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Abstract. We study the evolution equation associated with the biharmonic

operator on infinite cylinders with bounded smooth cross-section subject to
Dirichlet boundary conditions. The focus is on the asymptotic behaviour and

positivity properties of the solutions for large times. In particular, we de-

rive the local eventual positivity of solutions. We furthermore prove the local
eventual positivity of solutions to the biharmonic heat equation and its gener-

alisations on Euclidean space. The main tools in our analysis are the Fourier

transform and spectral methods.

1. Introduction

In this paper, we study solutions to the biharmonic heat equation on Euclidean
space RN and on infinite cylinders. We are interested in the asymptotic behaviour
and positivity properties of solutions, a subtle matter which has only been brought
to light relatively recently. In contrast to the well-known positivity-preserving
property of the second-order heat equation, the biharmonic heat equation is not
positivity preserving. However, not all is lost and some weaker positivity property
persists. Gazzola and Grunau showed in [22] that solutions to the biharmonic heat
equation on RN display local eventual positivity. More precisely, they showed that
for every continuous, non-trivial, compactly supported initial function u0 satisfying
u0(x) ≥ 0 and every compact subset K of RN , the corresponding solution u(t, x)
is positive on K after finite time. This property was analysed in greater detail
by the same authors together with Ferrero in [21] and generalised to fourth-order
semilinear equations. Quite recently, L. Ferreira and V. Ferreira showed in [20]
that local eventual positivity is a feature of solutions to polyharmonic evolution
equations. It therefore appears that local eventual positivity is a natural property
to study in connection with higher-order evolution equations.

We begin by stating the two main results, first for the whole space RN (Theo-
rem 1.1) and then for infinite cylinders (Theorem 1.3). This will be followed by a
brief overview of eventual positivity.

1.1. Main results. Let α > 0 and consider the evolution equation

∂u

∂t
+ (−∆)αu = 0 on (0,∞)× RN

u(0, x) = u0(x) on RN
(1.1)

on RN with initial data satisfying

u0 ∈ L1(RN ) ∩ L2(RN ). (1.2)
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The case of α = 1 corresponds to the classical heat equation and α = 2 to the
biharmonic equation. For α ∈ (0, 1), the operator (−∆)α is the non-local fractional
Laplacian. In our main theorem, we derive the asymptotic behaviour of localised,
rescaled solutions.

Theorem 1.1. Suppose that α > 0 and let u be the solution to the evolution
equation (1.1) with initial datum (1.2). For every t > 0 define

ct :=
(2π)N

Mα
tN/2α where Mα :=

∫
RN

e−|s|
2α

ds. (1.3)

Then for any compact set K ⊆ RN we have

lim
t→∞

ctu(t, x) =

∫
RN

u0(y) dy (1.4)

uniformly with respect to x ∈ K.

Intuitively, the numbers ct are rescaling factors which counteract the decay of the
solution. Observe that the spectral bound of (−∆)α is zero. It is part of the contin-
uous spectrum and the constant function is intuitively an eigenfunction, but it does
not lie in the space L2(RN ). The theorem tells us that the limit (1.4) is essentially
a projection of the initial condition u0 onto the corresponding ‘eigenspace’.

In the special case of the biharmonic equation (α = 2), our result is of the same
flavour as [21, Theorem 1.1]. In particular, we show that the asymptotic profile
of this blown-up solution is locally that of a constant function. In Section 3, we
prove Theorem 1.1 and also note that the method allows to cover slightly more gen-
eral evolution equations associated with linear differential operators with constant
coefficients.

In Section 4, we consider a result similar to that in Theorem 1.1 for the bihar-
monic equation on infinite cylinders of the form R×Ω, where Ω ⊆ RN is a bounded
smooth domain satisfying a spectral condition. We derive the asymptotic behaviour
of solutions u = u(t, x, y) to the problem

∂u

∂t
+ (−∆)2u = 0 on (0,∞)× R× Ω

u(0, ·, ·) = u0 on R× Ω

u(t, x, ·) =
∂u

∂ν
(t, x, ·) = 0 on ∂Ω for all x ∈ R, t ≥ 0

(1.5)

where ν(y) is the outer unit normal to ∂Ω, and the initial datum satisfies

u0 ∈ L1(R, L2(Ω)) ∩ L2(R, L2(Ω)). (1.6)

This means that u0(x, ·) ∈ L2(Ω) for every x ∈ R, and that∫
R
‖u0(x, ·)‖L2(Ω) dx <∞ and

∫
R
‖u0(x, ·)‖2L2(Ω) dx <∞.

The boundary conditions in (1.5) are fourth-order homogeneous Dirichlet boundary
conditions and, due to their physical interpretation as models of clamped plates,
are often called clamped boundary conditions, see for instance [23, Section 1.1.2].
We adopt this terminology as well.

We will make use of properties of the eigenvalue problem

∆2φ = λφ in Ω

φ =
∂φ

∂ν
= 0 on ∂Ω

(1.7)

Since the above problem is self-adjoint and has compact resolvent, the spectrum
consists of a sequence of eigenvalues of finite algebraic multiplicity bounded from
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below and going to infinity. We call the lowest eigenvalue the principal eigenvalue,
and the corresponding eigenfunction a principal eigenfunction if the principal eigen-
value is geometrically simple. This is the case in second order problems. However,
we note that the principal eigenvalue of the Dirichlet biharmonic operator need not
be geometrically simple. Some explicit examples are given in [35, Section 3].

For our result on infinite cylinders requires the following spectral condition.

Assumption 1.2. Let Ω ⊆ RN be a bounded domain with C∞ boundary. We assume
that the biharmonic eigenvalue problem (1.7) has an algebraically simple principal
eigenvalue.

Assumption 1.2 is not too restrictive, as it has been shown by Ortega and
Zuazua [33] that the spectrum is generically simple. Briefly stated, for any smooth
domain Ω, there exists an arbitrarily small domain perturbation such that all eigen-
values of the operator on the perturbed domain are simple. Here is our main
convergence result on cylinders.

Theorem 1.3. Let Ω be a domain satisfying Assumption 1.2, and consider the
solution u to the biharmonic equation (1.5) with initial datum (1.6). Let e1(·) be
an eigenfunction, normalised in L2(Ω), corresponding to the principal eigenvalue
of (1.7). Then there exist numbers ct > 0 such that

lim
t→∞

ctu(t, x, y) =

∫
R

∫
Ω

u0(ξ, η)e1(η) dη dξ e1(y) as t→∞ (1.8)

uniformly with respect to (x, y) ∈ I × Ω, for any compact interval I in R.

Theorem 1.3 shows that the asymptotic profile of the rescaled solution is constant
in the ‘infinite direction’ (i.e. for x ∈ R) while it resembles the eigenfunction e1(·)
along the cross-sections Ω of the cylinder. The intuition here is similar as in the
full space case previously discussed. The numbers ct counteract the decay of the
solution. The function v(x, y) = e1(y), which is constant in the x-direction, takes
the role of an ‘eigenfuction’ associated with the spectral bound of (−∆)2 on R×Ω.
The limit (1.8) is the projection of the initial condition into the direction of that
‘eigenfunction’.

Remark 1.4. It is well-known that a maximum principle cannot be expected in
general to hold for higher-order elliptic operators, so the eigenfunction e1 is not
necessarily of one sign. We discuss this further in Section 2.2. We note that the
limit (1.8) is independent of whether we choose to work with e1 or −e1.

Notation. Throughout this paper, if E and F are function spaces over the same
domain Ω ⊆ RN , we write E ∩ F (Ω) as an abbreviation for E(Ω) ∩ F (Ω). For a
measurable function f : Ω ⊆ RN → R, we write f 	 0 to mean that f(x) ≥ 0 for
a.e. x ∈ Ω and f is not almost everywhere equal to 0.

1.2. Background on eventual positivity. This paper was originally inspired
by results from the theory of positive operator semigroups, which is by now a
classic topic in operator theory—see for example the monograph [2]. Key features
of this theory include the issues of asymptotic behaviour and stability, which are
intimately linked to the spectral theory of linear operators. While these topics
are interesting in abstract settings, they often have concrete manifestations in the
study of partial differential equations, where the theory is applied to the semigroups
generated by differential operators. We refer the reader to [10] for an accessible,
modern survey of the theory of positive operator semigroups with an emphasis on
concrete applications. Generally speaking, the study of positive linear operators is
a natural extension of the classical Perron-Frobenius theory of positive matrices to
infinite dimensional Banach spaces.
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It seems that the phenomenon of eventual positivity for operator semigroups in
finite dimensions has been known for more than a decade, see for instance [32]
and the references therein. In infinite dimensions, motivated by [13], a systematic
theory of eventually positive semigroups and resolvents was developed recently by
Kennedy and two of the present authors. The papers [17, 18] contain the foundation
of the theory, and there have since been various refinements and extensions [14, 15,
16, 9]. In [6, Sections 7, 8] the reader will find a snapshot of some applications
of the theory of eventual positivity. Further applications to the analysis of partial
differential equations can, for instance, be found in [19, Section 7], while the reader
may consult [25, Section 6] and [11, Section 5] for recent applications to the study
of differential operators on graphs.

Very recently, a systematic operator-theoretic treatment of locally eventually
positive semigroups was initiated by Arora in [8], with applications to the study of
various differential equations on bounded domains. In [1], this theory was applied
to study a fourth-order differential equation on RN but equipped with a probability
measure. In the present paper, on the other hand, we study a particular equation
on unbounded domains with infinite measure. A key difference is that in our case
the spectral bound is not a simple eigenvalue, but part of the continuous spectrum.
This necessitates a completely different set of tools in the analysis: we can no longer
use properties of the spectral projection associated with the spectral value 0, which
have been a key feature in many results about eventually positive semigroups so
far. Yet, while our techniques differ considerably from the tools applied in earlier
papers on eventual positivity, we still note that the limiting objects (1.4) and (1.8)
can be interpreted as ‘local’ versions of spectral projections.

2. Local eventual positivity of solutions

2.1. Local eventual positivity on Euclidean space. As a straightforward con-
sequence of Theorem 1.1, we obtain a qualitative local eventual positivity result for
solutions to equation (1.1).

Theorem 2.1. Let α > 0 be fixed, and consider the solution u = u(t, x) to the
evolution equation

∂u

∂t
+ (−∆)αu = 0 on (0,∞)× RN

u(0, x) = u0(x) on RN
(2.1)

with initial datum u0 ∈ L1 ∩ L2(RN ) such that∫
RN

u0(x) dx > 0. (2.2)

Then for every compact set K ⊆ RN , there exists T ≥ 0 depending on u0 and K
such that

u(t, x) > 0 for all (t, x) ∈ [T,∞)×K.

Proof. Let K ⊆ RN be an arbitrary compact set. If (2.2) holds, then by Theo-
rem 1.1 there exist numbers ct > 0 such that

ctu(t, x) −→
∫
RN

u0(x) dx > 0

as t → ∞ uniformly with respect to x ∈ K. In particular there exists T > 0 such
that u(t, x) > 0 for all x ∈ K and t > T as claimed. �

Remark 2.2. The above theorem implies in particular that the solution of (2.1)
is locally eventually positive if u0 	 0. We note that α = 1 corresponds to the
classical heat equation, in which case the solution is positive for all t ≥ 0 if u0 ≥ 0.
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For local operators, we recall from the general theory in [5, Theorem 2.1] that
the second-order operators are the only case where positivity is possible. For the
fractional Laplacian, that is for α ∈ (0, 1), the positivity is obtained directly from
the fractional heat kernels, as shown in [36, Section 2]. In all other cases we can
only expect (local) eventual positivity, unless we restrict to special classes of initial
conditions as shown in [26].

Our above result is a qualitative counterpart to the results in [22] and [20],
where the authors work explicitly with the polyharmonic heat kernels. We avoid
the explicit kernels and employ Fourier analysis instead. We also point out that
our results admit a larger class of initial data than was previously considered in
the literature. In particular, we do not require continuity nor compactly supported
functions. As a trade-off, our qualitative approach does not provide an estimate of
the time to positivity, that is, the quantity

T = T (K) := inf
τ>0
{u(t, x) > 0 for all x ∈ K and t ≥ τ}.

2.2. Local eventual positivity on infinite cylinders. We now investigate local
eventual positivity for solutions of the biharmonic heat equation on the infinite
cylinder R × Ω, where Ω is a bounded domain in RN satisfying Assumption 1.2.
Theorem 1.3 shows that the asymptotic behaviour of the solution to the parabolic
problem on R×Ω is determined by the sign of a normalised principal eigenfunction
of the biharmonic operator with clamped (i.e. homogeneous Dirichlet) boundary
conditions on the cylinder cross-section. Thus we need to discuss briefly the cor-
responding elliptic problem. There is now an extensive body of research on the
positivity properties of solutions to the biharmonic Dirichlet problem

∆2u = f in Ω

u =
∂u

∂ν
= 0 on ∂Ω

(2.3)

and more general polyharmonic boundary value problems. We mention in particular
the monograph [23] and the many references therein. The question of positivity of
the first eigenfunction of the problem (2.3) with respect to the domain is a highly
delicate one. From the spectral theory of positive irreducible operators—see for
instance [38, Theorem 43.8] for a result suitable to our situation—one obtains a
strictly positive principal eigenfunction whenever the Green’s function of (2.3) is
strictly positive. In the case where Ω is a ball, strict positivity of the Green’s
function can be easily deduced using the explicit formula of Boggio [23, Section 4.1],
which of course implies that the solution to (2.3) satisfies u 	 0 whenever f 	 0.
It is known that this property is preserved for “sufficiently small” perturbations of
the ball in dimenions N ≥ 2. These results and various generalisations are collected
in [23, Chapter 6]—note in particular Theorem 6.3 for domains in R2 and Theorem
6.29 for domains in RN with N ≥ 3. Alternatively, the reader may consult [27,
Theorem 2] for the case N ≥ 3.

We also mention that it is possible to obtain a strictly positive first eigenfunction
on domains where the biharmonic Dirichlet problem (2.3) is not positivity preserv-
ing (i.e. f 	 0 does not imply u ≥ 0). This was shown by Grunau and Sweers
in [28] (see Theorem 2 in particular). In light of the present discussion, we make
the following general conclusions regarding local eventual (non-)positivity of the
parabolic problem on infinite cylinders.

Theorem 2.3. Let u0 ∈ L1 ∩ L2(R, L2(Ω)), where Ω is a bounded domain in RN
satisfying Assumption 1.2. Let e1 be a normalised principal eigenfunction of the
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boundary value problem (1.7). Assume that u0 satisfies∫
R

∫
Ω

u0(x, y)e1(y) dx dy > 0 (2.4)

and let u = u(t, x, y) be the solution to the biharmonic heat equation (1.5) on R×Ω
with initial datum u0.

Let K0 be the zero set of the eigenfunction e1, i.e.

K0 = {y ∈ Ω: e1(y) = 0}.
For every compact subset K ⊆ Ω \ K0 and compact interval I ⊂ R, there exists
T ≥ 0 depending only on I ×K and the initial datum u0 such that

sign(u(t, x, y)) = sign e1(y) (2.5)

for all t ≥ T and (x, y) ∈ I ×K.

Proof. By Theorem 1.3, there exist numbers ct > 0 such that

lim
t→∞

ctu(t, x, y) =

∫
R

∫
Ω

u0(ξ, η)e1(η) dξ dη e1(y)

uniformly with respect to (x, y) ∈ I × Ω. At every y ∈ K, e1(y) has a well-defined
sign, and by the continuity there exists δ > 0 such that |e1(y)| > δ for all y ∈ K.
Now it follows from the assumption (2.4) that there exists T > 0 such that (2.5)
holds for all t ≥ T and (x, y) ∈ I ×K. �

Remark 2.4. If Ω is a domain on which the principal eigenfunction of problem (1.7)
may be chosen strictly positive, then K0 = ∅, and we have local eventual positivity.
Stated more precisely, for every compact subset K ⊆ Ω and compact interval I ⊂ R
there exists a time T ≥ 0 depending on u0 and I ×K such that

u(t, x, y) > 0

for all t ≥ T and for all (x, y) ∈ I ×K.

3. The biharmonic heat equation on Euclidean space

3.1. The initial value problem and its Fourier transform. We use the fol-
lowing convention for the Fourier transform û0 of u0:

û0(ω) =
1

(2π)N/2

∫
RN

u0(x)e−iω·x dx.

Defined this way, the Fourier transform is an isometric isomorphism of L2(RN )
(Plancherel’s theorem). Note that the assumption u0 ∈ L1 ∩ L2(RN ) combined
with the Riemann-Lebesgue Lemma yields

û0 ∈ L2 ∩ C0(RN ). (3.1)

We begin by taking the spatial Fourier transform of the initial value problem (2.1),
thus obtaining

∂

∂t
û(t, ω) = −|ω|2αû(t, ω),

û(0, ω) = û0(ω).

Solving this differential equation explicitly we see that

û(t, ω) = e−t|ω|
2α

û0(ω).

It is clear from (3.1) and the rapid decay of the kernel e−t|ω|
2α

that û(t, ·) ∈ L1 ∩
L2(RN ) for each t > 0. Thus the solution to (2.1) can be obtained by the inverse
Fourier transform

u(t, x) = (2π)−N/2
∫
RN

e−t|ω|
2α

û0(ω)eiω·x dω. (3.2)



LOCAL UNIFORM CONVERGENCE AND EVENTUAL POSITIVITY 7

3.2. Asymptotic behaviour of solutions. As shown already in Section 2, the
local eventual positivity of solutions to (1.1) for α > 0 is a straightforward conse-
quence of Theorem 1.1. The techniques we use in the proof of this theorem can
be extended to more general differential operators, as we will show in Section 3.3.
Moreover, the analysis on RN can be considered as setting the stage for the more
complicated analysis on cylinders in Section 4.

The key ingredient for the proof of Theorem 1.1 is the following observation. For
ω ∈ R and α > 0 let

ϕ1(ω) :=
e−|ω|

2α

Mα
with Mα :=

∫
RN

e−|ω|
2α

dω.

and define

ϕt(ω) := tN/2αϕ1(t1/2αω) (3.3)

for all t > 0. By the change of variables s = t1/2αω, we see that∫
RN

ϕt(ω) dω =

∫
RN

ϕ1(s) ds = 1

for all t > 0. Hence the family (ϕt)t>0 is an approximate identity as t→∞ in the
following sense.

Definition 3.1. An approximate identity as t → ∞ is a family of measurable
functions (ρt)t>0 from RN to R such that

(i) ρt(ω) ≥ 0 for almost every ω ∈ RN ;
(ii)

∫
RN ρt(ω) dω = 1 for all t > 0; and

(iii)
∫
|ω|≥δ ρt(ω) dω → 0 as t→∞ for each δ > 0.

One has the following standard result on convolution with approximate identities.
We include a proof to accommodate an additional parameter.

Lemma 3.2. Let (ρt)t>0 be an approximate identity as t→∞ and let U be a non-
empty set. Suppose that f : RN × U → R is bounded and that f(· , x) is measurable
for all x ∈ U . If f(· , x) is continuous at ω0 ∈ RN uniformly with respect to x ∈ U ,
then

lim
ω→ω0

(ρt ∗ f(·, x))(ω0) = f(ω0, x)

uniformly with respect to x ∈ U .

Proof. Since ρt ≥ 0 and ‖ρt‖1 = 1 we see that for every δ > 0

|(ρt ∗ f(·, x))(ω0)− f(ω0, x)| =
∣∣∣∫

RN
ρt(ω0 − ω)

(
f(ω, x)− f(ω0, x)

)
dω

≤
∫
RN

ρt(ω0 − ω)
∣∣f(ω, x)− f(ω0, x)

∣∣ dω
≤
∫
|ω−ω0|≥δ

ρt(ω0 − ω)
∣∣f(ω, x)− f(ω0, x)

∣∣ dω
+

∫
|ω−ω0|<δ

ρt(ω0 − ω)
∣∣f(ω, x)− f(ω0, x)

∣∣ dω
≤ 2‖f‖∞

∫
|ω|≥δ

ρt(ω) dω + sup
|ω−ω0|<δ

∣∣f(ω, x)− f(ω0, x)
∣∣.

Let ε > 0 be arbitrary. By the uniform continuity of f(ω, x) at ω0 with respect to
x ∈ U there exists δ > 0 such that

sup
|ω−ω0|<δ

∣∣f(ω, x)− f(ω0, x)
∣∣ < ε

2
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for all x ∈ U . With this choice of δ > 0, using the definition of an approximate
identity, there exists t0 > 0 such that

0 ≤ 2‖f‖∞
∫
|ω|≥δ

ρt(ω) dω <
ε

2

for all t > t0. Putting everything together we see that

|(ρt ∗ f(·, x))(ω0)− f(ω0, x)| < ε

2
+
ε

2
= ε

for all t > t0. As ε > 0 was arbitrary this proves the lemma. �

We now present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let ct be defined as in (1.3) and let (ϕt)t>0 be the approx-
imate identity given by (3.3). Moreover, let ϕ̌t(x) := ϕt(−x) be the reflection of
ϕt. (In this case ϕ̌t = ϕt, but for the benefit of possible generalisations we keep
the notation). For x, ω ∈ RN , we define

f(ω, x) := (2π)N/2û0(ω)eiω·x.

Recall that the solution u(t, x) is given by (3.2). Multiplying it by ct we see that

ctu(t, x) = (2π)N/2
∫
RN

ϕt(ω)û0(ω)eix·ω dω =
(
ϕ̌t ∗ f(· , x)

)
(0) (3.4)

for all x ∈ RN . As u0 ∈ L1 ∩ L2(RN ) we have û0 ∈ L2 ∩ C0(RN ) and thus
f ∈ C(RN × RN ). If K ⊆ RN is compact and δ0 > 0, then f : [−δ0, δ0] ×K → C
is uniformly continuous and hence ω 7→ f(ω, x) is continuous at ω = 0 uniformly
with respect to x ∈ K. As (ϕ̌t)t>0 is an approximate identity, it follows from (3.4)
and Lemma 3.2 that

lim
t→∞

ctu(t, x) = f(0, x) = (2π)N/2û0(0) =

∫
RN

u0(y) dy

uniformly with respect to x ∈ K, completing the proof of Theorem 1.1. �

3.3. Possible generalisations. Let us make some remarks about the validity of
Theorem 1.1 for general linear differential operators with constant coefficients. Us-
ing the standard multi-index notation

Dα =
∂α1

∂x1

∂α2

∂x2
· · · ∂

αN

∂xN
, α = (α1, . . . , αN ) ∈ NN ,

such an operator takes the form

P (D) :=
∑

0≤|α|≤d

cα(iD)α (cα ∈ R)

where d is order of the operator and |α| =
∑N
i=1 αi. Upon taking the Fourier

transform, we obtain

̂(iDα)u = ωαû

where ωα is a standard abbreviation for ωα1
1 ωα2

2 · · ·ω
αN
N . Hence

P̂ (iD)u = P (ω)û

and P (ω) is called the symbol of the operator. The associated evolution equation
is given by

∂u

∂t
+ P (iD)u = 0 on (0,∞)× RN

u(0, x) = u0(x) on RN .
(3.5)
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(i) In the simplest case, suppose that P (·) is a homogeneous polynomial of even
order, say d = 2m for some m ≥ 1, with the following structure:

P (ω) = (−1)m
∑
|α|=2m

cαω
α cα ≥ 0 and not all 0.

After taking Fourier transforms, the evolution equation becomes

dû

dt
= −P (ω)û.

With initial datum u0, we obtain

û(t, ω) = e−tP (ω)û0(ω) t ≥ 0, ω ∈ RN ,

and thus, at least formally, the solution to the evolution equation is given
by the Fourier inverse of the above. By virtue of the homogeneity of the
polynomial P , we can set s = t1/2mω to obtain∫

RN
e−tP (ω) dω = t−N/2m

∫
RN

e−P (s) ds.

Provided that
∫
RN e

−P (s) ds < ∞, the blow-up factors ct can therefore be
defined by

ct := tN/2m
(∫

RN
e−P (s) ds

)−1

.

If it can be shown that ϕt(ω) = cte
−tP (ω) defines an approximate identity in

the sense of Definition 3.1, then the techniques used in the proof of Theo-
rem 1.1 can be extended to this situation.

(ii) If we include lower-order terms in the operator P (iD), then obviously the
change of variables introduced above does not work. However, provided that
we have good estimates on the symbol P (ω), it may be possible to show that
ϕt(ω) = cte

−tP (ω) defines an approximate identity nonetheless. In fact, we
will encounter a similar situation in the proof of Theorem 1.3.

4. Biharmonic heat equation on infinite cylinders

In this section we prove Theorem 1.3. The analysis is more technical than the
problem on RN , and we will need a handful of preparatory results before proceeding
with the main proof.

4.1. A parametrised family of elliptic operators. A common approach to
solve the heat equation on R × Ω is to use separation of variables. If we take an
initial function with the special form u0(x, y) = f(x)g(y), we can build a solution to
the evolution problem by solving vt = vxx with v(0, x) = f(x) on R, and wt = ∆yw
with w(0, y) = g(y) on Ω and w(t, ·) = 0 on ∂Ω for all t ≥ 0. Here, as in the sequel,
∆y denotes the Laplacian in only the y variable. Then it is easy to see that

u(t, x, y) := v(t, x)w(t, y)

solves ut = ∆u on R × Ω with initial condition u0(x, y) and Dirichlet boundary
condition u(t, x, ·) = 0 on ∂Ω. In contrast to the second order equation, a similar
separation of variables is not possible for the biharmonic operator.

Nevertheless, we proceed by taking the partial Fourier transform of problem (1.5)
with respect to the x variable. We obtain a family of functions η(t, ω, y) := û(t, ω, y)
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such that for each ω ∈ R, the function η solves the equation

∂η

∂t
= −∆2

yη + 2ω2∆yη − ω4η on (0,∞)× Ω,

η(0, ω, y) = û0(ω, y) for y ∈ Ω,

η(t, ω, ·) =
∂η

∂ν
(t, ω, ·) = 0 on ∂Ω for each t ≥ 0,

(4.1)

where

û0(ω, y) =
1√
2π

∫
R
u0(x, y)e−iωx dx

is the partial Fourier transform of the initial datum in the x variable. By the
vector-valued versions of the Riemann-Lebesgue Lemma and Plancherel’s theorem
from [4, Theorems 1.8.1, and 1.8.2] and the assumption (1.6), we conclude that

û0 ∈ C0 ∩ L2(R, L2(Ω)). (4.2)

In particular we deduce that

M := sup
ω∈R
‖û0(ω, ·)‖L2(Ω) <∞ (4.3)

and that ∫
R
‖û0(ω, ·)‖2L2(Ω) dω = 2π

∫
R
‖u(x, ·)‖2L2(Ω) dx <∞. (4.4)

For each ω ∈ R, let (−µn(ω))n≥1 be the family of eigenvalues of the operator

Lω := −∆2
y + 2ω2∆y − ω4 (4.5)

with domain

H4 ∩H2
0 (Ω).

We take these eigenvalues in increasing order counting multiplicities. We also choose
a family of corresponding eigenfunctions (φn(ω, ·))n∈N forming an orthonormal basis
of L2(Ω). At the moment we do this for fixed ω, but we will later need some
regularity of µn and φn in ω. This will be established in Proposition 4.11. Hence,
the solution of (4.1) can be represented by the Fourier series

η(t, ω, y) =

∞∑
n=1

e−tµn(ω)An(ω)φn(ω, y), (4.6)

where the coefficients are given by

An(ω) =

∫
Ω

û0(ω, y)φn(ω, y) dy. (4.7)

In the sequel, it will be useful to consider the operator −Lω instead. Then for each
fixed ω ∈ R, the eigenvalues of −Lω satisfy µn(ω) > 0 for all n ≥ 1. In fact, as
we will show in Lemma 4.3(iii), it holds that 0 < λ2

1 ≤ µn(ω) for all n ≥ 1 and all
ω ∈ R, where λ1 is the principal eigenvalue of the Dirichlet Laplacian. The bilinear
form associated with −Lω is given by

aω(u, v) :=

∫
Ω

∆u∆v dy + 2ω2

∫
Ω

∇u · ∇v dy + ω4

∫
Ω

uv dy (4.8)

defined for all u, v ∈ H2
0 (Ω). Note that −L0 = ∆2

y is the biharmonic operator. We
will drop the subscript y for notational convenience.
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4.2. Analysis of the parametrised elliptic equations. We begin with a simple,
general result for the Sobolev space H2

0 (Ω). The notation D2u denotes the Hessian
matrix of u.

Proposition 4.1. Let Ω ⊆ RN be a bounded open set. Then the quantity

|u|2,2 := ‖∆u‖L2(Ω)

defines a norm on H2
0 (Ω) that is equivalent to the usual H2 norm:

‖u‖H2(Ω) =
(
‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) + ‖D2u‖2L2(Ω)

)1/2

,

where ‖D2u‖L2(Ω) is the Hilbert-Schmidt or Frobenius norm of the Hessian matrix.

Proof. Firstly, we show that ‖D2u‖L2(Ω) = ‖∆u‖L2(Ω) for all u ∈ C∞0 (Ω). Let ∂ju
(j = 1, . . . , N) denote any of the partial derivatives of u. Then, using integration
by parts twice, we obtain

‖D2u‖2L2(Ω) =

N∑
i,j=1

∫
Ω

(∂i∂ju)2 dy =

N∑
i,j=1

∫
Ω

(∂iiu)(∂jju) dy

=

∫
Ω

(∆u)2 dy = ‖∆u‖2L2(Ω).

Now the above identity extends by density to all u ∈ H2
0 (Ω).

If u ∈ H2
0 (Ω), then ∂ju ∈ H1

0 (Ω) for each j = 1, . . . , N . Using the Poincaré
inequality on ∂ju, we find that there exists a constant C1 = C1(Ω) such that

‖∇u‖L2(Ω) ≤ C1‖D2u‖L2(Ω) = C1‖∆u‖L2(Ω).

Applying the Poincaré inequality to u, we obtain ‖u‖L2(Ω) ≤ C2‖∇u‖L2(Ω) for
another constant C2 = C2(Ω). In conclusion we obtain C = C(Ω) such that

‖u‖H2(Ω) ≤ C‖D2u‖L2(Ω) = C‖∆u‖L2(Ω) = C|u|2,2.

Finally, the fact that |u|2,2 is a norm follows from well-posedness of the second-order
Dirichlet problem. �

Remark 4.2. Proposition 4.1 shows the coercivity of the bilinear form a0(u, v) =∫
Ω

∆u∆v dy defined for all u, v ∈ H2
0 (Ω). Since a0(u, u) ≤ aω(u, u) from the

definition (4.8) for all ω ∈ R, it follows that each of the bilinear forms aω(·, ·) are
coercive. Furthermore, we have the estimate

‖∆φn(ω, ·)‖L2(Ω) = a0(φn(ω, ·), φn(ω, ·))1/2

≤ aω(φn(ω, ·), φn(ω, ·))1/2 = µn(ω)1/2 (4.9)

if we choose the eigenfunctions φn(ω, ·) to be normalised in L2(Ω).

The eigenvalues of the biharmonic operator play a distinguished role in the se-
quel. Consequently we define

αn := µn(0) for each integer n ≥ 1.

Now we present a comparison result between the eigenvalues of −L0, −Lω and
those of the Dirichlet Laplacian. They will be used frequently in the main proof of
this section.

Lemma 4.3. Let the differential operators −Lω be defined as in (4.5) with cor-
responding eigenvalues (µn(ω))n≥1 in ascending order counting multiplicity. Set
αn := µn(0). For each integer n ≥ 1, the following assertions hold:

(i) µn ∈ C(R) is positive, even and strictly increasing as a function of |ω|.
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(ii) For every ω ∈ R and n ≥ 1, we have

0 < αn + ω4 ≤ µn(ω) ≤ αn + 2α1/2
n ω2 + ω4.

(iii) If (λn)n≥1 are the eigenvalues of the Dirichlet Laplacian on Ω, then

λ2
n ≤ αn for all n ≥ 1. (4.10)

Proof. The proof relies on variational characterisations for eigenvalues of self-adjoint
elliptic operators. Let q(·) be the quadratic form associated with the Dirichlet
Laplacian, given by

q(u) := ‖∇u‖2L2(Ω)

for all u ∈ H1
0 (Ω). Furthermore, let a0(·) and aω(·) denote the quadratic forms

associated with −L0 and −Lω respectively. They are given by

a0(u) := ‖∆u‖2L2(Ω)

aω(u) := a0(u) + 2ω2q(u) + ω4‖u‖2L2(Ω)

for all u ∈ H2
0 (Ω).

(i) For γ ∈ R consider the quadratic form

bγ(u) := a0(u) + 2γq(u)

on H2
0 (Ω). It is the quadratic form associated with the operator (−∆)2u + 2γ∆u

with clamped boundary conditions. According to the min-max and max-min prin-
ciples for the the n-th eigenvalue νn(γ), we have

νn(γ) = min
dim(M)=n

[
max
u∈M
‖u‖L2=1

b(u)
]

= max
codim(M)=n−1

[
min
u∈M
‖u‖L2=1

b(u)
]
, (4.11)

where M are subspaces of H2
0 (Ω), see for instance [37, Chapters 2 and 3]. In

particular, νn is increasing as a function of γ ∈ R. Next note that the infimum and
supremum of affine functions on R are concave and convex, respectively. As convex
and concave functions are continuous,

fM (γ) := max
u∈M
‖u‖L2=1

bγ(u) and gM (γ) := min
u∈M
‖u‖L2=1

bγ(u)

are both continuous functions of γ ∈ R for every relevant subspace M ⊆ H2
0 (Ω).

We conclude from (4.11) that νn is the supremum and an infimum of continuous
functions. It is well-known that a supremum of continuous functions is lower semi-
continuous. Likewise, an infimum is upper semi-continuous. Hence νn ∈ C(R).
Finally observe that aω(u) = bω2(u) + ω4‖u‖2L2(Ω) and thus µn(ω) = νn(ω2) + ω4.

Hence µn ∈ C(R) is symmetric, strictly increasing and unbounded as a function of
|ω|.

(ii) Using integration by parts and the Cauchy-Schwarz inequality, note that

q(u) =

∫
Ω

(−∆u)u dy ≤
(∫
|∆u|2 dy

)1/2

‖u‖L2(Ω) = a0(u)1/2‖u‖2L2(Ω) (4.12)

for all u ∈ H2
0 (Ω). Hence, if u ∈ H2

0 (Ω) with ‖u‖L2(Ω) = 1, then

a0(u) + ω4 ≤ aω(u) ≤ a0(u) + 2ω2a0(u)1/2 + ω4 =
[
a0(u)1/2 + ω2

]2
.

Given a subspace M ⊆ H2
0 (Ω) with codim(M) = n− 1 we have

min
u∈M
‖v‖L2=1

a0(u) + ω4 ≤ min
u∈M
‖u‖L2=1

aω(u) (4.13)
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and

min
u∈M
‖v‖L2=1

aω(u) ≤ min
v∈M
‖u‖L2=1

[
a0(u)1/2 + ω2

]2
=
[

min
v∈M
‖u‖L2=1

a0(u)1/2 + ω2
]2
, (4.14)

where the last equality holds since the function s 7→ (s1/2 + ω2)2 is continuous
and increasing for s ∈ [0,∞). Taking the supremum in (4.13) and (4.14) over all
subspaces M ⊆ H2

0 (Ω) with codim(M) = n − 1, the maximum-minimum charac-
terisation of eigenvalues gives

αn + ω4 ≤ µn(ω) ≤
[
α1/2
n + ω2

]2
= αn + 2α1/2

n ω2 + ω4,

where for the last inequality we used again that s 7→ (s1/2 +ω2)2 is continuous and
increasing.

(iii) Let Λn and Σn denote the set of all n-dimensional subspaces of H1
0 (Ω) and

H2
0 (Ω) respectively. Observe that Σn ⊆ Λn. Hence, by (4.12) and the minimum-

maximum principle,

αn = min
M∈Σn

[
max
u∈M
‖u‖L2=1

a0(u)
]
≥ min
M∈Σn

[
max
u∈M
‖u‖L2=1

q(u)2
]
≥ min
M∈Λn

[
max
u∈M
‖u‖L2=1

q(u)2
]

= λ2
n

for all n ≥ 1. �

Remark 4.4. A different proof of (4.10) for n = 1 may be found in [35, Remark 4].

The following result is a consequence of a well-known theorem of Weyl and the
above lemma. Note that for sequences of real numbers (an)n≥1 and (bn)n≥1, we

write an ∼ bn to mean that limn→∞
an
bn

= 1.

Corollary 4.5. Let (αn)n≥1 be the eigenvalues of the biharmonic operator −L0 =
∆2 with clamped boundary conditions on Ω ⊆ RN . Then for every k > N/4

∞∑
n=1

1

αkn
<∞. (4.15)

Proof. The Weyl asymptotic law for the Dirichlet Laplacian states that

lim
n→∞

λn
n2/N

=
4π2

(BN |Ω|)2/N

where BN is the volume of the unit N -ball and |Ω| is the volume of Ω, see for
instance [7, p. 55]. Since

∑∞
n=1 n

−4k/N <∞ whenever k > N/4, the Weyl law and
thus

∑∞
n=1 λ

−2k
n also converges for k > N/4. Hence, by Lemma 4.3(iii)

∞∑
n=1

1

αkn
≤
∞∑
n=1

1

λ2k
n

<∞ (4.16)

as claimed. �

Remark 4.6. In the case N = 1, a much more computational proof is possible. For
simplicity, we take Ω = (0, 1). It is known (for example, see [12, p. 296]) that the
eigenvalues of −L0 for the clamped boundary conditions on [0, 1] are given by

αn := k4
n where cos(kn) cosh(kn) = 1 n ∈ N. (4.17)

The equation cos(kn) cosh(kn) = 1 is equivalent to cosh(kn) = sec(kn). On the

positive half-line, the secant function has vertical asymptotes at (2m+1)π
2 ,m =

0, 1, 2, . . ., and it is positive on the intervals(
(2m+1)π

2 , (2m+3)π
2

)
m = 1, 3, 5, . . .
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We can rewrite the above expression in the form

Jn :=
(

(4n−1)π
2 , (4n+1)π

2

)
n = 1, 2, 3, . . .

It follows that each kn lies in the corresponding Jn, and therefore
∞∑
n=1

1

αn
=

∞∑
n=1

1

k4
n

≤ 16

π4

∞∑
n=1

1

(4n− 1)4
.

The latter series is evidently convergent.

Remark 4.7. Consider the solution operator for the equation ∆2u = f with bound-
ary conditions u = ∂u

∂ν = 0 on ∂Ω, defined by mapping f ∈ L2(Ω) to the solution
u. It can be realised as an integral operator, and the associated kernel is known as
the Green’s function G(x, y), which satisfies

Tf := u(x) =

∫
Ω

G(x, y)f(y) dy.

The eigenvalues of T are precisely the reciprocals of the eigenvalues of ∆2. The
convergence of the series

∑∞
n=1 α

−2
n shows that T is a Hilbert-Schmidt operator for

dimensions N = 1, . . . , 7 (one can apply [29, Theorem 4.5] to the orthonormal basis
of eigenfunctions of ∆2). We also note that Weyl-type asymptotics hold for the
biharmonic operator on very general domains. For example, the result

CN,Ω
αn

∼ 1

n4/N
as n→∞ (4.18)

was shown by Levine and Protter in [31] with the explicit constant

CN,Ω =
N

N + 4
16π4(BN |Ω|)−4/N .

We could have used this directly in the proof of Corollary 4.5, but we think it is
also interesting to deduce the result using only the well-known classical Weyl law
for the Dirichlet Laplacian.

As an application of the results thus far, we show that the function defined by
the Fourier series (4.6) belongs to L1(R, L2(Ω)) for each t > 0. This will allow
us to represent the solution u(t, x, y) to the problem (1.5) as the inverse Fourier
transform of (4.6).

Proposition 4.8. Let η(t, ω, y) be defined by (4.6). Then∫
R
‖η(t, ω, ·)‖L2(Ω) dω ≤ 2π

∫
R
‖u0(ω, ·)‖L2(Ω) dω (4.19)

and
∞∑
n=1

e−2tµn(ω)|An(ω)|2 ≤ sup
ω∈R
‖û0(ω, ·)‖L2(Ω) <∞ (4.20)

for all t ≥ 0.

Proof. Fix ω ∈ R. By Lemma 4.3(i), we have for each n ∈ N and ω ∈ R
µn(ω) ≥ αn + ω4 ≥ αn > 0.

Since the eigenfunctions (φn(ω, ·))n≥1 were chosen to form an orthonormal basis of
L2(Ω), by Parseval’s identity for Fourier series we obtain

‖η(t, ω, ·)‖2L2(Ω) =

∞∑
n=1

e−2tµn(ω)|An(ω)|2 ≤
∞∑
n=1

|An(ω)|2 = ‖û0(ω, ·)‖22.

Integrating this inequality and taking into account (4.4) yields (4.19). Inequal-
ity (4.20) follows from (4.3). �
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As another application of Lemma 4.3, we prove the following essential L∞-
estimate on the eigenfunctions φn(ω, ·).

Lemma 4.9. Let φn(ω, ·) be an eigenfunction of the operator −Lω corresponding
to the eigenvalue µn(ω). Then for every integer k > N/4, there exists a constant
C = C(N, k,Ω) > 0 such that

‖φn(ω, ·)‖L∞(Ω) ≤ C
[
1 + (α1/2

n + ω2)2
]k
‖φn‖L2(Ω) (4.21)

for all ω ∈ R and all n ≥ 1.

Proof. We apply a bootstrap argument using standard regularity theory. Consider
the Dirichlet boundary value problem

∆2u = f in Ω

u =
∂u

∂ν
= 0 on ∂Ω

(4.22)

with f ∈ L2(Ω). The regularity theory for (4.22) yields that if f ∈ H2(m−1)(Ω) for
some integer m ≥ 0, then the solution u ∈ H2(m+1)(Ω), and there exists a constant
CΩ depending on Ω and m such that

‖u‖H2(m+1)(Ω) ≤ CΩ‖f‖H2(m−1)(Ω); (4.23)

see [23, Corollary 2.21]. Turning to the equation −Lω[φn] = µn(ω)φn, suppressing
the dependence of φn on ω for convenience, we can rewrite it in the form

∆2φn = [µn(ω)− ω4]φn + 2ω2∆φn. (4.24)

Assuming that φn ∈ H2m(Ω) for some integer m ≥ 1, an application of (4.23) yields

‖φn‖H2(m+1)(Ω) ≤ CΩ

∥∥(µn(ω)− ω4)φn + 2ω2∆φn
∥∥
H2(m−1)(Ω)

. (4.25)

Now Lemma 4.3(i) gives 0 < αn ≤ µn(ω) − ω4 ≤ αn + 2α
1/2
n ω2 for all ω ∈ R. We

also note that ‖φn‖H2(m−1)(Ω) ≤ ‖φn‖H2m(Ω) and ‖∆φn‖H2(m−1)(Ω) ≤ ‖φn‖H2m(Ω).

Combining these estimates with (4.25) we obtain

‖φn‖H2(m+1)(Ω) ≤ CΩ

[
αn + 2α1/2

n ω2 + 2ω2
]
‖φn‖H2m(Ω). (4.26)

Since 2ω2 ≤ 1 + ω4 and αn > 0 we can write

αn + 2α1/2
n ω2 + 2ω2 ≤ 1 + αn + 2α1/2

n ω2 + ω4 = 1 + (α1/2
n + ω2)2.

Recall that a priori φn ∈ H2(Ω) and thus the right hand side of (4.24) is in L2(Ω).
Hence, starting with m = 1, we can inductively apply (4.26) to obtain

‖φn‖H2(m+1)(Ω) ≤ Cm−1
Ω

[
1 + (α1/2

n + ω2)2
]m‖φn‖H2(Ω) (4.27)

for every m ≥ 1. By Proposition 4.1 and Remark 4.2 there exists C̃ depending only

on Ω such that ‖φn‖H2(Ω) ≤ C̃µn(ω)1/2‖φn‖L2(Ω). Moreover, by Lemma 4.3

µn(ω)1/2 ≤ [αn + 2α1/2
n ω2 + ω4]1/2 = α1/2

n + ω2 ≤ 1 + (α1/2
n + ω2)2.

Let now k > N/4 and set m := k − 1. Then 2(m + 1) > N/2, and the Sobolev
embedding theorem implies the existence of a constant Cm such that ‖φn‖L∞(Ω) ≤
Cm‖φn‖H2(m+1)(Ω) and φn ∈ C(Ω), see for instance [24, Theorem 7.26]. By com-

bining the above estimates with (4.27), we deduce (4.21) for all ω ∈ R with

C := CmC
m
Ω C̃ depending only on N and Ω. �
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Remark 4.10. In preparation for the proof of Proposition 4.11(ii) below, we show
that an L∞ bound similar to (4.21) holds for φ1(ω) where ω now varies in a complex
neighbourhood of 0. However, it will not be necessary to give the precise dependence
on ω, since the objective is simply to show local boundedness. Equation (4.24) can
be recast in the form

∆2φ1 = f(ω)φ1 + g(ω)∆φ1

where f, g : C→ C are continuous functions. By (4.23), we estimate

‖ϕ1‖H2(m+1)(Ω) ≤ C‖f(ω)∆φ1 + g(ω)∆φ1‖H2(m−1)(Ω)

≤ C
(
|f(ω)|‖φ1‖ + |g(ω)|‖∆φ1‖H2(m−1)(Ω)

)
≤ C

(
|f(ω)|+ |g(ω)|

)
‖φ1‖H2m(Ω).

Similarly to (4.26), we thus obtain

‖φ1‖H2(m+1)(Ω) ≤ C|F (ω)|‖φ1‖H2m(Ω) (4.28)

for some continuous function F : C → C and a constant C depending only on Ω.
The L∞ estimate now follows by inductively applying (4.28) and using the Sobolev
embedding theorem as before.

For later purposes we need to show that it is possible to choose an orthonormal
system associated with µn(ω) that depends regularly on ω. We also show that
ω 7→ µn(ω) is not only continuous but piecewise real analytic, meaning that it is
analytic on R except possibly at a set of isolated points.

Proposition 4.11. Let (µn)n∈N be the family of eigenvalues as in Lemma 4.3.
Then the following assertions are true:

(i) The function µn is continuous and piecewise real analytic on R, and we can
choose an orthonormal system (φn)n∈N of corresponding eigenfunctions such
that φn ∈ L∞(R, L2(Ω)) is piecewise real analytic.

(ii) If µ1(0) is algebraically simple, then there exists there exists δ > 0 and choice
of normalised eigenfunction φ1(ω, ·) corresponding to µ1(ω) such that

φ1 ∈ C([−δ, δ]× Ω).

Proof. (i) The continuity of ω 7→ µn(ω) is proved in Lemma 4.3(i), so we only need
to prove the piecewise analyticity of the family of eigenvalues and eigenfunctions.

The family (4.8) is clearly a holomorphic function defined on the constant do-
main H2

0 (Ω) for all ω ∈ C. It is symmetric, bounded below and the domain is
compactly embedded in L2(Ω). Hence Rellich’s perturbation theorem [34, Theo-
rem II.10.1] and analytic continuation allows to represent the eigenvalues as real
analytic functions βn : R → R with βn(0) = µn(0) = αn. Similarly, there exists
an orthogonal system of corresponding eigenfunctions given by analytic functions
ψn : R→ L2(Ω), n ∈ N.

The curves βn in general cross and hence do not coincide with the family µn
ordered by size. We show that these crossing points form a discrete set. First note
that by the uniqueness theorem for analytic functions, two such curves have either
at most finitely many points of intersections, or they coincide for all ω ∈ R. Also,
at any crossing point at βm(ω0), at most finitely many curves can meet. Indeed, we
know that βm(ω0) has finite algebraic multiplicity, say `. The lower semi-continuity
of the spectrum from [30, Theorem IV.3.16] shows that for ω in a neighbourhood
of ω0, the eigenvalue βm(ω0) splits into at most ` eigenvalues. Hence at most `
curves can intersect βm at ω0. The argument also shows that such crossing points
cannot accumulate at any point of βm and thus form a discrete set. Hence, for ω
between any two crossing points, µn follows some βm, with associated eigenfunctions
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ψn. Then φn = ψn/‖ψn‖L2(Ω) is the required family of eigenfunctions satisfying

φn ∈ L∞(R, L2(Ω)).
(ii) If we assume that α1 := µ1(0) is algebraically simple, then according to (i)

there exists δ > 0 such that we can choose ω 7→ φ1(ω) analytic as a function from
[−δ, δ] into L2(Ω). In fact, Rellich’s theorem even shows that φ1 is analytic in a
complex neighbourhood D of ω = 0. Moreover, from the proof of Lemma 4.9 and
Remark 4.10, one sees that φ1(ω) ∈ C(Ω), and that ‖φ1(ω)‖L∞(Ω) can be uniformly

bounded in D. We will show that φ1 is even analytic from D into C(Ω), and to do
so, we verify the conditions of Theorem 3.1 in [3].

We take the Banach space X = C(Ω), and we identify the space W = L2(Ω)
with its own dual. It follows that X ↪→ W ↪→ X ′, and moreover W is a separating
subset of X ′ (see [3, p. 787]). Indeed, every f ∈ X can be considered as an element
of W , hence 〈f, f〉 = ‖f‖2L2(Ω) 6= 0 if f 6= 0. From the previous paragraph we have

that φ1 : D → X is locally bounded, and analytic from D into W . It follows that
D 3 ω 7→ 〈ψ, φ1(ω)〉 ∈ C is analytic for all ψ ∈ W . Since W separates X, [3,
Theorem 3.1] is applicable and yields that φ1 : D → X is analytic. In particular,
ω 7→ φ1(ω) can be chosen to be a continuous function from [−δ, δ] to C(Ω). �

Remark 4.12. We note that the proof of Proposition 4.11 did not use the specific
structure of the operators −Lω, and thus the results may be adapted to more
general analytic families of operators.

4.3. Asymptotic behaviour on infinite cylinders. All the ingredients needed
for the main result are now in place.

Proof of Theorem 1.3. Taking the inverse Fourier transform of the Fourier series
representation (4.6) of û(t, ω, y), the solution to (1.5) can be represented in the
form

u(t, x, y) =
1√
2π

∫
R

[ ∞∑
n=1

e−tµn(ω)An(ω)φn(ω, y)

]
eiωx dω

which is well-defined due to Proposition 4.8. Splitting off the first term, we obtain

u(t, x, y) =
1√
2π

∫
R
e−tµ1(ω)A1(ω)φ1(ω, y)eiωx dω

+
1√
2π

∫
R

[ ∞∑
n=2

e−tµn(ω)An(ω)φn(ω, y)

]
eiωx dω. (4.29)

We define

ct := 2π

(∫
R
e−tµ1(ω) dω

)−1

, (4.30)

which is well-defined by Lemma 4.3. We prove that (1.8) holds with this choice of
blow-up factors.
Step 1. Let us deal with the first term on the right hand side of (4.29). Define

f(x, ω, y) :=
√

2πA1(ω)φn(ω, y)eiω·x,

and let ϕt be the approximate identity defined in Corollary 4.14 below. Then

ct√
2π

∫
R
e−tµ1(ω)A1(ω)φ1(ω, y)eiωx dω

=
√

2π

∫
RN

ϕt(ω)A1(ω)φ1(ω, y)eiωx dω =
(
ϕ̌t ∗ f(x , · , y)

)
(0),

where, as in the proof of Theorem 1.1, ϕ̌t(ω) := ϕt(−ω) for all ω ∈ R. Propo-
sition 4.11 asserts that µ1 ∈ C(R), and that for any compact interval I = [−r, r]
there exists an interval J = [−δ, δ] such that ϕ ∈ C(J×Ω). Hence f : I×J×Ω→ C
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is continuous and thus uniformly continuous. This means that ω 7→ f(x, ω, y) is
continuous at ω = 0 uniformly with respect to (x, y) ∈ I × Ω. It follows from
Lemma 3.2 and Corollary 4.14 that

lim
t→∞

ct√
2π

∫
R
e−tµ1(ω)A1(ω)φ1(ω, y)eiωx dω = lim

t→∞

(
ϕ̌t ∗ f(x , · , y)

)
(0) = f(x, 0, y)

uniformly with respect to (x, y) ∈ I ×Ω. By definition of A1(0), we finally see that

f(x, 0, y) =
√

2πA1(0)φ1(0, y) =
√

2π

∫
Ω

û0(0, η)e1(η) dη e1(y)

=

∫
R

∫
Ω

u0(ξ, η)e1(η) dη dξ e1(y).

Step 2. We claim that the product of the second term on the right hand side of (4.29)
with ct converges to zero as t → ∞ uniformly with respect to (x, y) ∈ R × Ω. To
do so, observe firstly that

|An(ω)φn(ω, y)| ≤ |An(ω)|‖φn(ω, ·)‖∞.

By (4.20) in Proposition 4.8, there exists M > 0 such that |An(ω)| ≤ M for all
ω ∈ R and n ∈ N. Furthermore, by Lemma 4.9 and an elementary inequality, we
find

‖φn(ω, ·)‖L∞(Ω) ≤ C
[
1 + (α1/2

n + ω2)2
]k
≤ 3kC

[
1 + αkn + ω4k

]
(4.31)

with k > N/4 and C depending on N , k and Ω. We therefore have∣∣∣∫
R

[ ∞∑
n=2

e−tµn(ω)An(ω)φn(ω, y)
]
eiωx dω

∣∣∣ ≤ 3kCM

∫
R
S(t, ω) dω,

where

S(t, ω) :=

∞∑
n=2

[
1 + αkn + ω4k

]
e−tµn(ω).

We show that

ct

∫
R
S(t, ω) dω −→ 0 (4.32)

as t → ∞. Since S(t, ω) is a series with non-negative terms, we may interchange
the summation and the integral to write∫

R
S(t, ω) dω =

∞∑
n=2

∫
R

[
1 + αkn + ω4

]
e−tµn(ω) dω. (4.33)

We now multiply each term in (4.33) by ct/2π. Using that all integrands are even
functions, we have a sum of expressions of the form∫

R ω
2me−tµn(ω) dω∫

R e
−tµ1(ω) dω

=

∫∞
0
ω2me−tµn(ω) dω∫∞

0
e−tµ1(ω) dω

with m = 0, 2. Applying Lemma 4.3 and Lemma 4.13 below, there exist C, t0 ≥ 1
such that∫

R ω
2me−tµn(ω) dω∫

R e
−tµ1(ω) dω

≤ e−t(αn−α1)

∫∞
0
ω2me−tω

4

dω∫∞
0
e−t(βω2+ω4) dω

≤ Ct 1
4−

1
2m e−t(αn−α1) ≤ Ct1/4e−t(αn−α1) (4.34)
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for all t ≥ t0 and n ≥ 2, where β := 2α
1/2
1 . As αn ≥ α2 > α1 for all n ∈ N, an

application of the exponential series yields

e−t(αn−α1) ≤ `!

(αn − α1)`
1

t`
≤
( αn
αn − α1

)` `!
α`n

1

t`
≤
( α2

α2 − α1

)` `!
α`n

1

t`

for every ` ∈ N, n ≥ 2 and t > 0. Combining this with (4.33) we see that

ct
2π

∫
R
S(t, ω) dω ≤ C

( α2

α2 − α1

)` `!

t`−1/4

∞∑
n=2

2 + αkn
α`n

(4.35)

for all t > t0. We choose ` ≥ 1 such that `− k > N/4. Then by Corollary 4.5 the
series on the right hand side of (4.35) converges, and hence (4.32) is valid as t→∞.
As S(t, ω) is independent of y ∈ Ω, this yields the convergence of the second term
in (4.29) to zero uniformly with respect to y ∈ Ω as t → ∞. This completes the
proof of the theorem. �

We conclude by proving a technical result used in the above proof.

Lemma 4.13. Suppose n ≥ 1 is an integer and α ≥ 0. Furthermore let p(x) be a
polynomial of the form

p(x) =

m∑
j=k

cjx
j

with m ≥ k ≥ 1 and cm, ck > 0. Define

fα(t) :=

∫ ∞
0

xαe−tx
n

dx and g(t) :=

∫ ∞
0

e−tp(x) dx. (4.36)

Then there exist constants C, t0 > 0 depending only on α, n, k and the coefficients
of p such that

fα(t)

g(t)
≤ Ct 1

k−
α+1
n (4.37)

for all t ≥ t0.

Proof. Applying the substitution s = txn in the definition of fα(t) we have

fα(t) =
1

n
t−

α+1
n

∫ ∞
0

s
α+1
n −1e−s ds =

1

n
Γ

(
α+ 1

n

)
t−

α+1
n . (4.38)

To deal with g(t) we note that by assumption

p(x) = xk(ck + ck+1x+ · · ·+ cmx
m−k)

with k ≥ 1 and ck > 0. Hence there exists x0 > 0 such that ck + ck+1x + · · · +
cmx

m−k ≥ β := ck/2 for all x ∈ [0, x0]. It follows that

g(t) ≥
∫ x0

0

e−tp(x
2) dx ≥

∫ x0

0

e−tβx
k

dx.

With the substitution s = tβxk0 we see that∫ x0

0

e−tp(x
2) dx =

1

kβ1/k
t−1/k

∫ tβxk0

0

s1/k−1e−s ds.

Now note that

lim
t→∞

∫ tβxk0

0

s1/k−1e−s ds = Γ

(
1

k

)
and thus there exists t0 ≥ 0 such that

g(t) ≥
∫ tβxk0

0

s1/k−1e−s ds ≥ 1

2kβ1/k
Γ

(
1

k

)
t−1/k
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for all t ≥ t0. Combining this with (4.38) we see that there exist constants C, t0 > 0
depending only on α, n, k and the coefficients of p such that (4.37) holds for all
t ≥ t0. �

Corollary 4.14. Let µ1(ω) be as defined in Lemma 4.3. Then

ϕt(ω) :=

(∫
R
e−tµ1(η) dη

)−1

e−tµ1(ω)

defines an approximate identity for t→∞ in the sense of Definition 3.1 (where we
take N = 1 in this definition).

Proof. By definition of ϕt(ω), it is obvious that ϕt(ω) ≥ 0 for all t > 0 and ω ∈ R,
and that

∫
R ϕt dω = 1. It remains to show that for every δ > 0

Jδ(t) :=

∫
|ω|≥δ

ϕt(ω) dω −→ 0 as t→∞. (4.39)

From Lemma 4.3(i) we obtain

e−t(α1+βω2+ω4) ≤ e−tµ1(ω) ≤ e−t(α1+ω4)

for all ω ∈ R, where β := 2α
1/2
1 . Since the function µ1 is even, it suffices to consider

ω ≥ 0. The above inequalities imply

Jδ(t) =

∫∞
δ
e−tµ1(ω) dω∫∞

0
e−tµ1(ω) dω

≤
∫∞
δ
e−t(α1+ω4) dω∫∞

0
e−t(α1+βω2+ω4) dω

=

∫∞
δ
e−tω

4

dω∫∞
0
e−t(βω2+ω4) dω

.

As e−tω
4 ≤ δ−2ω2e−tω

4

holds for all ω ∈ [δ,∞) and all t > 0 we deduce that

Jδ(t) ≤
1

δ2

∫∞
δ
ω2e−tω

4

dω∫∞
0
e−t(βω2+ω4) dω

≤ 1

δ2

∫∞
0
ω2e−tω

4

dω∫∞
0
e−t(βω2+ω4) dω

.

By Lemma 4.13, there exists C, t0 > 0 such that Jδ(t) ≤ Ct
1
2−

3
4 = Ct−1/4 for all

t > t0. Hence Jδ(t)→ 0 as t→∞ as required. �

Remark 4.15. Observe that the decay rate t−1/4 obtained in the above corollary is
consistent with the L∞ decay of the solution on the full space—use (1.3) with α = 2
and N = 1. In addition, the spectral gap α2 − α1 > 0 of the biharmonic operator
with clamped boundary conditions on the cross-section domain Ω appears explicitly
in the uniform bound (4.35). These features clearly show how the behaviour of
the solution on the infinite cylinder is influenced by properties of the biharmonic
operators respectively on the real line and on the bounded domain.
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finite to infinite dimensions. With a foreword by Rainer Nagel and Ulf Schlotterbeck.
DOI: 10.1007/978-3-319-42813-0

[11] S. Becker, F. Gregorio, and D. Mugnolo, Schrödinger and polyharmonic operators on infinite

graphs: parabolic well-posedness and p-independence of spectra, J. Math. Anal. Appl. 495
(2021), 124748, 44. DOI: 10.1016/j.jmaa.2020.124748

[12] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers,

Inc., New York, N.Y., 1953.
[13] D. Daners, Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator,

Positivity 18 (2014), 235–256.
[14] D. Daners and J. Glück, The role of domination and smoothing conditions in the theory of

eventually positive semigroups, Bull. Aust. Math. Soc. 96 (2017), 286–298. DOI: 10.1017/

S0004972717000260

[15] D. Daners and J. Glück, A criterion for the uniform eventual positivity of operator semi-

groups, Integral Equations Operator Theory 90 (2018), Paper No. 46, 19. DOI: 10.1007/

s00020-018-2478-y

[16] D. Daners and J. Glück, Towards a perturbation theory for eventually positive semigroups,

J. Operator Theory 79 (2018), 345–372. DOI: 10.7900/jot

[17] D. Daners, J. Glück, and J. B. Kennedy, Eventually and asymptotically positive semigroups
on Banach lattices, J. Differential Equations 261 (2016), 2607–2649. DOI: 10.1016/j.jde.

2016.05.007

[18] D. Daners, J. Glück, and J. B. Kennedy, Eventually positive semigroups of linear operators,
J. Math. Anal. Appl. 433 (2016), 1561–1593. DOI: 10.1016/j.jmaa.2015.08.050

[19] R. Denk, M. Kunze, and D. Ploß, The bi-Laplacian with Wentzell boundary conditions on

Lipschitz domains, Integral Equations Operator Theory 93 (2021), Paper No. 13, 26. DOI: 10.
1007/s00020-021-02624-w

[20] L. C. F. Ferreira and V. A. Ferreira, Jr., On the eventual local positivity for polyharmonic
heat equations, Proc. Amer. Math. Soc. 147 (2019), 4329–4341. DOI: 10.1090/proc/14565

[21] A. Ferrero, F. Gazzola, and H.-C. Grunau, Decay and eventual local positivity for biharmonic

parabolic equations, Discrete Contin. Dyn. Syst. 21 (2008), 1129–1157. DOI: 10.3934/dcds.
2008.21.1129

[22] F. Gazzola and H.-C. Grunau, Eventual local positivity for a biharmonic heat equation in

Rn, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 83–87. DOI: 10.3934/dcdss.2008.1.83
[23] F. Gazzola, H.-C. Grunau, and G. Sweers, Polyharmonic boundary value problems, Lecture

Notes in Mathematics, vol. 1991, Springer-Verlag, Berlin, 2010, Positivity preserving and non-

linear higher order elliptic equations in bounded domains. DOI: 10.1007/978-3-642-12245-3
[24] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Classics

in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.

[25] F. Gregorio and D. Mugnolo, Bi-Laplacians on graphs and networks, J. Evol. Equ. 20 (2020),
191–232. DOI: 10.1007/s00028-019-00523-7

[26] H.-C. Grunau, N. Miyake, and S. Okabe, Positivity of solutions to the Cauchy problem for
linear and semilinear biharmonic heat equations, Adv. Nonlinear Anal. 10 (2021), 353–370.

DOI: 10.1515/anona-2020-0138
[27] H.-C. Grunau and F. Robert, Positivity and almost positivity of biharmonic Green’s func-

tions under Dirichlet boundary conditions, Arch. Ration. Mech. Anal. 195 (2010), 865–898.

DOI: 10.1007/s00205-009-0230-0

[28] H.-C. Grunau and G. Sweers, Sign change for the Green function and for the first eigen-
function of equations of clamped-plate type, Arch. Ration. Mech. Anal. 150 (1999), 179–190.

DOI: 10.1007/s002050050185
[29] P. R. Halmos and V. S. Sunder, Bounded integral operators on L2 spaces, Ergebnisse der

Mathematik und ihrer Grenzgebiete, vol. 96, Springer-Verlag, Berlin-New York, 1978.

[30] T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag,
Berlin, 1995, Reprint of the 1980 edition.

https://doi.org/10.1002/9783527628025.ch1
https://arxiv.org/abs/2101.11386
https://doi.org/10.1007/s00233-021-10204-y
https://doi.org/10.1007/978-3-319-42813-0
https://doi.org/10.1016/j.jmaa.2020.124748
https://doi.org/10.1017/S0004972717000260
https://doi.org/10.1017/S0004972717000260
https://doi.org/10.1007/s00020-018-2478-y
https://doi.org/10.1007/s00020-018-2478-y
https://doi.org/10.7900/jot
https://doi.org/10.1016/j.jde.2016.05.007
https://doi.org/10.1016/j.jde.2016.05.007
https://doi.org/10.1016/j.jmaa.2015.08.050
https://doi.org/10.1007/s00020-021-02624-w
https://doi.org/10.1007/s00020-021-02624-w
https://doi.org/10.1090/proc/14565
https://doi.org/10.3934/dcds.2008.21.1129
https://doi.org/10.3934/dcds.2008.21.1129
https://doi.org/10.3934/dcdss.2008.1.83
https://doi.org/10.1007/978-3-642-12245-3
https://doi.org/10.1007/s00028-019-00523-7
https://doi.org/10.1515/anona-2020-0138
https://doi.org/10.1007/s00205-009-0230-0
https://doi.org/10.1007/s002050050185


22 D. DANERS, J. GLÜCK, AND J. MUI
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