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Abstract

Open systems of coupled qubits are ubiquitous in quantumphysics. Finding a suitablemaster
equation to describe their dynamics is therefore a crucial task thatmust be addressedwith utmost
attention. In the recent past,many efforts have beenmade toward the possibility of employing local
master equations, which compute the interactionwith the environment neglecting the direct coupling
between the qubits, and for this reasonmay be easier to solve.Here, we provide a detailed derivation of
theMarkovianmaster equation for two coupled qubits interacting with common and separate baths,
considering pure dephasing aswell as dissipation. Then, we explore the differences between the local
and globalmaster equation, showing that they intrinsically depend on thewaywe apply the secular
approximation. Our results prove that the global approachwith partial secular approximation always
provides themost accurate choice for themaster equationwhenBorn–Markov approximations hold,
even for small inter-system coupling constants. Using differentmaster equationswe compute the
stationary heat current between two separate baths, the entanglement dynamics generated by a
commonbath, and the emergence of spontaneous synchronization, showing the importance of the
accurate choice of approach.

1. Introduction

Open quantum systems of two coupled qubits are of fundamental importance inmany disparatefields, being for
instance at the basis of the realization ofmulti-qubit gates for quantum computation [1–3], distributed quantum
sensing andmetrology [4, 5], and entanglement generation [6–8]. Such systems have been experimentally
simulated in a variety of platforms, including trapped ions [9, 10], superconducting qubits [11], or cavityQED
arrays [12]. They are also useful in the context of quantum thermodynamics as they possess theminimum

ingredients to realize thermalmachines [13–15]. Furthermore, in spite of their simplicity, they allow for the
observation of fundamental effects such asDicke superradiance [16] or spontaneous quantum synchronization
[17]. The derivation of themaster equation describing the evolution of the qubits, and the subsequent search for
an easy path to solve it, is therefore of the greatest importance.

While partial results investigating specific cases are available in the literature [18–24], a general description of
the problem is still missing. In this paperwe provide a comprehensive analysis based on amiscroscopic
derivation in the case of two qubits, addressing: the presence of dissipative as well as dephasing baths, which can

be common and/or separate, and considering a sufficiently general interaction between the qubits not limited to
aHamiltonian in rotatingwave approximation (RWA), and also allowing for frequency detuning. As this is often
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the case formost of the applications of the two-qubit problem,wewill considermemory-less reservoirs, that is to
say, wewill study aMarkovianmaster equation.

Our detailed derivation allows us to establish the validity of the so-called local approach for themaster
equation in comparisonwith a global one in a rather general setting. The global approach arises naturally when
deriving themaster equation from amicroscopicmodel considering the full systemHamiltonian, i.e. in
presence of interactions between its subsystems (here the two qubits), while the local one follows from the
approximationwhich neglects these interactions. Recently, the problemof characterizing the range of
applicability of the local rather than globalmaster equation has receivedmuch interest [25–29], mostly related to
the consistency of this decription in quantum thermodynamics. It is our aim to showhere that an accurate
application of the secular approximation in the global approach always leads to a correctMarkovianmaster
equation, independently of the value of the coupling constant between the subsystems. The deep
interconnection between a correct application of the secular approximation and the local versus global issue is
discussed starting from the first principles of the derivation of themaster equation. Deviations from themost
accurate (global partial secular) approximation are illustrated by looking at the open systemdynamics as well as
the steady state.Moreover, we observe how the steady state heat current, the entanglement dynamics and the
presence of quantumbeats or quantum synchronization varywhen using distinctmaster equations, so as to
corroborate the validity (or inaccuracy) of each approach according to physical considerations.

The global approachwithin a partial secular approximation is comparedwith the full secular approximation
discussing the failure of the latter, which depends on the spacing between the energy levels of the free system
Hamiltonian. The difference between common and separate baths plays here a central role. In this regardwe
prove that, in addition to the value of the qubit–qubit coupling constant already investigated in several works,
the ratio between it and the detuning of the qubit frequencies plays an important role. Our conclusions are
summarized in table 1 presented in the concluding remarks, and their validity exceeds the scenario of two
coupled qubits, since for instance it holds for the case of coupled harmonic oscillators. The general discussion
remains valid formore complex systems, composed ofmore than two subsystems aswell.

In order to provide a self-contained presentation to tackle the issues arising in the local versus global
problem,wefirst of all recall the derivation of themaster equation, and the condition for the validity of each
approximation, in section 2. The local versus global problem is set into the literature context and discussed in
section 3, first in general terms, and then for the specific case of two coupled qubits, showing some relevant
comparisons. Section 4 is devoted to the discussion of examples where the choice of the propermaster equation
is relevant for an accurate description of physical quantities, such as the steady state heat current, the
entanglement dynamics and the presence of quantumbeats and quantum synchronization. Finally, in section 5
we discuss some concluding remarks further summarizing our findings in table 1.

2.Deriving themaster equation

The aimof the present work is to address a generalMarkovianmaster equation for two qubits that can be
detuned, exchange energy and are coupled to thermal baths: we consider both dephasing and dissipative
interactions, and both separate and commonbaths, as in the pictorial representation infigure 1(a).

2.1. Full Hamiltonian

Let us start bywriting the freeHamiltonian of the system, inwhichwe have set  = 1:

w
s

w
s l s s¢ =

¢
+

¢
+ ¢ ( )H

2 2
, 1S

z z x x1
1

2
2 1 2

where w¢1 and w¢2 are the frequencies of respectively the first and second qubit, and l¢ is the qubit–qubit coupling
constant.We note that for the sake of generality we do not approximate the interaction by
σ1
+σ2

-
+h.c., as in RWA.The generality of equation (1) is further discussed in appendix A.

In order toworkwith dimensionless units, we renormalize the aboveHamiltonian by w¢1, i.e. by the
frequency of the first qubit:

w
s

w
s ls s w= + + = ( )H

2 2
, with 1, 2S

z z x x1
1

2
2 1 2 1

w w w= ¢ ¢2 2 1 and l l w= ¢ ¢1. Through all thework, we assume that the renormalized qubit frequencies are of
the same order,ω2=O(1).

We nowwrite themost generalmicroscopicHamiltonian of two coupled qubits interacting with common
and separate thermal baths (consistently renormalized by the frequency of the first qubit):
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( )HB
l1 and ( )HB

l2 refer to the freeHamiltonian of the local bath respectively on the first and on the second qubit,
while ( )HB

c is the freeHamiltonian of the commonbath. They read:

å= Wa
a a a ( )( ) †H a a , 5B

k

k k k, , ,

where following the convention of quantumoptics the summation over k in the limit of infinite size bath
represents as usual an integral over all the dense frequencies, andα=l1, l2, c indicates the specific bath.

The bath operators appearing in the interactionHamiltonianHI are given by

å= +a
a a a( ) ( )( ) †B f a a , 6

k
k k k, , ,

and the dissipative and dephasing couplings aremediated by the coefficients gx and gz. For instance,
( )g
x

l1 is the
dimensionless coupling constant describing the strength of the dissipative interaction between the first qubit
and the respective local bath, and so on. For simplicity, we take the coupling constants real. Notice that we are
using the standard denomination for ‘dissipation’ and ‘dephasing’, where the former refers to a coupling
throughσ x, inducing both loss of energy and decoherence, while the latter denotes a coupling throughσ z,
causing, at least in the uncoupled case, pure decoherence but no energy leak.Markovianmaster equations can be
derived in theweak coupling limit of the qubit-bath interaction. Therefore, we introduce a constantμ such that
each coupling strength appearing in the interactionHamiltonian is atmaximumof the order ofμ, i.e.

m= ( )( )g O
j
a " =a l l c c, , ,1 2 1 2 and j=x, z, andwe assumeμ=1 (consistently in units ofω1).

The coupling coefficients fk,α define the spectral density Jα(ω) of each bath through:

åw d w= - Wa a a( ) ( ) ( )J f , 7
k

k k,
2

,

andwe notice that the distinct dephasing and dissipative (and ‘small’O(μ)) coupling ( )g
j
a are not included in

equation (7).
Onemaywonder why, aiming at a complete description of any possible two-qubit system,we have

considered the same bath inducing both dissipation and dephasing (in fact we could consider 6 instead of 3
baths). Assuming that different effects are due to different phenomena, a description employing a distinct bath
for each of them should be necessary.Moreover,many uncorrelated environmentsmay interact locally on each
qubit, as it happens for examplewith a transmon qubit [30], sowhy shall we describe them through a single bath,
as done in equation (3)?We anticipate that this assumption simplifies the notation and actually does not limit
the following analysis, as wewill be discussing in section 2.3.

2.2. Bloch–Redfieldmaster equation in the secular approximation

In this sectionwewill illustrate how to obtain aMarkovianmaster equation starting from themicroscopic
Hamiltonian, stressing the validity of each approximation in order to get to a globalBloch–Redfieldmaster

Figure 1. (a): Scheme of the two qubits interactingwith thermal baths according to theHamiltonian in equation (3), where the
environments are characterized by the inverse temperaturesβ( c), b ( )l1 and b ( )l2 , respectively for the commonbath, the local bath on
the first qubit and the local bath on the second qubit. An additional direct coupling between the qubits ismediated by the coupling
constantλ. (b): Diagramof the states of the systemHamiltonian equation (2), settingλ=0 andwith all the possible emission
frequencies.
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equation in the (partial) secular approximation. The possibility for a localmaster equationwill be discussed in
section 3.

Let us work in the interaction picture according to the freeHamiltonian = +H H HS B0 , where the full bath
Hamiltonian is = + +( ) ( ) ( )H H H HB B

l
B

l
B

c1 2 . TheVon-Neumann equation thus reads

r r= -( ) [ ( ) ( )] ( )
t

t H t t
d

d
i , , 8I

where ρ(t) andHI(t) denote the overall densitymatrix and the interactionHamiltonian in the interaction picture
representation (see [31] for details). By integrating equation (8), inserting it once again in equation (8) and taking
the partial trace as usual, we obtain an integro-differential equation for the reduced densitymatrix of the system
r r=( ) [ ( )]t tTrS B :

òr r= - ¢ ¢ ¢( ) [ ( ) [ ( ) ( )]] ( )
t

t t H t H t t
d

d
d Tr , , , 9S

t

B I I
0

where [HI(t), ρ(0)]=0, if the environment is in a thermal state.We now set the validity of essential
approximations in order to get to aMarkovianmaster equation:

Born approximation—The interaction between system and environment is soweak that the state of the latter
is almost not perturbed by the couplingwith the system. If the initial state of the overall system is the product
state ρ(0)=ρS(0)⊗ρB, the evolved state at a certain time t is assumed product as well:

r r r» Ä( ) ( ) ( )t t . 10S B

The approximation (10) can be considered as a heuristic and intuitive way to obtain an important result,
mathematically proven through themethod developed byNakajima [32] andZwanzig [33]. Indeed, it can be
shown [34] that, by inserting equation (10) in equation (9), we are neglecting terms of the order ofO(μ3), where
μ is the coupling constant defined in the previous section. Therefore

òr r r m= - ¢ ¢ ¢ Ä +( ) [ ( ) [ ( ) ( ) ]] ( ) ( )
t

t t H t H t t O
d

d
d Tr , , . 11S

t

B I I S B
0

3

Wepoint out that, while the full state ρ(t) is not expected to remain factorized (as in equation (10)) for long times
[34], equation (11) is an exact result holding for any time t.

Let us nowdecompose the interactionHamiltonian in the interaction picture in the followingway:

å= Ä
b

b b( ) ( ) ( ) ( )H t A t B t , 12I

whereAβ(t) are systemoperators, whileBβ(t) are bath operators
4. If wemake the change of variable t = - ¢t t

and insert equation (12) in (11), after some algebrawe obtain:

òår t t t r t m= - - - + +
b b

bb b b
¢

¢ ¢( ) ( ( )[ ( ) ( ) ( )] ) ( ) ( )
t

t A t A t t O
d

d
d , h.c. , 13S

t

S
, 0

3

having introduced the bath correlation function  t t t r= á ñ =bb b b b b¢ ¢ ¢( ) ( ) ( ) [ ( ) ( ) ]B B B B0 Tr 0B B , with the
assumption that the bath is stationary, i.e. [ρB,HB]=0.We are now ready to perform the next fundamental
approximation.

Markov approximation—Weassume that the bath operators have a very short correlation time, and the
correlation functions decay as t ~bb

t t
¢

-∣ ( )∣B e B. Remembering theweak coupling limit we then set τB=τR,
i.e. the systemwill relax slowlywith respect to the bath correlation functions, being τR the timescale overwhich
the state in the interaction picture changes appreciably. Considering the highest order appearing in
equation (11), it is usually heuristically set

t m= -( ) ( )O , 14R
2

wherewe remind thatμ is the qubit-bath coupling constant renormalized by the frequency of the first qubit. The
validity of the assumption needs often to be checked. For instance, in the limit of very high temperatures this
might not be fulfilled, since a huge number of excitations would be available to interact with the system,making
the decay rates very high aswell. Nonetheless, theremay exist the case inwhich, in the limit for the temperature
 ¥T , the autocorrelation functions of the bath decay faster than the relaxation time τR, and therefore the

Markov approximation is still valid. In this scenario, for  ¥T the autocorrelation functions of the bath are
proportional to aDirac delta,  t d tµbb¢( ) ( ), andwe recover the so-called singular-coupling limit [31].

If nowwe calculate the integral in equation (13) for a sufficiently large time t*?τB, such that t
* is still way

smaller than the time τR at which the state of the system in interaction picture changes appreciably, thenwe can
safely replace ρS(t−τ)with ρS(t) in the same equation, since the dynamics of ρS(t) is way slower than the decay

4
The bath operatorsBβ in equation (12) should not be confusedwithB(α) defined in equations (4) and (6): eachBβ is given by the product of

the corresponding coupling constant a( )g
k

and the operator a( )B .
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of  tbb¢( ). For the same reason, we can extent the integral till infinity, since the added part will give a negligible
contribution. This is theMarkov approximation, which sets a resolution on the timescale of the dynamics for t*,
such that

*t t m= -  ( ) ( )t O . 15B R
2

This corresponds to defining a certain coarse-grained timescale of the evolution; indeed, theMarkovianmaster
equation can alternatively be derived bymaking averages on these coarse-grained time intervals, as recently
discussed in [35, 36].

Finally wewrite:

òår t t t r m= - - + +
b b

bb b b
¢

¥

¢ ¢( ) ( ( )[ ( ) ( ) ( )] ) ( ) ( )
t

t A t A t t o
d

d
d , h.c. . 16S S

, 0

2

Unfortunately, to the best of our knowledge a precise order for the remainder neglected in theMarkov
approximation equation (16)has not been reported in general. An interesting bound is however provided in a
recent paper [37], where instead of equation (15) the authors consider the tighter condition t m-B

1. In
general, assuming the condition in equation (15), the approximatedmaster equation neglects a remainder of
order higher thanO(μ2) (that fromnowon, wewill drop); a special care in checking the validity of theMarkov
approximation in each specific case is anyway indispensable.

Wewill now further decompose the interactionHamiltonian equation (12) by introducing the jump

operators associated to each systemoperatorAβ:

   
 
åw = ñá ¢ñá ¢b

w
b

¢- =

( ) ∣ ∣ ∣ ∣ ( )A A , 17

where  ñ{∣ } is the basis of the eigenvectors of the systemHamiltonianHS. The following properties hold:

å åw w w w= - = =b b
w

b
w

b b( ) ( ) ( ) ( ) ( )† †A A A A A, . 18

Bywriting equation (16)with the time-evolved jumpoperators, we get to theBloch–Redfieldmaster equation

å år w w r w w w r= G ¢ - ¢ +
w w b b

w w
bb b b b b

¢ ¢

¢-
¢ ¢ ¢( ) ( )( ( ) ( ) ( ) ( ) ( ) ( )) ( )( ) † †

t
t A t A A A t

d

d
e h.c ., 19S

t
S S

, ,

i

wherewe have introduced the one-side Fourier transformof the bath correlation functions

òwG = ¢ ¢bb
w

bb¢

¥
¢

¢( ) ( ) ( )t td e . 20t

0

i

Secular approximation—The evolution of the state of the system ρS(t) has, in the interaction picture, a typical
relaxation timescale of the order of the square of the inverse of the coupling strengthμ, as stated in equation (14).
If there exist values of w¢ andω in equation (19) being coarse-grained in time as from equation (15), i.e.

* *w w t m$ ¢ - =- - ∣ ∣ ( ) ( )t t Osuch that , 21R
1 2

then the terms in equation (19) oscillatingwith frequency w w¢ - will not give any significant contribution to
the system evolution, since by integrating equation (19) for a time t* such that *w w t¢ - -  ∣ ∣ t R

1 the fast-
oscillating quantities vanish. Equation (21) corresponds to a refinement of the coarse-grain conditionwritten in
equation (15). Indeed, a slightly different approach to the derivation of themaster equationmakes use of a
unique coarse-grained average, including both theMarkov and the secular approximation (see for instance
[35, 36]). Notice that the interaction picture is particularly suited to distinguish the terms bringing a negligible
contribution to the evolution of the system.

Neglecting the fast oscillating terms in the interaction picture is usually referred to as secular approximation.
Unfortunately, it is easy to run into a nomenclature issue in the literature: inmanyworkswe canfind the name
‘secular approximation’ for the removal of all the terms in equation (19) for which w w¢ ¹ , without questioning
the validity of equation (21). This is of course feasible for all the systems inwhich the relevant frequencies are
well-spaced, i.e. w w t m¢ - »-∣ ∣ R

1 2 for any w w¢, , but itmight lead to confusion in other cases, as wewill
discuss in section 3.

To avoid confusion, wewill call full secular the approximation forwhichwe neglect all the terms in
equation (19)with w w¢ ¹ , while wewill employ the name partial secular approximation for the cases inwhich
we keep some slowly rotating termswith w w¢ ¹ , for which the relation in equation (21)would actually fail. For
the sake of clarity, when discussing concrete examples throughout the paperwewill name themaster equation
with cross terms often retained in the secular approximation (21) asmaster equation in partial secular
approximation (also in regimeswhere these terms could be neglected).

After some algebra, the Bloch–Redfieldmaster equation equation (19)may be rewritten in the Schrödinger
picture as

5
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r r r= - + +( ) [ ( )] [ ( )] ( )
t

t H H t D t
d

d
i , , 22S S LS S S

wherewe have introduced the Lamb-Shift Hamiltonian:

å å w w w w= ¢ ¢
w w b b

bb b b
¢ ¢

¢ ¢( ) ( ) ( ) ( )†H S A A, , 23LS

, ,

and the dissipator of themaster equation, responsible for the energy losses of the system:

 å år g w w w r w w w r= ¢ ¢ - ¢
w w b b

bb b b b b
¢ ¢

¢ ¢ ¢⎜ ⎟
⎛

⎝

⎞

⎠
( ) ( ) ( ) ( ) { ( ) ( ) } ( )† †A A A A,

1

2
, , 24S S S

, ,

with

*

*

w w
w w

g w w w w

¢ =
G - G ¢

¢ = G + G ¢

bb
bb b b

bb bb b b

¢
¢ ¢

¢ ¢ ¢

( )
( ) ( )

( ) ( ) ( ) ( )

S
i

,
2

,

, . 25

Notice that, prior to the secular approximation, the Lamb-Shift Hamiltonian is notHermitian and contains
imaginary terms as well, andwe do not have a ‘purely dissipative’ dissipator.

By employing the full secular approximation and coming back to the Schrödinger picture, the Lamb-Shift
Hamiltonian and dissipator read:



åå

åå

w w w w

r g w w w r w w w r

=

= -

w b b
bb b b

w b b
bb b b b b

¢
¢ ¢

¢
¢ ¢ ¢⎜ ⎟

⎛

⎝

⎞

⎠

( ) ( ) ( )

( ) ( ) ( ) ( ) { ( ) ( ) } ( )

†

† †

H S A A

A A A A

, ,

,
1

2
, . 26

LS

S S S

,

,

Themaster equation (22)with Lamb-Shift Hamiltonian and dissipator given by equation (26) is written in
theGKLS form [38–40], and it therefore generates a dynamical semigroup, i.e. a perfectlyMarkovian evolution.
On the other hand, this is a strong conditionwhich is not necessary to get aGKLS formof themaster equation. In
fact, some very recent papers [35, 36] have shown that performing an accurate partial secular approximation
leads to aGKLSmaster equation as well (see also [41, 42]). An interesting observation is that the partial secular
approximation condition (21), is sufficient to remove fast oscillating terms leading to a dissipator (24)where

terms w r w w w r¢ - ¢b b b b¢ ¢( )( ) ( ) { ( ) ( ) }A A A A ,S S
1

2
, withω andω′with the same sign (whichwould produce a

squeezing-like effect), are prevented. In fact the fastest terms,more susceptible to fulfill the condition (21)will
oscillate at frequency w w- - ¢∣ ( )∣ (againwithω andω′with the same sign): if this is the case, then all terms
w r w w r w- ¢ º ¢b b b b¢ ¢( ) ( ) ( ) ( )†A A A AS S will be consistently neglected.
Finally, let us term themaster equation (19) in partial secular approximation, whichmay be rewritten in the

formof equation (22), ‘globalmaster equationwith partial secular approximation’.We stress the fact that this
master equation is derivedwithin the Born–Markov approximations. The latter can bemore delicate to assess
and unphysical effects can arise as signatures of an inaccurateMarkovian description of an intrinsically non-
Markovian evolution [43]. On the other hand, in general it is immediate to establish the validity of the condition
(21) to get an equation in the partial secular approximation. Also the inaccurate secular approximation, i.e. out
of the validity region (21), can lead to unphysical effects, as can be displayed by a full secularmaster equation
with respect to a partial secular one.

2.3.Diagonalizing the systemHamiltonian andfinding the jumpoperators

As discussed in the previous section, diagonalizing the systemHamiltonianHS is a necessary step to derive the
Markovianmaster equation, since it allows us towrite in the correct form the jump operators defined in
equation (17)which describe the effects of the interactionwith the baths.

2.3.1. No direct coupling

Let us start with the simplest case, i.e. in the absence of a direct coupling between the qubits: settingλ=0 in
equation (2), the systemHamiltonian reads:

w
s

w
s= + ( )H

2 2
, 27S

z z1
1

2
2

which is already diagonal in the ‘canonical basis’ ñ ñ ñ ñ{∣ ∣ ∣ ∣ }00 , 01 , 10 , 11 , with eigenvalues respectively
E0=−ω+/2, w= - -E 21 , w= -E 22 , w= +E 23 , where w w w=  1 2 and (without losing generality)we
setω1>ω2.

In the interactionHamiltonianwe canfind the systemoperatorsσj
x and s j

z coupled to the bath operators,
with j=1, 2. Their decomposition in terms of jump operators is readily written according to equation (17):

6
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s w s s w s s s s s s s s= - =  = + =  =- + - +( ) ( ) ( ) ( ), , 0 , 28j
x

j j j
x

j j j
x

j j j
z

j
z

j
z

j
z

with j=1, 2. Equation (28) describes the possible emission and absorption processes of the system, depicted in
figure 1(b).

A self-consistent secular approximation depends on the detuning between the qubits. In the case inwhich
there is a small detuning, such thatω1−ω2 is not way greater thanμ

2, we cannot employ the full secular
approximation, but we need to rely on a partial secular approximation inwhichwe keep in equation (19) slow
termswith w w w w¢ - =  -( )1 2 . The validity of the full secular approximation for big detuning and its
breakdown in the opposite scenario are respectively shown infigures 2(a) and (b). Themost evident difference
between partial and full secular descriptions in the regime inwhich the latter fails (figure 2(b)) is the presence of
so-called quantum beats, i.e. of oscillations of the population of the excited state of the qubit. The quantumbeats
are awell-known phenomenon occurring during a superradiant emission [44] and predicted also for two non-
identical atoms [45] as in our case. Themaster equationwith partial secular approximation correctly describes
them,while the full secular one is too crude andnot able to reproduce the beats, leading to a completely smooth
evolution. Further cases inwhich the full secular approximation is not suitable will be discussed in section 4.

Starting from equation (19) and employing the notation of equations (23) and (24), themaster equation
finally reads:
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å å
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where the Lamb-shift Hamiltonian is given by:

å s s s s s s s s s s s s s s= + + = + + + ++ - - +
+
+ -

-
- +( ˜ ) ( )H s s s

s s
s s s2

2 2
2 , 30LS

jk

jk k j jk k j
z z z z z z

0 1 2
1

1
2

2 1 2 1 2 0 1 2

and the coefficients of themaster equation are presented in appendix B.
By looking at the jump operators in equation (28) and at the partial secular approximation performed on

equation (19)we can now address the claim in section 2.1 about the simplifying choice of considering one single
bath inducing both dephasing and dissipation. The point is that considering two distinct baths rather than a
single one is in general not needed (unless dephasing and dissipation need to be consideredwith different
spectral density or baths temperatures), andwould lengthen all expressions.More in detail, consideringmultiple
equivalent and independent baths could atmost affect the coefficients wGbb¢( ) (see appendix B for their specific
form): thenwewould have wG =bb¢( ) 0 for any systemoperatorsAβ and b¢A coupled to distinct baths through

Figure 2. In the case of uncoupled qubits, i.e.λ=0,mean value of the population of thefirst qubit as a function of time, starting from
the state r r r= ÄOV OV0 , with r = ñá + ñá + ñá + ñá(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣)1 2 0 0 0 1 1 0 1 1OV , and the dissipative commonbath is in a thermal
state with b =( ) 1;c all the other baths are switched off ( = =( ) ( )g g 1

x
c

x
c1 2 and all the other coupling constants vanish). (a): Case of big

detuningwithω1=1,ω2=0.5,ω−=0.5. (b): Case of small detuningwithω1=1,ω2=0.99,ω−=0.01. Infigure 2(a), the full
secular approximation (dashed red) provides a correct way to describe the evolution, although the tiny oscillations given by the partial
secular approximation inwhichwe keep the cross terms (solid blue) can be observed by zooming to a proper small time interval
(inset), which anyway cannot be resolved in the timescale defined by the coarse-graining. In figure 2(b), due to the small detuning, the
full secular approximation (dashed red) fails and it leads to a completely different evolutionwith respect to the partial secular (solid
blue).
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Bβ and b¢B , since there are no correlations between the two baths.On the contrary, ifBβ and b¢B are operators of
the same bath, then wGbb¢( ) does not vanish a priori and there could be a case inwhich ¹b b¢A A but
wG ¹bb¢( ) 0. Let us for instance consider the couplingwith the local bath on the first qubits:

s s= +( )( ) ( ) ( ) ( )H g g BI
l

x
l x

z
l z l

1 1
1 1 1 1 .What if the dissipationwould be induced by a bath different than the dephasing

one? Looking at equation (28)we can see that the operators sx
1 and s

z
1 may in theory couple in equation (19)

with a non-zero coefficient wG ( )( )
xz
l

1
1 or G ( )( ) 0xz

l1 , but their corresponding termswould vanish because of the
partial secular approximation, since w w w t¢ - =  ∣ ∣ ∣ ∣ 1 R1 . It is easy to recognize that this argument holds
for any case where dephasing and dissipation could arise fromdifferent baths. Therefore, for equivalent but
independent baths, the simplifiedHamiltonian equation (3) can be assumed.Otherwise, considering 6 baths
(instead of 3)would lead to different values of the bath correlation functions in equation (B.1), but not change
the structure of themaster equation5.Wewill reach the same conclusion in presence of qubits coupling, apart
from a singular case (corresponding to a very specific parameter choice, when the condition in equation (C.4)
holds).

Following the same path, we can readily see that if different sources, associated to different baths, would
induce, let us say, independent dissipations on the same qubit, by assuming a single dissipative local bathwe are
not losing generality, since the effects of themultiple baths would not change the formof themaster equation,
but atmost the value of the coefficients: the effects of independent bathswould just sum, i.e. the final decay rate
would be the sumof the decay rates given by each single bath. The argumentwe have just discussed is reflected in
the values of the coefficients in equation (B.1).

2.3.2. Direct coupling

The case inwhichwe have a direct qubit–qubit coupling should not in principle bemore complex, since all we
need to do is to diagonalize a 4×4matrix, find the corresponding eigenvalues and eigenvectors andwork in the
newbasis. The systemHamiltonianHSnow reads:

w
s

w
s ls s= + + ( )H

2 2
, 31S

z z x x1
1

2
2 1 2

and the correspondingmatrix in the canonical basis ñ ñ ñ ñ{∣ ∣ ∣ ∣ }11 , 10 , 01 , 00 is written as

w l
w l
l w

l w

=
-

-

+

-

-

+

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

( )H

2 0 0

0 2 0

0 2 0

0 0 2

, 32S

withω±=ω1±ω2.
We can easily diagonalize equation (32) byfinding the eigenvalues:

l w l w l w l w= - + = - + = + + = + ++ - - + ( )E E E E4 , 4 , 4 , 4 , 330
2 2

1
2 2

2
2 2

3
2 2

with associated eigenvectors [19]

q q f f
f f q q

ñ = - ñ + ñ ñ = - ñ + ñ
ñ= + ñ + ñ ñ = + ñ + ñ

∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ( )

e e

e e

sin 11 cos 00 , sin 10 cos 01 ,

cos 10 sin 01 , cos 11 sin 00 , 34

0 1

2 3

where the parameters θ andf are given by

q
l

q
w

f
l

f
w

= = = =+ - ( )
E E E E

sin 2 , cos 2
2

, sin 2 , cos 2
2

. 35
3 3 2 2

Oncewe know the spectral decomposition of theHamiltonian, we can proceed to calculate the jump
operators associatedwith each systemoperator appearing in the interactionHamiltonian, i.e. s j

x and s j
z with

=j 1, 2. The explicit formof each jump operator is given in appendix C.With the aim at a complete description
of the problem,we also consider the possibility that two of the eigenstates of the system are almost degenerate,
whichwould happen if w- 1andλ=1, as it can be seen from equation (33). In this case, some additional
terms beyond the full secular approximation need to be consistently kept, as fully observed in appendix C.

5
Namely, the values of theΓ for ηjk and s0would be different from theΓ associated to all the other coefficients. As a reference for the actual

computation of the coefficients given a bath at inverse temperatureβ, see [31].
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With these prescriptions, themaster equation reads:
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where the jump operators and relative frequencies s w( )m
x

j are defined in equations (C.1) and (C.2), andwe are
using the short notation w w= --IV IV , w w= --III III andω0=0. The Lamb-Shift Hamiltonian is given by:
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The coefficients of themaster equation are listed in equation (B.2) in appendix B.

3. Local versus global: an in-depth discussion

Adebate about the validity of the local rather than the global description of an open quantum systemhas arisen
since the early era of the field: to the best of our knowledge, the first discussions about how to derive a global
master equation accounting for the inter-system interactions date back to the early seventies [46–48]. Twenty
years later, Cresser observed the failure of the local approach to describe a lossy Jaynes–Cummingsmodel [49],
terming ‘phenomenologicalmaster equation’what it is nowadays usually called ‘localmaster equation’. Quite
the same issue has been addressed in somemore recent papers [50, 51], extending the analysis to three coupled
Josephson junctions [52] or coupled harmonic oscillators [34], while the 3-level atomhas been investigated in
[53]. Some comments about the validity of the local approach to describe energy transport in chains of harmonic
oscillators or spins appear in [54–56].

In the past few years, a renewed interest in the topic has grown, also because of a paper in 2014 suggesting
that the local approachwas breaking the second law of thermodynamics in a thermalmachine composed of two
quantumnodes [25]; this violationwas later shown to be beyond the order of the employed approximation, thus
only apparent [26]. Related discussions date back to 2002 [57, 58]. Furthermore, a recent paper has shown that
the localmaster equation reconciles with the laws of thermodynamics when analyzing a suitable associated
collisionalmodel [59]. Connections between the local evolution of an open system and its thermodynamic
microscopicmodel were previously addressed in [60, 61]. The investigation of the local versus global problem in
different scenarios is nowadays quite active [24, 27–29, 59, 62–71]. For instance the failure of the local approach
when studying two coupled qubits is claimed in [24, 63, 66]. On the contrary, two distinct works have tested the
validity of the local description applied to the calculation of thermodynamics quantities in quantumheat
engines [27, 28], showing its goodness in a quite large range of parameters of the coupling constant, and claiming
that the global approach fails when the two subsystems areweakly coupled.More precisely, this assertion is due
to a restrictive consideration of the globalmaster equation as limited by a full secular approximation, which also
the authors recognize as responsible for the breakdown of themaster equation. In [27] the possibility for a partial
secular approximation is also suggested in order to cure such deficiency, andmany other papers have pointed
outwhy the full secular approximationmay not be valid in some parameters ranges of different scenarios
[25, 34, 56, 64, 69, 70]. In the following, we therefore analyze in detail both local and global approach and show
that the partial secular approximation allows to derive a globalmaster equation that never leads to unphysical
results, given that in the limit l  0 it coincides with the localmaster equation. The discussion in sections 3.1
and 3.2 are generally valid also beyond the 2-qubit system, while section 3.3 addresses the validity of the local
approach and full secular approximation in the specific case of two coupled spins.

9

New J. Phys. 21 (2019) 113045 MCattaneo et al



3.1. Setting the nomenclature

Let us start by setting a commonnomenclature for local and global approach.Wediscuss the case of two subsystems,
but generalizations tomultipartite systems are straightforward.Wecan thus considerHS=H1+H2+H12withno
needof specifying thenature of the subsystems and their interaction (for two spinswe are consideringHj=ωj/2σj

z,
and ls s=H x x

12 1 2).Wenowrecall the local andglobalmaster equations for anopenquantumsystems.
Local master equation.The local approach is an approximation that consists in calculating the jump

operators in equation (17) using as free systemHamiltonian = +H H HS
local

1 2, i.e. neglecting the interaction
between the subsystemswhen computing the effects of the environment. This clearly leads to two separate sets of
local jumpoperators which (non-trivially) act only on thefirst or second subsystem. If a full secular
approximation is applied, the direct coupling between the subsystems only appears in the commutator [HS, ρS]
of the Bloch–Redfieldmaster equation (22), thus it only influences the unitary part of the evolution. Intuitively,
the local approach is expected to provide uswith a valid approximatedmaster equation onlywhen the coupling
constant between the subsystems is sufficiently small [26–28, 56, 59, 72].

Globalmaster equation.The global approach consists in considering the full (exact) systemHamiltonian,
interacting term included, when calculating the jump operators. Hence, the globalmaster equation is the Bloch–
Redfield one (19)without further approximations. The jump operators appearing on the right termof the
equation are not local anymore, i.e. since they are obtained after the diagonalization ofHS, they can act on both
thefirst and the second subsystem. The globalmaster equation is in generalmore precise than the local one, as
the latter relies on a further approximation. Itmight however be too involved to be solved, due to the non-
locality of the jump operators [27]. To simplify its form, onemay rely on the standard secular approximation,
provided that the condition in equation (21) is fulfilled.

In the recent literature it is sometimesused the term ‘globalmaster equation’ to indicate the result of the global
approachdescribed above and after havingperformed an indiscriminate full secular approximation.Webelieve that
this nomenclaturemay lead to confusion: per se, the fact of being ‘global’, i.e. to lead to jumpoperatorswhich act
jointlyonboth the subsystems, is not related to the secular approximation. The reported appearance of unphysical
currents is not due to the non-locality of the jumpoperators (global approach), being instead the result of the
indiscriminate applicationof the full secular approximationwhenonly the partial onewas justified [27, 28, 56]. The
attempt to apply the full secular approximation for anydifferent frequencies w w¢ ¹ , evenwhen the condition in
equation (21) is not fulfilled, leads to inconsistencies: all the approximations listed in section2.2 are indeed valid in
well-definedparameter regimes. From the formal derivation in the previous section, in the frameworkof Born–
Markov approximations, a globalmaster equationwith a justified partial secular approximation is in generalmore
accurate (or less approximated) than any local one. In reference [27] thiswas also suggested andnamedpartial
MarkovianRedfieldmaster equation.An important exception is amaster equationderived in the singular-coupling
limit [28, 31], thatwould lead to a localmaster equation. In this particular case, the globalmaster equationwith
partial secular approximation, even if accurate,would be unnecessarilymore complicate than the local one. For
instance, this is the casewhen addressing aMarkovian scenariowith very high temperature inwhich the
autocorrelation functions of the bath decay faster than the system itself [29].

Onemay argue that the full secular approximation is anyway preferable to the partial one, since it is generally
introduced to obtain aGKLSmaster equation [28] such as the one in equation (26), free from any unphysical
behavior. It is indeed known that the Bloch–Redfield equation (19)may in some cases violate the positivity of the
dynamicalmap [73]. However, if the full secular approximation is not well justified from amicroscopicmodel
(because equation (21) does not apply) then a global full secularmaster equation needs to be considered as a
phenomenological one, as the correspondence with themicroscopicmodel is lost. On the other hand, as the
approximationswe have performed to obtain equation (19) are correct up to the order of the remainders,
unphysical departures are expected to be consistently small [43]. For an in-depth discussion about Bloch–
Redfield equation and complete positivity we refer the reader to the broad literature on the topic [64, 73–81].

For our purpose, we conclude stressing that theGKLS formof themaster equation is also guaranteed by the
correct application of the partial secular approximation, as recently discussed in [35, 36]. This is therefore a
preferable approach, beingwell related to amicroscopicmodel instead of being phenomenological.

3.2. Accuracy of the localmaster equation

In order to assess the accuracy of the localmaster equation, let us write the interactionHamiltonian asH12=λ

V, whereλ is a ‘small’ parameter whichwe consider as a perturbation order, i.e.λ=1. The systemHamiltonian
reads l= + + = +H H H H H VS S1 2 12

local . Following [26], we apply standard perturbation theory tofind the
zeroth order eigenvectors and eigenvalues6.Within the assumption of not-degenerate systemHamiltonian, we

6
For simplicity, we assume that there are no degenerate eigenvalues. If this is not the case, one has to diagonalize the interactionHamiltonian

in the degenerate subspace, according to degenerate perturbation theory [82], and still recovers the results we are going to present in the
following. In section 3.3wewill present a case inwhich a degeneracymay occur, and discuss when the local approach is still valid.
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write the eigenvalues as the infinite perturbation expansion [82]:

l l

l l

= + + +

ñ= ñ + ñ + ñ+∣ ∣ ∣ ∣ ( )

( ) ( ) ( )

( ) ( ) ( )

E E E E

e e e e

...

..., 38

n n n n

n n n n

0 1 2 2

0 1 2 2

where ( )En
0 and ñ∣ ( )en

0 are respectively the eigenvalues and eigenvectors of the unperturbedHamiltonian, in our
case of the localHamiltonian HS

local. A jumpoperator equation (17) using the expansions in equation (38)will
read
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where wb ( )( ) ( )A 0 0 are the local jump operators appearing in the localmaster equation.
While [26] considers theGKLSmaster equation in full secular approximation, herewe derive the Bloch–

Redfield localmaster equation. Inserting equation (39) in equation (19) and coming back to the Schrödinger
picturewe obtain:
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whereω(0) is the frequency given by differences of the unperturbed eigenvalues -( ) ( )E En m
0 0 . The errorwe are

making by employing the localmaster equation is of the order ofO(μ2λ), since the leading order of themaster
equation after the Born approximation isO(μ2).Moreover, we explicitly write the order of the remainder after
the Born–Markov approximations o(μ2

), to stress that there are already some neglected termswhichmay be
larger than the error given by the localmaster equationO(μ2λ).

If we employ the localmaster equation to compute physical quantities, clearly we can resolve themonly up to
the order ofO(μ2

). Any quantity of the order ofO(μ2λ) or smaller, then is null in the framework of the local
approach. This is the reasonwhy the violation of the second law of thermodynamics [25] is only an apparent one
[26], given that it is of the order ofO(μ2λ2).

3.3. Local versus global approach for two coupled qubits

Wewill now address the local versus global comparison focusing on the case of two spins as in equation (2), with
‘local’Hamiltonian s s= +w w

HS
z zlocal

2 1 2 2
1 2 and interaction ls s=H x x

12 1 2 . As discussed in the previous sections,

the globalmaster equationwith partial secular approximation is always valid up to the errors induced by the
Born–Markov approximations. On the contrary, the localmaster equation and the full secular approximation
are accurate only for some parameter regimes, whichwewill investigate starting from the derivation of the
master equation.We recall the fact that the local approach is always valid in the singular-coupling limit, which is
more restrictive.

Wewillfirst present the localmaster equation for two coupled qubits, studying the ranges of parameters in
which each approximationworks, in the presence of commonor separate baths, and then showhow the
difference betweenmaster equations emerges through some illustrative examples.

3.3.1. Local master equation

The local approach is valid in the case inwhichλ=1. In order to derive themaster equationwemustfind the
jumpoperators, thus the eigenvalues and eigenvectors of theHamiltonian. Let us start from the situationwhere
the localHamiltonian is not degenerate, i.e.λ=ω−. In this case we have the following eigenvalues:

w
l

w
l

w
l

w
l= - + = - + = + + = + ++ - - +( ) ( ) ( ) ( ) ( )E O E O E O E O

2
,

2
,

2
,

2
, 410 1 2 3

with corresponding eigenvectors

l l l lñ = ñ + ñ = ñ + ñ = ñ + ñ = ñ +∣ ∣ ( ) ∣ ∣ ( ) ∣ ∣ ( ) ∣ ∣ ( ) ( )e O e O e O e O00 , 01 , 01 , 11 . 420 1 2 3

Equations (41) and (42) are the zeroth order expressions for the infinite perturbative expansion in equation (38).
By inserting them in equation (40), we see that the localmaster equation is exactly themaster equation (29)
found for decoupled qubits, but with free systemHamiltonianHS including a coupling term, i.e.HS given by
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equation (31) instead of equation (27). So, the difference between the local and the globalmaster equation is of
the order ofO(μ2λ).

In the degenerate regimeω−=0, there is an apparent freedom in the choice of the basis with respect to
which the perturbative expansionmust be performed, as any linear combination of ñ∣e1 and ñ∣e2 could in
principle be selected. This apparent freedom is actually removed by the interactionHamiltonian. For instance,
in the case of separate baths, deriving themaster equation starting from any possible choice of the basis would in
any case lead to local jump operators, as in the absence of degeneracy.Working near degeneracy, that is,
assuming l w ¹- 0, wewould have for instance lñ = ñ + ñ +∣ (∣ ∣ ) ( )e O1 2 01 102 , but the
aforementioned selection rule would still apply and thefinalmaster equationwould not change.

3.3.2. Comparison betweenmaster equations

In this sectionwewill investigate the limits of validity of the full secular approximation and of the localmaster
equation depending on the parameters of the system and show some examples of the different systemdynamics
generated by them. In section 4wewill provide further examples focused on physical quantities computed
through distinctmaster equations. The results are summarized in table 1 presented in the concluding remarks.
The parameters we vary in order to study eachmaster equation are the qubit–qubit coupling constantλ and the
detuning between the qubitsω−, as can be seen in table 1. All the remaining parameters will befixed as follows,
paying attention to the conditions for the Born–Markov approximations.

• Wechoose as qubit-bath coupling constantμ=10−2. Thismeans that the timescale of the evolution of the
systemwill be τR=O(μ−2

)=104. This quantity is important to check the validity of each approximation, as
shown in table 1. The remainder given by the Born approximationwill be, according to equation (11), of the
order ofO(μ3)=10−6.

• Both the common and the separate baths will have anOhmic spectral density, i.e.

w w
w

=
W

W +
( )J ,

2

2 2

where J(ω) is defined in equation (7) andΩ is a cutoff frequency which we have set as large asΩ=20.
Regarding the inverse of the temperature of each bath, we have chosen β( c)=1, b =( ) 1l1 , b =( ) 0.1l2 . An
unbalance between the local baths is important in quantum thermodynamics, in order to study the heat
transport between them.We finally have to check that these baths with the chosen temperatures satisfy the
condition for theMarkov approximation equation (15). The timescale of the decay of the bath
autocorrelation functions for anOhmic spectral density reads [31] t b p= W-{ }Max , 2B

1 , and
τR=O(μ4

), therefore τB=τR and theMarkov approximation is valid for our choice of parameters.

• Wechoose as initial state of the system the factorized state r r r= ÄOV OV0 , where ρOV is the completely
overlapped state r = ñá + ñá + ñá + ñá(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣)1 2 0 0 0 1 1 0 1 1OV .

Wewill evaluate the dynamics using four differentmaster equations, namely the global master equation
in partial secular approximation (GP), which we will consider as themost correct one according to the
discussion in section 2.2, the global master equation in full secular approximation (GF), the local master
equation in partial secular approximation (LP), and the local master equation in full secular approximation
(LF).We remind that here we are using ‘partial secular approximation’ to refer to amaster equation in which
we keep the cross terms which, in some scenario, may be slow-rotating and not negligible, even in regimes in
which such termsmay actually be eliminated. Eachmaster equation leads to a (a priori) different evolution.
For simplicity, we focus on three different figures ofmerit. The first one is themean value of sz

1 as a function
on time, i.e. sá ñ( )tz

1 . The second is the fidelity [83] between the state obtained through the global master
equation with partial secular (most accurate one) and a state computed with anothermaster equation, i.e.
 r( ( ) ·)t ,GP , as a function on time. The third and last figure ofmerit is the steady state of the system, i.e. the
state obtained for  ¥t . Notice that, while the fidelity is quite a general and reliable indicator, both the
population of the first qubit and the steady statemay not display differences between twomaster equations,
even if the latter are substantially different.

For convenience, wefirst study the scenariowith separate baths only, and then the one in the presence of a
commonbath, addressing in both cases the local and globalmaster equation separately, and focusing on
dissipative couplingswith the environments, as we do not expect any qualitative difference if we also add
dephasing baths.
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3.3.3. Separate baths

• In the case of separate baths, the localmaster equation presents local dissipators on each qubit, and the
interaction between the subsystems only comes into play in the unitary part of the evolution. Thismeans that
the full secular approximation always coincides with the partial one and is valid for any value of the detuning
ω−, provided thatλ=1, which fixes the validity of the localmaster equation.

• The full secular approximation with global approachmay break down for some range of values. Indeed,
the global approachmakes use of the basis of eigenmodes to build the jump operators, which is composed
of entangled states, therefore a single local bath coupled to sx

1 induces dissipation on the second qubit as
well, and the secular approximation comes into play. Let us look at the jump frequencies presented in
equation (C.1).We have to identify the frequency differences whichmay be comparable with
t m=- ( )OR

1 2 , always avoiding the singular parameter choice expressed in equation (C.4). Critical cases
are:

w w w w w w l w- = - - = - = + -( ) ( ) ( )2 2 4 . 43II I IV IV IV 0
2 2

If the qubits have small detuning, i.e. w- ∣ ∣ 1, and the qubit–qubit coupling constant is small as well,
λ=1, the secular approximation on these frequencies equation (21) does not apply if for instance
w w m-∣ ∣ ⪅II I

2. Still, if the basis of eigenvectors of the systemHamiltonian is quasi-local, in the sense that
it is well described by the states in equation (42), the cross terms between the qubits arising with separate
baths are very small, of the order ofO(μ2λ). Thus we can neglect them, and the full secular approximation
is still valid even in the global case. This final condition of validity readsλ=ω−, highlighting the
importance of the ratio between detuning and qubit–qubit coupling constant.

We show an example infigure 3, considering sá ñ( )tz
1 and thefidelity between evolved states as a function of

time, and infigure 4, focusing on the steady state. Being the baths separate, the localmaster equationwith full
secular approximation coincides with the partial secular one. Infigure 3, sinceλ is very small, the local approach
provides a reliable description of the dynamics independently of the value of the detuning. On the contrary, for
identical qubits (figures 3(a) and (b), withω−=0), the globalmaster equationwith full secular approximation
fails, while this approximation in the global approach is justified forλ=ω− (figures 3(c) and (d)), despite the
detuning being small. Looking at the stationary states and also allowing for baths at different temperatures, we
show infigure 4 the predicted parameters regimes of failure of the localmaster equation and of the full secular
approximation in the global one.Whileλ=ω−, both the approaches are reliable, but as soon asλ gets close to
ω− theGF fails; this clearly starts from smaller values ofλ on thefigure 4 left than on the right, since in the former
case the detuning is smaller. As far asλ increases toward 1, the global approachwith full secular recovers validity,
since it fulfills the condition for the full secular approximation. Asλ becomes of the order of the qubit frequency
O(1), the localm.e. loses reliability.

3.3.4. Common bath

• If the bath is common, in general the localmaster equation does not display local dissipators. Indeed, if the
detuningω− is small, i.e. not way larger than t m=- ( )OR

1 2 , we obtain cross terms in themaster equation
which have the effect of exchanging excitations between the qubits (see equation (29)). Therefore, the full
secular approximation for the localmaster equation is valid only if w m- 2. Thismeans that the claim about
the goodness of an indiscriminate full secular approximationwhen following the local approach is not general,
but limited to the separate baths scenario only. Of course, the localmaster equation is accurate only ifλ=1.

• For the globalmaster equation in the presence of a commonbath, the same discussion about the case with
separate baths hold, with the only difference that a local basis (λ?ω−) does not allow us to perform the full
secular approximation anymore. Therefore, the condition for the globalmaster equationwith full secular
approximation readsω−?O(μ2) orλ?O(μ2).

Figure 5 shows some relevant examples through sá ñz1 and the fidelity of the states obtainedwith different
master equations comparedwith theGP: ifλ is very small (first row), the local approachwith partial secular
approximation provides a reliable description of the dynamics. On the contrary, both the local and global
approachwith full secular approximation fail, since the detuning is very small as well. In the scenario ofλ being
of the order of the qubit frequency (second row), the local approach always fails, while the global approachwith
full secular approximation is reliable in spite of the small detuning, sinceλ?μ2.
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4. Computing physical quantities through distinctmaster equations

In this sectionwe provide some examples of the effect of considering distinctmaster equations on some relevant
physical quantities and discuss their accuracy on physical grounds.Wewill therefore corroborate the
mathematical analysis in section 3 by suitable physical examples. Throughout the section, when not explicitly

stated the values of the parameters used in the examples are the ones fixed in section 3.3.2.

Figure 3.Comparison betweenmaster equations (m.e.) in the presence of separate baths only, for coupled spins (λ=10−4
)with

identical frequencies. (a) and (b):ω−=0. (c) and (d):ω−=0.01. All the other parameters have been set according to the discussion in
section 3.3. (a) and (c): Population of the first qubit as a function of time, according to the globalm.e. with partial secular
approximationGP (solid blue), the globalm.e. with full secular approximationGF (dashed red), and the localm.e. with full secular
approximation LF (dot-dashed orange). (b) and (d): Fidelity between the state obtained through the globalm.e. with partial secular
approximation and respectively globalm.e. with full secular approximation  r r( ( ) ( ))t t,GP GF (dashed red) and localm.e. with full
secular approximation r r( ( ) ( ))F t t,GP LF (dotted–dashed orange). Note that local full (LF) coincides with local partial (LP) as
explained in themain text.

Figure 4. Fidelity between the steady state obtained through the globalmaster equation (m.e.)with partial secular approximation and
respectively globalm.e. with full secular approximation  r r( ),GP GF (dashed red) and localm.e. with full secular approximation
r r( )F ,GP LF (dotted–dashed orange), as a function of the qubit–qubit coupling constantλ. The qubits are interacting with two

separate thermal baths at inverse temperature b ( )l1 =1, b =( ) 0.1l2 , and the qubit-bath coupling constant readsμ=10−2. (a):
ω−=10−3. (b): w =- -10 5.We anticipate the regimes of validity summarized in table 1.Note that local full (LF) coincides with local
partial (LP) as explained in themain text.
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4.1. Commonbath: entanglement, quantumbeats and synchronization

Wewill now showhow, in the critical regime of small qubit–qubit coupling constantλ, small detuning and a
commonbath, the full secular approximation leads to unphysical results, while the partial secular correctly
describes several physical phenomena, both in the local and in the global approach. Sincewe are considering the
limitλ=1, the same considerations hold for the case of uncoupled qubits discussed in section 2.3.1. In
particular, we consider the case addressed infigures 5(a) and (b) for the coupled case, i.e.ω−=10−2,λ=10−4

and the rest of parameters as discussed in section 3.3.2; to include a discussion about the uncoupled case, we
consider the scenario offigure 2(b)withω−=10−2. These two situations are almost equivalent due to the very
smallλ, as can be seen by comparing figures 2(b) and 5(a).

Wefirst focuson thedynamics of entanglement obtained throughdifferentmaster equations. It is indeedwell-
known that a commonbathmaygenerate entanglement betweennon-interacting qubits immersed in it [84], even
when the reservoir isMarkovian [7]. This phenomenonhas beenpredictedusing diversemethods of obtaining a
master equation, such as a coarse-grainingprocedure [85]or employingmaster equations originally derived for
quantumoptics [86]. As entanglementmeasurewe choose thenegativity  [84]; in the consider case of twoqubits, a
non-zero value of thenegativity is a necessary and sufficient condition tohave entanglement.Weplot infigure 6 the
negativity as a functionof time forbothuncoupled and coupled case,whichdonot showavisible difference
consistentlywith the very small qubit–qubit coupling constant. Both in the local andglobal approach, themaster
equationwithpartial secular approximation correctly displays entanglement creation, suddendeath and subsequent
suddenbirth [87], that resemble dynamics already observed in similar scenarios [86].On the contrary, the full secular
approximation completelymisses thedetectionof entanglement, since it does not include aqubit–qubit coupling
mediatedby the commonbath.

As alreadydiscussed in section2.3.1, anotherphysical phenomenon that the full secular approximation isnot able
to reproduce are thequantumbeats, i.e. theoscillations in thedynamicsof thequbit populations that canbeobserved in
figures 5(a) and2(b). Thequantumbeats are knownsince the studies on superradiance in the eighties [44], andappear
during the evolutionof two slightly-detunedatomsbecauseof the tinydifferencebetween their frequencies in thephase
of the emissionpower [45]. The full secular approximationdoesnotmake the twoqubits ‘communicate’, and therefore
it doesnotdetect thedetuning and leads to an incorrect smoothdecayof thepopulationof the excited state.

Figure 5.Comparison betweenmaster equations (m.e.) in the presence of a commonbath, for weak and strong coupling between
qubits. (a) and (b):ω−=0.01,λ=10−4. (c) and (d):ω−=0.01,λ=1. All the other parameters have been set according to the
discussion in section 3.3. (a) and (c): Population of thefirst qubit as a function of time, according to the globalm.e. with partial secular
approximationGP (solid blue), the globalm.e. with full secular approximationGF (dashed red), the localm.e. with partial secular
approximation LP (dotted–dashed orange), and the localm.e. with full secular approximation LF (dotted green). (b) and (d): Fidelity
between the state obtained through the globalm.e. with partial secular approximation and respectively globalm.e. with full secular
approximation (dashed red), localm.e. with partial secular approximation (dotted–dashed orange) and localm.e. with full secular
approximation (dotted green).
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Finally,wementionanother important physical effectmissedby the full secular approximation.Quantum
synchronization is a paradigmatic phenomenon investigated indisparatefields in the recent years (for a review see
[88]). Inparticular, spontaneous synchronizationof the spinning frequencies of twouncoupledqubits in a common
bathhas beenpredictedusing aBloch–Redfieldmaster equationwithout any further secular approximation [17].
Using themaster equation (29) in partial secular approximationwehaveobservedquantumsynchronization starting
froma time t≈6000,while the samemaster equation in full secular approximationneverdisplays synchronization
of the qubit frequencies, and it is thereforenot suitable to analyze such aphenomenon.

4.2. Steady state heat current incoming from separate baths

Wenowconsider the caseof twocoupledqubits and separate baths addressed infigure4: for small values of the
detuning andvarying the coupling constantλ,we compute the steady stateheat currents coming fromthehot andcold
reservoir.As in section3.3.2,we assume that the inverse temperatures of thebaths are b =( ) 1l1 (colder), b =( ) 0.1l2

(hotter). If r¥ is the steady state of theopen system, theheat current fromthehotter reservoir is defined as [89]:

 r= ¥( [ ]) ( )J HTr , 44S2 2

whereHS is the systemHamiltonian equation (31) and2 is the dissipator generatedby thehotter bath coupled to the
secondqubit. Analogouslywe candefine theheat current incoming fromthe colder reservoir as  r= ¥( [ ])J HTr S1 1 ,
and since r¥ is the steady statewehave J1+J2=0.Note that equation (44) iswidelyused in the literature
[27, 28, 89], but cannot be associated to aheat current observable. Adefinitionbasedon a current observable canbe
found in [90], which alsodiscusses some issues regarding its consistencywithdifferentmaster equations.

Figure 7depicts the stationaryheat current incoming fromthehot bath as a functionof the coupling constantλ,
withdetuningω−=10−3

(a) andω−=10−5 (b), for distinctmaster equations.We see that there is a regionofλ in
which the globalmaster equationwith full secular approximation fails, highly overestimating the value of the current:
this is the effect thatwas extensively observed anddiscussed in the recentworks on the topic [27, 28]. The full secular
approximationbreaks downbecauseω−=1 andλ=1,making small the energydifference in equation (43).
However,we also observe that such regiondependson the ratioω−/λ, as discussed in section3.3.2 anddisplayed in
table 1: ifω−?λ, the eigenmodes basis of the system is almost local and the global approachwith full secular is
accurate aswell. For this reason, the range inwhich it fails ismorenarrow forω−=10−3 than forω−=10−5. If the
detuningwerenull, the global approachwith full secular approximationwouldprovide anon-zeroheat current even
forl  0 [28], which is clearly non-physical.On the contrary, the global approachwithpartial secular
approximation and the local approach (forwhichpartial and full secular coincide)provide a correct descriptionof the
incomingheat current for small values ofλ. Increasing the coupling constant,weobserve that the current increases as
well till reaching the value givenby the full secular approximation,which starting fromhere recovers its validity. For
big values ofλ the globalmaster equations describe a current decreasing toward0.This is correct, since ifλ?1 the
only relevant part of the systemHamiltonianHS isls sx x

1 2 , and therefore it commuteswith the interaction
Hamiltonian: =l¥[ ]H Hlim , 0S I .Hence, the dissipator associated to eachbathdoesnot induce an energy
exchange in any stationary state (whichnowdependson the initial conditions), andnoheat current is produced.On
the contrary, the localmaster equation iswritten in a basiswhich is different from thediagonal basis ofHS, and thus

Figure 6.Negativity as a function of time in the presence of a commonbathwith inverse temperatureβ( c)=1, forω−=10−2 and no
direct coupling (a) orλ=10−4

(b).We confront the value obtained through the globalmaster equation (m.e.)with partial secular
approximation (solid blue), the globalm.e. with full secular approximation (dashed red), the localm.e. with partial secular
approximation (dotted–dashed orange), and the localm.e. with full secular approximation (dotted green). For both local and global
approach, the full secular approximation incorrectly shows no entanglement during the evolution of the qubits, while both the global
and localm.e. with partial secular approximation provide the phenomena of entanglement creation, sudden death and sudden birth.
Sinceλ is very small, we observe no remarkable difference between the coupled and uncoupled case.
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indicates afictitiousnon-zeroheat current even forλ?1.Note that the global approachwithpartial secular
approximation is appropriate in all consideredparameter regimes.

The reader can verify that the failure of the localmaster equationor of the full secular approximation todescribe
the incomingheat current in different regimes correctly reproduces the parameters ranges summarized in table 1.

5. Concluding remarks

In the present workwe have extensively addressed the derivation of theMarkovianmaster equation for two
qubits interactingwith thermal baths, in order to assess the validity of local and globalmaster equations. A
comprehensive description is achieved considering all the possible scenarios: presence of separate aswell as a
commonbath, including both dissipative and dephasing interaction, and taking into account the possibility of a
direct coupling between the qubits and of detuning. TheMarkovianmaster equation, in the formof a Bloch–
Redfieldmaster equation, has been derived in section 2 reviewing all the necessary approximations, carefully
stating the condition for the validity of the Born and theMarkov approximations.We have obtained two general
master equations: equation (29) in the casewithout a direct qubit–qubit coupling, and equation (36)when a
direct coupling between the qubitsmust be taken into account.

Figure 7. Incoming heat current from the hot reservoir as a function of the coupling constant, in the presence of two separate baths
with inverse temperatures b ( )l1 =1, b =( ) 0.1l2 , for w =- -10 3 (a) and w =- -10 5 (b).We confront the value obtained through the
globalmaster equation (m.e.)with partial secular approximationGP (solid blue), the globalm.e. with full secular approximationGF
(dashed red), and the localm.e. with full secular approximation LF (dotted–dashed orange), which coincides with the localm.e. with
partial secular approximation.Whenλ=1 both the globalm.e. with partial secular approximation and the localmaster equation
correctly reproduce the value of the heat current, which decreases toward zero for l  0. On the contrary, the globalm.e. with full
secular approximation highly overestimates the value of the current when the detuning is not way higher than the coupling constant.
Starting fromλ=O(1), the local approach incorrectly produces a stationary non-zero value of the heat current, while the global
approach accurately describes the decay of the current toward zero.

Table 1.Conditionsof validity of eachmaster equation (m.e.), dependingon
the values of thedetuningbetween thequbitsω−, of the qubit–qubit coupling
constantλ andof thequbit-bath coupling constantμ. Eachpossible scenario is
taken into account: local or globalmaster equation, partial or full secular
approximation, presence of a commonaswell as separate baths.We recall that
all the constants are dimensionless quantities, according to the renormalization
discussed in equations (1)–(3), and that the general condition for the validity of
the secular approximation is presented in equation (21). The table only deals
with scenarios inwhich theBorn–Markov approximations hold. Furthermore,
we recall that the local approach is always valid in the singular-coupling
scenario, independently of the systemparameters.

Validity of themaster equation

Common bath Separate baths

Globalm.e. Partial

secular

Always Always

Full secular λ?μ2 or

ω−?μ2
λ?μ2 or

ω−?λ

Localm.e. Partial

secular

λ=1 λ=1

Full secular λ=1 and

ω−?μ2
λ=1
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These preliminary steps put ourselves in the conditions of determining the validity of thefinal possible
approximation, namely the secular one.We have established the requirements under which one can apply a full
secular or only a partial secular approximation. This assessment is especially relevant in the context of the
feasibility of a local approach to themaster equationwith respect to the global one, whichmay simplify the
computation of the solution inmany cases. This renewed problem is addressed in section 3.

Manyworkshave alreadyproven that the globalmaster equationmay fail in some scenarios because of the
breakingof the (full) secular approximation. In this paper,wehave shownhow toovercome suchproblemby
applying an accuratepartial secular approximationwhichdoesnot remove slowly-rotating terms. Inparticular, in
section2wehaveprovided an extensivemathematical derivationof such equation, termedglobalmaster equation
withpartial secular approximation, proving that it isalways themost correct choice in anyparameters scenario in
which theBorn andMarkov approximations are valid. Then, in section3wehave shownhow toderive the local
master equation, and focusedon the comparisonbetween it and the global approach for the caseof two coupled
qubits,withpartial or full secular approximation.The localmaster equation is always accurate in the singular-
coupling limit, as already extensively proven [28, 31]. If this limit is not assumed, the local approach is valid only for
small values of the qubit–qubit coupling constantλ=1.The feasibility of the full secular approximationmust be
checked: if a commonbath is present, the detuningbetween thequbits plays a fundamental role, since a small value of
itwouldmake the localmaster equationwith full secular approximation fail; in the case of the globalmaster equation,
the value ofλ comes intoplay aswell. If the qubits interactwith separate baths only, some subtleties emerge: for the
localmaster equation the full secular approximation is always valid,while in the global approach caremust be taken,
since if bothλ and thedetuning are very small, the condition for the approximationmaybreakdown.Wehave shown
that the valueof the qubit–qubit coupling constantλ is not the only important actor here: the ratio betweenλ and the
detuningω−must be considered aswell, since ifω−?λ the full secular approximation in the global approach
recovers its validity.These results are summarized in table 1,wherewehavehighlighted the scenarioswith local or
global approach, partial or full secular approximation, and commonor separate baths.At the endof section3,we
havediscussed the consequences of the local versus global issue in the case of twoqubits, andwehave compared the
results of the systemevolutionobtained throughdifferent approaches bydepicting them infigures 3–5.

In section4wehave shownhowseveral physical quantities changewhenbeen computed throughdifferent
master equations. Inparticular, in the case ofweakqubit–qubit coupling constant, small detuning and a common
bath, the full secular approximation is not able todetect important phenomena such as quantumbeats andquantum
synchronization, anddoesnotproduce entanglement during the evolution as depicted infigure 6. In the scenario
with two separate bathswithunbalanced temperatures, the globalmaster equationwith full secular approximation
leads to anunphysical stationaryheat current in the region inwhich thedetuningω− is notway larger thanλ.On the
contrary, after a transient inwhich the stationary heat current is correctly detected, it is the localmaster equation
whichpredicts anon-zerofictitious currentwhenλ?1.The globalmaster equationwithpartial secular
approximation reproduces the correct physical results in any scenario and any rangeof parameters.

Our discussion remains validwhile considering general interacting bipartite systems and can also be
immediately extended tomultipartitite scenarios,whilemore challengingwill be to explore local versus global
approaches innon-Markovian situations.Also, this analysis is relevant for extended systems experiencing
dissipationonly in someof their parts, so that globalmaster equations need in principle to be considered [91].Our
general conclusions are especially timely, because of the renewed interest on the topic that has lead to several results,
sometimes contradictory or onlypartial. Beyondbeing a fundamental instrument for the appropriate descriptionof
coupled qubits in contactwith environments, further implicationsmaybe foreseen in the context of
thermodynamics, computations and information, considering thedifferences arising betweenphenomenological
approaches and themicroscopically derived globalmaster equationwith partial secular approximation.
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AppendixA. Generality of the systemHamiltonian

A.1.Qubit rotations

Following the standard convention in quantum information theory, we have chosen towrite throughout all the
paper the freeHamiltonian of a single qubit asH1=ω1/2σ1

z. Historically, this has not been always the preferred
choice, since for instance in the seminal papers byCaldeira and Leggett [92] a different notationwas employed,
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in particular:


s s¢ = +

D
( )H

2 2
, A.1z x

1
1

1
1

1

which regards the two level system as two levels with detuning ò separated by a potential barrier, with the
possibility of hopping through it viaσ1

x.
H1 and ¢H1 are connected by a unitary transformation that, in absence of interactions between the qubits, will

change the dephasing and dissipative character of each bath, and in this work both possibilities are taken into
account. On the other hand, in presence of the coupling between qubits, the local unitary transformationswill in
general transform the coupling ls s=H x x

12 1 2 into amore complex interaction term.

A.2. Further qubit–qubit couplings

In this sectionwe address further possible forms of the qubit–qubit interaction.We remind the system
Hamiltonian:

w
s

w
s= + + ( )H H

2 2
, A.2S

z z1
1

2
2 12

with ls s=H x x
12 1 2 . This choice is justified by the fact that such interaction is the standard one employed in the

framework of quantum information, towhich this paper ismostly devoted; we indeedfind the s sx x
1 2 interaction

(or fully equivalently s sy y
1 2) inmany experimental platforms, such as superconducting qubits [93–95] or coupled

atomic dipoles [96]. Anyway, let us examine possible alternatives and the connectionwith this Ising-like
coupling.

A.2.1. Heisenberg-type interaction. Let us here consider two qubits coupled through anHeisenberg-type
interaction, i.e. l s s= å =H k x y z k

k k
12 , , 1 2, quite common inmany physical systems. This interaction conserves the

parity of the number of excitations and, for this reason, the systemHamiltonian in the canonical basis has the
same structure of equation (31):

w l l l
w l l l
l l w l

l l w l

=

+ -
- +
+ - -

- - +

+

-

-

+

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

( )H

2 0 0

0 2 0

0 2 0

0 0 2

, A.3S

z x y

z x y

x y z

x y z

withω±=ω1±ω2.
The parity symmetrymakes the eigenvectors remain of the same formof the eigenvectors in equation (34).

The only thing thatmay change is the value of the angles θ andf in equation (35), according to the different
values ofλk appearing in equation (A.3). Thismeans that the generalmaster equation preserves the structure in
equation (36): the value of the coefficientsmarks the only difference betweenHeisenberg- and Ising-type
interaction.

A.2.2. Rotating wave approximation. Another very common case in the literature is to consider the qubit–qubit
coupling in RWA, i.e. l s s s s= +- + + -( )H12 1 2 1 2 . Even if in some cases this can be justified, we notice that without
counter-rotating terms theHamiltonian not only conserves the parity of the number of excitations, but also
conserves the number of excitations itself. A standard rotation is sufficient to diagonalize it, leading to the
eigenvalues:

w l w l w w= + = + + = - + = -+ - - + ( )/ /E E E E2, 4 , 4 , 2, A.43 2
2 2

1
2 2

0

with associated eigenvectors

f f f fñ = ñ ñ = ñ + ñ ñ = ñ - ñ ñ = ñ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )e e e e11 , cos 10 sin 01 , sin 10 cos 01 , 00 , A.53 2 1 0

where the anglef is the same as in equation (35):

f
l

f
w

= = - ( )
E E

sin 2 , cos 2
2

. A.6
2 2

We see that, unless we can neglect the coupling (λ=ω+), the geometry of theHamiltonian in theRWA is
non-trivially different from the one used in thework. In themaster equation, the absence of counter-rotating
terms eliminates all the ‘double emission’ or ‘double absorption’ jump operators, namely s w( )j

z
III in

equation (C.2).Without these terms important effects do not arise, such as stationary entanglement [23], or are
not properly described, as the refrigerator performance analyzed in [70].
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Appendix B. Coefficients of themaster equation

B.1.No direct coupling

The coefficients of themaster equation in equation (29) read:
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(ω) are theone-sideFourier transformsof thebaths correlation functionsdefined in equation (20),wherewith
abuseofnotationα=c1=c2=c. Themeanvalue is performedon the thermal state r a( )

B
of eachbath, at a given

inverse temperatureβ(α)
[31]. gj

(α) are the coupling constants expressing the strengthof thequbit-bath interactions. In
theLamb-ShiftHamiltonian equation (30), s1/2σ1

z and ss 2 z
2 2 lead to a renormalizationof thequbit frequencies.

Moreover, note thatwehaveneglected anymultiple of the identity appearing in theLamb-ShiftHamiltonian.

B.2.Direct coupling

Analogously to equation (B.1), we list the coefficients appearing in themaster equation in equation (36):
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AppendixC. Jumpoperators of theHamiltonianwith direct coupling

Tofind the jump operators wefirst of all have to recognize which are the jump frequencies associated to each
systemoperator. Recalling the eigenvalues in equation (33), we can recognize four different frequencies (positive
or negative) of the jumps between different eigenvalues, in addition to the zero frequency, which are depicted in
figureC1.Wename them as:
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By employing the definition in equation (17), we can easily see that the operators s j
x with j=1, 2 only

induce transitions of frequencyωI andωII, whileσj
z are responsible for the excitations and decays of frequency

ωIII,ωIV and 0.
In the followingwe list all the jumpoperators, wherewe recall that we are using the notation of equation (17)

for the jumpoperators; for instance,     s w s= å ñá ¢ñá ¢w¢- =( ) ∣ ∣ ∣ ∣x
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The jumpoperators with negative frequencies are obtained by employing the property in
equation (18) w w- =b b( ) ( )†A A .

Notice that, once again, the jump operators associated to s j
x and s j

z have different frequencies, whose
difference is not ‘small’ in the sense of the condition for the secular approximation equation (21). Actually, there
may be a singular case inwhich two frequencies of different bath operators assume the same value, namelyωII

andωIV:

FigureC1.Diagramof the states of the systemHamiltonian equation (31), with all the possible emission frequencies.
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w w l w l w- = + - ++ - ( )4 3 4 . C.3II IV
2 2 2 2

By setting the above equation equal to zero, wefind the condition forwhichwemust consider the ‘crossing’
betweenωII andωIV in themaster equation, i.e. the values of the constants for whichwe cannot neglect these
cross terms in themaster equation. The condition reads:

l w w= -+ - ( )32 9 . C.42 2 2

Anyway, we can see that this case is only ‘singular’, in the sense that it regards a ‘zero-measure’ region in the
parameter space. Indeed, even if the values ofλ,ω1,ω2 satisfy equation (C.4), it is sufficient to perturb one of
themby a quantity of order larger thanO(μ2) to be allowed to neglect the cross terms, since theywould fulfill the
condition in equation (21). Therefore, in this paper we do not discuss the singular case inwhichwe need to
conserve cross terms betweenσ x andσ z, since this would tangibly complicate themaster equation. Then, the
argument about the separation of the dephasing and dissipative bath discussed in section 2.3.1 holds.
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