LOCAL TOPOLOGICAL INVARIANTS, II

BY
H. B. GRIFFITHS

INTRODUCTION

The present paper arose out of an earlier draft, submitted in 1954 under
the title Homotopy and singular homology in “local” topology, whose purpose
was to consider relationships between the local groups occurring in the Vie-
toris, singular and homotopy theories. The referee suggested that the local
“C” and “D” groups occurring in the theory and defined in [5] and [6] (here-
after referred to as LTI and CTM respectively), were not “functorial” in
the sense that the isomorphisms connected with them were merely “ab-
stract,” not induced by maps of one space into another and so not natural.
He outlined a new approach using inverse and direct systems of groups, and
in many cases the limits of these were isomorphic to the corresponding “C”
and “D” groups; but in some cases the limits gave the “wrong” results. To
overcome this, he suggested the idea of a stable system, where to postulate
stability is to postulate something rather stronger than, but often equivalent
to, existence of the “C” and “D” groups. (In locally Euclidean spaces and the
generalized manifolds of Wilder [15], stability occurs at each point in each
-dimension.) We have therefore re-cast the whole of our previous theory in
terms of these new concepts, thereby obtaining a more harmonious theory
than before; and many of the results of the earlier draft together with
analogues of results in LTI and CTM are here obtained. The plan of the paper
is as follows. There are four sections: in §I we prove all the basic results we
later need on inverse and direct systems of groups, concerning their “stability”
under mappings of vartous sorts. §II is devoted to a discussion of certain
relationships berween Singular and Vietoris homology. In §III, we derive
certain results concerning homotopy, which are applied in §IV with the
earlier ones to prove theorems concerning the local groups there. Corollaries
of theorems in I1 and III give useful global results of the form:—if XV,
then under certain conditions and with different values of the functor G,
the image of the injection G(X )—G(Y) is finitely generated (see 2.33, 3.14,
3.15). §IV is concerned essentially with three matters: first the proof that the
Wilder manifolds, as mentioned above, have the stability property; second,
implications between the various types of local connectivity, with some
pathology; and third, proofs that for Singular and Vietoris homology, all the
local groups we define (using stability) give the same end-product, i.e. the
same class of manifolds,—with a similar but more restricted result for ho-
motopy. Moreover, a “local” theorem of Hurewicz type is proved in 4.35.
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I. ABSTRACT THEOREMS ON INVERSE AND DIRECT LIMITS

In this section we shall prove several theorems on Inverse and Direct
limits of groups. When given topological interpretations, these theorems will
become the topological theorems of the later sections. We shall normally use
the notation and terminology of [4, Chapter VIII] (in future we denote this
reference by E-S).

1.1. Let M be a set directed by =< and let (P, p)x or simply (P, p), be
an inverse system of groups P, and homomorphisms p5: Pg—P,, for each
o, B in M such that « 8. By definition

a

@) P = identity on P, ala & M,
(i) Po0 Py = buy fag<BSyin M.
Hence, if in M, «, B, v, 6 satisfy
(iii) asfsy, a=§=vy
we have a diagram

Py,— P;

LN

Ps— P,

and using (ii) twice we have
K § v B v
Pa = PaPG = Papﬁ’

i.e. the diagram is commutative.

In the interpretations, the p’s will usually be injections of homology or
homotopy groups, and for our purposes it is the images of these which are
important. We therefore now consider the groups

(iv) Psy = ppPy C Py

From the above diagram we obtain

Pay = puPy = pu(piPy) (by (i)
C paPs,
and so
(v) Poy & Pop.

Moreover, write temporarily

By ;]
Ja = Pal Pﬂw
so that
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1958] LOCAL TOPOLOGICAL INVARIANTS, I 203

By B v
ga Pgy = papsPy

by (ii
_ s by (i)
= Py
Thus
(vi) the homomor phism qiy: Py, — P,y is onto.

Further, by (v) and (vi)

4e'Poy = Pay S Pas,
and so we can write
(vii) &'+ Pgy— Pas.
Hence, if A\, pE M satisfy NS94, u<a, u =\, then

ab

Qu : Pas — P

and

By
gu : Poy — P,

and one can verify that

By ad [:27
(viii) % =qu OGa-

For typographical reasons, we shall denote the Inverse limit of the system
(P, p) by
Ilim(P, p).

Now, this limit depends not so much on the actual groups P, as on the images
of the form P.. This causes us to consider the set M of pairs (8, v¥), with
B =7 in M, and we make M into a quasi-ordered set by writing («, 8) S(8, v)
whenever (iii) holds, so that then we can form the above diagram. Since M
is directed, it can be verified that M is directed also. Next, for each uEM,
of the form p=(B, v), define

(ix) Fu = Pgy
and for each pair ASu in M, with A= (a, §), take

TR

(x) pr: P, — Py
to be the homomorphism in (vii), i.e.

B By

P = Ga : Pgy — Pas.

Condition (i) holds for § since it holds for p, of which  is a restriction. Con-
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dition (ii) holds for § by (viii) above; and $% is always defined if A<y in M.
Hence (P, p) is an inverse system over M. Moreover, we can identify M
with the diagonal of M by means of the correspondence a—(a, ). Since M
is directed, it follows that M is cofinal in M. But, by (i), Po = P, and there-
fore there is a natural isomorphism

(xi) Iim(P, §)r ~ Iim(P, p)ux.

The previous discussion shows that the homomorphisms § in (ix) are either
inclusions or onto; hence the system (P, ) is “tidier” than (P, p).
(P)ﬁ) = (P’f)

Thus repetitfon of the construction of (P, $) from (P, p) yields nothing new.

1.2. Stability. Recall that a subset 4 of a directed set (B, <) is cofinal
in B, written A cof B, whenever given S&B there exists « €4 with §Za.
Define the saturation A* of A to be the set of all BE B, such that there exists
a€A4 and a=8. Clearly A CA4* and if A cof B then 4* cof B also.

With (P, $) on M as in 1.1, we shall say that “(P, §) is stable rel A” if
and only if A is a cofinal subset of M, and for all \, u©A with A Su then

6] B P, = Py.

In this event, of course,

(ii) Lim(P, §)7 ~ Uim(P, p)s ~ Py, AE A
Clearly,

(iii) if ACA and A cof M, then (P, p) is also stable rel A.
1.21 THEOREM. If (P, p) is stable rel A, then it is stable rel A*.
To prove this result we need the

1.22. LEMMA. If A\SuSv in M, and N\, vEA, then pi and P, are isomor-
phisms.

Proof. Let A\=(a, 8), v={(v, 8), u= (0, 7). Then we have a commutative
diagram

a g, 8 b
(a, 8) j«—e (7 8)

G f/
Y g

(e, 7)

@, 6)

(e, B)
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in which pi=h, p,=g, etc. Then (dc)(ab) =1, by 1.1(ii); but ¢ is an isomor-
phism, by stability, (d¢) and (ab) are a monomorphism and epimorphism
by 1.1(v) and (vi), and so each is an isomorphism. Hence ¢, b, ¢, d are ali(?)
iso, since a, b are epi, and ¢, d are mono. Also by 1.1(ii) kg=1, whence g is
mono, and % epi. Next, eg =cab, and so eg is epi whence the monomorphisms
e, g are each iso. Finally, since k=dc, and d, ¢ are iso, so is k. This completes
the proof of the lemma.

The proof of Theorem 1.21 now proceeds as follows. We have to show
that given N\, p&A* with A Sy, then $ is an isomorphism. By definition of
Ae, there exists @ S\ in A, and since A cof M, there exists ¥ with u <y EA.
Then

A
Bebrba = Pa
and p. is iso by stability on A, while 4 and $] are iso by Lemma 1.22. Hence
% is an isomorphism as required. Thus, the theorem is established.
If uEM, let A, denote the set of all N€A with u<\. Then a Corollary
of 1.22 is immediately

1.23. LemMMA. If (P, p) is stable rel A, and A cof M, then for each NEA,
(P, §) is stable rel A,.

Thus, given any two cofinal subsets of M, then if (P, p) is stable on one,
it is stable on “almost the whole” of the other. Hence the stability is essen-
tially independent of the cofinal subsets of M, and from now on we can say
merely that (P, §) is stable.

1.3. Direct limits. Let { P, p} denote a direct system of groups P= and
homomorphisms p&: P=— P58 on the directed set (M, <). Thus, by definition,
5 is defined whenever a £8; and 1.1(i) and (ii) are replaced by

(@) p = identity on P°, all a € M;
(i) pate = fa$B<vinM.
By analogy with the treatment in 1.1, we define

P’ =P c P, (@5 8)

af

gas = ps| P*, (@58 <);
and then using (ii) it can be verified that we get, when a S8 54y,
(iii) qu: P? P isan epimorphism,
(iv) P c P,

(") For brevity, we define “8 is epi, mono, or iso” to mean that-8 is respectively an epi-
morphism, a monomorphism, or an isomorphism.
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Note that these are the “duals” of 1.1(v) and (vi), respectively, in the sense
of MacLane [12].

With # as in 1.1, we now form a new direct system, { P, 5} on M by
taking

- 8
P=r", u=@m,
f: = qZp: 77
whenever A<y in M, and A=(a, §8); and recalling that (e, 8) =(8, v) means

that (iii) of 1.1 holds. As before, we have, from (iii) and (iv) that repetition
of the construction of {P, p} from {P, p} yields nothing new;

{P, 2} = {P, 3},

and we identify M with the diagonal of M, and use (i) to write Pe=Pe=,
Hence there is a natural isomorphism of the direct limits

) Dlim { P, p}» ~ Dlim {P, p}=u.

By analogy with 1.2 we say that {P, $} is “stable rel A” if and only if
A is a cofinal subset of M such that whenever A, u€A and A Su, then

(vi) #: Py = P,
We then have

1.31. TureorREM. The statements of 1.21, 1.22 and 1.23 hold whenever (P, §)
is replaced throughout by {P, p}.

Proof. Using the same inequalities in M as in the original proofs, we ob-
tain the same diagrams as before, except that the directions of all arrows are
reversed while inclusions and epimorphisms are interchanged (by (iii) and
(iv)). Hence, by the “duality” described in MacLane [12] the theorem fol-
lows.

1.4. Mappings of systems. In locally compact spaces, one often obtains
commuting diagrams of groups and homomorphisms of the form

G,.— Gy
kol 7 LRy
H.,—»H,
for each pair x, y with x<y in some ordered set. The G’s and H’s may form
either an inverse or a direct system over the set, and one wants to conclude
that the k-homomorphism induces an isomorphism of lim G; on lim H,. In
this paper we shall need two particular theorems of this sort, and both are

for inverse systems; but the omitted proof of 2.32 below requires both 1.42
and its analogue for direct systems.
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1.41. Let then (2, p), (Q, q) be inverse systems over M with the property
that, for each a & M, there is a homomorphism ¢,: P.—(Q, satisfying

@ Gats = babu

whenever & 8. We then say that there is a homomorphism ¢: (P, p)—(Q, q);
and [4, p. 223] there results an induced homomorphism

(ii) ¢ Ilim (P, p) — Ilim(Q, ¢)
defined for each {x..} &llim (P, p), by

bufZa) = {Gata].
Further, if (a, ) &M, then P, P, by definition, and

[ [:
ba(Pap) = apalPs = gutpPs (by 1.41)
B
€ a5 = Qas.

Thus, for each A<u in M, ¢ induces homomorphisms
(iii) o ?)\ - @)\, Fu: T)n - Gu
such that, using 1.41,
(iv) Bd = B

Let J denote the set of integers >0, directed by the natural ordering <.

1.42. THEOREM. Let (P, p), (Q, q) be inverse systems over J, and let ¢: (P, p)
—(Q, q) be a homomorphism. Suppose that for each jEJ, there is a homo-
morphism ;: Qi1—P; such that the diagram

Pi‘z'PHl
dil N |
Qi < Qi1
q

commutes (where p=pit', q=g/™"). Then
$o: llim (P, p) =~ Ilim (Q, g).

Proof. To prove ¢, has kernel zero, suppose ¢.{x;} =1, for some {x,}
&Ilim (P, p). Then since ¢w{x,~} = {¢x;}, we have ¢;x;=1; (the unit of Q;)
for all 5. Hence

Vibirrxip1 = 17 (unit of Pj)
J+1
= p;i %in

by the commutativity of the diagram above. By definition of {x;}, #/™x;1
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=x;. Hence for all j, x;=1/, and therefore {xj} is the unit of Ilim (P, p),
i.e. ¢, is mono as required.

To prove that ¢, is epi, let y;E1lim (Q, ¢). We define aq, xz, < - -, x5, « - -,
inductively as follows. Put x; =y, so that

01X, = Py

2 . .
¢1y2 by commutativity

= y, by definition of y;.

Now suppose that x;, - - -, x;-; have been defined to satisfy
x e Py bixXi = i, l=s1s57-1
and
P::+lxi+l = 185i<j~1.

Define x; to be ¥;¥;41, so that x;EP; and ¢,x;=¢¥;¥is1=¢ " ¥i+1 by com-
mutativity, =3, by definition of {yj}. Hence, the inductive definition of x;
is justified, and

%; € llim (P, p) and ¢w{xi} = {¢.~x.~} = {yi}-

Thus ¢, is epi, and the proof is complete.
A STABILITY THEOREM. A “stable” form of 1.42 is the following result.

1.43. THEOREM. Let (A, =) be directed by <, let (P, p), (Q, q) be inverse
systems on M and let ¢: (P, p)—(Q, q) be a homomorphism. Suppose that for
each a, BE M with «<B, there is a homomorphism

Vail0s — P,

so that the diagram

P,."—L‘Pa
ba 4 l %5
Qa‘"—q—“ Os
commules, 1.e.
(i) Vobs = P

and
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” 8 8
(l]) ¢a‘pa = q::-
Then, if A, B cof M, and if (P, §) is stable rel A, there is a subset A cofinalin

the saturation A of A, such that (Q, q) is stable rel A; and conversely; and the
inverse limits of the two systems are isomorphic.

Proof. Consider the diagram

$
P‘ P .I’Ay<

aﬁ Qﬁ N Q‘/é
r

where a<f<y<é in M; these latter exist unless M is empty (when the
theorem has no content) since M is directed by <. Then

V90, = Y900, by (ii)
= p0Qy by (i)
C pPs = Pa.

Thus by restriction, ¥ induces a homomorphism ¢': Qg,—Pas.

Now suppose that (P, §) is stable rel A. We construct a AC M such that
(0, §) is stable rel A as follows. Choose (a, a’) €A and define A to be the set
of (8, 8) &M for which there exists ¥ with

aSad <B<y <4

it is easily verified that A cof M and (since (e, a’) (8, 8)) that ACA*. Hence,
by 1.21, (P, p) is stable rel A. Moreover, (@, &')<(e, B)=(8, v) and so
(o, B), (B, v) EA* since {«, &) EA. Hence there is an isomorphism §: P 3— Pg,,
so that by (i) ¢'¢’ = p, where ¥’ is defined above and—using 1.41(iii)~¢o| Py,
=¢': Pg,—(Qp,y. Therefore ¢’ is mono and ¢’ is epi. Similarly, since M is
directed by <, we have on putting ¢o=¢|Pﬁ.;, that

(3.) ¢0: Pﬂ,s —> Qﬁ$
is mono. We assert that ¢, is also epi. For, from the above diagram,
Qs = 97Qs = goxQs = ¢sxQs & ¢sP, = ¢Pg,,

while by stability and 1.21, Pg,=Pg; because (a, ') S (B8, v) S(8, 8) in A"
Therefore Qgss =¢Pss =¢oPgs, which proves ¢ to be epi. Thus we have shown
that for each A€A, the maps @ of 1.41(iii) are isomorphisms; and hence by
the commutativity relation 1.41(iv), @ is an isomorphism if A<pu in A, since
& &, and B4 are. Hence (Q, g) is stable rel A and by 1.2(ii) ¢ induces an iso-
morphism Ilim (P, §) ~Ilim (Q, §) as required.
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To prove the converse, assume that (Q, §) is stable rel A. Since (e, o)
= (a, B) £(B, ) by the above inequalities, then («, B), (B, ¥) are in As. Hence
there is, by 1.21, an isomorphism §: Qgy—Qag, so that with ¢': Qg,—P.s as
above and ¢1=T]P,,,g (see diagram), we have ¢’ = ¢, by (ii). Similarly there
is an epimorphism ¢g: Pgs—Qgs, which we shall now prove to be mono. For,
suppose ¢ox =0, x EPgs. Then x =st(y) for some y&E P;, and so from the dia-
gram we get

0 = osi(y) = gre(y).
But (e, &’) £(8, 8) = (v, 8), so that (B, 8), (v, 8) €A*; hence by 1.21 and the
stability of (0, §) rel As, rp(y) =0. Thus
0 = rp(y) = al(y) = boi(y) = si(y) by (ii),

whereat ¢, is mono, as required. We have proved, then, that ¢ induces iso-
morphisms Py=~Q) for each A€EA, and hence by the commutativity relation
1.41(iv), (0O, @) is stable rel A; and then ¢ induces an isomorphism

Ilim (P, §) = Ilim (Q, §).

This completes the proof of the theorem.

1.5. Non-Abelian groups. For application to the local Fundamental groups
on a space, we shall need the following result. Let ¢: (P, p)—(Q, ¢) be as in
1.41, with the additional properties that for each « € M,

) Ker ¢o = [Pu, Pa]
= commutator subgroup of P,;
(ii) Im ¢a = Qo

(thus, Q. is P, made Abelian). Then

1.51, TueoreM. If (P, p) is stable rel A there exists a subset A cof M, such
that (Q, q) is stable rel A, and

Ilim (Q, ¢) is Ilim (P, p) made Abelian.
(The converse is false: see 4.37 below.)
Proof. Consider the diagram
0
Cs © Pp— Qs

pl o )
Cy &S Py—Qy

2
Cs S P;— Qs
where 6 v =<8 in M and
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Cﬂ = [Pﬁ; Pﬁ]) 6 = ¢ etc.
As in 1.41(iii) we have a homomorphism
bys: Pyg — Qs

Then ¢,4 is onto; for, any element % in Q,s is of the form gx, x&Qs, while
x =0y for some y& Py (by (ii)), so that

u = g0y = ¢py (by 1.41(1))
= d’vﬂ(?y),

which establishes the assertion.
We shall now prove

(iii) if there exists u € M such that v < u < 8 then
Ker ¢yp = [P, Pogl.
For let ¥&€ P, be such that ¢,5v=0. Then v is of the form pw, wE P,, so that
0 = ¢ypw = $pw,
whence
pw € Cp (by ().
Therefore pw is of the form
pw = [x1, 3:)lx2, 2] - - - [%a, 3] = 1[#s, 9],
where x;, ;€ P,, 1 £i<n. Hence
(iv) p'pw =]1[p'x p'y].

Fix (o, o')&A, and suppose &’ £8. Then (@, &) =(8, v) =(8, B), and so
(8, B), (8, v)EA*; then by 1.21 and the stability of (P, §), the inclusion
P CP;, (see 1.1(iv)) is an equality. Hence there exist a;, b;& Py such that

p'wi= p'pa, Py = p'pb: (1 242 n).
Therefore (iv) becomes
™) p'ow = p'([1[pas #59).

Now, by definition of x in (iii) we have (o, o’) £ (8, 8) = (v, 8); hence by 1.21
the epimorphism

™ Py,e i Ps,g

defined by 7 =1>’| P,g, is an isomorphism. Then in (v), p'(pw) =n(pw), so that,
since 7 is mono,

pw = H[Pai’ Pbt] = PH[W: bi]
& pCa.
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But
#Cs = p[Ps, Ps| = [pPs, pPs]
= [P‘Yﬁr P‘Yﬁ])
so that v=pw& [P,s, Pl i.e.
Ker ¢y5 = [P'yB: Pvﬁ],
as asserted in (iii).

Now let A be the set of all pairs (v, 8) €M for which there exists u with
YSu =8 and (e, a’) £(v, B). One verifies that A cof M and ACA®, and so
(P, P) is stable rel A. We have shown that if

Cp = [P'rﬂa P'rﬂ],
then for all (y, 8) S(r, o) in this subset A we have a diagram

v
Cus & Py — Qs

b7 Tq

C'ra' g Pru? Q‘ra

where ¢ =5, ¥ =¢,, p and ¢ are homomorphisms belonging to the systems
(P, B), (0, q) respectively, and p is an isomorphism (since (P, p) is stable
rel A). It now follows easily, using (iii) and the fact that p='Cys=C,,, that ¢
is also an isomorphism. Thus (Q, §) is stable rel A, and the proof is complete.

1.6. Abstract relative theory. For use with relative homology and homo-
topy, consider the following situation. Let (M, =) be the basic directed set
as usual, and if §EM is of the form ¢=(a, B), define

¢ =8

Suppose that (R, r) is an inverse system over M, (4, a) an inverse system
over M, and that for each £€ M there is a homomorphism

de: Ry — Ag
such that the diagram
RS e
rT  Ta §E<9qin M,
R,,Z 4y,
is commutative, i.e.
@) apd, = drt.
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Suppose further that there is a monotone(?) map p: M— M such that for
each y& M and all s& M with p(y) £, the homomorphism

(ll) dE: RE — 4, £E= ('Y: 5))
is onto.
Finally suppose that there is a second monotone map g: M— M, such that
for each u&€ M and all a€ M with g(u) Sa, the above diagram satisfies
(iif) Ker (dr) C Ker (7)), FS¢sy

whenever £, { are of the forms (¢, 8), (u4, v), respectively.
For each ¢, &M of the forms ¢ = (i, u), 7= (a, a) with ¢ 7 define

a L4

Sy = R,, Su = 14

so that (S, s) is an inverse system over M. As in 1.2 we identify M with the
diagonal of ¥, so that M cof M, and therefore using 1.1(xi)

(iv) Ilim (S, 5) = Ilim (S, s)xw~Ilim (R, 7).
We shall prove the following result.

1.61. THEOREM. If (S, 3) is stable rel A, then there is a subset A cofinal in
A* such that (A4, d) is stable rel A; and conversely. In both cases

(v) Ilim (S, 5) = Ilim (4, 4).

Proof. From the diagram preceding (i) we obtain

d
Sa_"Aa
s la pSain M,

S,,zA,,

and so we obtain an induced homomorphism
6,“.: Sya and Apa
given by
3pa = d1| Spa-

Pick (o, \) €A and define A to be the set of all pairs (u, a) €A* for which there
exists BE X such that A SpSq(r) SBSa (with g as for (iii)). Define A, to be
the set of all pairs (i, @) EA* for which there exists € M such that ASqg(\)
SusSBSp(B) Sa (pasin (ii)). It is easily verified that A, Ao cof M. From the
commutativity of the last diagram (following from (i)), we obtain

(vi) de5, = 3,0,, o< rin M,

® Le. for all a, a Sp(a).
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and therefore the stability of (S, 5) on A will follow if we can prove 9,, an
isomorphism for each (i, @) €A; and similarly for (4, @) on A,.
We shall therefore prove

Quat Sua = Aua

provided (a) (g, @) EA and (4, @) is stable rel A, or (b) (u, @) EA, and (S, 3)
is stable rel A, and then by (vi) it follows immediately that
9,: Ilim (S, 5) = Ilim (4, a),

as required by (v).
Proof for (a). d,, is onto. For, since M is directed, there exists B& M such
that

A

pEasple) 258

giving a diagram of the form

b o
R(a,ﬁ) - Sa —’Sn
d} ld
Ag — Aa— 4,
a a

Let uEA,.. By 1.1(iv), A,3CA4,,, and since (u, 3), (4, @) EA?, the inclusion
is an equality, by the stability of (4, @). Hence there exists v 4, such that
n=a'av. Since a<p(a) <P, we can apply (ii) of 1.6, to say that d is onto.
Hence there exists w&R.,p such that v=dw; and so w=d’adw=db'bw
=d’'b' (bw) =d'u, say, where u,=>0b'(bw)ES,, since bw&S,. But then d'u,
=d,a%0, whence d,, is onto, as required.

Let us now prove that 9, is mono. Since (u, @) €A, there exists by defini-
tion B8E M such that u=q(u) £ =a, giving a diagram of the form

b b
Se— Rp — Sy

di| |4 ld
Aa—a> Ag ~07> A,
Let x &S, be such that 8,.x=0. Then x is of the form b’by, y&E.S.,, so that
0 = 3uex = d'x = d'b'by = d'adyy.
Now the homomorphism
0: Age — Ayy

defined by 0=a’l Apga, is an isomorphism because (8, @), (u, @) EA? and (4, @)
is stable rel A, Thus
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0 = d'(ad1y) = 0(adyy)

and so ady =0 because 8 is mono, giving dby =0. Since u =q(u) Sa the con-
ditions of 1.6(iii) are satisfied with ¥ =u. Hence y&Ker (db) CKer (b'd) and
so x =b'by =0. Thus 8,. is mono, as asserted. With the previous result, this
proves d,, to be an isomorphism.

Proof for (b). If (u, @) €Ay, then by definition there exists & M such that
u=B=<p(B) Zaq, giving the following diagram:

r S S
Sa ¥ Rpe »Sg — Sy

; J
A

Aq %Ag ,>_',,
a a

To prove that 3,. is onto, let x&A,., so that x is of the form a’ay, yEA4..
Since p(B8) S« we can apply (ii) of 1.6 to assert that d is onto; and so y=dz
for some 2& Rg.. Hence

x = d'adz = d's'sz = d's’u, say,

where u =53E€.S;5. Now, since (S, 3) is stable rel A, the inclusion S, CS,s is an
equality. Thus w=s5uES,5=S.. and

X = d’w = G“aw (aya =g I Sua)y
whence 9, is onto.

Lastly, to prove 9, is mono, let xS, be such that 9,.x =0. By definition
of Ay, there exists A€ M such that A=<¢g(A\) Su = a, so that we have a diagram

sl

s
Se— S, 2 S5

I ld
Ae— A,

a

Because x & S,.., there exists yE&.S, such that x =sy; and then d,.x=dsy, since
6,,,,=d| S,o. Hence yEKer(ds) &Ker(s’s), for -(iii) can be applied with 7
=(a, a), £=(u, u), {=, N), respectively, since g(A\) Zu. Therefore s'sy=0.
But s’ induces a homomorphism
g S,m - S)‘a

defined by tr=s'| S,«; and since (u, &), (A, @) EA?, and (S, 3) is stable rel A,
then ¢ is an isomorphism. Now 0=s'(sy) =o(sy), whence sy =0 because ¢ is
mono. Therefore x =sy=0, whence 9, is mono, as required.

By the remarks preceding (a) and (b), the proof of the theorem is now
complete.
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II. VIETORIS AND SINGULAR HOMOLOGY

We shall later wish to compare the local invariants in a space, defined
in each of the Vietoris and the Singular theories. To bring out better the
relationships, we shall here express the singular groups as inverse limits, in
the spirit of Lefschetz [11] with his Vietoris singular complex, and then treat
the Vietoris groups similarly. Throughout, R will denote a fixed commutative
ring with unit. We let (M, <) denote the set of all non-negative real numbers,
where

A<pin M meansu S A,

2.1. The singular inverse system. As in [E-S, Chapter VII] let A, de-
note the unit g-simplex in Euclidean space R#*1, and let X be a fixed metric
space. If YCX define C,S(Y, \) to be the free R-module generated by all
singular ¢-simplexes T': A,— Y, such that
@) diam 7'(A;) < A,

If ¢ <0, there are no such simplexes, and C,S(Y, A\) =0. From the definition
of the singular boundary operator in [E-S, p. 186], it follows that

gt CQS(Y’ x) - CG—IS(Y7 )‘)s

and so (C,S(Y, \), 3,) is a chain complex whose homology groups we denote
by H,S(Y, \). In the notation of [E-S, p. 197] our C,S(Y, \) is the group
C,(Y, F) where F is the covering of Y consisting of all open sets of diameter
<A, and Theorem VII 8.2, 0p. cit. proves that the inclusion

(i) CoS(Y, N) S CS(Y)

induces a homotopy equivalence in each dimension. Moreover, if u& M and
0 <u S\, there is an inclusion

(iii) CS(Y, u) © CS(Y, N

and an obvious modification(®) of the proof of [4, VII 8.2] shows that this
inclusion also induces a homotopy equivalence in each dimension. We there-
fore have a commuting diagram

HS(Y, \) > HS(Y)
(iv) 1 Teg
HS(Y, )= HS(Y)

'

where H,S(Y) is the ordinary g-dimensional singular homology group of Y,
g is the identity map, a» and a, are homomorphisms induced by inclusions of
the sort (ii), and f=f{ a homomorphism induced by the inclusion (iii). Owing

(® In fact, replace “Tin X” on p. 198, line 11 of op. cit. by “T in X’& F.”
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to the homotopy equivalence in (ii), a\ and a, are isomorphisms; hence pass-
ing to the limit we get

v) 0wt Tlim (HS(Y, N), Mu ~ HS(Y).

2.2. The Vietoris inverse system. Now let F be a compact subset of X,
and let A] denote the set of vertices of A,. Define a “Vietoris g-simplex,” or
(V, @)-simplex, of F to be a map 7: A)—F, so that using (V, g)-simplexes in
place of singular cells in 2.1 (i), we obtain analogously a chain-complex
Q(F, M) =(C(F, N), 9,) of free R-modules. If FCK, K compact, then we
regard every (V, ¢)-simplex of F as being one of K, so that Q(F, A) is a sub-
complex of Q(X, N). Forming the quotient complex

QK, F,\) = UK, \)/QF, ),
we obtain an exact sequence of homology groups

q—1

a 2
@) - HQF, N = HQK,\) = HUK, F,\) —— He 1 QF,N) > - - -
Moreover, if u& M and 0 <u =\, there is an inclusion
CoQF, u) & C,Q(F, N)

inducing an injection ¢}: H,Q(F, u)—H Q(F, N); and it is easily seen that
the usual Vietoris ¢gth homology group of F is identical with

(i) H,Q(F) = Tlim (H,Q(F, \),8))u,
and similarly for H Q(K, F). If 4 is any subset of X, we define

(iif) H,(X, 4) = Dlim{H,(K, F), wxs}e

where & is the system of all compact pairs (K, F) with FCKCX, FCA4,
directed by inclusion, and w¥ is induced by the inclusion (X, F)C(J, E).
Since singular theory has compact carriers, it is well known that

(iv) HS(X, 4) = Dlim {HS(K, F), skr}s,

where si& is induced by inclusion.

Given a singular g-cell T:A,—F in C,S(F, \), the restriction ¢T = T|A?
defines an element of C,Q(F, N), and if we extend by linearity we get a homo-
morphism

W) a: CS(F, N) = C(F, N)

which commutes properly with boundaries and injections. Hence, from (iii)
and (iv), there is an induced homomorphism

(vi) ox: HeS(X) — H (X)

which is natural. We shall next consider restrictions on X which will enable
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us to assert gx to be an isomorphism. These restrictions concern the local
connectivity of X.

2.3. Local connectivity. Let x be a fixed point in the space X, and let
U denote the set of all neighborhoods(%) of x, directed by <, where

(1) UL Ve=2VCU.

We shall suppose that X is locally compact at x, so that the set U, of all com-
pact neighborhoods of x satisfies

U, cof U.

With U, V as above and with w and s as in 2.2 (iii) and (iv), respectively,
let St;f=sg;g (0 =empty set), and similarly for w; define
) v
i) L,S(x) = lim (HS(U), sv)u.,
L2(x) = Tlim (H,Q(U), oo)u..

We write, whenever U<V

(i) HS(WV|U) = solS(V),  HQV | U) = wyH,Q(V).

Then X is said(®) to be g—Ilc,[¢—Ic,] at x if and only if to each UE, there
exists VEU, such that VC U and, using augmented homology in dimension
zero,

(iv) HS(V|U)=0, [HQV]|U)=o0].

X islc? at x if and only if it is r—lc,, 07 =<¢q, and X is 1c? if and only if it is
1c? at all its points. Similarly for 1cl.
For brevity we shall write

(v) Sov = HS(V|U), Quv = HQWV|U)
and
(vi) LS(x) =0

whenever, in the notation of 1.2, there is a subset A of(¢) U? such that (Z, 3)

is stable rel A; and similarly for L,Q(x). It is then easily verified that

. Xisq—Ic, at x- & LS(x) = 0;

(vi) .
Xisqg—lc, at x-&=-L,Q(x) = 0.

Begle {1, 3.1] has given a very useful definition of local connectivity which

in our notation can be written as:

(*) Following Bourbaki: U is a neighborhood of x means x& Interior (U).
(5) Our lc, is the “H.L.C.” of Cartan [2] _
(%) For typographical reasons, we write the M of 1.1 (ix) as M2
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(viiiy X is (V, @) —lc at x-=- given UC W, and €>0, there exist VEU,
(depending only on U) and n>0 such that every cycle in C,Q(V, 1) is homologous
to zero in C U, €).

Begle proves that when X is compact metric—and his proof requires only
minor modifications if X is locally compact—then X is Ic? if and only if it is
(V, r)~Ic, 0 =r =q. We therefore formulate the analogue of (viii):

(ix) X is (S, ¢)—lc at x- & given UEWU, and €>0, there exist VEU,
(depending only on U) and n>0 such that every cycle in C,S(V, 1) is homologous
to zero in C,S(U, ¢).

2.31. LEMMA. X isq—lc, at x-=-X 15 (S, ¢) —lc at x.

Proof. Consider the diagram

b
H,S(U, €) — HS(U)
t7 Ts
HSW, ) ?HQS(V)

where VC U in U,, 0<7n=¢, s and ¢ are injections, and b and ¢ are isomor-
phisms of the sort a) in 2.1 (iv). Thus sc=8¢. If U, V are as in (v), s=0. Hence
bt=0, and so t=0 since b is an isomorphism. Therefore g—Ic, implies (.S, q)
—lc. Conversely, if U, V, ¢ n are as in (ix), £=0. Hence s¢=0, and so s=0
because ¢ is an isomorphism. Thus (S, ¢) —Ic implies g —Ic,, and the lemma is
proved. *

The pair (V, ) in (viii) is clearly a function of the pair (U, €), and
similarly in (ix); let us therefore write, respectively,

@ V=x0), a=NU,¢; V=2NU), 1=>nU,e.

We can now assert the following result concerning the homomorphism o
of 2.2 (vi).

2.32. THEOREM. If the locally compact metric space X is both It and Icf,
then

oxt HS(X) ~ H,Q(X), 0<r<yq.

We shall not digress to give a proof; a full treatment will be given elsewhere.

Added in proof, September 1958. In a forthcoming paper by S. Marde§ié
(See Notices Amer. Math. Soc., April, 1958, p. 210, Abstract 544-14) it is
proved that the theorem holds for a paracompact Hausdorff, Ic? space X and
that in dimension #+1, g4 is onto.

The relationships between the types of local connectivity will be discussed
further in 4.2 below. Suffice it to say for the present that the conclusion of the
theorem would hold if X were LC¢, thus generalizing Lefschetz [11, 22.1].

With the notation Hq(X| Y) of 2.3 (iii), a useful consequence of 2.32 is:
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2.33. TuEorREM. If X is locally compact metric, lc; and Ic}, if G is any
neighborhood of a compact set FC X, and if 0=q=n, then

HS(F|G)
is finitely generated, 0 Zq<n.

Proof. Since X is locally compact, there is a compact neighborhood W of
F such that WCG. Let U=interior W. We have a commutative diagram

w 4
H,QU) — H,Q(W) = H,Q(G)
ol Tr
HS(U) — H,S5(G)

where the horizontal arrows are injections and ¢, 7 are isomorphisms of the
sort g% in 2.32 (they exist since U, G are open in X). Then by Newman
[13, Theorem 1], P=gH Q(W) is finitely generated. Therefore, if u=gw,
then

Q=uHQU)CS P
and so Q is finitely generated since all groups are Abelian. But
uH QU) = uaH,S(U) since o is an isomorphism,
= 1sHS(U)

and so, since 7 is an isomorphism, sH S(U)=Q and is therefore finitely
generated. Now, since FC U,

HS(F|G) S HS(U| G) = sHS(U)
and the required result follows.

I111. HomoToPrPy

3.1. In order to prove a “local” version of Hurewicz's theorem we shall
in this section discuss certain modifications of Eilenberg [3] Let X, ¥V be
subsets of a topological space, with XC ¥, and let x&X be taken as base-
point of homotopy groups until further notice. Thus we write 7,(X) for
m.(X, x). Following Eilenberg, we denote by S(X) the singular complex of
X, and by S.(X) the subcomplex of S(X) consisting of all singular simplexes
T:A—X such that all the faces of A of dimension <# are mapped by T
into x. Thus

@ SX) =S(X) 25(X) 2 - -28((X)2 - -

and
SH(X) _<:- Sn(Y), n = O’ 11 2! e
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We denote the image of the injection of 7,(X) in w.(Y), by

(X 1 Y).
If we look at Eilenberg’s proof, op. cit., of 31.1, p. 440, we see that if “x,(X)
=0" is replaced by “m.(X]¥)=0,” then in that proof we have to replace

p. 441, 1.7 and 31.4 respectively by “Rp: sXI—Y” and “Rp is in Spu(Y).”
We therefore obtain instead of his 1.5, 1.7 on p. 442 the following result.

3.11. LEMMA. Suppose m.(X| V) =0. Then there is a diagram

x ? Lig
Sn+1(X)".—’ Sn+1(y)
Jn+1
such that
$))] P1x = Jut1,
(ii) Ny = jn rel x

where Nx, My, ja, Jns1 are injections, and p is the analogue of Eilenberg's w.
3.12. If we have a chain of subsets
X=4,C4:C---CA4, =Y

such that
Wr(ArlAr+l)=0) r=0,1,.---,n—1,

it will be convenient to write
X <.17Y.

The last lemma now enables us to prove the following theorem, which be-
comes the Hurewicz Theorem when X =Y.

3.13. THEOREM. If X <. Y and n>1, there is a commutative diagram (for
integer coefficients)

HoS(X)— > B,5(Y)
hx T hY
‘n',,(X)'——?—-) m(Y)

where 1, j are injections, the h's are natural Hurewicz homomorphisms, and v
15 to be constructed.

License or copyright restrictions may apply to redistribution; see https:/www.ams.org/journal-terms-of-use



222 H. B. GRIFFITHS [September

Proof. By Eilenberg [3, p. 443], there is, since #>1, a commutative dia-
gram

k
H.S.(X) = H.S.(Y)

nt T v2
(X)) —— m(¥)
J

where £ is the injection, and the »'s are isomorphisms. It therefore suffices by
commutativity to show the existence of a commutative diagram

H,S(X)— > H,S(Y)

N

HnSn(X)—k)H,,Sn( Y)

where \, u are injections of the sort given by 3.1 (i), and

(i) hx = Avy, hy = uvs, T = Vz—lq.

Since X <.V, there is a chain X=4,C - - €A4,=7, as in 3.12, and
so by 3.11 we can form the following diagram, which is commutative in each
square and triangle (by (i) and (ii) of 3.11); in it, the a's, 8’s and p's cor-
respond to the 1's, j's and p of 3.11. The diagram is:

So(Ao)“ﬂ—)SO(AO 2 . e &,50(,4”)
aoﬂ N: )[au 751
S(AO)_él‘__,Sl(Al)__Blz_)... hSI(A,,)

TNr

Pn—-l :

N
Sn—l(Ao)“‘—“)Sn—l(Al)——)' v = S1(4ay) —3Sn1(45)
aOn‘[ Ialn an—l.n]\ Y Iann
S (Ap)-—Bn—aS (A)—Bi—> LS (A ) ——> o — 2 58.(42)

By induction on m (0=m =n) we obtain, on using the commutativity
of the diagram below and above the diagonal respectively,

(“1) Bmmﬂmm—l ot ,Bml = (Pmpm—l et Pl)(amaO? R aOm)y
(iv) BomBom—1 * * * Bor = (@m1tma * * * Cmm) (PmPm_1 * * * P1).
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Now H,S(X)=H,S¢(4,), so that in diagram (i) above, k is induced by
BunBun—1 + + * Bm; and similarly, ¢ is induced by BonBon - - - Bo, N by
@0z ¢ - Qony and g bY @ni@as - ¢ - @as. Hence, at the level of homology
groups, (iii) and (iv) with #n=m give respectively

k= 7, 1= umr

where 7 is induced by pa.pa._1 - - - p1. This proves the existence of a com-
mutative diagram of the form (i) and hence the theorem follows.

3.14. CoROLLARY. If in Theorem 3.13, Y is locally compact, lc; and Ic?, and
if we have also a compact set U such that

U C Interior (X).
then m,(U [ Y) is finitely generated (n>1).

Proof. By 3.13, we have a commutative diagram

HS(U)— HaS(X) —— HaS(Y)

hy hx T ]

wn(U)-—;—) 7r,.(X) '_]?"_)7"'»(17)

where %, v are injections, and Ay is the Hurewicz homomorphism. Now
(U | V) = juG, G = w.(U)
= whxuG = mhyG
C mH,S(U).
Our hypotheses enable us to invoke 2.33, which asserts that vH,S(U) is
finitely generated: hence so is its image 7.(U l Y), and the proof is complete.
To extend 3.14 to the case =1, we have the following result. First, if
X is a locally compact metric space, of which F is a compact subset, then there

exists k=«(F)>0 such that the closure F,, of the x-neighborhood of F, is
compact; and then for any A <«, F) is also compact.

3.15. LEMuMA. In the locally compact metric(?) LCY space X, let F be a com-
pact subset, G a neighborhood of .F. Given {>0 such that Fy is compact, FTF;
CG, and

@) m(F| G, y0) = m(F;| G, y0)
relative to some base-point yoE F, then m(F [ G, yo) is finitely generated.
Proof. Since X is LC' and locally compact metric, there is, by [LTI, 7.1],

(") The LC! property is defined in 4.21 below.
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a function (7T, 8, € >0, defined for any compact subset T of X and all ¢,
6>0, with this property: every partial realization(?) in T, of mesh <7, of a
finite 2-dimensional complex, can be extended to a full realization, in the
é-neighborhood of T, of mesh <e. Now with { as above, let

e = 4 Y9 (Fy, o, 0), B=4"(F,¢ e
where
o = 27V dist(F, X — G).

Let K be the 2-skeleton of the nerve of a finite covering {U(xi, 8)} of F,
where x;=y, and each x;&EF. If p denotes the (1-1) correspondence k;—x;
between the vertices k; of K and the points x; of F, then p, as a partial realiza-
tion in F of K, is of mesh <28<7(F, {, €). By definition of the n-function
above, p can now be extended to be a full realization of K in Fy, of mesh
<e¢, i.e. p: K—F; is a mapping. We therefore have homomorphisms

(K, k) 5 (1) D (G, =)
where ¢ is induced by p, and j is the injection, giving
i = 0: m(K, k) — m(F; | G, 2).
We shall shortly prove
(i) n(F| G, x) S 0m(K, k1) (S mu(Fy | G, x)
which, with the above hypothesis (i) gives
m(F| G, 21) = 6mi(K, ky).

Now K is a finite complex and so has a finitely generated “Kantenweggruppe”
(see Seifert-Threlfall [14, p. 158]) isomorphic to (K, k1). Since 8 is a homo-
morphism, 1r1(F| G, x,) is therefore finitely generated(®).

To prove (ii), let f: E!, E'>F, x be a loop in F and let {U(x;(,), B)},

r=1, ..., s+1, cover f(E!), where we assume the numbering to be such
that

U(%ity, B) M U(xir41y, B) # 0, r=1,---,5s;
and (1) =i(s+1)=1. For each r=1, - - -, s, choose a point £, & E!, such that

f&) =y Ef(EVYNU (%4, B) With y3=x%1=23,41. Then if the metric in X is p,
Pry ¥rt1) S oy %itn) + p(Zir), Zie+n) + p(Fie+1)s Yre1)
= B 4 28 + B
- 4

(%) The terms employed are defined in Lefschetz [11, Chapter I1 1.
) If ‘n(FI G, x) was Abelian, the hypothesis (i) would not be necessary, by (ii). A sub-
group of a finitely generated, non-Abelian group may well not be finitely generated.
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Hence, if N(§) =f(& +Era(E—£)/ (1 —E:)) denotes the part of the curve
f(EY) between v, and v,.,, then A, is a path in F of diameter <48. Also,
p(ximy, ) <B<n(F, ¢, €), and so we may join x4 to ¥, by a path u, of diam-
eter <ein Fp. Since xiq) =1 =%1 =%Xie41y We take y; =4y to be the point x;;
and since U(xipy, BYNU(Xiprs1y, B) #0, then x4 is already joined to x;¢41y by
a path y,—the image by p of an edgeof K (r=1, : . -, s). The diameter of »,
is <e¢, and therefore the loop N, —pre1 —vr1+u4, is an image, say by f,, of E?
in Fy, and of diameter <3e+48<4e=7(F;, 7, o), (for B=9(F, {, €)/4<e/4).

Hence f, may be extended to a mapping f/ of the disc E?, of diameter <o
and so in F¢y,CG. Using the deformation d; of E! given by d.(£o, &) = (&0, t£1)
(0=5t=1), A, is deformable in f/ (E?)CG to v,41, with end-points on —p, 4y
and —v,;;; hence by combining these deformations in the obvious way,

a+1
(i) f=~2 »inG,

r=]
and this homotopy is rel v, since vy =v,41 =x;. But by definition of »,, ZV,- is
the image by ¢ of a closed edge-path

v = kinkiy - - - Biwbiy

on K. Denoting homotopy classes in m(G, x,) by [k], we thus have from (iii)
(1 = [22 %] = [pv] = wlv] = 6v],

and since [f] is the class of f in m,(F|G, x1), this proves (i), and completes
the proof of the lemma.

If we put F=X in 3.15, we get:

3.16. The fundamental group of a compact metric LC* space is finilely
generated. Neither the “compact” nor the “LLC” can be omitted: for counter-
examples see Griffiths [9, p. 470].

IV. LocAL ToPOLOGY

We are now ready to apply the results of the previous sections to the
various local groups at a point x of the space X, which is always taken to be
locally compact metric.

4.1. Local Betti numbers. If U denotes the system of all neighborhoods
of x in X, directed as in 2.3 (i), we shall denote by U, U, respectively the
systems of open and of compact members of U, so that(%)

® U, U, cof U.

Apart from local connectivity, the earliest algebraic local invariant to be
considered in Topology was the Alexandroff-Cech “local Betti number”
p~(x), defined for coefficients in a field ; and the important case is when

(19) cof was defined at the start of 1.2, For typographical reasons we write the M of 1.1 as
M2,
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p™(x) is finite. This occurs, as we see from(1) 6.11 of Wilder [15, p. 192], if
and only if there is a subset £ cof U} such that for every pair (P, Q) €O, the
image of the injection

ipg: H.UX, X — P)> H.QAX, X — Q)
is a vector space over ¥ of dimension p*(x). Putting
B = H.X,X —P), bs=ire
it follows that {B, b} is a direct system over l,, and in the notation of 1.3,
(ii) p"(%) finite &< dim BP? = pn(x), if (P, Q) € O.

Since we are here dealing with vector spaces, (iti) and (iv) of 1.3 imply
that if 7& Uy and P2 TDQ, then respectively:

(@) if (T, Q)ED then BPe¢=BTe,;

(b) if (P, T)ED, the injection BPT—B?¢ is an isomorphism.
In other words, the system {E, B} is stable rel © in the sense of 1.3, and its
direct limit—which is Dlim {B, b} by 1.3 (v)—is a vector space over &, of
dimension p*(x).

Now for any coefficient group, whether we have stability or not,
Dlim{B, b} always exists. We assert

4.11. LemMa. Dlim {B, b} ~H.Q(X, X —x).
Proof. By 2.2 (iv), we have
H.Q(X, X — z) = Dlim { H,Q(K, F), =}
taken over the system & of all compact pairs (K, F)C (X, X —x) directed
by inclusion. But every compact K has a compact neighborhood G, since
X is locally compact; and indeed we can take G large enough to be a neighbor-
hood of x. Also FCKMN(X —x), so that there exists UE U,, such that F

CG—U. Hence, if & is the set of pairs (G, G— U), where G& 11, U&U,,
then &’ cof 8, and so

(i) H,Q(X, X — 2) =~ Dlim { H,2(G, G — U), n}, (G,G — U) € ..

But G is closed, and therefore if it is so small that Interior (X —G)#0, the
inclusion (G, G—U)C (X, X —U) induces an isomorphism

(ii) ne,v: H.QG, G — U) =~ H,Q(X, X — U) = BY;

this is by the fact (whose proof we omit) that HQ satisfies the Excision Axi-

om. Since 7 commutes with injections, we therefore obtain from (i) and (ii)
H.Q(X, X — x) =~ Dlim {B, b},

as required.

(1Y) We use Wilder’s notation p*(x), but remark that our H,Q is his H* (Cech groups).
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REMARK. If T denotes the svstem of all open sets of X directed by inclu-
sion, then {B, b}: defines a pre-sheaf, and hence a sheaf 8, on X (see Cartan
[2]), and the above shows that the “stalk” at each point x is IT,Q(X, X —x).
Hence, if coefficients are in the field &, and at all x& X, p?(x) = 8.; (Kronecker
delta) where dim X =#, then X is a generalized manifold in the sense of
Wilder, while 8 is the simple faisceau X X & (provided X is orientable) because
all the stalks are isomorphic to & (by 4.11 (ii)). This suggests a new direction
in which to generalize Wilder’s work (which we shall not here pursue).

4.12. The first new local group we introduce is the following. Fixing =,
define for each PEU(x)

Qp = H,Q(P — %),

and if P2Q, let wd: Qo—Qp be the injection. Then (2, w) is an inverse system
over U, with limit

i) H,Q(x) = Him (Q, w).
Also, for each pair (P, Q)& 112,
Qpe = H,QQ — 2| P — x)

in the notation of 1.1 (iv) and 2.3 (iii); so that if (@, &) is stable, then in the
sense of [LTI, Definition 6.1], a group Cy(x) exists at x, and is isomorphic to
H,Q(x). But of course the converse may not hold. For example, in the co-
ordinate plane R?, let Z, be the circle (x —1/27)24y%=(1/2"*1)2 Let 2=(0, 0)
and let Z=U, Z,. Then for any neighborhoods P, Q of z in Z, with P20,
we have—using integer coefficients—that HI.Q(Q—z! P —2) is the free group
A on N, generators, and so Ci(z) exists. On the other hand H,Q(z) =04,
but the group is not stable. However, in many cases, the two local groups
coincide, as is shown by some of the theorems of LTI and CTM. All the latter
depend on remarks of this kind:

(@) if LCMCN are subsets of X, then as in 1.3 (iii) there is an epi-
morphism g:HnQ(LI M)—»HnQ(L‘ N), and if both groups are known to be
isomorphic to the same finitely generated Abelian group, then ¢ is an iso-
morphism (it is therefore important to know when the various groups are
finitely generated Abelian and this is why we proved 2.32, 3.14, above);

(b) as in 1.3 (iv), H.Q(L| N) CH,Q(M| N), so that if certain topological
conditions like 4.51(a) below (see e.g. [CTM, 4.3]) are satisfied then the in-
clusion is an equality. Similar remarks apply when we use the singular and
homotopy functors.

The upshot of all this is, that in all “reasonable” cases where a “C” group
exists and is finitely generated, it is equal to the corresponding limit group
which is also stable (we do not propose to make here a detailed study of the
pathology of the question). In view of the greater harmony of the “limit”
theory, we shall now drop the “C” invariants and concentrate on their

License or copyright restrictions may apply to redistribution; see https:/www.ams.org/journal-terms-of-use



228 H. B. GRIFFITHS [September

usurpers, the “limit” groups. This does not of course answer all the technical
questions of the “C” theory: we merely explain them away, feeling that it is
more important to get on with the nonpathological theory. Incidentally, an
example of the aforementioned harmony is this: in [LTI, 6.8], we wonder
whether in the definition of the C groups we should use groups of the form
H,Q(P—x|Q—=x) or H,,Q(P——x|@—x), (P, Q&€ Up). But by 4.1 (i), it is
immaterial for stability whether we use a (P, Q)& or (S, T)E 112, because
of 1.21 and 1.23. And this, one feels, is the way things should be.

4.2. Local connectivity. In addition to the types of local connectivity con-
sidered in 2.3, there is the homotopy form:

4.21 X is ¢— LC at x whenever, given PE(x), there exists Q& U(x) such
that P2 Q and('?) 1rq(Q[ P, x)=0. X is LC" [at x] whenever it is q— LC every-
where [at x], 0SgSr.

Put

Q = A(P).
4.22, TuEOREM. If X is LC? at x, it is Ic? at x (over the integers).

Proof. (a) ¢=0. The proof for this case is straightforward, easy, and
omitted. We remark however that it holds for all coefficients.
(b) g=1. Define a chain R=0,C : - - ©Qg41 =P, where

Q- = A(Qrs0), 0=sr=yg, (P,0Qr, R& 1)
so that

7(Qr | Qrir, %) = 0.

We then have the commutative diagram
Hﬁ(R)—LHTSngq) —i>H,§5P)
A T In vy
HSR)— HSe(00— o HeSiP)

V1 Vv

Tq(Qq)‘T‘) wq(P)

where all arrows except 7, . and v, denote injections, »,, v, are the homo-
morphisms of Eilenberg [3, p. 443] and = is the “g” of 3.13, diagram (i). (The
restriction #>1 in 3.13 does not apply to that diagram.) Then X will be
g-lc, at x if we can prove H,S(R| P)=0. But

() In dimension zero, this is to be interpreted: every pair of points in Q can be joined
by a path in P.
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HS(R| P) = &'T, (T = HS(R))
= jurl = vkal C vkH S, (Q,)
= Vkl‘l"fq(Qq)

because », is always onto (when n=1 or > 1; see Eilenberg [3, p. 443]). But
kv =vyj, and jr(Q,) =0 because Q,=A,(Qg41). Therefore HqS(RIP)=O, as
required. This completes the proof(1¥).

4.23. THEOREM(Y). If X is at x both Ic? (over the integers) and 1 —LC, then
it 1s LC? at x.

Proof. If ¢ =0, this follows from 4.22; and hence if g=1, there is nothing
to prove. Suppose then that ¢>1, and assume inductively that we have al-
ready proved X to be LC¢ ! at x. Then given PEU(x), there is in 11 a chain

Q=4S 4, ---C4,=P
where
AT=AT(AT+1), r=0’--.’q_1’

and so 3.13 applies with X =0, Y=P, n=¢. Define R to be N}(Q), \; defined
in 2.3 (x). There results a commutative diagram

HS(R) ——HS(Q)——HoS(P)
v A ™ I

HgSaER)THQS«iSQ) ’_‘k——)HTS;?(P)

Yo Vs 141

"q(R) ’WQ(Q) ; ? Wq(P)

3!
where all arrows except v, v1, 2 and 7 are injections, these »'s are the iso-
morphisms of Eilenberg [3, p. 443], and = is the “g” of 3.13, diagram (i).
X will be ¢-LC at x if we can prove m(R| P) =0, i.e. jj'mo(R)=0. But »jj’
=kk'vo=mAk'vo=mi'vry; and since R=X,(Q), 7/=0. Hence »jj’=0, and so,
because ¢>1 implies »; univalent, jj' =0. Therefore rq(R[ P) =0 as required.
Thus X is ¢-LC and LC¢ ! at «x, i.e. X is LC? at x, and the proof is complete.

It is well-known that if X is locally compact metric, then X is 0-Ic, if and
only if X is 0-LC. Hence by 4.22, the 0-Ic,, 0-Ic, and 0-L.C properties coincide.
But in dimension 1, things are different as the following example shows. For

(') The referee points out that the result is a strengthening of Theorem X of Lefschetz,
Duke Math. J. vol. 1 (1935) p. 15, in that we have assumed here only LC! at .
(%) Cf. Hurewicz [10].
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each #>0, let P, be a Poincaré space in R, and let all the P, be united at
a single point p, (but otherwise disjoint) to form a single space Px in which

diam P, —0 as n-— «;

then by Griffiths [9, p. 477}, P« is Ic} but not Ic} over the integers, (and there-
fore not LC!, by 4.23). On the other hand for any ring of coefficients (com-
mutative and with unit):

4,24, LEMMA(®). If X is Ilc} it s lc].

Proof. By the remarks above and the result of Begle quoted in 2.3, it
suffices to prove X to be (V, 1)-Ic; and by 2.31 we can assume X to be
(S, 1)-lc. Let then x& X, and PE U (x); let ¢>0 be given. In the notation of
2.3 (x), let

Q=N(P), =X\(P9),
and let R be a compact neighborhood of x such that
@) dist (R, X — Q) =£¢>0.

Then since R is compact and X is 0-LC, there is a function u(«, B) such that
any pair of points in R whose distance apart is <u(a, 8), can be joined by a
path of diameter <@, in the a-neighborhood of R. Put v =pu(¢, §).

To show that X is (V, 1)-Ic at x, it suffices to show that every 1-cycle in
CQ(R, v) bounds in CiQ(P, €). Let 7: A;7—R be any 1-cell in Ci2(Q, »); thus
dist (7d® td!)<w, and so by definition of u(£, 8) above, there is in the £-
neighborhood of R (and therefore in Q, by (i)) a path—that is, a singular
1-cell—T: A, —Q, of diameter <34, such that

(ii) Td® = 7d° Td! = rd*.
Hence, distinguishing the appropriate boundary operators, we have
(iii) 3T =TO — TH =70 — 70 = J7,
Using the map o: HS—HQ of 2.2 (v), equations (ii) become
ol =71,

so that if by linearity we extend the correspondence 7—T to be a homo-
morphism 8: CiQR, »)—C S(Q, §), we get

(iv) of =1,
while by (iii), 9,0 =9,. Hence, if v is a 1-cycle in CiQ2(R, v), then
0 = 9,y = 0.0vy

(%) Lefschetz, in Duke Math. J. vol. 2 (1936) p. 439, asserts that Ic] implies Ic] using “say,
rational coefficients.” No proof has appeared. [Added in proof, September 1958: for para-
compact Hausdorff spaces, the assertion follows from the result of Marde$i¢, cited after 2.32.]
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and so Oy is a 1-cycle in C,S(Q, 8). By definition of (Q, §), there is a 2-chain
T'e(C,S(P, €) such that 8y =9,I'. Hence by (iv)

v = gy = 00, = 9,0

and eT'EC,Q(P, €). Thus v bounds in C,Q2(P, €), as required, and the proof is
complete,.

If we try to use this procedure in the next dimension, we cannot obtain
a map 8 of CQ(R, ») satisfying 4.24 (iv), unless we assume by analogy that X
is 1-LC also. However, no example is known of a space which is Ic! but not
LC! (see [9] for a further discussion) and every locally compact metric LC»
space is(%) Ic} for all =.

4.3. The local cut-point groups. The “C” groups of LTI generalized Wild-
er’s notion of a “local noncut point,” [LTI, p. 356]. We agreed in 4.1 to
jettison the “C” groups in favor of stable groups like H,Q(x) in 4.12 (i), and
so we shall call these latter the “local (G) Cut-point groups,” where G refers
to the particular functor under consideration. Thus, the singular analogue of
H,Q(x) is H,S(x). With our usual fixed point xE X, let Uy(x) be as in 4.1 (i);
thus for each PE Uy, P —x is also open. Hence, if X is Ic? and 1c? so is P —x,
and therefore by 2.32 we have isomorphisms

op: HS(P — x) = H,Q(P — x)

which commute with injections. Therefore since U, cof U, we have, on taking
inverse limits, the following “local” analogue of 2.32:

4.31. THEOREM. If X is locally compact metric, 1c? and 1%, then
0wt HaS(x) ~ H,.Q(x), 0=5r=y

and if one group is stable, so is the other.

In order to define the local homotopy cut-point groups, we have to as-
sume that x in X satisfies:

4.32. U has a cofinal subset 1, such that for each P&, both P and P—x
are path-wise connected.

Simple topological conditions on the pair (X, x) ensure that 4.32 is satis-
fied: see, for example, [LTI, 4.3]. Not all “reasonable” spaces satisfy 4.32;
for example, with a double cone, 4.32 fails at the vertex—yet if the “upper”
half of the cone is bent over so that one of its generators lies along a generator
of the “lower” half, the resulting space satisfies 4.32 everywhere.

4.33. Assuming then that X satisfies 4.32 at x, we shall now define a group
mq(x), in a manner analogous to the definition of H,Q(x). We choose a fixed

(%) Hurewicz [10]. Strictly, Hurewicz proves this for a compact space, but only trivial
changes are required in his proof. Nontrivial changes are needed for the other half of the
theorem: See Newman [13].

License or copyright restrictions may apply to redistribution; see https:/www.ams.org/journal-terms-of-use



232 H. B. GRIFFITHS [September

path A from x to some point y><x. This N will exist if 1, contains a U with at
least two distinct points, because U is path-wise connected. Let

u ={v|ven&y&U};

thus, for each U& U/, X meets U (in x), and X — U (in y), and so X meets
Frontier (U) in a “first” point, travelling from x—say f(U). Now X is metric
and so we can assume U, is countable—say

uv,:{Ul’U?’""Un:"'}

where

Unp 2 Uy

Let
fa = f(Unt1);

then the portion N, of X from x to f» lies wholly in U.41C Ua. Moreover, if
U.2 U, the path

) Amn = An — Am
lies wholly in U,. Hence, fixing ¢, Ama induces an isomorphism
Ann: Tg(Un — %, fm) = 7(Un — 2, fu),
and there is an injection
tmnt Tq(Um — %, fu) = 7(Un — %, fum).
Next, define P,=m,(U,—x, fx) and if n<m,
p,,. _ {identity on P,, n=m,

Amn imn, n < m.

Then, if #<m <j, the diagram

i'm >\ im imn
7o(Us — 2, 13) — 1(Un = 2, ;) —— 7o(Um — %, fu) —— 7(Un — %, fn)
ij" l l Amn

T (Un — 2, f3) N = 7(Un — 2, f2)
in

is commutative because
An =M= A= n— M) + A = N) = A+ Ajme
Therefore
bi = pub;-
Hence, if J denotes the set of integers >0, directed by the natural ordering
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=<, then it can be verified that (P, ) is an inverse system over J, in that (i)
and (ii) of 1.1 hold. We define

® mo(x) = Lim (P, p)s.

Of course, this definition depends on the choice of the points f,, and the path
\; and corresponding to all possible choices we obtain a transitive system of
groups in the sense of [E-S, p. 17], whose inverse limit is what “ought” to be
called mg(x). It is less complex, for our purposes, to take m,(x) as defined in
(i), with a fixed A and sequence {f.} throughout.

4.34. An important case is when the system (P, )7 is stable, and my(x)
=0; we shall then write

7 (x) = 0.

Now Pipmy(n<m) is )\m,nrq(Um—xl Un—x, fu) and so is zero if and only if
To(Un—2%| Un—2%, fn)=0, because An, is an isomorphism. By 1.26, there
exist sequences 4, B cof J, such that (P, §) is stable rel 4 o B. Hence, given
JEJ there is a first ax =a4(j) €4, (ex>7) such that if a= a4 and a & 4, there
is a first b« =b09(j, ¢) €B such that bx>a and for all bEB with b= bx, Pua)
=0, i.e.

1rq(Ub - x| Us — x,fz,) = 0.
The “local” analogue of Hurewicz’s global theorem is now:

4.35. THEOREM. If ¢>1 and w(x)=0, 0Sr<q, then w,(x)=~H,S(x)
(integer coefficients) and if one group is stable, so is the other.

Proof. Define a map g: J—J as follows. With ar, b” as in 4.34, let j& J and
put

J1=07, 67(4),  je = b2(4y, aT2(5) - - -,
Jo = b°(jg—1, a%(jg-1))-

Define g(j) to be j,; g(7) >j because a"(j) >4, and 57(4, a) >a when a > ;. Hence
the set

P={71;72;"',7n"',}

where

Yot = glva), 71 = g(l)

is cofinal in J. By construction and 4.34 (i) we have, in the notation of 3.13,
that for each j, k€T with j <k,

Uk-—x<q_1U,-—x.

Hence there is a commutative diagram of the form given by 3.13:
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7o(Ux — x,fk)-—p—> 7o(Uj +— % f3)
€y i T k;

BS(Us = )——HSU; = 5,1)

where s=s} is the injection, p=pj, and ks, k; are the Hurewicz homomor-
phisms. For brevity write

Sj = HS(U; — #);

then the system (S, s5) is an inverse system over J. Let (P, p) be the inverse
system defined in 4.33, so that the Hurewicz homomorphisms #; define a
homomorphism

h: (P, p) = (Q, ).

The existence of diagram (i), with 2=j-+1, enables us to apply 1.42, to assert
that

he: llim (P, p) = Ilim (S, s),
i.e.
bt o(x) = HS(x).

To prove the stability part of the theorem, we apply 1.43 with (Q, ¢)
=(S, s), (M, £)=(T, <), in view of diagram (i) above. Thus we have im-
mediately: if 7,(x) is stable, so is H,S(x), and conversely. This completes the
proof.

In dimension 1 we have

4.36. THEOREM. If mi(x) is stable, so is H\S(x), and H,S(x) is mi(x) made
Abelian.

Proof. By 4.32, each U&1, is such that U—x is pathwise connected.
Hence the natural homomorphism

vy 1!‘1(U — X, f(U)) —> H;S(U),

where f(U) is defined in 4.33, is onto and its kernel is the commutator of
m(U—x, f(U)). Therefore 1.51 applies with M =1, and the theorem follows
at once.

4.37. The converse of 4.36 (and so of 1.51) is false, as the following exam-
ple shows. For each #, let Z, be a Poincaré space in Euclidean R7, such that,
E! being the unit segment in R7, Z,MNE! is the point 1/nEE?!, the Z, are all
mutually disjoint and diam Z,—0 when #n— «. Let Z=E\J U, _y Zn. Then
the origin z of R” has in Z a basis of neighborhoods of the form
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©

@) Wn=in\J U Zn,

neam

where I, is the segment of E! from z to 1/m. But H,S(Z,)=0, so that
H,S(W,,—2) =0 because H,S has compact carriers. Then H1S(z) =0; whereas
mi(x) is easily seen to be zero but unstable.

4.4. Some pathology. The last example is useful for studying pathological
behavior of the singular homology functor. We recall from 2.3 the groups

LS(x), L),

and use the machinery of 4.33 to define the homotopy analogue

Lew(2) = Thim {wo(Un, fa), In}
where U,&EU,, and I} is defined as follows. The paths \,., of 4.33 induce iso-
morphisms

Vmn: Tg(Un, fm) = 7o(Un, f),
and there is an injection

Jmn: ®g(Unm, fm) = xg(Un, fu);

so we define [ to be the identity on m4(U,, f»), if m =n, and otherwise to be
Vmnjmn. We assert that

6] LQ(x) and Lyw(x) are always zero(17).

A sketch of the proof is as follows. By (iv) and (v) of 1.1, if K cof J, then
Ilim (P, p)k =~ Llim (P, p)x =~ Ilim (Q, ¢)x

where

Qn = n Pmn,
meK

and g¢}: Q;—Q. is defined by ¢l =pi]|Q;. Now take Pun=mw(Un| Un, fu)-
Then every loop N in an element [A\]&Q. has the property that given U,
however small (and so r>#) there is a loop A’ on U, such that A=~\’rel f, on
U.. If, moreover, [N']€Q, and ¢![A\"’]=[\'] where [\"]EQ, and s>r, then
A'=\"" rel f, on U,; and so on, inductively. By piecing these homotopies to-
gether in the obvious way we obtain a homotopy A~x rel f, on U,, and so
Qn=0=m4(x). That L,Q(x) =0 follows because the Vietoris and Cech theories
coincide and the latter satisfies the Axiom of Continuity; thus

L, (%) = Ilim H,QU — 2) = H,Q N (U — %))

zeU

= 0.

(") Compare Wilder [15, VI 6.13, p. 192].
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This proves (i). Of course the groups are not necessarily stable: when they
are we have local connectivity.

Now let us consider the group L;S(2) (over the integers) in the space Z of
4.37. We shall show that it is nonzero and stable. If W, is as in 4.37 (i), then

Wm = Wm+1U Vm, Vm =Zm |V (l/m + 1, l/m),

and WMV, is the point 1/m+1 of EL Thus, if ju: HiS(Why1) > H1S(Wa),
kn: HiS(V,)—>HS(W,,) are the injections, then since each Z,, is everywhere
LCY, it follows(18) that j., k= are univalent and

HiS(Wn) = jmH1S(Wns1) + EnH1S(Vim)

= JmH1S(Wn1)
because H;S(V,) =0, Z,, being a Poincaré space. Therefore
(ii) Jm: HS (W) = HiS(Whn),
and so
(iii) LS@G) = lim (H.S(Wa), kn) ~ HiS(W))
where
(iv) bn = fnfmet * * * Gar.

But Wy=2Z, and Z is of the same homotopy type as a space of the form
T=U;_ 1 (Z.Upn); where the Z, are all disjoint as in Z, p, meets Z, just
once and joins it to z, being otherwise disjoint from all other Z, or p,, and
diam p,—0 when m—>». By Griffiths [9, p. 470], H.S(T) is infinite and
therefore so is H;S(Z). Hence, by (ii), (iii) and (iv), LiS(z) is stable and
infinite, in contrast to (i).

4.5. Relative groups. In this section, we link the classical local Betti
number with the local homology cut-point groups, by using the results of 1.6.
We also obtain analogues for the other functors and thereby show that intro-
duction of relative groups does not, in general, lead to new invariants. First
let 14 (x) be the subset of U in 4.1 (i) consisting of all U with T&€U.. We
recall from [6, 4.3] the following result.

4.51, LEMMA. Let X be both (V, r)-lc and (V, r+1)-lc at x. If U, Uy, U,
WEWU{ (x) such that(*®) Uy CN(U), UsSN(UL), WS Uy, then

(@) The inclusion(®) HQEW|T,—W)CHQUT,—W|T.—W) is an
equality;

(b) the boundary homomorphism

(*8) See Griffiths [8, 2.5].
(%) A; was defined in 2.3(x).
(2%) FW=Frontier of W.

License or copyright restrictions may apply to redistribution; see https:/www.ams.org/journal-terms-of-use



1958] LOCAL TOPOLOGICAL INVARIANTS, II 237

ad: H,-.HQ(Ul, 272 bl W) g H,Q(Ug - W)
s onto.

(In [CTM], (b) is not proved explicitly; but an indication of the proof is
given in the remark at the top of p. 73, op. cit.) Now W above can be as small
as desired, and Hf has compact carriers. Hence, taking the direct limit over
all WeE /' (x), we have the following statement, more suited to our purposes;
in it, Us and Q can be taken to be respectively AJ(Al,;(U)) and T; (in the
notation of 4.51),

4.52. LEMMA. If X is both (V, r)-lc and (V, r+1)-lc at x, then given UCU,
there exists UyE N, such that for all QC Uy in U, the homomorphism

d: H,nQ(U, Q — x) — H,Q — x)
is onto.
It will be convenient to define the “first” suitable Q above to be
(D).

4.53. We now provide an example of the situation of 1.6: take (M, =)
to be U.(x), and for each U& 1., define

Rwowy = HeaQU, V — x), (vav
Ay = HQU — 2),

and satisfy 1.6 (i) by taking r’,}ﬂ;, a}, dy there to be the injections and the
boundary operator, respectively. If X satisfies the conditions of 4.52, 1.6 (ii)
holds, with p: M— M taken as the function Q7(U) of (ii) above. To show that
under the same conditions, 1.6 (iii) holds, it suffices to prove: given pairs
(S, T)2(U, V)2(P, Q) in 1, then in the diagram

1 4
R,y = Rwy)— Ris,m)

M l ld

AQ—-—) Ay

we have Ker (dr) CKer (r'r), whenever UCQ,(S). (Thus, the function
g: M—M of 1.6 (iii) can be taken to be Q,: .—U,). The proof depends on
the fact that the sequence of 2.2(i) is exact, the unmarked arrows denoting
injections; we leave the details to the reader.

4.54. It now follows that under the conditions of 4.52, we can apply 1.61
directly. It remains to interpret the groups Ilim (4, @), Ilim (S, 5) which
occur there. From the definition of (4, a), from 1.1(xi) and 4.12(i) we know
that

(i) Ilim (4, ¢) =~ H,Q(x),
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while from 1.61, the group Sy is Ry vy, 1.e. H, (U, U—X). But Uis compact,
so that G=X— U is open and GCInt (X —x). Hence by the Excision Axiom

(il) nu: Hy+19(U, U - x) = Hr+1Q(X, X — x),
ny being the injection, and so we obtain from the commutative diagram,
when UDV:

n
H,-+19(U, U— x) —-g—)Hr.‘..lQ(X, X - x)

5 17?
Hr+19(V, V — x)

that s=s}: H, UV, V—x)~H,.,QU, U—x). Therefore, with no local con-
nectivity assumptions,
(iii) the system (S, s) is itself stable rel U and

Iim (S, s) = H. 1, X, X — x).
Thus, using 4.52, we can apply 1.61 to assert
(iv) Under the assumptions of 4.52, H,Q(x) s stable and
H,Q(x) ~ H X, X — x);
and so by 4.1(ii), if the coefficient group is a field,
) p™(x) finite-=-dim H,Q(x) = p ().
We should like to prove a converse of (iv), for general coefficients, but

have to restrict ourselves to the following result, with coefficients in a com-
mutative ring with unit. We recall from 4.1 the system {B, b} over U,.

4.55. LemMA. If the locally compact metric space X is lc,, and is at
x (V, r4+1)-lc, and if HQ(x) is finitely generated, then the system {B, b} is
stable in dimension r+1, and its Diim is naturally isomorphic to H,Q(x).

Proof. By the result of Begle quoted in 2.3, X is (V, r)-lc because it is Ic].
Hence the hypotheses of the lemma allow us to assert 4.54(iii), that H,Q(x)
is stable. Thus there exist subsystems U;, U, cof U.(x) such that for every
(U, Us) with U;&€U; and U.C U, we have

@) HQU,; — x| Uy — ) =~ H.Q(®x).

Since H,Q(x) is finitely generated, and HS has compact carriers, it follows
as in [CTM, 3.4], that there exists V€U, VC Us, such that the inclusion

(ii) HQU; - V| Uy —x) C HQU: — x| U — 2)
is an equality. If W&, and WC V, then, since X is Ic}, the group,
HQUs — V|Ui— W)
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is finitely generated, by Newman [13, Theorem 1]. It now follows, as in
[CTM, 3.3], that there exist neighborhood functions 8(U,, Us), 87(Uy, Us, Us)
such that given U, C87(Us, Uz), UsS67(Uy, U, Us) in U, then
(iii) HQU; ~ Us| Uy — Uy) =~ H.Q(x).
We can obviously assume the 4§’s to be monotone functions of their variables
(e.g. Uf C U, implies 67(Us, Uf)C87(Uy, Us)). The stability of H,Q(x) is then
quickly seen to imply

(V) ’L:f Ug’ gUz in 112, U3§6’( U], Uz’), U4§8'( Ul, Uz’, Ua), then the inclu-
sion HQ(US — U3| U—U)CHQ(U,— Ua! Ui— Uy) is an equality;

(vi) if U{ CUyin Wy, U:CSUY, UsSo7 (UL, Ur), UsZ87(Uh, Us, Us) then
the epimorphism H.Q(Us— U3| U{ —Uy)—HQUs,~— U3| U,—U,) is univalent.

Since X is (V, s)-lc (s =r, r+1) there is a function Q.(U) of the sort follow-
ing 4.52; we shall now show that given neighborhoods U, 4, B, C, P, Q of «,
satisfying U, CEW;, A€W, P, Q€U

(vii) U2420.(4) 2 B,

(viii) U20(U)2C2 4,

(ix)  Q&é(U, BN (C, 4), PS(U, B, Q)N (C, 4, Q(S0),

then the boundary homomorphism induces an isomorphism

(x) 30t Hrx A, A — Q| U, U — P) =~ H,Q(4 — Q| U — P),

where the left-hand group is the image of the injection
Hoa(4,4 — Q) > H,...QU, U — P).

To prove (x), we look at (a) and (b) of the proof of 1.61. In (a) we ignore
the set A, and simply interpret the diagram there. We take
v=U, a= A, ? = Qo 8= B,
Repy = HiiM(A4, B — Q), Sa= H1iM4,4 —-0Q), Sp= H.nQU,U-—P),
As = H:UB — Q), 4. = H,2(4 - Q), Ap = H:QUU — P);

the &’s and a’s in the first diagram of 1.61(a) are taken to be injections, and
the d's to be boundary homomorphisms. By (v) and (ix) above,

HA - Q|U~ P)=HQB - Q|U - P),

so that, in the notation of 1.61(a), 4,5 =A,.. By (vii) and 4.51(b), the homo-
morphism d: R, s —Ag is onto. Hence all the hypotheses of 1.61(a) hold,
and so in (x)} the homomorphism 3, is onto. A similar interpretation of the
proof of 1.61(b), with 8 there put equal to C, proves that 8, is univalent; we
use (vi) and (ix) above to assert
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H.QA4 —Q|C—P)~ H.Q4 —Q|U - P),

which in the notation of 1.61(b) says: Age=~ 4 0.
Next, we have a commutative diagram

Ho (4, 4 — Q) 5 H, X, X — Q) = BO
il n)
Ho:QU, U — P) = H, (X, X — P) = B?
7

where 7, b are injections, and %, 5’ are excision isomorphisms as in 4.11(ii).
Hence 7’ induces an isomorphism

(xi) no: Hr1Q(A4, 4 — Q| U, U — P) =~ H,uQ(X, X —Q | X, X — P) = BFe,

Now fix U, 4, and consider the diagram

9
H.19(X,X-0Q] X, X—P)<'7—°H,+19(A, A—Q| U, U-P) S HQA4-Q|U=P)

TA Tu Tv
Hon (X, X—T| X, X—S) « H, 1194, A—T| U, U-S) i HQA-T|U-S)
J

where (P, Q)D(S, T) in 12, and SCé7(U, 4), TCs"(U, 4, S), j, d correspond
to ne, 99, and A, u, » are injections. Since H,Q(x) is finitely generated, argu-
ments like those for (v) and (vi) show that » is an isomorphism; hence by
commutativity so is u (since 9y, d are), and hence again by commutativity,
so is N (since 70, j are). In the notation of 4.1, \ is a homomorphism &; hence
we have shown { B, 6} to be stable rel A, where A is the set of all (S, T') satis-
fying SC87(U, 4), TCé"(U, 4, S). But clearly, A cof 12, and therefore
{F, 6} is stable, as required. Further, since » is an isomorphism in the last
diagram, it follows from (iii) that Dlim {B, b} is naturally isomorphic to
H,Q(x). This completes the proof.

COROLLARY. If coefficients are in a field, then under the conditions of 4.55,
™ (x) = dim H,Q(x).

(This follows from 4.11, on combining (iii), (x) and (xi) above).

4.56. Similar results hold for the singular functor H.S, because the Exci-
sion Axiom is satisfied. Thus we replace Ry vy, Av in 4.53 by their singular
analogues, and replace the hypotheses of 4.52 by

(i) X is both r-lcy and (r + 1)-l¢, at x.

The exactness of the singular sequence then gives quick proofs of the singular
analogues(?!) of 4.52(b) and 4.53(i). Therefore the conditions_of 1.6 are satis-

(#) By [CTM, §2], all the Vietoris groups coincide with their Cech analogues.
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fied with p=X\,, ¢=N*! (defined in 2.3(x)). Hence, if X satisfies (i), the
analogues of 4.54, (i)—(v) all immediately follow. To obtain the analogue of
4.55, we need to assume that X is (r+1)-lc, at x, and everywhere both Ic}
and Ic; then we can use 2.33 where its analogue, Newman [13, Theorem 1],
was used in the proof of 4.55.

4.57. For the homotopy functor, only partial results can be obtained,
because homotopy does not in general satisfy the Excision axiom. To obtain
a “local” homotopy theory we first have to assume that X satisfies 4.32, and
then we replace Ry y), Ay in 4.53 by their homotopy analogues. We replace
the assumptions of 4.52 by

(i) X s both r-LC and (r+1)-LC,
and the exactness of the homotopy sequence gives proofs (formally identical
with their singular counterparts) of the analogues of 4.52(b) and 4.53(i).
Therefore the conditions of 1.6 are satisfied, with p=A,, ¢=A. (functions
defined in 4.21). By cofinality, the limit of the corresponding system (S, s)
is a purely local concept, whereas the invariant 7(x) of [LTI] shows that
7r+1(X, X —x) and the corresponding system {B, b}, are not; hence the sys-
tem {B, b} has no place in “local” homotopy theory. The natural homotopy
counterpart of 4.5(x) is based on the analogue of the relative groups

H\Q(4, 4 —Q| U, U — P),

but to define these analogues, we need to suppose that in addition to 4.32,
X satisfies:

(ii) There is a system W; cof U such that given USU, and V& U, with
VCU, then U~V is path-wise connected. Simple conditions such as in [5, 4.3]
ensure that X does satisfy (ii). Then, with the obvious treatment for base-
points of homotopy groups, we can get the analogue of the proof of 4.55(x);
and under the following assumptions we can deduce the homotopy analogues
of (iii), (v) and (vi) of 4.5:

(iii) w,(x) is stable (to get analogues of 4.5(i), (v) and (vi));

(iv) 7 (Us— V| U— W) is finitely generated abelian (to get analogues of
4.5(ii) and (iii)). To ensure the “abelian” part of (iv), we need r>1, even
though we have 3.15; and for r>1 we can apply 3.14 provided the right con-
ditions hold. Thus we have on combining the analogues of 4.5(iii) and (x),
that

(v) if X is lc; and lc,, if it is r-LC and (r+1)-LC at x, if r>1 and 7;(x) =0,
0 <j<r, then for suitable neighborhoods A, Q, U, P of x,

741(4, 4 — Q| U, U — P) = n(4 — Q| U — P) =~ m,(x).

Groups of the sorts considered in 4.55(x) lead us to make the following
definitions for functors G,, K, which have the formal properties of absolute
and relative homotopy groups respectively; note the analogy with the “D”
groups of CTM. First, if U, cof U(x), 1 £:<4, define B to consist of all quad-
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ruples (Ul, Uz, Ua, U4) \Vith U{Eui and U.Q U.’_H; and deﬁne (V1, Vg, V3, V4)
=(Uy, Uy, U, Uy) in B to mean that VDO U;, 1=2:=4. Then we shall say

4.58. G, is D-stable [K, is B-stable] at x, if and only if there exist U, U,
s, Ua cof W(x), such that given (Vy, Vi, Vs, Vi) S (U4, Us, Us, Us) in B satisfy-
ing

@) Us—UsCVe—= Vs Ur=Us SV =V,
then the injection
Vi Gp(Us — Us| Uy — U) > G, (V2 — Vi| Vi — V)
[k: Kp(Us, Uy — Us| Uy, Uy = Us) = Kp(Va, Vo — V3| Vi, Vi — V)]

is an tsomorphism. (In the homotopy case we require that L, CU,, W;C1,.)
For brevity denote (Uy, Us, Us, Uy), (Vh, Vo, V3, V) above by #, v and
write the injections as

'y=g;:G:—>G:,, x=k::K';,—>K:,.

Write # <v whenever # v in 8 and 4.58(i) holds. Then 2 is not necessarily
directed by <, but still (G, g), (K,, k) are inverse systems aver (8B, <),
in the sense that 1.1(i) and (ii) still hold. It is now easily shown that if G
has compact carriers, and if G.(x) is the G-analogue of m,(x) then

(ii) G, is D-stable at x-=-G.(x) is stable and isomorphic to Ilim (G, g).

By Newman[13, Theorem 1] and its singular analogue 2.33, we have

(i) If X is Ic? [Ic? and Ic?) and the Vietoris [singular] G, s D-stable at x,
then 1lim (G, g) is finitely generated. Similarly iof X is LC, with the homotopy
functor G, (by 3.15).

Next, if X satisfies the G-analogue of 4.52, it is clear that the analogue of
our passage from 4.5(iii) to (x) is still valid, step by step, in the (G, K)-theory
provided G is abelian; and by a similar argument using (b) of the proof of
1.61 instead of (a), we therefore have—for any X with a U,(x) and Us(x)—

(iv) G, is D-stable at x-<-K, 1 is B-stable at x. In either case, 1lim
(G, g) =1lim (K41, k). With the same conditions on X, 1.61 applies, so that
if K,(x) denotes the K,-analogue of the limit of (S, s) in 1.61, we have

(v) Go(x) stable - K,.1(x) stable. In either case G,(x) = K ppa(x).

We can now sum up the homology situation, by collecting the above results
and using 4.55 in the statement:

4.59. (a) THEOREM. If the locally compact metric space X 1is everywhere lc;
and (V, n+1)-lc at x [everywhere Ic; and Ic}, and (n+-1)-Ic, at x] then the local
relative and absolute cut-point homology groups at x are stable; and they coincide,
in the sense that with the appropriate interpretations,
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Iim (S, 5) = G.(x) = K41(2) =~ lim (K41, k) =~ Ilim (G, g) =~ Dlim {B, b}
and each is isomorphic to H,,UX, X —x) [H,1S(X, X —x)], r=0,1, - - - , .

In the homotopy theory we cannot expect to be able to apply 4.57 in all
dimensions and therefore have the more restricted result (using 4.57(v)):

4.59(b). THEOREM. If the locally compact metric lc; and I} space X has a
1, (x) and Us(x), and is n-LC and (n+1)-LC at x, then if G, is D-stable at x, all
the homotopy analogues of the groups of 4.59 are stable and coincide, except
Dlim {B, b} and 7,1 (X, X —x), 0<r=<n.

Thus if we use the local groups to define “manifolds” as in [CTM], we
see from 4.59 that with Vietoris or Singular homology, whatever type of
group is used leads to the same (Vietoris or Singular) definition(?!); that with
homotopy, if we use the (G,, g) systems the resulting manifolds include all
those defined using the other homotopy groups; and by 4.35 and its obvious
modification for the (G,, g) system, the homotopy manifolds on any defini-
tion are integer homology manifolds. Obviously, locally Euclidean space is a
manifold, under all the definitions. A converse of 4.58(ii) remains to be
proved (or disproved) in homotopy theory; if proved, it will presumably
show that the above homotopy manifolds will be identical with the manifolds
using the groups 7,(x).

4.6. Mappings. If f: X— Y is a map, it is desirable that f should induce
homomorphisms of the local groups. But, if y&V, then F=f"1(y) will in
general be a closed set, not necessarily a point, and so we have a homomor-
phism

i) f,: Tim (H,Q(G — F), §) — H,(y)

where G runs through all neighborhoods of F, and 7 denotes injections. How-
ever, in the special case that F is a single point x, this gives us

(ii) frt HQ(x) — H,Q(y),

and similarly for the Singular and homotopy functors. The “C” and “D?”
groups of [LTI]and [CTN] had not got this property. Considerations of the
sort given in Griffiths [7] enable a concept of “local homotopy type” to be
defined, in order to investigate circumstances under which (ii) is an isomor-
phism. We have not studied systems of the sort (H,Q(G—F), j) in (i), when
F is a fixed set with more than one point.
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