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Abstract
This work examines training methods for radial basis function net-

works (RBFNs). First, the theoretical and practical motivation for
RBFNs is reviewed, as are two curently popnlar training methods.
Next a new training method is developed using well known results
from functional analysis. This method trains each kidden unit indi-
vidually, and is thus called the local training method. The structure
of the method allows analysis of individual hidden units; moreover
a covariance-related quantity is defined that gives insight into how
many hidden units to employ. Two examples iustrate the usefulness
of the method. Lastly, an ad hoc method to further improve RBFN
performance is demonstrated.

I Introduction and Background
For problems in which one would like to use hiftorical knowledge to inter-
pret current data without doing extensive modeling or investigative work,
attention is increasingly focusing on methods that 'learn from example."
One technique that shows considerable promise is the radial basis function
network (RBFN). RBFNs have botb biological and mathematical motiva-
tion, are highly parallel, are capable of recognizing current sensor data that
differ in an important and definable way from the historical data, and have
been demonstrated to be succesul on an interesting array of problems [3]
[4] [5]. However, the paradigm suffers from a lack of methods for determin-
ing how many processing units are needed for any given problem, and some
of the leading training methods have harsh limitations on the nature of the
processing units.

RBFNs are feedforward networks, and thus forn mappings from an input
vector i to an output y of the form

h

i=l
where cj are network parameters to be determined. The defining aspect of
a RBFN is that second layer consists of units of the functional form:

St (i) g (11& - ||1w) (2)
where 11 llw is a weighted Euclidean norm with weight matrix W, ii E Rd
is a fixed vector, i E fr is the input vector, and g is a scalar function that
is completely monotonic on (0,oo) [5, page 17]. Throughout this paper,
matrices will be denoted by upper case (W), column vectors by lower case
with hat (i), and scalars by plain lower case. The i associated with a single
hidden unit is called the center of the hidden unit. The weights between the
hidden layer and the output layer, c,, are multiplicative, and the output unit
is linear.

While such a network architecture is interesting in its own right, Pog-
go [5] has shown that this architecture can be derived from regularization
techniques. Following Poggio's development, let S = {(&j, yi) E fR' x Rli =

.n}be a set of data to be approximated by a function y. The regu-
larization approach selects the function $i) that minimizes the functional
h[y($i] where

h[$yi)] = S (vi - 1$())2 + Ajipy()j2, (3)

pusan operator (usually a differential operator), 11-11 is a norm on the function
space to whom py belongs, and A is a positive real number. The operator
p represents prior knowledge about the problem and strongly influences the
structure of the solution; depending on the choice of p, many well-known
techniques result. For one dimensional problems using the L2 norm and the
constraint operator p = U, the solution to (3) produces the cubic spline
method. More generally, if p is radially symmetric, the solution to equation
(3) is
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$z) = EcigOli - +ill?w)
i=1

(4)

where g is a Green's function related to p. Equation (4) is a description of
a RBFN where there is one hidden unit per data sample, the center of each
unit (ij) is one data sample (ii), and the output layer weights, c,, are set by
least squares linear regresion between the output of the hidden units and
the output training data, IN.

Radally symmetric operators of special interest are those that act on all
derivatives to insre a very smooth solution, namely

IWpId = LdEag(my()2d. (5)

where the am are constants, V is the gradient operator, V2 is the Laplacian
operator, etc. Various values for a,. give rise to bell shaped radial basis
functions and make W the identity matrix (1). In particular, setting a, =
v2m/m!2m yields radial basis functions that are Gaussians with variance u2.

Thus, the RBFN architecture has a firm theoretical motivation. Even
more encouraging, however, is that the RBFN architecture was arrived at
by other researchers based primarily on practical experience. Particular
interest has been generated by the suces of an algorithm developed by
Moody and Darken. Moody and Darken's algorithm [4] uses hidden units of
the form

gifi) = eap P(ii
itI) (6)

where oi is analogous to the standard deviation for a Gaussian and is referred
to radius of the hidden unit. Equation (6) is a special cas of equation (2)
wherein W = of'I. One sbould note that ,i vmri with each unit; in
the development by Poggio, W was the same for all hidden units. This
change is neceary because the Poggio development required one hidden
unit per training sample, while Moody and Darken's algorithm explicitly
treats problems with more training samples than hidden units. The training
procedure is divided into an unsupervised learning phase and a supervised
learning phase. Initially, one chooses the number of hidden units, h. Next,
a k-means clustering algorithm performs unsupervised clustering analysis to
set the centers, 4i, of each hidden unit. The k-means clustering operates by
initially setting the centers of the h hidden units to 4i = ii for i = 1, . . .,h.
Next, each input datum is assigned to the nearest center (in the Euclidean
sense). WVhen all of the input data have been so assigned, each center is reset
to the mean of all the data currently assiged to that center. Using the new
values for the centers, the process is repeated until none of the centers move.
With the centers (ti's) determined, the ca of each hidden unit is computed
by oi = V./v2 where d1 and d2 are the Euclidean distances from the ith
center to the two nearest centers. This rule is ad hoc; other heuristics could
be used. Lastly, the output layer weights c, are determined by performing
standard linear least squares regression between the outputs of the hidden
layer and the output values for the training samples (ps).

Moody and Darken emphasized the speed advantages of their method rel-
ative to gradient descent and other global optimization approaches. Lenard
and Kramer [3] compared RBFNs using Moody and Darken's algorithm to
backpropagation networks and k-nearest neighbor clafiers and determined
that RBFNs psed other advantages as well. These advantages were
creating decision surfaces in a more sensible manner, detecting novel inputs
that were far away (in a Euclidean ses) from the data used for training,
and performing better on the studied examples.

2 Local Training Method
The successes discussed above encourage further investigation. The result
of Poggio only applies when there is one hidden unit per data sample; how-
ever one would normally like to use fewer units than this. Pogi suggests
choosing a number of hidden units fewer than the number of samples and
setting the RBFN parameters via gradient descet in a manner analogous to
backnropagation. As Poggio notes, the rigorous result he derived no longer
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holds. Moreover, this approach forces the practitioner to choose the number
of hidden units; no good guidelines exist for doing this other than trial and
error. Interestingly, Moody and Darken conidered uch an approach and re-
jected it in favor of their algorithm because their method has less demanding
computational requirements.

While faster than global optimization methods, Moody and Darken's
method has significant limitations. First, the number of hidden units must
also be determined by trial and error. Additionally, the Moody and Darken
method only applies to RBFNs using (8). Geometrically, this means that the
local receptive field (the subset of inputs to which the hidden unit responds)
for each hidden unit must be spherical, regardless of how appropriate this
is for the task at hand. Moreover, for classification tasks, the unsupervised
clustering step can be misleading. The clustering occurs without regard to
which class a given input belongs. Thus, inputs that are close together but
of different cla are often included in the same cluster (the sane receptive
field for a hidden unit). This wil tend to make the classification task for
the output layer more difficult than if the each bidden unit had a distinct
preference for a particular class. This will be made leare in an example
below.

The above methods, hereafter referred to as glbal training methods, fo-
cus on doing global training to produce 'locally tuned" hidden units. While
effective, the entire approach seems to cry out for "local tuning" of the
"locally tuned" units. By drawing a direct analogy with functional approx-
imation, such 'local tuning" is in fact direct and simple.

Consider the standard L2 approximation problem of determining the cj
in

y(= cigi(r), where y(x) E L2[-a, a], (7)

gi() E L2[-a,a], < 9i(r), g(x)>= { I if i=J (8)

and
< gi(r),gj(z) >= fg (r)gi(z)dz.

The gi(z) are orthonormal basis functions, such as Legendre polynomials or
sinusoids. Drawing from well known analysis results, the answer is =<
y(z), gi() >. For practical use, one normally desires an expression with a
finite number of terms. Naturally, one would like to truncate the expansion
in a manner that minimizes the error. Defining the square of the error
resulting from using of the first h terms of the expansion in equation (7) as
e4, one finds

h A

h =< $z) - Z4uj(r),v{Z)- Zcigi(z) >= E c'. (10)
i=1 i=l i=A+1

Clearly one should reorder the baes so that the d asociated with each
basis g;(r) decreases monotonically. In the case of a Fourier expansion,
this corresponds to using the frequencies (bases) with the greatest 'energy".
More descriptive for the general case, the quantity cl will be called a co-
variance because it measures the covariance of the basis function with the
output. Labeling the reordered bases jg(t), one algorithm that performs the
desired reordering is:

yp(r) = y(r)
FOR i = l to oD

find the j that maXimizes < yj(Z),gj(X) >2 (I1)
pii(z) = gi(z)
ci =C Y(r), ii (z) >
Yi+I() = y(r) - Ciii(t)

NEXT i.
Next consider the slightly different case where j e R parametrizes the

orthonormal basis functions. Even though j is now continuous, one would
still use the ordering technique above to choose the first h bes so as to
minimize the error. Thinking of each basis as a hidden unit in a RBFN, this
points out how to train the hidden units one at a time, and thus locally
tune" each individual unit. Instead of a single continuous parameter j, the
parameters of each hidden unit would be optimized in turn to maximize
< yj(z),g(x; hidden.unit_parameters) >2

Unfortunately, radial basis functions do not satisfy the orthogonality con-
dition in equation (8). However, with modification the above algorithm can
sti be applied. Since the radial basis functions are no longer orthogonal,
the c can no longer be determined independently; after the determination
of each basis function, all of the c, must be recomputed. This is not a cause
for concern, however, since the c4 are determined via computationally in-
expensive linear least squares regression, just as in the Moody and Darken
algorithm. The loss of orthogonality has a more serious implication. how-

ever: the derivation for minimiing the error, equation (10), breaks down.
Thus, one c not be certain that using the algorithm will be optimal. One
can, however, put forth a heuristic argument to support using the approach.

The justification developed in equation (10) is possible because the basis
functions are orthogonal. That is, the basis functions are non-interacting in
the well defined sense that their inner product is zero, and the contribution
that each basis function makes to the total approximation is not affected by
any of the other basis functions. Since radial basis functions are positive
everywhere, the hidden units are clearly interacting. However, a hallmark of
radial basis functions is that they are locally tuned;" that is, the outputs are
small everywhere except near the center of the basis function (hidden unit).
If the centers of the hidden units are far apart relative to their receptive fields,
then the inner product between radtial basis functions will be small and in
this sense the radial basis functions will be approximately orthogonal. This
argument also points out a potential problem. If the centers of the hidden
units are relatively close, then the radial basis functions will be interacting
(have overlapping receptive fields), and the optimality argument will break
down. While this in and ofitself does not mean the method will fail if the
centers are close, one should be aware that the local training approach has
this potential difficulty.

Expression (2) described the general farm for the radial basis function.
For the remainder of the paper, a specific form will be used for clarity and
concreteness. Some of the developments below apply only to this particular
function, but similar developments can be followed for other radial basis
functions. The radial bais function used for the remainder of the paper is
the multivriable Gaussian,

g(i; Wi,t) = !!S4exp ((pifii)TWz(&z i1)) (12)

where d is the dimensionality of the input vector i, W e Rdxd iS symmet-
ric and non-singular, is the determinant, and ti is the center for the
hidden unit. The covariance matrix for the multivariable Gaussian is Wi2.
Equations (2) and (12) look superficially different, but (12) is in fact a spe-
cial case of (2). First, ii is identical in both expressions. Moreover, so are
the Wi. In (2), W1 had the interpretation of the weight for the weighted
Euclidean norm. In (12) W1 has the additional constraint of being symn-
metric and non-singular, but otherwise performs the identica mathematical
function. However, in the context of the multivariable Gaussian, Wi has
another meaning. For the one dimensional case, Wi is simply the inverse
of the standard deviation; for higher dimensions, Wi scales and rotates the
hidden unit's receptive field. Thus, the local training method provides for a
much richer class of basis functions than the method of Moody and Darken,
allowing each of the hidden units to be more locally tuned."

The story is not yet complete, however. If one uses the local training
algorithm with the multivariable Gaussian radial basis function, the method
will fail to generalize. This is because as Wi --+ oo and ii -- any ii, <
&(i),g(i;W4,i) >- oo. Thus, the local training method produces one

hidden unit per training sanple, makes each hidden unit (basis function) a
unit impulse centered on one training sample, orthogonalizes all of the radial
basis functions in the sense of (8), and reproduces the training set with zero
error. The resulting RBFN in effect memorizes the training data. However,
the entire point of the endeavor is to produce a procedure that proces
novel inputs in a manner consistent with the historical data; one would like
the RBFN to generalize. Put another way, one would like to force the hidden
units to "spread out" their receptive fields.

Thus, generalization requires an artificial method to force the receptive
field to 'spread out". One would like to keep matters simple and control the
"degree of generalization" for each unit in a clear and simple manner. This
can be done by adding a penalty to the objective function (11) that meets
the following conditions:

1. The penalty function use only one penalty parameter. This user-
determined parameter will be called the generalization parameter, p.

2. As p - oc, Wi -_ 0. That is, as the generalization parameter is made
large, the optimization of (11) plus the penalty function drives the
hidden unit's receptive field to cover the entire training set, making
the hidden unit "over-generalize."

3. When p = 1, the optimization of (11) plus the penalty function drives
the hidden units to the unit impulse and the "memorizing" behavior
is recovered.

4. The receptive field varies smoothly as p is varied over (1, co).
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A penalty function which meets these goals is xr (IWIl-p- 1Wilp).
Consistent with the first condition, only one penalty parameter, p, is intro-
duced. The first term of the penalty function, IWiI'-P, addresses the second
condition. As p becomes large, this term dominates the objective function
and encourages Wi to be small. As p nears unity, the first term becomes
unimportant and the second term discourages W from being small. The
penalty function does not rigorously meet the third condition; when p = 1,
the optimization of (11) plus the penalty function does not drive the hidden
unit to the unit impulse. However, the penalty function does approximate
the desired behavior. In numerical experiments, as p - on, values of 1Wil
increase monotonically until numerical overflows result. The penalty func-
tion is continuous for p 6 (1, on). Moreover, the quantity JWViI determines
directly the area within contours of constant probability density for the mul-
tivariable Gaussian. [2, page 24] Thus, the penalty function acts directly on
the measure of the area of the receptive field and meets the fourth condition.

The full algorithm below will treat multivariable problems. The only
change needed is the addition of more linear output units; the hidden units
are unaffected. Before presenting the local training algorithm, a few terms
will be defined. The number of hidden units, h; the number of training
samples, n; the dimension of the inputs, d; and the dimension the outputs,
l; define the dimensionality of all quantities used.

As described above, the paraneters for the ith hidden unit are its center(
ti E R') and its symmetric non-singular weight matrix (W1 E Rx"). The
response of the ith hidden unit to the input training data X E r"xd iS
ji = fi(X;ti, Wi) E rn, and the matrix of all of the hidden unit responses
to all of the training data is F E rxh, where F = [fnlfzl..Il. The
matrix of output weights from the hidden units to the linear output units
is C E rhx. Lastly, the output training data is Y E rxl. Since the
radial basis functions are in fact not orthogonal, Y must be modified after
each hidden unit is trained. Thus, YQ) is used to train the ith hidden unit.
Moreover, the training data for the ith hidden unit and the jth output is
y(4) E r. That is y(i) = . jjf)j. The local traing algorithm is
then:
yUl) -y
i =0, h =0
LABEL: train-next.hidden-unit
i = i+ 1, h -h + I
find the W4, i and i that maximize zi, where

- (f )t + _i (jww'-' - IWtP) (13)
C =(FTF)IFTY
y(i+i) =y- FC
IF another hidden unit desired GOTO trainnext.hidden-unit

Several points are worthy of note. Since this algorithm deals with a
finite set of training data, the functional inner product, equation (9), has
been replaced with Euclidean inner product (dot product) in expression (13).
Also, the quantity h is incremented but never used directly in the algorithm.
This extra step is included to emphasize that many of the matrices used
in the algorithm change dimension as more hidden units are used. One
should note that the value of objctive function, zi, is no longer a covariance
because of the addition of the penalty function. After each unit is trained,
the network output is subtracted from the original output training data.
Because of this, additional units with receptive fields in the same region as
prior hidden units are not be favored. This helps the reduce the effect of
the los of orthogonality. Most important, however, is that the training of a
given hidden unit is well defined, but the criterion for deciding whether or
not to train another hidden is not.

This lack of a clear termination criterion is not unique to the local training
method. With global training methods, one first chooses a parameter (the
number of hidden units) that bears no clear connection to the performance
and then produces a "slution." If this solution is "unsatisfactory," one
then chooses a different number of hidden units and tries again. Thus even
though the training procedure for a given number of hidden units is well
defined, the overall procedure by which one builds a desired appronimator is
very much a black-box, 'hit-or-miss" approach. Thus both global training
methods and the local training method lack a clear termination criterion.

The local method does have an advantage over the global training meth-
ods for determining the number of hidden units. Using global methods, one
must rely solely on training and testing error for an entire network to com-
pare different networks. With the local training method, one has another
important quantity that allows one to judge each hidden unit individually:
the value of the objective function (zi) for each unit. When choosing among
units trained with the same value of p, the selection is very simple: choose
the hidden unit with the largest z,. Moreover, zi can provide insight into

when one has "enough" hidden units. As mentioned above, the local train-
ing method tends to keep the hidden units' receptive fields distinct. When
the existing receptive fields cover the input data "well," the zi's for any fur-
ther units tend to be small. Thus, ifxz decreass sigificantly when training
additional hidden units, one should stop adding hidden units. This loose
heuristic is not a hard and fast rule; as shown below, however, the objec-
tive function value is useful for determining if additional hidden units are
beneficial.

There are other benefits to the local training method. Unlike most of the
global training methods, the role of each hidden unit is easier to ase. In
the case of multiple outputs (e.g. classification problems), each hidden unit
is associated with one particular output (class). While the linear output
layer, C, uses all of the hidden units to determine the output of each linear
output unit, the local training method asociates each hidden unit with a
class. The output (class) asociated with each hidden unit is represented
by the j that achieves the maximum in expression (13). This aspect of the
local training method has two advtages. First, the difficulty of inputs of
different classes being in the same receptive field that can bedevil Moody and
Darken's method is dealt with directly. Secondly, knowing which class each
hidden unit is trying to describe yields information about both the nature of
the cles and the utility of adding more hidden units. Additionally, one can
'locally tune" individual hidden units on an ad hoc basis by adjusting the
generalization parameter p. Approaches for evaluating the class association
of each hidden unit and adjusting the generalization parameter are wholly
empirical at the moment. However, these techniques are useful, as will be
shown below.

One issue remains. In much neural raearch, great attention is focused on
the "learning rule," that is the optimization technique employed. Following
the development of Poggio [6, page 33], one could employ gradient descent.
However, this investigation does not focus on the various optimization tech-
niques that might be used Instead, off-the-shelf optimization software is
used. This saves the work of developing such software and allows the use of
more advanced algorithms.

3 Examples
The preceding sections presented the motivation for local training and devel-
oped the local training method. In this section two exanples are developed.
LRBFNs are approximators by design; however, for the purpose of clear il-
lustration, both examnples are two dimensional classification problems. For
these classifications, there is one output per class. For each class, if an input
is a member of that class, the corresponding training output is 1; otherwise
the training output is 0. Thus, for each training input sample, the training
output sample (a vector) has precisely a single I and the remaining training
outputs are zero. The RBFN performs classification by assigning each input
to the class corresponding to the linear output unit with the largest value.

For the purpose of graphical illustration, the receptive field of the ith
hidden unit is the set of input vectors describedby ft e 1(& i.)Tw2(&-
ii) < 1}. That is, points within unit distance (in the Mahalanholis metric)
of the center of the hidden unit constitute the receptive field. In the one
dimensional case, this would be the region within one standard deviation of
the center.

All of the networks were evaluated by using testing data drawn from
the same stochastic distributions as the training data. The error rate was
determined by computing the percentage of sanples of a given class that
were assigned to some other class by that clasifier. Thus, the statement
"the error for class B was 10%" means that for the testing data, 10% of the
samples from class B were determined by the clasifier to belong to some
other class. The overall error rate is the percentage of all input samples
that were misclassified. Lastly, GAMS/MINOS [1] was used to perform the
maximization of expression (13) for all of the examples.

3.1 Binary example
The first example involves determining the state of a binary variable. In par-
ticularly, consider a process that, when operating correctly, has a normally
distributed output

82
l1 2

(14)
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Table 1: Performance of different methods for binary example

hidden unit |ji clan
1 107 A
2 98 ~B

Table 2: Local training resits for binary example

where aI - (0.1,0.05) and 2 - /(0.1,0.2). Moreover, this process is

subject to an upset condition that does not affect va-riance of the outputs
but translates the men of the from [0.1 0o1]T to [-0.1 - 0.17. The
problem is to train a RBFN to determine if the proes is operating correctly
(deemed Clan A) or if the process is in the upset condition (deemed Clan
B).

For training, 50 samples were drawn from eac -clam, while 1, 500 samples
from each clan were used for testing. Networks with two and three hidden
units were trained with the Moody and Daken method. The receptive fields
for them networks are shown in Figure 1, while the performanceis described
in Table 1.

Next, the local training method was used, wherein one adds one hidden

unit at time. All hidden units were trained using p = 1.7. The training
summary is given in Table 2. Notice that no errors are given; the training
was done using solely zi. The objective function value for the third unit (Z3)
is dramatically lower than for the previous two-units. Thus, two hidden units
were deemed to be the "correct" number of hidden units for this problem.
The receptive fields for the locally trained RBFN ase shown in Figure 2.
Table I gives the performance of this RBFN and the theoretical minimum
error rate. The theoretical minimum is base.on tie minium error rate

decision boundaries [2]; these can be computed because the distributions are

known.

3.2 Continuous example
The second example is drawn from the work of Leonard and Kramer [3].
That work describes a fault diagosis problem wherein the two continuous
vaiables s and sa determine three fault conditions. These vauhs cannot

be measured directly, but measurements consisting oflinr combinations of
these variables corrupted by Gausian noise (i) do exist. The three cla
(fault conditions) are defined as:

11and 1s21cO 0.05 * Cla A,
lsiI>O0.0 * ClawsB,
1821 > 0.05 * Class C.

The problem is constrained so that l1a l'and 12$1 never exceed 0.05 simul-
taneously. Moreove, there is an equal -:pri probability for each cla,
namely one-third. To meet the above conditions, the data were generated
from two different distributions. For both distributions,

s -#(0, 0.1163), vi - N(O,0.015), and v2 /.N(0,0.015). (15)

The first half of the data (45 samples for training 1,500 for testing) were

produced by
[ [ t ]!(16)

A given sample = z 2]Ta aignedtocl A if asl < 0.05, and

assigned to class B otherwise. The second half of the data was generated
from

[z ] [ + ] (17)

Table 3: Performance of different metbods for continuous example

Bidden Unit zi Clm
-1566 A

2 665 B
3 459 C
4 220 B

5 133 C

6 3 A

Table 4: Local training results for continuous example

A given sample =f1 2T wasadp ed to cl A if Isl < 0.05, and
assigned to clam C otherwise. One should take careful note that the structure
for this problem is identical to that of Leonard and Kramer, but that the
distrbutis for si and 82 are different.

RBFNS with 5 and 8 hidden units wee trained with the Moody and
Darken algorithm using the ninety sanple training set. The receptive fields
for these networks are shown in Figures 3 and 4, while the performance is

described in Table 3.
Next, a 5 hidden unit RBFN was trained using the local training method

with p = 1.3 for all hidden units. The training summary is given in Table
4. Due to the dramatic drop-off in ;i from hidden unit 5 to hidden unit 6, 5
hidden units were deemed to be the "correct number for this problem. The
performance for the 5 hidden unit localy trained network, whose hidden
unit receptive fields are shown in Figure 5, is shown in Table 3. Once again,

the underlying distributions are known so the theoretical minimum error

rates can be computed; these are shown in Table 3. The values given as the

theoretical minimum for a given clam are those that minimize the overall

error. Clearly, one could amign all inputs to one clam, thereby insuring the
error for that clan was 0.

3.3 Computational performance
The Moody and Darken method and local training method were performed
using markedly different software running on differt computers. Thus, a

rect comparison of the computational effort required for the two approach

is not posible. However, by comparing benchmarks, it appears that traini
a full network via Moody and -Darken requir smilar, though probably le,
CPU time than training one hidden unit with the local training method. In
the binary example, both the k-means clustering step and localy training
one hidden unit took on the order often CPU seconds on p -vax These

tasks required on the order of a half of a minute of p -vax It CPU for the

continuous example.

4 Discussion
The two examples presnted above clearly illustrated some advantages of
the local training algorithm. The first example was developed becaue it
exploited a known deficiency in k-means dustering: if the clters are not

spherical, k-means clustering an require many units to distinguish the clue.
ters. On the other hand, the local training method.is suited to rotated
elliptical custers, of which spherical clusters are a subset. The advantage
that the local training method gains over Moody and Darken method is clear

from a comparison of Figure to Figure 2. The receptive fields of the loally

trained units are more reflective of the shape of the clusters, and this lead
directly to better performance. In the case of the same number of hidden
units (two), the loicaly trained network had le than 1/10th the error rate.
This comparison can be viewed as unfair, since the locally trained method
had access to more adjustable parameters. However, the three hidden unit
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Method Hiden Clan A Clm B Overall

~unite error% erro% rror%

Moody 2 46.7 44.2 45.5
Moody 3 7.9 26.7 17.4
Local, p= I-7 2 3.1 4.4 3.7

minimum ____ 2.2 2.2

Method Hidden Clan A Clm B Cln C Ove
units erro%, error% erro% error%

Moody S 43.4 0.8 8.6 17.7
Moody 8 33.9 30.1 8.1 24.1
Local, p = 1.3 5 23.2 0.8 1.7 9.1
Loca, ad Ao 5 15.1 1.7 3.2 6.8
Theoretical
L wmum 7.4 LI 4.7 4.0t 5.1



RBFN trained via Moody and Darken had ten adjustable parameters, the
same as the two hidden unit locally trained RBFN. Still, the Moody and
Darken method had more than four times the error rate (17.4% vs. 3.7%).

The first example also iluminated the manner in which the ; help de-
termine the number of hidden units. The first two hidden units had similar
objective function values Since, a- see in Figure 2, these two receptive
fie covered the data well, one would intuitively expect that a third hidden
unit would have little effect. Indeed, z3 is mugy half of both zr and z2. In
this problem, the error inornmation just v to corroborate the conclusion
driven by the i's that two hidden units are adequate.

Similar resuts were observed with he second problem. Comparison of
Figur 3 and 4 to Figue S hown once again that the local training method
does a better job of locally tuning the hidden units. When the two methods
use the same number of hidden units, both methods assgn hidden units
to data clusters in an intitively reasonable manner; the center (clas A)
cluster, and each cluster of error conditiom (cia B and C) is assigned one
hidden unit. However, the local training method produces receptive fields
that much more accurately reflect the data. Since one of the advtages of
RBFNa is that they can detect inputs far away from the training data, this
better "tuning is importanL For the locally trained network, very little
of the receptive field lies outside the convex hul of the training data. This
is not so with the Moody and Darken trained network. Moreover, because
of the objective function values, one has indications that such coverage has
occurred. With the Moody and Darken method, no such intuition is possible
if pictures are not available. Since many problems have more than two
inputs, the difference is significant.

Once again, the above compariso is somewhat unfair because the locally
trained network had 30 adjustable parameters, while the Moody and Darken
nework had only 20. However, the locally trained network maintains the
advantage against the 8 hidden unit network, which has 32 adjustable pa-
rameters. Surpriingly, the error rate actually increased for this network.
Moreover, the receptive fie of the the hidden units lost much of their
physical meaning, as shown in Figure 4.

Choosing values for p wa sot discued above. While this clearly influ-
ences the outcome of training, both cmples performed satisfactorily using
the first values of p attempted. In the binary exampks, p = 1.5 was also
attempted, and the overall errr incremcd to 6.9%. This work focused on
determining the viability of the kcl traing method; future work clearly
needs to be done gain a better understanding of how varying values of p
affects the method.

Also, the local training method's need for CPU time relative to other
methods is not well understood. Solving a series of small, independent prob-
lems, as the local method does, should have advantages over performing a
single global optimization of the entire network. This advantage has not been
clearly established. Likewise, the advanges relative to Moody and Darken
are also poorly understood. A hidden unit with d inputs and a spherical
receptive field (equation (8)) has d + I parameters, while a multivariable
Gaussian hidden unit (equation (12)) has (dP + d)/2 parameters. Thus, as
the number of inputs is increased, this scaling would seem to favor the RBFN
using spherical receptive fields. However the binary example demonstrated
that spherical receptive fields may be inappropriate for some problems and
may lead to a networks that require more hidden units than the local train-
ing method would require to achieve a similar level of performance. This
open issue of relative advantages in training times of the various methods is
the subject of ongoing study.

Using an ad hoe approach, the locally trained RBFN can be improved
still further. Most of the error occurred a- the result of clam A inputs being
placed in a different category. There are tw likely causes for this the
distribution for class A is multimmdal, and more hidden units are needed
to reflect this, or the current hidden unit is not "well tuned." Evaluation
of the r4's indicates that an addiosa hidden unit would probably not help
matters much; the objective fwmnin value for the next hidden unit trained
for clam A dropped by more than two orders of maitude (zj = 1586 and
z= 3). Thus, retraining the first hidden unit with different values of p
seems worth trying. Before attempting retraining, one needs to consider
how such tweaking affec the overall training method.

Strictly speaking, when one retrains a given hidden unit, all hidden units
trained subsequent to the retrained unit should also be retrained. However,
if there is little overlap of receptive fields for a given clam (the hidden units
remain "approximately orthogonal"), retraining one hidden unit will have
only small effect on the other hidden units, and only the output layer, C,
need be recomputed. Using the inner product, this degree of interaction
can be evaluated quantitatively. Since Figure 5 ckarly shows that receptive
fields for each clams have little overlap, the degree of interaction between the
hidden units was deemed small by fiat and the other hidden units were not
retrained.

The hidden unit associated with clam A was retrained with p = 1.5 One
cannot compare the ;i for units trained with diffent value of p, since,
as stated above, the value; is affected by p. Tbe receptive field for the
retrained hidden unit, along with the receptive fields of the other hidden
units (trained with p = 1.3) is shown in Figure -6. his modified network's
performance is shown in Table 3. The error rate for Clas A was decreaed by
almost a third (from 23.2% to 15.1%), while the estr rates for Classes A and
B rose slightly. The overall error rate w reduced hy more than a quarter
(from 9.1% to 6.8%), and the optimal eror rate of 5.1% was approached
much more cloely. A search to detenine the optimal value of p was not
attempted; the only value of p at pted wa 1.5.

5 Conclusions
This work has examined training methods for radial bais function networks
(RBFNs). Past RBFN training approaches have generally fixed the number
of hidden units, st the network paramers via clustering and/or global
optimization methods, and usd the training and testing error to evaluate
the entire network. This work further developed the idea that the success
of RBFNs is due in part to the local tuning" of the hidden units. Using
a direct development from functional analysis, a local training method was
developed whereby each hidden unit is trained individually. This approach
allows the use of richer classe of radial basis function than can be tolerated
by the Moody and Darken algorithm.

The key advantage to the local training method is that more information
is available about each hidden unit. This makes possible the determina-
tion of the number and nature of the hidden units on more than just error
data. In particular, the values of the objective function make possible di-
rect comparison of various hidden units. Additionally,each hidden unit has a
generalization parameter amociated with it that determines the broadness of
the hidden unit's receptive field. Two examples ilustrated the loc training
method and the manner in which hidden units can be evaluated.

Sipificant work remains to be done. Fosanost, the penalty function
used to force generalization needs more inv on. The current penalty
function does not rigorously rec the memorizing behavior as p -. 1.
Also, the relationship between the area of the receptive field and p is not
well understood. As future investigation reveals more about what penalty
functions are appropriate for the local training method, the current penalty
function will quite likely be superceded.

As discussed above, the loea training method rests on the assumption
that the receptive fields are not overlapping. For classification problems,
where one is typically trying to isolate various groups of data, this can be
a good amumption. For approximation problems, where one is typically
trying a build a "smooth" surface, this assumption may break down. Thus,
the local training method needs to be tested on approximation problems.

The local training method still has many important unanswered ques-
tions. However, this method represents an interesting approach for design-
ing the hidden units directly and for gaining insight into how may hidden
units are needed. Moreover, the current method has demonstrated dlear
advantages over the Moody and Darken method on several examples.
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Figr 1: Binary example. Receptive fields for the Moody and Darken
trained 2 hidden unit RBFN (thick lines) and 3 hidden unit RBFN (thin
lines).

Figure 2: Binary example. Receptive fields for the locally trained 2 hidden Figure 5: Continuous example.
unit RBFN. hidden unit RBFN.
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Figure 3: Continuous example. Receptive fields for the Moody and Darken
trained 5 hidden unit RBFN.

Figure 6: Continuous example. Receptive fields for the locally ad hoe trained
5 hidden unit RBFN.
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