Q, then respectively:

(a) if (7\ (?) GO then BpQ = BT(>;
(b) if (P, T)GO, the injection BPT^>BPQ is an isomorphism.

In other words, the system {73, h} is stable rel £) in the sense of 1.3, and its
direct limit—which is Dlim \B, b} by 1.3 (v)—is a vector space over SF, of
dimension p"(x).

Now   for  any  coefficient   group,   whether  we   have   stability   or   not,
Dlim{73, b} always exists. We assert

4.11. Lemma. Dlim {B, b} «7ZBQ(X, X-x).

Proof. By 2.2 (iv), we have
EnQ(X, X - x) = Dlim {/7„fi(7i:, F), ■*}

taken over the system 8 of all compact pairs (K, F)C(X, X — x) directed
by inclusion. But every compact K has a compact neighborhood G, since
X is locally compact; and indeed we can take G large enough to be a neighbor-
hood of x. Also FC^KT\(X — x), so that there exists C/GUo, such that F
C.G—U. Hence, if S' is the set of pairs (G, G—U), where GGllc, UGVLo,
then ?' cof 2, and so

(i) HnQ(X, X - x) » Dlim [HnQ(G, G - U), x}, (G, G - U) G ?'•

But G is closed, and therefore if it is so small that Interior (X — G)^0, the
inclusion (G, G— U)C.(X, X—U) induces an isomorphism

(ii) va.u: HnQ(G, G - U) ~ HnQ(X, X - U) = Bu;

this is by the fact (whose proof we omit) that 7/fl satisfies the Excision Axi-
om. Since r\ commutes with injections, we therefore obtain from (i) and (ii)

HnU(X, X - x) « Dlim {B, b},
as required.

(u) We use Wilder's notation p"(x), but remark that our H„Q is his Hn (Cech groups).
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Remark. If X denotes the system of all open sets of X directed by inclu-
sion, then \B, bjx defines a pre-sheaf, and hence a sheaf S, on X (see Cartan
[2]), and the above shows that the "stalk" at each point x is IInSl(X, X — x).
Hence, if coefficients are in the field Sr, and at all xEX, p'(x) =5„y (Kronecker
delta) where dim X = n, then A is a generalized manifold in the sense of
Wilder, while S is the simple faisceau JXJ (provided X is orientable) because
all the stalks are isomorphic to £F (by 4.11 (ii)). This suggests a new direction
in which to generalize Wilder's work (which we shall not here pursue).

4.12. The first new local group we introduce is the following. Fixing re,
define for each P£U(x)

QP = HnQ(P - x),

and if P12.Q, let 0$: ftQ—>ftp be the injection. Then (ft, w) is an inverse system
over U, with limit

(i) HnQi(x) = Ilim (fi, u).

Also, for each pair (P, Q)EVi2,

QPQ = HnQ(Q - x\P - x)

in the notation of 1.1 (iv) and 2.3 (iii); so that if (ft, c'c) is stable, then in the
sense of [LTI, Definition 6.1 ], a group C"(x) exists at x, and is isomorphic to
HnQ,(x). But of course the converse may not hold. For example, in the co-
ordinate plane F2, let Zn be the circle (x-l/2")2+y2 = (l/2"+1)2. Let z = (0,0)
and let Z = DnZn. Then for any neighborhoods P, Q of 2 in Z, with P2<2,
we have—using integer coefficients—that HiQ,(Q — z\ P — z) is the free group
A on No generators, and so C\(z) exists. On the other hand HiQ,(z) =0t^A,
but the group is not stable. However, in many cases, the two local groups
coincide, as is shown by some of the theorems of LTI and CTM. All the latter
depend on remarks of this kind:

(a) if LC^MC^N are subsets of X, then as in 1.3 (iii) there is an epi-
morphism q: iJ„ft(F| M)—->FT„ft(F| N), and if both groups are known to be
isomorphic to the same finitely generated Abelian group, then q is an iso-
morphism (it is therefore important to know when the various groups are
finitely generated Abelian and this is why we proved 2.32, 3.14, above);

(b) as in 1.3 (iv), i7Bft(Z,| N)QH„Q(M\ N), so that if certain topological
conditions like 4.51(a) below (see e.g. [CTM, 4.3]) are satisfied then the in-
clusion is an equality. Similar remarks apply when we use the singular and
homotopy functors.

The upshot of all this is, that in all "reasonable" cases where a "C" group
exists and is finitely generated, it is equal to the corresponding limit group
which is also stable (we do not propose to make here a detailed study of the
pathology of the question). In view of the greater harmony of the "limit"
theory,  we shall  now drop the  "C"  invariants and  concentrate on their
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usurpers, the "limit" groups. This does not of course answer all the technical
questions of the "C" theory: we merely explain them away, feeling that it is
more important to get on with the nonpathological theory. Incidentally, an
example of the aforementioned harmony is this: in [LTI, 6.8], we wonder
whether in the definition of the C groups we should use groups of the form
HM(P-x\Q-x) or Hna(P-x\Q-x), (P, QGUo). But by 4.1 (i), it is
immaterial for stability whether we use a (P, Q) G U^ or (S, T) G U?, because
of 1.21 and 1.23. And this, one feels, is the way things should be.

4.2. Local connectivity. In addition to the types of local connectivity con-
sidered in 2.3, there is the homotopy form:

4.21 X is q — LC at x whenever, given PGUL(x), there exists QGU.(x) such
that P2<2 and(12) irq(Q\P, x) =0. X is LCr [at x] whenever it is q — LC every-
where [at x], O^qSr.

Put
Q = A3(P).

4.22. Theorem. If X is LC" at x, it is lc?s at x (over the integers).

Proof, (a) g = 0. The proof for this case is straightforward, easy, and
omitted. We remark however that it holds for all coefficients,

(b) g<£l. Define a chain R = QoQ • ■ • QQq+i = P, where

QT = Ar«2r+1),        O^r^q,        (P, QT, R G Uc)
so that

*r(Qr I Qr+1, x)   =  0.

We then have the commutative diagram

HtS{R)—!->ntS(Qq)-^-»774S(P)
T    \ " T

X \ir n v

HJAR)—-* HMQJ —-+HMP)
k f « ♦

Vi Vi

»,(&)—r**i(P)
J

where all arrows except ir, vx and v2 denote injections, vx, v2 are the homo-
morphisms of Eilenberg [3, p. 443] and ir is the "q" of 3.13, diagram (i). (The
restriction n>l in 3.13 does not apply to that diagram.) Then X will be
g-lc, at x if we can prove 775S(P| P) =0. But

(u) In dimension zero, this is to be interpreted: every pair of points in Q can be joined
by a path in P.
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H^R | P) - ii'T, (r = H^R))
= iprT = vk-n-Y C vkHqSq(Qq)

=   f^Vl7rs(Qj)

because i'i is always onto (when re = 1 or re> 1; see Eilenberg [3, p. 443]). But
kvi = vij, and jirq(Qq) =0 because (?«=A3((?g+i). Therefore /79S(F|P) =0, as
required. This completes the proof (13).

4.23. Theorem(14). If X is at x both lc\ (over the integers) and 1 —LC, then
it is LCq at x.

Proof. If g = 0, this follows from 4.22; and hence if q = l, there is nothing
to prove. Suppose then that q>l, and assume inductively that we have al-
ready proved X to be LC9-1 at x. Then given P£U(x), there is in U a chain

Q= AoQ AiQ ■ ■ ■ Q Aq = P
where

Ar = K(Ar+i), r = 0, ■ ■ ■ ,q - 1,

and so 3.13 applies with X = Q, Y=P, n=q. Define R to be X*(()), \q defined
in 2.3 (x). There results a commutative diagram

HqS(R) -U^(0 -J-tHtSlP)
T T   \

V X \ 7T p

E£.(R)—>H£q(Q) -—+HqSs(P)
T       k i        k        "

Vo                                 Vi Vi

*«(*)-^->TS(Q) -^>*q(P)
3 3

where all arrows except Po, V\, v2 and ir are injections, these ^'s are the iso-
morphisms of Eilenberg [3, p. 443], and ir is the "q" of 3.13, diagram (i).
X will be g-LC at x if we can prove 7rg(F|P)=0, i.e. jj'irq(R)=0. But vjj'
= kk'vo = Ttr\k'vo = iri'vvo; and since R='K1(Q), i' = 0. Hence vjj'^0, and so,
because q> 1 implies vi univalent, jj' = 0. Therefore tt9(F| P) =0 as required.
Thus X is g-LC and LC5-1 at x, i.e. X is LC3 at x, and the proof is complete.

It is well-known that if X is locally compact metric, then X is 0-lc„ if and
only if X is 0-LC. Hence by 4.22, the 0-lc„, 0-lc, and 0-LC properties coincide.
But in dimension 1, things are different as the following example shows. For

(13) The referee points out that the result is a strengthening of Theorem X of Lefschetz,
Duke Math. J. vol. 1 (1935) p. 15, in that we have assumed here only LC1 at x.

(") Cf. Hurewicz [l0].
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each w>0, let P„ be a Poincare space in P7, and let all the P„ be united at
a single point p, (but otherwise disjoint) to form a single space P* in which

diam P„ —> 0    as    n —> <x>;

then by Griffiths [9, p. 477], P* is lcj but not lc] over the integers, (and there-
fore not LC1, by 4.23). On the other hand for any ring of coefficients (com-
mutative and with unit):

4.24.  Lemma(15). If X is lc) it is lc].

Proof. By the remarks above and the result of Begle quoted in 2.3, it
suffices to prove X to be (V, l)-lc; and by 2.31 we can assume X to be
(S, l)-lc. Let then xGX, and ?GUc(x); let e>0 be given. In the notation of
2.3 (x), let

Q = \\(P),        5 = X\(P, e),

and let R be a compact neighborhood of x such that

(i) dist (R, X - Q) = £ > 0.
Then since R is compact and X is 0-LC, there is a function p.(a, 8) such that
any pair of points in R whose distance apart is <u(a, 8), can be joined by a
path of diameter <B, in the a-neighborhood of R. Put v = a(^, 8).

To show that X is (V, l)-lc at x, it suffices to show that every 1-cycle in
CiQ(R, v) bounds in CSL(P, e). Let r: A^P be any 1-cell in C$l(Q, v); thus
dist (rd°, rdl) <v, and so by definition of p.(%, b) above, there is in the £-
neighborhood of R (and therefore in Q, by (i)) a path—that is, a singular
1-cell—T: Ai-^>Q, of diameter <5, such that

(ii) Td° = rd»,       Tdl = rd\

Hence, distinguishing the appropriate boundary operators, we have

(iii) a.T = r<°> - r(1) = r<°> - r<» = 6v.

Using the map a: 775-^7/fl of 2.2 (v), equations (ii) become

aT = t;

so that if by linearity we extend the correspondence r—*T to be a homo-
morphism 8: Citi(R, v)^rCiS(Q, 8), we get
(iv) ad=l,

while by (iii), d,6=dv. Hence, if 7 is a 1-cycle in Gft(P, v), then
0 = dvy = 3,07

(u) Lefschetz, in Duke Math. J. vol.2 (1936) p. 439, asserts that lc" implies lc^ using "say,
rational coefficients." No proof has appeared. [Added in proof, September 1958: for para-
compact Hausdorff spaces, the assertion follows from the result of MardeSic, cited after 2.32.]
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and so dy is a 1-cycle in CiS(Q, 8). By definition of (Q, 8), there is a 2-chain
TECiS(P, e) such that 07=6\r. Hence by (iv)

7 = crBy = crd3T = dvcrT

and oT£C2ft(P, e). Thus y bounds in Gft(P, e), as required, and the proof is
complete.

If we try to use this procedure in the next dimension, we cannot obtain
a map 6 of C2Q(R, v) satisfying 4.24 (iv), unless we assume by analogy that X
is 1-LC also. However, no example is known of a space which is lcj but not
LC1 (see [9] for a further discussion) and every locally compact metric LC"
space is(16) lc" for all re.

4.3. The local cut-point groups. The "C" groups of LTI generalized Wind-
er's notion of a "local noncut point," [LTI, p. 356]. We agreed in 4.1 to
jettison the "C" groups in favor of stable groups like HnSl(x) in 4.12 (i), and
so we shall call these latter the "local (G) Cut-point groups," where G refers
to the particular functor under consideration. Thus, the singular analogue of
HSl(x) is HnS(x). With our usual fixed point x£A, let Uo(x) be as in 4.1 (i);
thus for each P(EUo, F— x is also open. Hence, if X is lc* and lef so is P — x,
and therefore by 2.32 we have isomorphisms

o-p: HrS(P - x) ~ #rfi(P - x)

which commute with injections. Therefore since Uo cof U, we have, on taking
inverse limits, the following "local" analogue of 2.32:

4.31. Theorem. If X is locally compact metric, lcj and lcj, then

ax: HrS(x) « HrQ(x), 0 g r g o,

and if one group is stable, so is the other.

In order to define the local homotopy cut-point groups, we have to as-
sume that x in X satisfies:

4.32. U has a cofinal subset lXy such that for each PEViy both P and P — x
are path-wise connected.

Simple topological conditions on the pair (X, x) ensure that 4.32 is satis-
fied: see, for example, [LTI, 4.3]. Not all "reasonable" spaces satisfy 4.32;
for example, with a double cone, 4.32 fails at the vertex—yet if the "upper"
half of the cone is bent over so that one of its generators lies along a generator
of the "lower" half, the resulting space satisfies 4.32 everywhere.

4.33. Assuming then that X satisfies 4.32 at x, we shall now define a group
7r„(x), in a manner analogous to the definition of HqQ(x). We choose a fixed

(u) Hurewicz [10]. Strictly, Hurewicz proves this for a compact space, but only trivial
changes are required in his proof. Nontrivial changes are needed for the other half of the
theorem: See Newman [13].
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path X from x to some point yy^x. This X will exist if UY contains a U with at
least two distinct points, because U is path-wise connected. Let

11/ = { U | U G U7 & y G U};
thus, for each UGViy , X meets U (in x), and X—U (in y), and so X meets
Frontier (17) in a "first" point, travelling from x—say f(U). Now X is metric
and so we can assume UT' is countable—say

U7' = {Ui,Ui,- ■ -,un,- ■ ■}
where

Un 2 Un+l.

Let
/n=/(t/n+1);

then the portion Xn of X from x to/„ lies wholly in 17»+i£i7B. Moreover, if
Un^Um, the path

(l) Xmn  =   X„ Xm

lies wholly in Un. Hence, fixing q, \mn induces an isomorphism

Xmn: x9(t7„ — x, fm) —> irq(Un — x, /„),

and there is an injection

Imn'   iTq\Um X, fm)       * 1Tq\Un X,Jm).

Next, define P„ = ir,(c7n — x,/„) and if n^m,

m       I identity on P„, n = m,
pn =  U      •

I Xmn   Imn, n  < m.

Then, if n<m<j, the diagram

<yjm                                              h.J7fi                                                 vmn
1Tq(Uj —  X,fj) -> Tq(Um —  X,fj)->Tq(Um  —   Xyfm)-> Tq(Un  —   X,fm)

tjn 4- -l "mn

irq(Un  -   X,fj)-> Tq(Un   ~   X,fn)
Xyn

is commutative because

Xjn  =  Xn — Xy  =   (Xn Xm) +  (Xm Aj)   =  Xmn + X/m.

Therefore
n n    m

pj   =   Pmpj .

Hence, if / denotes the set of integers >0, directed by the natural ordering
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g, then it can be verified that (P, p) is an inverse system over /, in that (i)
and (ii) of 1.1 hold. We define

(i) irq(x) = Ilim (P, p)j.

Of course, this definition depends on the choice of the points /„, and the path
X; and corresponding to all possible choices we obtain a transitive system of
groups in the sense of [E-S, p. 17], whose inverse limit is what "ought" to be
called 7r9(x). It is less complex, for our purposes, to take irq(x) as defined in
(i), with a fixed X and sequence {/„} throughout.

4.34. An important case is when the system (P, p)j is stable, and 7r9(x)
= 0; we shall then write

Tq(x) = 0.

Now P(n.m)(n<m) is \mnTrq(Un — x\ Un — x, fm) and so is zero if and only if
Trq(Um — x\ Un — x, /m)=0, because Xm„ is an isomorphism. By 1.26, there
exist sequences A, B cof /, such that (P, p) is stable rel A o B. Hence, given
jEJ there is a first a*=a"(j)EA, (a*>j) such that if o^a* and aEA, there
is a first b* = bq(j, a)EB such that 6*>a and for all 6£F with 6^6*, P(a;b)
= 0, i.e.

irq(Ub — x\ Ua — x,fb) = 0.

The "local" analogue of Hurewicz's global theorem is now:

4.35. Theorem.   // q>l   and 7rr(x)=0,   0gr<g,  then  irq(x) ~HqS(x)
(integer coefficients) and if one group is stable, so is the other.

Proof. Define a map g: J-^J as follows. With a", br as in 4.34, let jEJ and
put

h = b*-\j, a*-l(j)),       ji = b"~2(ji, a«~2(jx)) ■ ■ ■ ,

jq = 6°(yg_1, a°(jq-x)).

Define g(j) to be jq; g(j) >j because ar(j) >j, and br(j, a)>a when a>j. Hence
the set

T = {71,72, • • • ,7* • • • , }

where

7n+l = g(yn),        71 = g(l)

is cofinal in /. By construction and 4.34 (i) we have, in the notation of 3.13,
that for each j, kEY with j<k,

Uk — x <9_i Uj — x.

Hence there is a commutative diagram of the form given by 3.13:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



234 H. B. GRIFFITHS [September

Pvq(Uk - x,fk)->irq(Uj - x,fj)

(i) hk Ar hj

HtSdJ* - x)-»H^Uj - xJA
s

where s = s* is the injection, p=p), and hk, hj are the Hurewicz homomor-
phisms. For brevity write

Sj = HgSiUj- x);

then the system (S, s) is an inverse system over /. Let (P, p) be the inverse
system defined in 4.33, so that the Hurewicz homomorphisms hk define a
homomorphism

h:(P,P)->(Q,q).
The existence of diagram (i), with k=j-\-l, enables us to apply 1.42, to assert
that

hx: Ilim (P, p) » Ilim (S, s),

i.e.

hK: irq(x) ~ HqS(x).

To prove the stability part of the theorem, we apply 1.43 with (Q, q)
= (S, s), (M, ^) = (r, <), in view of diagram (i) above. Thus we have im-
mediately: if -ivq(x) is stable, so is HqS(x), and conversely. This completes the
proof.

In dimension 1 we have

4.36. Theorem. If tti(x) is stable, so is HS(x), and HiS(x) is tti(x) made
A belian.

Proof. By 4.32, each i7£U7 is such that U — x is pathwise connected.
Hence the natural homomorphism

Vu:ti(U -x,f(U))->HiS(U),

where f(U) is defined in 4.33, is onto and its kernel is the commutator of
TTi(U—x,f(U)). Therefore 1.51 applies with M=Uy' and the theorem follows
at once.

4.37. The converse of 4.36 (and so of 1.51) is false, as the following exam-
ple shows. For each n, let Z„ be a Poincare space in Euclidean R7, such that,
E1 being the unit segment in P7, Zn(~\El is the point l/nETs1, the Zn are all
mutually disjoint and diam Zn—>0 when n—> oo. Let Z = El\J U^=0 %**• Then
the origin z of R7 has in Z a basis of neighborhoods of the form
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(i) Wm = L KJ  U   Zm,

where lm is the segment of E1 from z to 1/rei. But HiS(Zm)=0, so that
HiS(Wm—z) =0 because HiS has compact carriers. Then HiS(z) ^0; whereas
7Ti(x) is easily seen to be zero but unstable.

4.4. Some pathology. The last example is useful for studying pathological
behavior of the singular homology functor. We recall from 2.3 the groups

L^x),       LqQ(x),

and use the machinery of 4.33 to define the homotopy analogue

Lqir(x)   =   Ilim   \lCq(Un,fn), In)

where UnEVLy, and C is defined as follows. The paths Xmn of 4.33 induce iso-
morphisms

I'mn: rq(Un, fm) ~* TTq(Un, fn),

and there is an injection

jmn '■ 1Tq(Um, fm) ~* Va(Un, fm) ',

so we define 1% to be the identity on irq(Un, fn), it m = n, and otherwise to be
Vmnjmn. We assert that

(i) Z9ft(x) and Lqir(x) are always zero(17).

A sketch of the proof is as follows. By (iv) and (v) of 1.1, if K cof /, then

Ilim (P, p)K « Ilim (P, p)g « Ilim (Q, q)K

where

Qn ==     I *    Pnm,
m£K

and qi-.Qj-^Qn is defined by qi = p^\\Qi- Now take P„m=x,(C/m| Un, fm).
Then every loop X in an element [X]£(?« has the property that given UT
however small (and so r >re) there is a loop X' on U, such that X^X' rel fr on
Un. If, moreover, [\']EQr and £[X"] = [X'] where [\"]EQ. and s>r, then
X'c^X" rel/, on Ur; and so on, inductively. By piecing these homotopies to-
gether in the obvious way we obtain a homotopy X~x rel /„ on Un, and so
Qn = 0=irq(x). That L9ft(x) =0 follows because the Vietoris and Cech theories
coincide and the latter satisfies the Axiom of Continuity; thus

F9fi(x) = Ilim HqU(U - x) = HqU( fl (U - x))
xeu

= 0.

(") Compare Wilder [15, VI 6.13, p. 192].
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This proves (i). Of course the groups are not necessarily stable: when they
are we have local connectivity.

Now let us consider the group LiS(z) (over the integers) in the space Z of
4.37. We shall show that it is nonzero and stable. If Wm is as in 4.37 (i), then

Wm = Wm+i U Vm,       Vm = Zm\J (l/m + 1, l/»>,

and Wm+iC\ Vm is the point 1/ro + l of EK Thus, if jm: HiS(Wm+i)^HiS(Wm),
km: HiS(Vm)—j>HiS(Wm) are the injections, then since each Zm is everywhere
LC1, it follows(18) that jm, km are univalent and

HlS(Wm)   = jmHlSWm+l)  +  kmHlS(Vm)

= jmHlS(Wm+i)

because HiS(Vm) =0, Zm being a Poincare space. Therefore

(ii) jm: HiS(Wm+i) « HiS(Wm),

and so

(iii) LiS(z) « Ilim (HiS(Wm), £) « HiS(Wi)

where

(iv) km  = jmjm+1   '   -   ' jn-1-

But Wi=Z, and Z is of the same homotopy type as a space of the form
P = U^=1 (Zm\Jpm); where the Zm are all disjoint as in Z, pm meets Zm just
once and joins it to z, being otherwise disjoint from all other Zn or pn, and
diam pm—>0 when m—»». By Griffiths [9, p. 470], HS(T) is infinite and
therefore so is HiS(Z). Hence, by (ii), (iii) and (iv), LiS(z) is stable and
infinite, in contrast to (i).

4.5. Relative groups. In this section, we link the classical local Betti
number with the local homology cut-point groups, by using the results of 1.6.
We also obtain analogues for the other functors and thereby show that intro-
duction of relative groups does not, in general, lead to new invariants. First
let Uo'(x) be the subset of Uo in 4.1 (i) consisting of all U with i7£Uc. We
recall from [6, 4.3] the following result.

4.51. Lemma. Let X be both (V, r)-lc and (V, r+l)-lc at x. If U, Ui, Ui,
IFGUo'(x) suchthat(19) UiQK+i(U), UiQKiUi), WQU2, then

(a) The inclusion^) HrQ(FW\Ui-W)QHrtt(U2-W\Ui-W) is an
equality;

(b) the boundary homomorphism

(18) See Griffiths [8,2.5].
(") x; was defined in 2.3(x).
(jo) FW=Frontier of W.
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d: Hr+iQ(Ui, Ui-W)-* Hra(Ui - W)
is onto.

(In [CTM], (b) is not proved explicitly; but an indication of the proof is
given in the remark at the top of p. 73, op. cit.) Now W above can be as small
as desired, and Hft has compact carriers. Hence, taking the direct limit over
all WEW(x), we have the following statement, more suited to our purposes;
in it, Uo and Q can be taken to be respectively K(K+i(U)) and Ui (in the
notation of 4.51).

4.52. Lemma. If X is both (V, r)-lc and (V, r+l)-lc at x, then given UEVic
there exists UoEULe such that for all QQUo in Uc, the homomorphism

d: Hr+i£l(U, Q-x)^ HrU(Q - x)
is onto.

It will be convenient to define the "first" suitable Q above to be

Qr(U).

4.53. We now provide an example of the situation of 1.6: take (M, g)
to be Uc(x), and for each UEVic, define

Rru.Y) = Hr+iQ(U, V - x), (U 2 V)

Av= HrQ,(U - x),

and satisfy 1.6 (i) by taking rfyfy, ajj, du there to be the injections and the
boundary operator, respectively. If X satisfies the conditions of 4.52, 1.6 (ii)
holds, with p: M—>M taken as the function Q'(U) of (ii) above. To show that
under the same conditions, 1.6 (iii) holds, it suffices to prove: given pairs
(S, T)^(U, F)2(P, Q) in U*, then in the diagram

r r'
R(.P.Q) —► F(£/,V) —> R(8,T)

(i) i la
Aq-> Ar

we have Ker (6V)CKer (r'r), whenever UC.Qr(S). (Thus, the function
q: M—yM of 1.6 (iii) can be taken to be Qr: Uc—»UC). The proof depends on
the fact that the sequence of 2.2(i) is exact, the unmarked arrows denoting
injections; we leave the details to the reader.

4.54. It now follows that under the conditions of 4.52, we can apply 1.61
directly. It remains to interpret the groups Ilim (A, a), Ilim (5, s) which
occur there. From the definition of (A, a), from 1.1 (xi) and 4.12(i) we know
that

(i) Ilim (A, a) « Hrfi(x),
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while from 1.61, the group Su is R^u.u), i.e. Hr+i^U, U—X). But Uis compact,
so that G = X— U is open and GCjInt (X — x). Hence by the Excision Axiom

(ii) vu: Hr+MU, U - x) « Hr+MX, X - x),

i}u being the injection, and so we obtain from the commutative diagram,
when 772 V:

vu
Hr+iil(U, U-x)->Hr+MX, X-x)

S /l}y

Hr+MV, V - x) /

that s = sv: Hr+il~l(V, V—x) «7/r+iO(T7, U—x). Therefore, with no local con-
nectivity assumptions,

(iii) the system (S, s) is itself stable rel U and

Ilim (S, s) « Hr+iil(X, X - x).

Thus, using 4.52, we can apply 1.61 to assert
(iv)   Under the assumptions of 4.52, 7/rfi(x) is stable and

Hrn(x) « HT+iil(X, X-x);

and so by 4.1 (ii), if the coefficient group is a field,
(v) Pr+1(x) finite =v dim HrQ(x) = pT+1(x).

We should like to prove a converse of (iv), for general coefficients, but
have to restrict ourselves to the following result, with coefficients in a com-
mutative ring with unit. We recall from 4.1 the system {B, b] over Uo.

4.55. Lemma. If the locally compact metric space X is Id,, and is at
x (V, r + l)-/c, and if Hri~l(x) is finitely generated, then the system [B, 5} is
stable in dimension r + 1, and its Dlim is naturally isomorphic to Hri~l(x).

Proof. By the result of Begle quoted in 2.3, X is (V, r)-lc because it is lcj.
Hence the hypotheses of the lemma allow us to assert 4.54(iii), that HrQ(x)
is stable. Thus there exist subsystems Ui, U2 cof Uc(x) such that for every
(Uu Ut) with UiGlXi and UtQUi we have
(i) HrQ(Ui - x\Ui- x) ~ H,Q(x).
Since HT£l(x) is finitely generated, and 77ft has compact carriers, it follows
as in [CTM, 3.4], that there exists F£Uo, VQU2, such that the inclusion

(ii) HrU(Ui - V| Ux - x) £ Hrn(Ui - x\Ui-x)

is an equality. If WGUo and WG V, then, since X is lcj, the group,

HrQ.(Ui- V\UX-W)
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is finitely generated, by Newman [13, Theorem l]. It now follows, as in
[CTM, 3.3], that there exist neighborhood functions 8r(Uu Ui), 8r(Ui, Ui, Ut)
such that given U3Q8r(Ui, Ui), UiQ8r(Ui, Ui, Us) in Uo, then

(iii) HrQ(Ui - U3\ Ui - U<) ~ HrQ(x).

We can obviously assume the 5's to be monotone functions of their variables
(e.g. Ui Q Ui implies «'( Ult Ui )Q8'( Uu Ut)). The stability of HTQ,(x) is then
quickly seen to imply

(v) if UiQUi in U2, UiQ8r(Ui, Ui), UiQ8'(Ui, Ui, U3), then the inclu-
sion HrSl(Ui - U3\ Ui-Ui)<^HrQ,(Ui- U3\ Ui- UA) is an equality;

(vi) if UiQUi in Ui, USQU{, U3Q8r(U{, U2), UiQ8*(Ux, U2, U3) then
the epimorphism HrQ(Ui— U3\ U[ — Ui)—>Hrft(f/2— U3\ Ux— Ui) is univalent.

Since X is (V, s)-lc (s = r, r + 1) there is a function Qr(U) of the sort follow-
ing 4.52; we shall now show that given neighborhoods U, A, B, C, P, Q of x,
satisfying U, CEUX, AEVli, P, QEVlo
(vii) C/DiD QT(A) 3 B,

(viii) U 3 Qr(U) DC2^,

(ix)        QQ8'(U, B)r\h'(C, A), PC8'(U, B, Q)C\8'(C, A, Q)(CQ),
then the boundary homomorphism induces an isomorphism

(x) 6V Hr+iU(A, A - Q\U,U - P) « HTQ(A - Q\ U - P),

where the left-hand group is the image of the injection

Hr+iQ(A, A-Q)^ Hr+MU, U - P).

To prove (x), we look at (a) and (b) of the proof of 1.61. In (a) we ignore
the set A, and simply interpret the diagram there. We take

p= U,       a= A,       p = Qq,       B = B,
R{a.B)= Hr+MA,B-Q),   Sa= Hr+MA,A-Q),   Su = Hr+iQ(U, U - P),

Ap = HrQ(B - Q), Aa = HTU(A - Q), A„ = HrQ(U - P);

the 6's and a's in the first diagram of 1.61(a) are taken to be injections, and
the d's to be boundary homomorphisms. By (v) and (ix) above,

HTQ(A - Q\U - P) = HrU(B -Q\U - P),

so that, in the notation of 1.61(a), Aup=Aua. By (vii) and 4.51(b), the homo-
morphism d: R(a,p-)—>Ap is onto. Hence all the hypotheses of 1.61(a) hold,
and so in (x) the homomorphism d0 is onto. A similar interpretation of the
proof of 1.61(b), with 8 there put equal to C, proves that d0 is univalent; we
use (vi) and (ix) above to assert
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HrQ(A -Q\C - P) » 77rfl(.4 - Q \ U - P),
which in the notation of 1.61(b) says: Aga^A^.

Next, we have a commutative diagram

Hr+iU(A, A - Q)X HT+iU(X, X - Q) = 73«
H ib

77r+1fi(77, U - P) ->• Hr+iQ(X, X - P) = Bp
v

where i, b are injections, and 77, 77' are excision isomorphisms as in 4.11 (ii).
Hence 77' induces an isomorphism

(xi)  ij0: Hr+xa(A, A - Q\U,U - P) ~ Hr+iQ(X, X -Q \ X, X - P) = BpQ.
Now fix 77, A, and consider the diagram

Hr+iQ(X,X-Q\ X,X-P)™Ht+xQ(A,A-Q\ U,U-P)-^HrU(A-Q\ U-P)
n n T"

Hr+1Q(X, X-T\ X,X-S) <-77r+1n(^, A-T\ U, U-S) -> HrQ(A-.T\ U-S)j d

where (P, 02(5, T) in U§, and 5C5'(c7, ^4), TQ8r(U, A, S),j, d correspond
to 770, do, and X, /x, v are injections. Since 77r£2(x) is finitely generated, argu-
ments like those for (v) and (vi) show that v is an isomorphism; hence by
commutativity so is a (since d0, d are), and hence again by commutativity,
so is X (since 770, j are). In the notation of 4.1, X is a homomorphism 5; hence
we have shown { TJ, 0} to be stable rel A, where A is the set of all (S, T) satis-
fying 5CS'(77, A), TCZ8r(U, A, S). But clearly, A cof Ug, and therefore
f 73, 5} is stable, as required. Further, since v is an isomorphism in the last
diagram, it follows from (iii) that Dlim {B, h} is naturally isomorphic to
HrSl(x). This completes the proof.

Corollary. // coefficients are in a field, then under the conditions of 4.55,

pr+1(x) = dim HrQ(x).

(This follows from 4.11, on combining (iii), (x) and (xi) above).
4.56. Similar results hold for the singular functor 7/5, because the Exci-

sion Axiom is satisfied. Thus we replace R{U.Vh Au in 4.53 by their singular
analogues, and replace the hypotheses of 4.52 by

(i) X is both r-lc, and (r + l)-lc, at x.

The exactness of the singular sequence then gives quick proofs of the singular
analogues(21) of 4.52(b) and 4.53(i). Therefore the conditions of 1.6 are satis-

(21) By [CTM, §2], all the Vietoris groups coincide with their Cech analogues.
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fied with p=\„, g=Xj+1 (defined in 2.3(x)). Hence, if X satisfies (i), the
analogues of 4.54, (i)-(v) all immediately follow. To obtain the analogue of
4.55, we need to assume that X is (r+l)-lc, at x, and everywhere both lcj
and lc,; then we can use 2.33 where its analogue, Newman [13, Theorem l],
was used in the proof of 4.55.

4.57. For the homotopy functor, only partial results can be obtained,
because homotopy does not in general satisfy the Excision axiom. To obtain
a "local" homotopy theory we first have to assume that X satisfies 4.32, and
then we replace R^u.r), Av in 4.53 by their homotopy analogues. We replace
the assumptions of 4.52 by

(i) X is both r-LC and (r + l)-LC,
and the exactness of the homotopy sequence gives proofs (formally identical
with their singular counterparts) of the analogues of 4.52(b) and 4.53(i).
Therefore the conditions of 1.6 are satisfied, with p=Ar, gr=Ar+i (functions
defined in 4.21). By cofinality, the limit of the corresponding system (S, s)
is a purely local concept, whereas the invariant $r(x) of [LTI] shows that
irr+i(X, X — x) and the corresponding system \B, b), are not; hence the sys-
tem {B, b) has no place in "local" homotopy theory. The natural homotopy
counterpart of 4.5(x) is based on the analogue of the relative groups

HkQ(A, A-Q\U,U - P),
but to define these analogues, we need to suppose that in addition to 4.32,
X satisfies:

(ii) There is a system Us cof U such that given UEVly and VEVit with
FC U, then U—V is path-wise connected. Simple conditions such as in [5, 4.3]
ensure that X does satisfy (ii). Then, with the obvious treatment for base-
points of homotopy groups, we can get the analogue of the proof of 4.55(x);
and under the following assumptions we can deduce the homotopy analogues
of (iii), (v) and (vi) of 4.5:

(iii) 7rr(x) is stable (to get analogues of 4.5(i), (v) and (vi));
(iv) irr(C/2— V\ Ui— W) is finitely generated abelian (to get analogues of

4.5(h) and (iii)). To ensure the "abelian" part of (iv), we need r>l, even
though we have 3.15; and for r>l we can apply 3.14 provided the right con-
ditions hold. Thus we have on combining the analogues of 4.5 (iii) and (x),
that

(v) if X is ldsand Id,, if it is r-LC and (r + l)-LC atx, if r>l andirj(x)=0,
OgjO, then for suitable neighborhoods A, Q, U, P of x,

irr+i(A, A - Q\U,U - P) « Tr(A - Q\U - P) ~ u-T(x).

Groups of the sorts considered in 4.55(x) lead us to make the following
definitions for functors Gp, Kp which have the formal properties of absolute
and relative homotopy groups respectively; note the analogy with the "D"
groups of CTM. First, if U.-cof U(x), 1 gig4, define 93 to consist of all quad-
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ruples (f/i, 772, U3, 774) with UiGWiand 77,2 77^; and define (Vu V2, V3, Vi)
£(Ui, Ui, U3, Ui) in S3 to mean that 7,2 77,-, lg^4. Then we shall say

4.58. GP is D-stable [Kp is B-stable] at x, if and only if there exist Ui, U2,
U3, U4 cof VL(x), such that given (Vu V2, V3, Vi) ̂ (Uu U2, U3, Ui) in S3 satisfy-
ing

(0 Ui - U3 £ V2 - V3,        Ui - Ut £ Vx - Vt,

then the injection

7: GP(T72 - U3\Ui- U4) -* GP(V2 -V3\Vi- Vt)

[k: Kp(Ui, Ui - U3\ Ui, Ui - Ua) -> KP(V2, V2 - V3\ Vu Vx - F4)]

is an isomorphism. (In the homotopy case we require that U2£U7, W3Qih-)
For brevity denote (77i, 772, U3, Ui), (Vu V2, V3, Vi) above by u, v and

write the injections as

V U V V U V
7 fin • Crp      ' vZp, K Ku*  -T^ p      ' a\ p.

Write u<v whenever u^v in S3 and 4.58(i) holds. Then S3 is not necessarily
directed by ■<, but still (Gp, g), (Kp, k) are inverse systems over (S3, -<),
in the sense that 1.1 (i) and (ii) still hold. It is now easily shown that if G
has compact carriers, and if GT(x) is the G-analogue of irr(x) then

(ii)      Gr is D-stable at x-=$-Gr(x) is stable and isomorphic to Ilim (Gr, g).

By Newman [13, Theorem l] and its singular analogue 2.33, we have
(iii) If X is l(% [fc" and lc"] and the Vietoris [singular] Gn is D-stable at x,

then Ilim (G„, g) is finitely generated. Similarly if X is LC\ with the homotopy
functor Gi (by 3.15).

Next, if X satisfies the G-analogue of 4.52, it is clear that the analogue of
our passage from 4.5(iii) to (x) is still valid, step by step, in the (G, 7£)-theory
provided G is abelian; and by a similar argument using (b) of the proof of
1.61 instead of (a), we therefore have—for any X with a Wy(x) and Us(x)—

(iv) Gp is D-stable at x-<=$-Kp+i is B-stable at x. In either case, Ilim
(Gp, g) «Ilim (T^p+i, k). With the same conditions on X, 1.61 applies, so that
if Kp(x) denotes the Tip-analogue of the limit of (5, s) in 1.61, we have

(v) Gp(x) stable -<=>-Kp+i(x) stable.  In either case Gp(x)^Kp+i(x).
We can now sum up the homology situation, by collecting the above results
and using 4.55 in the statement:

4.59. (a) Theorem. 7/ the locally compact metric space X is everywhere lc"
and (V, n + l)-/c at x [everywhere lc" and lc", and (n + l)-/c, at x] then the local
relative and absolute cut-point homology groups at x are stable; and they coincide,
in the sense that with the appropriate interpretations,
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Ilim (S, s) m Gr(x) « Fr+i(x) « Ilim (Fr+1, k) ~ Ilim (Gr, g) « Dlim {P, 6}

and each is isomorphic to Hr+i$l(X, X — x) [Hr+iS(X, X — x)], r = 0, 1, • • • , re.

In the homotopy theory we cannot expect to be able to apply 4.57 in all
dimensions and therefore have the more restricted result (using 4.57(v)):

4.59(b). Theorem. If the locally compact metric lc" and lc" space X has a
lXy(x) and Ua(x), and is n-LC and (n + l)-LC at x, then if Gr is D-stable at x, all
the homotopy analogues of the groups of 4.59 are stable and coincide, except
Dlim [B, b) andirr+i(X, X-x), Ogrgre.

Thus if we use the local groups to define "manifolds" as in [CTM], we
see from 4.59 that with Vietoris or Singular homology, whatever type of
group is used leads to the same (Vietoris or Singular) definition(21); that with
homotopy, if we use the (Gr, g) systems the resulting manifolds include all
those defined using the other homotopy groups; and by 4.35 and its obvious
modification for the (Gr, g) system, the homotopy manifolds on any defini-
tion are integer homology manifolds. Obviously, locally Euclidean space is a
manifold, under all the definitions. A converse of 4.58(h) remains to be
proved (or disproved) in homotopy theory; if proved, it will presumably
show that the above homotopy manifolds will be identical with the manifolds
using the groups irr(x).

4.6. Mappings. If/: X—* Y is a map, it is desirable that / should induce
homomorphisms of the local groups. But, if yEY, then F=f~1(y) will in
general be a closed set, not necessarily a point, and so we have a homomor-
phism

(i) fr: Ilim (HrQ(G - F), j) -> tfrfi(y)

where G runs through all neighborhoods of F, and j denotes injections. How-
ever, in the special case that F is a single point x, this gives us

(ii) fi: HrSl(x) -* HrU(y),

and similarly for the Singular and homotopy functors. The "C" and "D"
groups of [LTI] and [CTN] had not got this property. Considerations of the
sort given in Griffiths [7] enable a concept of "local homotopy type" to be
defined, in order to investigate circumstances under which (ii) is an isomor-
phism. We have not studied systems of the sort (HrSl(G — F), j) in (i), when
F is a fixed set with more than one point.
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