
Research Article

Local versus Global Models for Just-In-Time Software
Defect Prediction

Xingguang Yang ,1,2 Huiqun Yu ,1,3 Guisheng Fan ,1Kai Shi ,1 and Liqiong Chen 4

1Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
2Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China
3Shanghai Engineering Research Center of Smart Energy, Shanghai, China
4Department of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Correspondence should be addressed to Huiqun Yu; yhq@ecust.edu.cn and Guisheng Fan; gsfan@ecust.edu.cn

Received 16 January 2019; Revised 14 April 2019; Accepted 23 April 2019; Published 12 June 2019

Academic Editor: Emiliano Tramontana

Copyright © 2019 Xingguang Yang et al. -is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Just-in-time software defect prediction (JIT-SDP) is an active topic in software defect prediction, which aims to identify defect-
inducing changes. Recently, some studies have found that the variability of defect data sets can affect the performance of defect
predictors. By using local models, it can help improve the performance of prediction models. However, previous studies have
focused on module-level defect prediction. Whether local models are still valid in the context of JIT-SDP is an important issue. To
this end, we compare the performance of local and global models through a large-scale empirical study based on six open-source
projects with 227417 changes. -e experiment considers three evaluation scenarios of cross-validation, cross-project-validation,
and timewise-cross-validation. To build local models, the experiment uses the k-medoids to divide the training set into several
homogeneous regions. In addition, logistic regression and effort-aware linear regression (EALR) are used to build classification
models and effort-aware prediction models, respectively. -e empirical results show that local models perform worse than global
models in the classification performance. However, local models have significantly better effort-aware prediction performance
than global models in the cross-validation and cross-project-validation scenarios. Particularly, when the number of clusters k is set
to 2, local models can obtain optimal effort-aware prediction performance. -erefore, local models are promising for effort-
aware JIT-SDP.

1. Introduction

Today, software plays an important role in people’s daily life.
However, the defective software can bring great economic
losses to users and enterprises. According to the estimates of
the National Institute of Standards and Technology, the
economic losses caused by software defects to the United
States are as high as $60 billion per year [1]. -erefore, it is
necessary to detect and repair defects in the software
through a large number of software quality assurance
activities.

Software defect prediction technology plays an impor-
tant role in software quality assurance, and it is also an active
research topic in the field of software engineering data
mining [2, 3]. In the actual software development, test

resources are always limited, so it is necessary to prioritize
the allocation of limited test resources to modules that are
more likely to be defective [4]. Software defect prediction
technology aims to predict the defect proneness, defect
number, or defect density of a program module by using
defect prediction models based on statistical or machine
learning methods [3]. -e results of defect prediction models
help us to assign limited test resources more reasonably and
improve software quality.

Traditional defect predictions are performed at a coarse-
grained level (such as package or file level). However, when
large files are predicted as defect prone by predictors, it can
be time-consuming to perform code checks on them [5]. In
addition, since large files have been modified by multiple
developers, it is not easy to find the right developer to check

Hindawi
Scientific Programming
Volume 2019, Article ID 2384706, 13 pages
https://doi.org/10.1155/2019/2384706

mailto:yhq@ecust.edu.cn
mailto:gsfan@ecust.edu.cn
http://orcid.org/0000-0001-7489-2265
http://orcid.org/0000-0002-1899-1135
http://orcid.org/0000-0002-2702-0242
http://orcid.org/0000-0002-0077-719X
http://orcid.org/0000-0003-1927-2148
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2384706

the files [6]. To this end, just-in-time software defect pre-
diction (JIT-SDP) technology is proposed [7–10]. JIT-SDP is
made at change level, which has a finer granularity than
module level. Once developers submit a change for the
program, defect predictors can identify whether the change
is defect-inducing immediately. -erefore, JIT-SDP has the
advantages of fine granularity, instantaneity, and traceability
compared with traditional defect prediction [7].

In order to improve the performance of software defect
prediction, researchers have invested a lot of effort. -e main
research content includes the use of various machine
learning methods, feature selection, processing class im-
balance, processing noise, etc. [2]. Recently, researchers
propose a novel idea called local models that may help
improve the performance of defect prediction [11–14]. -e
local models divide all available training data into several
regions with similar metrics and train a prediction model for
each region. However, the research objects in previous are
file-level or class-level defect data sets. Whether local models
are still valid in the context of JIT-SDP remains for further
study.

To this end, we conduct experiment on the change-level
defect data sets from six open-source projects including
227417 changes. We empirically compare the classification
performance and effort-aware prediction performance of
local and global models through a large-scale empirical
study. In order to build local models, the experiment uses the
k-medoids clustering algorithm to divide the training
samples into homogeneous regions. For each region, the
experiment builds classification models and effort-aware
prediction models based on logistic regression and effort-
aware linear regression (EALR), respectively, which are
always used for baseline models in prior studies [7–9].

-e main contributions of this paper are as follows:

(i) We compare the classification performance and
effort-aware prediction performance of local and
global models in three evaluation scenarios, namely,
cross-validation scenario, cross-project-validation
scenario, and timewise-cross-validation scenario,
for JIT-SDP.

(ii) Considering the influence of the number of clusters
k on the performance of local models, we evaluate
the classification performance and effort-aware
prediction performance of local models with dif-
ferent values of k by adjusting k from 2 to 10.

(iii) -e empirical results show that local models per-
form worse in classification performance than
global models in three evaluation scenarios. In
addition, local models have worse effort-aware
prediction performance in the timewise-cross-
validation scenario. However, local models have
better effort-aware prediction performance than
global models in the cross-validation scenario and
cross-project-validation scenario. Particularly,
when the parameter k is set to 2, local models can
obtain optimal performance in the ACC and Popt

indicators.

-e results of the experiment provide valuable knowl-
edge about the advantages and limitations of local models in
the JIT-SDP problem. In order to ensure the repeatability of
the experiment and promote future research, we share the
code and data of the experiment.

-is paper is organized as follows: Section 2 introduces
the background and related work of software defect pre-
diction. Section 3 introduces the details of local models. -e
experimental setup is presented in Section 4. Section 5
demonstrates the experimental results and analysis. Section
6 introduces the threats to validity. Section 7 summarizes the
paper and describes future work.

2. Background and Related Work

2.1. Background of Software Defect Prediction. Software
defect prediction technology originated in the 1970s [15].
At that time, the software systems were less complex, and
researchers found that the number of software defects in a
program system was related to the number of lines of code.
In 1971, Akiyama et al. [16] proposed a formula for the
relationship between the number of software defects (D)
and lines of code (LOC) in a project: D � 4.86 +
0.018 × LOC. However, as software scale and complexity
continue to increase, the formula is too simple to predict
the relationship between D and LOC. -erefore, based on
empirical knowledge, researchers designed a series of
metrics associated with software defects. McCabe et al. [17]
believed that code complexity is better correlated with
software defects than the number of code lines and pro-
posed a cyclomatic complexity metric to measure code
complexity. In 1994, Chidamber and Kemerer [18] pro-
posed CK metrics for the object-oriented program code. In
addition to code-based metrics, researchers found that
metrics based on software development processes are also
associated with software defects. Nagappan and Ball [19]
proposed relative code churn metrics to predict defect
density at file level by measuring code churn during
software development.

-e purpose of defect prediction technology is to predict
the defect proneness, number of defects, or defect density of
a program module. Taking the prediction of defect prone-
ness as an example, the general process of defect prediction
technology is described in Figure 1.

(1) Program modules are extracted from the software
history repository, and the granularity of the mod-
ules can be set to package, file, change, or function
according to actual requirement.

(2) Based on the software code and software develop-
ment process, metrics related to software defects are
designed and used to measure program modules.
Defect data sets are built by mining defect logs in the
version control system and defect reports in the
defect tracking system.

(3) Defect data sets are performed necessary pre-
processing (excluding outliers, data normalization,
etc.). Defect prediction models are built by using

2 Scientific Programming

statistical or machine learning algorithms such as
Naive Bayes, random forest, and support vector
machines. Prediction models are evaluated based on
performance indicators such as accuracy, recall, and
AUC.

(4) When a new program module appears, the same
metrics are used to measure the module, and the
prediction models are used to predict whether the
module is defect prone (DP) or nondefect prone
(NDP).

2.2. Related Work

2.2.1. Just-In-Time Software Defect Prediction. Traditional
defect prediction techniques are performed at coarse
granularity (package, file, or function). Although these
techniques are effective in some cases, they have the fol-
lowing disadvantages [7]: first, the granularity of predictions
is coarse, so developers need to check a lot of code to locate
the defective code; second, program modules are often
modified by multiple developers, so it is difficult to find a
suitable expert to perform code checking on the defect-
prone modules; third, since the defect prediction is per-
formed in the late stages of the software development cycle,
developers may have forgotten the details of the develop-
ment, which reduces the efficiency of defects detection and
repair.

In order to overcome the shortcomings of traditional
defect prediction, a new technology called just-in-time
software defect prediction (JIT-SDP) is proposed [7, 20].
JIT-SDP is a fine-grained prediction method whose pre-
diction objects are code changes instead of modules, which
has the following merits: first, since the prediction is per-
formed at a fine granularity, the scope of the code inspection
can be reduced to save the effort of code inspection; second,
JIT-SDP is performed at the change level, and once a de-
veloper submits the modified code, the defect prediction can
be executed. -erefore, defect predictions are performed
more timely, and it is easy to find the right developer for
buggy changes.

In recent years, research related to JIT-SDP has de-
veloped rapidly. Mockus and Weiss [20] designed the
change metrics to evaluate the probability of defect-
inducing changes for initial modification requests (IMR)

in a 5ESS network switch project. Yang et al. [21] first
applied deep learning technology to JIT-SDP and pro-
posed a method called Deeper. -e empirical results show
that the Deeper method can detect more buggy changes
and have better F1 indicator than the EALR method.
Kamei et al. [10] conducted experiment on 11 open-source
projects for JIT-SDP using cross-project models. -ey
found that the cross-project models can perform well when
carefully selecting training data. Yang et al. [22] proposed a
two-layer ensemble learning method (TLEL), which le-
verages decision tree and ensemble learning method.
Experimental results show that TLEL can significantly
improve the PofB20 and F1 indicators compared to the
three baselines. Chen et al. [9] proposed a novel supervised
learning method MULTI, which applied multiobjective
optimization algorithm to software defect prediction.
Experimental results show that MULTI is superior to 43
state-of-the-art prediction models. Considering a commit
in the software development may be partially defective,
which may involve defective files and nondefective files. To
this end, Pascarella et al. [23] proposed a fine-grained JIT-
SDP model to predict buggy files in a commit based on ten
open-source projects. Experimental results show that 43%
defective commits are mixed by buggy and clean resources,
and their method can obtain 82% AUC-ROC to detect
defective files in a commit.

2.2.2. Effort-Aware Software Defect Prediction. In recent
years, researchers pointed out that when using the defect
prediction model, the cost-effectiveness of the model should
be considered [24]. Due to the high cost of checking for
potentially defective program modules, modules with high
defect densities should be prioritized when testing resources
are limited. Effort-aware defect prediction aims at finding
more buggy changes in limited testing resources, which has
been extensively studied in module-level (package, file, or
function) defect prediction [25, 26]. Kamei et al. [7] applied
effort-aware defect prediction to JIT-SDP. In their study, they
used code churn (total number of modified lines of code) as a
measure of the effort and proposed the EALR model based on
linear regression. -eir study showed that 35% defect-
inducing changes can be detected by using only 20% effort.

Recently, many supervised and unsupervised learning
methods are investigated in the context of effort-aware JIT-

Software history
repository

Program modules

Design
metrics

Extract
program
module

New program
module

Metrics Prediction

Build
models Prediction

model

Metrics Label

NDP

DF

Figure 1: -e process of software defect prediction.

Scientific Programming 3

SDP. Yang et al. [8] compared simple unsupervised models
with supervised models for effort-aware JIT-SDP and found
that many unsupervised models outperform the state-of-
the-art supervised models. Inspired by the study of Yang
et al. [8], Liu et al. [27] proposed a novel unsupervised
learning method CCUM which is based on code churn.
-eir study showed that CCUM performs better than the
state-of-the-art prediction model at that time. As the results
Yang et al. [8] reported are startling, Fu et al. [28] repeated
their experiment. -eir study indicates that supervised
learning methods are better than unsupervised methods
when their analysis is conducted on a project-by-project
basis. However, their study supports the general goal of Yang
et al. [8]. Huang et al. [29] also performed a replication study
based on the study of Yang et al. [8], and extended their
study in the literature [30]. -ey found three weaknesses of
the LT model proposed by Yang et al. [8]: more context
switching, more false alarms, and worse F1 than supervised
methods. -erefore, they proposed a novel supervised
method CBS+, which combines the advantages of LT and
EALR. Empirical results demonstrate that CBS + can detect
more buggy changes than EALR. More importantly,
CBS + can significantly reduce context switching compared
to LT.

3. Software Defect Prediction Based on
Local Models

Menzies et al. [11] first applied local models to defect
prediction and effort estimation in 2011 and extended their
study work in 2013 [12]. -e basic idea of local models is
simple: first, cluster all training data into homogeneous
regions; then train a prediction model for each region. A test
instance will be predicted by one of the predictors [31].

To the best of our knowledge, there are only five studies
of local models in the filed of defect prediction. Menzies et al.
[11, 12] first proposed the idea of local models. -eir studies
attempted to explore the best way to learn lessons for defect
prediction and effort estimation. -ey adopted WHERE
algorithm to cluster the data into the regions with similar
properties. Experimental results showed that the lessons
learned from clusters have better prediction performance by
comparing the lessons generated from all the data, local
projects, and each cluster. Scanniello et al. [13] proposed a
novel defect prediction method based on software clustering
for class-level defect prediction. -eir research demon-
strated that for a class to be predicted in a project system, the
models built from the classes related to it outperformed the
classes from the entire system. Bettenburg et al. [14] com-
pared local and global models based on statistical learning
technology for software defect prediction. Experimental
results demonstrated that local models had better fit and
prediction performance. Herbold et al. [31] introduced local
models into the context of cross-project defect prediction.
-ey compared local models with global models and a
transfer learning technique. -eir findings showed that local
models just made a minor difference compared with global
models and the transfer learning model. Mezouar et al. [32]
compared the performance of local and global models in the

context of effort-aware defect prediction. -eir study is
based on 15 module-level defect data sets and uses k-
medoids to build local models. Experimental results showed
that local models perform worse than global models.

-e process and difference between local models and
global models are described in Figure 2. For global models,
all training data are used to build prediction models by using
statistical or machine learning methods, and the models can
be used to predict any test instance. In comparison, local
models first build a cluster model and divide the training
data into several clusters based on the cluster model. In the
prediction phase, each test instance is assigned a cluster
number based on the cluster models. And each test instance
is predicted by the model trained by the corresponding
cluster instead of all the training data.

In our experiments, we apply local models to the JIT-
SDP problem. In previous studies, various clustering
methods have been used in local models, such as WHERE
[11, 12], MCLUST [14], k-means [14], hierarchical clustering
[14], BorderFlow [13], EM clustering [31], and k-mediods
[32]. According to the suggestion of Herbold et al. [31], one
can use any of these clustering methods. Our experiment
adopts k-medoids as the clustering method in local models.
K-medoids is a widely used clustering method. Different
from k-means used in the previous study [14], the cluster
center of k-medoids is an object, which has low sensitivity to
outliers. Moreover, there are mature Python libraries sup-
porting the implementation of k-medoids. In the stage of
model building, we use logistic regression and EALR to build
the classification model and the effort-aware prediction
model in local models, which are used as baseline models in
previous JIT-SDP studies [7–9]. -e detailed process of local
models for JIT-SDP is described in Algorithm 1.

4. Experimental Setup

-is article answers the following three questions through
experiment:

(i) RQ1: how is the classification performance and
effort-aware prediction performance of local models
compared to those of global models in the cross-
validation scenario?

(ii) RQ2: how is the classification performance and
effort-aware prediction performance of local models
compared to those of global models in the cross-
project-validation scenario?

(iii) RQ3: how is the classification performance and
effort-aware prediction performance of local models
compared to those of global models in the timewise-
cross-validation scenario?

-is section introduces the experimental setup from five
aspects: data sets, modeling methods, performance evalua-
tion indicators, data analysis method, and data pre-
processing. Our experiment is performed on the hardware
with Intel (R) Core (TM) i7-7700 CPU 3.60GHZ. -e op-
eration system is Windows 10. -e programming environ-
ment for scripts is Python 3.6.

4 Scientific Programming

4.1. Data Sets. -e data sets used in experiment are widely
used for JIT-SDP, which are shared by Kamei et al. [7]. -e
data sets contain six open-source projects from different
application domains. For example, Bugzilla (BUG) is an
open-source defect tracking system, Eclipse JDT (JDT) is a
full-featured Java integrated development environment
plugin for the Eclipse platform, Mozilla (MOZ) is a web
browser, and PostgreSQL (POS) is a database system [9].
-ese data sets are extracted from CVS repositories of
projects and corresponding bug reports [7]. -e basic in-
formation of the data sets is shown in Table 1.

To predict whether a change is defective or not, Kamei
et al. [7] design 14 metrics associated with software defects,
which can be grouped into five groups (i.e., diffusion, size,
purpose, history, and experience). -e specific description of
these metrics is shown in Table 2. A more detailed in-
troduction to the metrics can be found in the literature [7].

4.2. Modeling Methods. -ere are three modeling methods
that are used in our experiment. First, in the process of using

local models, the training set is divided into multiple
clusters. -erefore, this process is completed by the k-
medoids model. Second, the classification performance and
effort-aware prediction performance of local models and
global models are investigated in our experiment. -erefore,
we use logistic regression and EALR to build classification
models and effort-aware prediction models, respectively,
which are used as baseline models in previous JIT-SDP
studies [7–9]. Details of the three models are shown below.

4.2.1. K-Medoids. -e first step in local models is to use a
clustering algorithm to divide all training data into several
homogeneous regions. In this process, the experiment uses
k-medoids as a clustering algorithm, which is widely used in
different clustering tasks. Different from k-means, the co-
ordinate center of each cluster of k-medoids is a repre-
sentative object rather than a centroid. Hence, k-medoids is
less sensitive to the outliers. -e objective function of k-
medoids can be defined by using Equation (1), where p is a
sample in the cluster Ci and Oi is a medoid in the cluster Ci:

Training data

Test data
Prediction result

Classifier

(a)

Training data Clustering algorithm

Cluster 1

Cluster i

Cluster n

Cluster model

Cluster number i

Classifier i

Prediction result

Test data

(b)

Figure 2: -e process of (a) global and (b) local models.

Input: training set: D � (x1, y1), (x2, y2), . . . , (xn, yn) ; test set: T � (x1, y1), (x2, y2), . . . , (xm, ym) ; the number of clusters: k
Output: prediction results: R

(1) begin
(2) R⟵[

(3) //Divide the training set into k clusters
(4) clusters, cluster_centers� k-medoids (D, k)
(5) //Train a classifier for each cluster
(6) classifiers�modeling_algorithm (clusters)
(7) for Instance t in T do

(8) //Assign a cluster number i for each instance t
(9) i� calculate_min_distance (t, cluster_centers)

(10) r� classifiers [i].predict (t) //perform prediction
(11) R.append (r)
(12) end
(13) end

ALGORITHM 1: -e application process of local models for JIT-SDP.

Scientific Programming 5

E �k
i�1

pϵCi

p−Oi
 2. (1)

Among different k-medoids algorithms, the partitioning
around medoids (PAM) algorithm is used in the experiment,
which was proposed by Kaufman el al. [33] and is one of the
most popularly used algorithms for k-medoids.

4.2.2. Logistic Regression. Similar to prior studies, logistic
regression is used to build classification models [7]. Logistic
regression is a widely used regression model that can be used
for a variety of classification and regression tasks. Assuming
that there are n metrics for a change c, logistic regression can
be expressed by using Equation (2), where w0, w1, . . . , wn
denote the coefficients of logistic regression and the in-
dependent variables m1, . . . , mn represent the metrics of a
change, which are introduced in Table 2. -e output of the
model y(c) indicates the probability that a change is buggy:

y(c) �
1

1 + e− w0+w1m1+...+wnmn()
. (2)

In our experiment, logistic regression is used to solve
classification problems. However, the output of the model is
a continuous value with a range of 0 to 1. -erefore, for a
change c, if the value of y(c) is greater than 0.5, then c is
classified as buggy, otherwise it is classified as clean. -e
process can be defined as follows:

Y(c) �
1, if y(c)> 0.5,
0, if y(c)≤ 0.5.

 (3)

4.2.3. Effort-Aware Linear Regression. Arisholm et al. [24]
pointed out that the use of defect prediction models should
consider not only the classification performance of the
model, but also the cost-effectiveness of code inspection.
Afterwards, a large number of studies focus on the effort-
aware defect prediction [8, 9, 11, 12]. Effort-aware linear
regression (EALR) was firstly proposed by Kamei et al. [7]
for solving effort-aware JIT-SDP, which is based on linear
regression models. Different from the above logistic re-
gression, the dependent variable of EALR is Y(c)/Effort(c),
where Y(c) denotes the defect proneness of a change and
Effort(c) denotes the effort required to code checking for the
change c. According to the suggestion of Kamei et al. [7], the
effort for a change can obtained by calculating the number of
modified lines of code.

4.3. Performance Indicators. -ere are four performance
indicators used to evaluate and compare the performance of
local and global models for JIT-SDP (i.e., F1, AUC, ACC,
and Popt). Specifically, we use F1 and AUC to evaluate the
classification performance of prediction models and use
ACC and Popt to evaluate the effort-aware prediction per-
formance of prediction models. -e details are as follows.

Table 1: -e basic information of data sets.

Project Period Number of defective changes Number of changes % defect rate

BUG 1998/08/26∼2006/12/16 1696 4620 36.71
COL 2002/11/25∼2006/07/27 1361 4455 30.55
JDT 2001/05/02∼2007/12/31 5089 35386 14.38
MOZ 2000/01/01∼2006/12/17 5149 98275 5.24
PLA 2001/05/02∼2007/12/31 9452 64250 14.71
POS 1996/07/09∼2010/05/15 5119 20431 25.06

Table 2: -e description of metrics.

Dimension Metric Description

Diffusion

NS Number of modified subsystems
ND Number of modified directories
NF Number of modified files

Entropy Distribution of modified code across each file

Size
LA Lines of code added
LD Lines of code deleted
LT Lines of code in a file before the change

Purpose FIX Whether or not the change is a defect fix

History

NDEV Number of developers that changed the files

AGE
Average time interval between the last and the

current change
NUC Number of unique last changes to the files

Experience
EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on a subsystem

6 Scientific Programming

-e experiment first uses F1 and AUC to evaluate the
classification performance of models. JIT-SDP technology
aims to predict the defect proneness of a change, which is a
classification task. -e predicted results can be expressed as a
confusion matrix shown in Table 3, including true positive
(TP), false negative (FN), false positive (FP), and true
negative (TN).

For classification problems, precision (P) and recall (R)
are often used to evaluate the prediction performance of the
model:

P �
TP

TP + FP
,

R �
TP

TP + FN
.

(4)

However, the two indicators are usually contradictory in
their results. In order to evaluate a prediction model
comprehensively, we use F1 to evaluate the classification
performance of the model, which is a harmonic mean of
precision and recall and is shown in the following equation:

F1 �
2 × P × R

P + R
. (5)

-e second indicator is AUC. Data class imbalance
problems are often encountered in software defect pre-
diction. Our data sets are also imbalanced (the number of
buggy changes is much less than clean changes). In the class-
imbalanced problem, threshold-based evaluation indicators
(such as accuracy, recall rate, and F1) are sensitive to the
threshold [4]. -erefore, a threshold-independent evalua-
tion indicator AUC is used to evaluate the classification
performance of a model. AUC (area under curve) is the area
under the ROC (receiver operating characteristic) curve. -e
drawing process of the ROC curve is as follows. First, sort the
instances in a descending order of probability that is pre-
dicted to be positive, and then treat them as positive ex-
amples in turn. In each iteration, the true positive rate (TPR)
and the false positive rate (FPR) are calculated as the or-
dinate and the abscissa, respectively, to obtain an ROC
curve:

TPR �
TP

TP + FN
,

FPR �
FP

TN + FP
.

(6)

-e experiment uses ACC and Popt to evaluate the effort-
aware prediction performance of local and global models.
ACC and Popt are commonly used performance indicators,
which have widely been used in previous research [7–9, 25].

-e calculation method of ACC and Popt is shown in
Figure 3. In Figure 3, x-axis and y-axis represent the cu-
mulative percentage of code churn (i.e., the number of lines
of code added and deleted) and defect-inducing changes. To
compute the values of ACC and Popt, three curves are in-
cluded in Figure 3: optimal model curve, prediction model
curve, and worst model curve [8]. In the optimal model
curve, the changes are sorted in a descending order based on

their actual defect densities. In the worst model curve, the
changes are sorted in the ascending order according to their
actual defect densities. In the prediction model curve, the
changes are sorted in the descending order based on their
predicted defect densities. -en the area between the three
curves and the x-axis, respectively, Area(optimal),
Area(m), and Area(worst) are calculated. ACC indicates
the recall of defect-inducing changes when 20% of the effort
is invested based on the prediction model curve. According
to [7], Popt can be defined by the following equation:

Popt � 1− area(optimal)− area(m)
area(optimal)− optimal(worst). (7)

4.4. Data Analysis Method. -e experiment considers three
scenarios to evaluate the performance of prediction models,
which are 10 times 10-fold cross-validation, cross-project-
validation, and timewise-cross-validation, respectively. -e
details are as follows.

4.4.1. 10 Times 10-Fold Cross-Validation. Cross-validation is
performed within the same project, and the basic process of
10 times 10-fold cross-validation is as follows: first, the data
sets of a project are divided into 10 parts with equal size.
Subsequently, nine parts of them are used to train a pre-
diction model and the remaining part is used as the test set.
-is process is repeated 10 times in order to reduce the
randomness deviation. -erefore, 10 times 10-fold cross-
validation can produce 10 × 10 � 100 results.

Table 3: Confusion matrix.

Actual value
Prediction result

Positive Negative

Positive TP FN
Negative FP TN

D
ef

ec
t-

in
d

u
ci

n
g

ch
an

ge
s

(%
)

100

80

60

40

20

0
100806040200

Code churn (%)

Optimal model

Prediction model

Worst model

Figure 3: -e performance indicators of ACC and Popt.

Scientific Programming 7

4.4.2. Cross-Project-Validation. Cross-project defect pre-
diction has received widespread attention in recent years
[34]. -e basic idea of cross-project defect prediction is to
train a defect prediction model with the defect data sets of a
project to predict defects of another project [8]. Given data
sets containing n projects, n × (n− 1) run results can be
generated for a prediction model. -e data sets used in our
experiment contain six open-source projects, so
6 × (6− 1) � 30 prediction results can be generated for a
prediction model.

4.4.3. Timewise-Cross-Validation. Timewise-cross-validation
is also performed within the same project, but it con-
siders the chronological order of changes in the data sets
[35]. Defect data sets are collected in the chronological order
during the actual software development process. -erefore,
changes committed early in the data sets can be used to
predict the defect proneness of changes committed late. In
the timewise-cross-validation scenario, all changes in the
data sets are arranged in the chronological order, and the
changes in the same month are grouped in the same group.
Suppose the data sets are divided into n groups. Group i and
group i + 1 are used to train a prediction model, and the
group i + 4 and group i + 5 are used as a test set. -erefore,
assuming that a project contains n months of data sets, n− 5
run results can be generated for a prediction model.

-e experiment uses the Wilcoxon signed-rank test [36]
and Cliff’s δ [37] to test the significance of differences in
classification performance and prediction performance be-
tween local and global models. -e Wilcoxon signed-rank
test is a popular nonparametric statistical hypothesis test.
We use p values to examine if the difference of the per-
formance of local and global models is statistically significant
at a significance level of 0.05. -e experiment also uses Cliff’s
δ to determine the magnitude of the difference in the
prediction performance between local models and global
models. Usually the magnitude of the difference can be
divided into four levels, i.e., trivial ((|δ|< 0.147)), small
(0.147≤ |δ|< 0.33), moderate (0.33≤ |δ|< 0.474), and large
(≥0.474) [38]. In summary, when the p value is less than
0.05 and Cliff ’s δ is greater than or equal to 0.147, local
models and global models have significant differences in
prediction performance.

4.5. Data Preprocessing. According to suggestion of Kamei
et al. [7], it is necessary to preprocess the data sets. It includes
the following three steps:

(1) Removing Highly Correlated Metrics. -e ND and
REXP metrics are excluded because NF and ND,
REXP, and EXP are highly correlated. LA and LD are
normalized by dividing by LT, since LA and LD are
highly correlated. LT and NUC are normalized by
dividing by NF since LT and NUC are highly cor-
related with NF.

(2) Logarithmic Transformation. Since most metrics are
highly skewed, each metric executes logarithmic
transformation (except for fix).

(3) Dealing with Class Imbalance. -e data sets used in
the experiment have the problem of class imbalance,
i.e., the number of defect-inducing changes is far less
than the number of clean changes. -erefore, we
perform random undersampling on the training set.
By randomly deleting clean changes, the number of
buggy changes remains the same as the number of
clean changes. Note that the undersampling is not
performed in the test set.

5. Experimental Results and Analysis

5.1. Analysis for RQ1. To investigate and compare the per-
formance of local and global models in the 10 times 10-fold
cross-validation scenario, we conduct a large-scale empirical
study based on data sets from six open-source projects. -e
experimental results are shown in Table 4. As is shown in
Table 4, the first column represents the evaluation indicators
for prediction models, including AUC, F1, ACC, and Popt;
the second column denotes the project names of six data sets;
the third column shows the performance values of the global
models in the four evaluation indicators; from the fourth
column to the twelfth column, the performance values of the
local models at different k values are shown. Considering
that the number of clusters k may affect the performance of
local models, the value of parameter k is tuned from 2 to 10.
Since 100 prediction results are generated in the 10 times 10-
fold cross-validation scenario, the values in the table are
medians of the experimental results. We do the following
processing on the data in Table 4:

(i) We performed the significance test defined in
Section 4.4 on the performance of the local and
global models. -e performance values of local
models that are significantly different from the
performance values of global model are bolded.

(ii) -e performance values of the local models which
are significantly better than those of the global
models are given in italics.

(iii) -e W/D/L values (i.e., the number of projects for
which local models can obtain a better, equal, and
worse prediction performance than global models)
are calculated under different k values and different
evaluation indicators.

First, we analyze and compare the classification per-
formance of local and global models. As is shown in Table 4,
firstly, all of the performance of local models with different
parameters k and different projects are worse than that of
global models in the AUC indicator. Secondly, in most cases,
the performance of local models are worse than that of global
models (except for four values in italics) in the F1 indicator.
-erefore, it can be concluded that global models perform
better than local models in the classification performance.

Second, we investigate and compare effort-aware pre-
diction performance for local and global models. As can be
seen from Table 4, local models are valid for effort-aware
JIT-SDP. However, local models have different effects on
different projects and different parameters k.

8 Scientific Programming

First, local models have different effects on different
data sets. To describe the effectiveness of local models on
different data sets, we calculate the number of times that
local models perform significantly better than global
models on 9 k values and two evaluation indicators
(i.e., ACC and Popt) for each data set. -e statistical results
are shown in Table 5, where the second row is the number
of times that local models perform better than global
models for each project. It can be seen that local models
have better performance on the projects MOZ and PLA and
poor performance on the projects BUG and COL. Based on
the number of times that local models outperform global
models in six projects, we rank the project as shown in the
third row. In addition, we list the sizes of data sets and their
rank as shown in the fourth row. It can be seen that the
performance of local models on data sets has a strong
correlation with the size of data sets. Generally, the larger
the size of the data set, the more significant the perfor-
mance improvement of local models.

In view of this situation, we consider that if the size of the
data set is too small when using local models, since the data
sets are divided into multiple clusters, the training samples
of each cluster will be further reduced, which will lead to the
performance degradation of models. While the size of data
sets is large, the performance of the model is not easily
limited by the size of the data sets so that the advantages of
local models are better reflected.

In addition, the number of clusters k also has an impact
on the performance of local models. As can be seen from the
table, according to the W/D/L analysis, local models can
obtain the best ACC indicator when k is set to 2 and obtain
the best Popt indicator when k is set to 2 and 6. -erefore, we
recommend that in the cross-validation scenario, when
using local models to solve the effort-aware JIT-SDP
problem, the parameter k can be set to 2.

-is section analyzes and compares the classification
performance and effort-aware prediction performance of
local and global models in 10 times 10-fold cross-validation
scenario. -e empirical results show that compared with
global models, local models perform poorly in the classifi-
cation performance but perform better in the effort-aware
prediction performance. However, the performance of local
models is affected by the parameter k and the size of the data
sets. -e experimental results show that local models can
obtain better effort-aware prediction performance on the
project with larger size of data sets and can obtain better
effort-aware prediction performance when k is set to 2.

5.2.Analysis forRQ2. -is section discusses the performance
differences between local and global models in the cross-
project-validation scenario for JIT-SDP. -e results of the
experiment are shown in Table 6, in which the first column
indicates four evaluation indicators including AUC, F1,

Table 4: Local vs. global models in the 10 times 10-fold cross-validation scenario.

Indicator Project Global
Local

k� 2 k� 3 k� 4 k� 5 k� 6 k� 7 k� 8 k� 9 k� 10

AUC

BUG 0.730 0.704 0.687 0.684 0.698 0.688 0.686 0.686 0.693 0.685

COL 0.742 0.719 0.708 0.701 0.703 0.657 0.666 0.670 0.668 0.660
JDT 0.725 0.719 0.677 0.670 0.675 0.697 0.671 0.674 0.671 0.654

MOZ 0.769 0.540 0.741 0.715 0.703 0.730 0.730 0.725 0.731 0.722
PLA 0.742 0.733 0.702 0.693 0.654 0.677 0.640 0.638 0.588 0.575

POS 0.777 0.764 0.758 0.760 0.758 0.753 0.755 0.705 0.757 0.757
W/D/L — 0/0/6 0/0/6 0/0/6 0/0/6 0/0/6 0/0/6 0/0/6 0/0/6 0/0/6

F1

BUG 0.663 0.644 0.628 0.616 0.603 0.598 0.608 0.610 0.601 0.592
COL 0.696 0.672 0.649 0.669 0.678 0.634 0.537 0.596 0.604 0.564

JDT 0.723 0.706 0.764 0.757 0.734 0.695 0.615 0.643 0.732 0.722
MOZ 0.825 0.374 0.853 0.758 0.785 0.741 0.718 0.737 0.731 0.721

PLA 0.704 0.678 0.675 0.527 0.477 0.557 0.743 0.771 0.627 0.604
POS 0.762 0.699 0.747 0.759 0.746 0.698 0.697 0.339 0.699 0.700

W/D/L — 0/0/6 2/0/4 1/1/4 0/1/5 0/0/6 0/1/5 1/0/5 0/1/5 0/1/5

ACC

BUG 0.421 0.452 0.471 0.458 0.424 0.451 0.450 0.463 0.446 0.462
COL 0.553 0.458 0.375 0.253 0.443 0.068 0.195 0.459 0.403 0.421

JDT 0.354 0.532 0.374 0.431 0.291 0.481 0.439 0.314 0.287 0.334
MOZ 0.189 0.386 0.328 0.355 0.364 0.301 0.270 0.312 0.312 0.312
PLA 0.368 0.472 0.509 0.542 0.497 0.509 0.456 0.442 0.456 0.495
POS 0.336 0.490 0.397 0.379 0.457 0.442 0.406 0.341 0.400 0.383

W/D/L — 5/0/1 4/1/1 4/1/1 3/1/2 4/1/1 4/1/1 2/2/2 3/1/2 4/1/1

Popt

BUG 0.742 055 0.747 0.744 0.726 0.738 0.749 0.750 0.760 0.750 0.766
COL 0.726 0.661 0.624 0.401 0.731 0.295 0.421 0.644 0.628 0.681
JDT 0.660 0.779 0.625 0.698 0.568 0.725 0.708 0.603 0.599 0.634

MOZ 0.555 0.679 0.626 0.645 0.659 0.588 0.589 0.643 0.634 0.630
PLA 0.664 0.723 0.727 0.784 0.746 0.758 0.718 0.673 0.716 0.747
POS 0.673 0.729 0.680 0.651 0.709 0.739 0.683 0.596 0.669 0.644

W/D/L — 4/1/1 2/2/2 2/1/3 3/2/1 4/1/1 2/3/1 1/2/3 1/3/2 2/1/3

Scientific Programming 9

ACC, and Popt; the second column represents the perfor-
mance values of local models; from the third column to the
eleventh column, the prediction performance of local
models under different parameters k is represented. In our
experiment, six data sets are used in the cross-project-
validation scenario. -erefore, each prediction model pro-
duces 30 prediction results. -e values in Table 6 represent
the median of the prediction results.

For the values in Table 6, we do the following processing:

(i) Using the significance test method, the performance
values of local models that are significantly different
from those of global models are bolded.

(ii) -e performance values of local models that are
significantly better than those of global models are
given in italics.

(iii) -e W/D/L column analyzes the number of times
that local models perform significantly better than
global models at different parameters k.

First, we compare the difference in classification per-
formance between local models and global models. As can be
seen from Table 6, in the AUC and F1 indicators, the
classification performance of local models under different
parameter k is worse than or equal to that of global models.
-erefore, we can conclude that in the cross-project-
validation scenario, local models perform worse than
global models in the classification performance.

Second, we compare the effort-aware prediction per-
formance of local and global models. It can be seen from
Table 6 that the performance of local models is better than or
equal to that of global models in the ACC and Popt indicators
when the parameter k is from 2 to 10. -erefore, local models
are valid for effort-aware JIT-SDP in the cross-validation
scenario. In particular, when the number k of clusters is set
to 2, local models can obtain better ACC values and Popt

values than global models; when k is set to 5, local models
can obtain better ACC values. -erefore, it is appropriate to
set k to 2, which can find 49.3% defect-inducing changes
when using 20% effort and increase the ACC indicator by
57.0% and increase the Popt indicator by 16.4%.

In the cross-project-validation scenario, local models
perform worse in the classification performance but perform
better in the effort-aware prediction performance than
global models. However, the setting of k in local models has
an impact on the effort-aware prediction performance for
local models. -e empirical results show that when k is set to
2, local models can obtain the optimal effort-aware pre-
diction performance.

5.3. Analysis for RQ3. -is section compares the prediction
performance of local and global models in the timewise-

cross-validation scenario. Since in the timewise-cross-
validation scenario only two months of data in each data
sets are used to train prediction models, the size of the
training sample in each cluster is small. -rough experi-
ment, we find that if the parameter k of local models is set
too large, the number of training samples in each cluster
may be too small or even equal to 0. -erefore, the ex-
periment sets the parameter k of local models to 2. -e
experimental results are shown in Table 7. Suppose a
project contains n months of data, and prediction models
can produce n− 5 prediction results in the timewise-cross-
validation scenario. -erefore, the third and fourth col-
umns in Table 7 represent the median and standard de-
viation of prediction results for global and local models.
Based on the significance test method, the performance
values of local models with significant differences from
those of global models are bold. -e row W/D/L sum-
marizes the number of projects for which local models can
obtain a better, equal, and worse performance than global
models in each indicator.

First, we compare the classification performance of local
and global models. It can be seen from Table 7 that local
models perform worse on the AUC and F1 indicators than
global models on the 6 data sets. -erefore, it can be con-
cluded that local models perform poorly in classification
performance compared to global models in the timewise-
cross-validation scenario.

Second, we compare the effort-aware prediction per-
formance of local and global models. It can be seen from
Table 7 that in the projects BUG and COL, local models have
worse ACC and Popt indicators than global models, while in
the other four projects (JDT, MOZ, PLA, and POS), local
models and global models have no significant difference in
the ACC and Popt indicators. -erefore, local models per-
form worse in effort-aware prediction performance than
global models in the timewise-cross-validation scenario.
-is conclusion is inconsistent with the conclusions in
Sections 5.1 and 5.2. For this problem, we consider that the
main reason lies in the size of the training sample. In the
timewise-cross-validation scenario, only two months of data
in the data sets are used to train prediction models (there are
only 452 changes per month on average). When local models
are used, since the training set is divided into several clusters,
the number of training samples in each cluster is further
decreased, which results in a decrease in the effort-aware
prediction performance of local models.

In this section, we compare the classification perfor-
mance and effort-aware prediction performance of local and
global models in the timewise-cross-validation scenario.
Empirical results show that local models perform worse than
global models in the classification performance and effort-
aware prediction performance. -erefore, we recommend

Table 5: -e number of wins of local models at different k values.

Project BUG COL JDT MOZ PLA POS

Count 4 0 7 18 14 11
Rank 5 6 4 1 2 3
Number of changes (rank) 4620 (5) 4455 (6) 35386 (3) 98275 (1) 64250 (2) 20431 (3)

10 Scientific Programming

using global models to solve the JIT-SDP problem in the
timewise-cross-validation scenario.

6. Threats to Validity

6.1. External Validity. Although our experiment uses public
data sets that have extensively been used in previous studies,
we cannot yet guarantee that the discovery of the experiment
can be applied to all other change-level defect data sets.
-erefore, the defect data sets of more projects should be
mined in order to verify the generalization of the experi-
mental results.

6.2. Construct Validity. We use F1, AUC, ACC, and Popt to
evaluate the prediction performance of local and global
models. Because defect data sets are often imbalanced, AUC
is more appropriate as a threshold-independent evaluation
indicator to evaluate the classification performance of

models [4]. In addition, we use F1, a threshold-based
evaluation indicator, as a supplement to AUC. Besides,
similar to prior study [7, 9], the experiment uses ACC and
Popt to evaluate the effort-aware prediction performance of
models. However, we cannot guarantee that the experi-
mental results are valid in all other evaluation indicators
such as precision, recall, Fβ, and PofB20.

6.3. Internal Validity. Internal validity involves errors in the
experimental code. In order to reduce this risk, we carefully
examined the code of the experiment and referred to the
code published in previous studies [7, 8, 29] so as to improve
the reliability of the experiment code.

7. Conclusions and Future Work

In this article, we firstly apply local models to JIT-SDP. Our
study aims to compare the prediction performance of local
and global models under cross-validation, cross-project-
validation, and timewise-cross-validation for JIT-SDP. In
order to compare the classification performance and effort-
aware prediction performance of local and global models, we
first build local models based on the k-medoids method.
Afterwards, logistic regression and EALR are used to build
classification models and effort-aware prediction models for
local and global models. -e empirical results show that local
models perform worse in the classification performance than
global models in three evaluation scenarios. Moreover, local
models have worse effort-aware prediction performance in the
timewise-cross-validation scenario. However, local models are
significantly better than global models in the effort-aware
prediction performance in the cross-validation-scenario and
timewise-cross-validation scenario. Particularly, the optimal
effort-aware prediction performance can be obtained when
the parameter k of local models is set to 2. -erefore, local
models are still promising in the context of effort-aware JIT-
SDP.

In the future, first, we plan to consider more commercial
projects to further verify the validity of the experimental
conclusions. Second, logistic regression and EALR are used
in local and global models. Considering that the choice of
modeling methods will affect the prediction performance of
local and global models, we hope to add more baselines to
local and global models to verify the generalization of ex-
perimental conclusions.

Data Availability

-e experiment uses public data sets shared by Kamei et al.
[7], and they have already published the download address of

Table 6: Local vs. global models in the cross-project-validation scenario.

Indicator Global
Local

W/D/L
k� 2 k� 3 k� 4 k� 5 k� 6 k� 7 k� 8 k� 9 k� 10

AUC 0.706 0.683 0.681 0.674 0.673 0.673 0.668 0.659 0.680 0.674 0/0/9
F1 0.678 0.629 0.703 0.696 0.677 0.613 0.620 0.554 0.629 0.637 0/4/5
ACC 0.314 0.493 0.396 0.348 0.408 0.393 0.326 0.34 0.342 0.345 2/7/0

Popt 0.656 0.764 0.691 0.672 0.719 0.687 0.619 0.632 0.667 0.624 1/8/0

Table 7: Local vs. global models in the timewise-cross-validation
scenario.

Indicators Project Global Local (k� 2)

AUC

BUG 0.672± 0.125 0.545± 0.124
COL 0.717± 0.075 0.636± 0.135
JDT 0.708± 0.043 0.645± 0.073
MOZ 0.749± 0.034 0.648± 0.128
PLA 0.709± 0.054 0.642± 0.076
POS 0.743± 0.072 0.702± 0.095

W/D/L — 0/0/6

F1

BUG 0.587± 0.108 0.515± 0.128
COL 0.651± 0.066 0.599± 0.125
JDT 0.722± 0.048 0.623± 0.161
MOZ 0.804± 0.050 0.696± 0.190
PLA 0.702± 0.053 0.618± 0.162
POS 0.714± 0.065 0.657± 0.128

W/D/L — 0/0/6

ACC

BUG 0.357± 0.212 0.242± 0.210
COL 0.426± 0.168 0.321± 0.186
JDT 0.356± 0.148 0.329± 0.189
MOZ 0.218± 0.132 0.242± 0.125
PLA 0.358± 0.181 0.371± 0.196
POS 0.345± 0.159 0.306± 0.205

W/D/L — 0/4/2

Popt

BUG 0.622± 0.194 0.458± 0.189
COL 0.669± 0.150 0.553± 0.204
JDT 0.654± 0.101 0.624± 0.142
MOZ 0.537± 0.110 0.537± 0.122
PLA 0.631± 0.115 0.645± 0.151
POS 0.615± 0.131 0.583± 0.167

W/D/L — 0/4/2

Scientific Programming 11

the data sets in their paper. In addition, in order to verify the
repeatability of our experiment and promote future research,
all the experimental code in this article can be downloaded at
https://github.com/yangxingguang/LocalJIT.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is work was partially supported by the NSF of China
under Grant nos. 61772200 and 61702334, Shanghai Pujiang
Talent Program under Grant no. 17PJ1401900, Shanghai
Municipal Natural Science Foundation under Grant nos.
17ZR1406900 and 17ZR1429700, Educational Research
Fund of ECUST under Grant no. ZH1726108, and Collab-
orative Innovation Foundation of Shanghai Institute of
Technology under Grant no. XTCX2016-20.

References

[1] M. Newman, Software Errors Cost US Economy $59.5 Billion
Annually, NIST Assesses Technical Needs of Industry to Improve
Software-Testing, 2002, http://www.abeacha.com/NIST_press_
release_bugs_cost.htm.

[2] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to
software defect prediction,” IET Software, vol. 12, no. 3,
pp. 161–175, 2018.

[3] X. Chen, Q. Gu, W. Liu, S. Liu, and C. Ni, “Survey of static
software defect prediction,” Ruan Jian Xue Bao/Journal of
Software, vol. 27, no. 1, 2016, in Chinese.

[4] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto, “An empirical comparison of model validation
techniques for defect prediction models,” IEEE Transactions
on Software Engineering, vol. 43, no. 1, pp. 1–18, 2017.

[5] A. G. Koru, D. Dongsong Zhang, K. El Emam, and
H. Hongfang Liu, “An investigation into the functional form
of the size-defect relationship for software modules,” IEEE
Transactions on Software Engineering, vol. 35, no. 2,
pp. 293–304, 2009.

[6] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software
changes: clean or buggy?,” IEEE Transactions on Software
Engineering, vol. 34, no. 2, pp. 181–196, 2008.

[7] Y. Kamei, E. Shihab, B. Adams et al., “A large-scale empirical
study of just-in-time quality assurance,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 757–773, 2013.

[8] Y. Yang, Y. Zhou, J. Liu et al., “Effort-aware just-in-time defect
prediction: simple unsupervised models could be better than
supervised models,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engi-
neering, pp. 157–168, Hong Kong, China, November 2016.

[9] X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, “MULTI: multi-
objective effort-aware just-in-time software defect prediction,”
Information and Software Technology, vol. 93, pp. 1–13, 2018.

[10] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita,
N. Ubayashi, and A. E. Hassan, “Studying just-in-time defect
prediction using cross-project models,” Empirical Software
Engineering, vol. 21, no. 5, pp. 2072–2106, 2016.

[11] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and
D. R. Cok, “Local vs. global models for effort estimation and
defect prediction,” in Proceedings of the 26th IEEE/ACM

International Conference on Automated Software Engineer-
ing (ASE), pp. 343–351, Lawrence, KS, USA, November 2011.

[12] T. Menzies, A. Butcher, D. Cok et al., “Local versus global
lessons for defect prediction and effort estimation,” IEEE
Transactions on Software Engineering, vol. 39, no. 6,
pp. 822–834, 2013.

[13] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class
level fault prediction using software clustering,” in Pro-
ceedings of the 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 640–645,
Silicon Valley, CA, USA, November 2013.

[14] N. Bettenburg, M. Nagappan, and A. E. Hassan, “Towards
improving statistical modeling of software engineering data:
think locally, act globally!,” Empirical Software Engineering,
vol. 20, no. 2, pp. 294–335, 2015.

[15] Q. Wang, S. Wu, and M. Li, “Software defect prediction,”
Journal of Software, vol. 19, no. 7, pp. 1565–1580, 2008, in
Chinese.

[16] F. Akiyama, “An example of software system debugging,”
Information Processing, vol. 71, pp. 353–359, 1971.

[17] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[18] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, 1994.

[19] N. Nagappan and T. Ball, “Use of relative code churn mea-
sures to predict system defect density,” in Proceedings of the
27th International Conference on Software Engineering (ICSE),
pp. 284–292, Saint Louis, MO, USA, May 2005.

[20] A. Mockus and D. M. Weiss, “Predicting risk of software
changes,” Bell Labs Technical Journal, vol. 5, no. 2, pp. 169–
180, 2000.

[21] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning
for just-in-time defect prediction,” in Proceedings of the IEEE
International Conference on Software Quality, Reliability and
Security (QRS), pp. 17–26, Vancouver, BC, Canada, August
2015.

[22] X. Yang, D. Lo, X. Xia, and J. Sun, “TLEL: a two-layer ensemble
learning approach for just-in-time defect prediction,” In-
formation and Software Technology, vol. 87, pp. 206–220, 2017.

[23] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained just-
in-time defect prediction,” Journal of Systems and Software,
vol. 150, pp. 22–36, 2019.

[24] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A sys-
tematic and comprehensive investigation of methods to build
and evaluate fault prediction models,” Journal of Systems and
Software, vol. 83, no. 1, pp. 2–17, 2010.

[25] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto,
B. Adams, and A. E. Hassan, “Revisiting common bug pre-
diction findings using effort-aware models,” in Proceedings of
the 26th IEEE International Conference on Software Mainte-
nance (ICSM), pp. 1–10, Shanghai, China, September 2010.

[26] Y. Zhou, B. Xu, H. Leung, and L. Chen, “An in-depth study of
the potentially confounding effect of class size in fault pre-
diction,” ACM Transactions on Software Engineering and
Methodology, vol. 23, no. 1, pp. 1–51, 2014.

[27] J. Liu, Y. Zhou, Y. Yang, H. Lu, and B. Xu, “Code churn: a
neglected metric in effort-aware just-in-time defect prediction,”
in Proceedings of the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM),
pp. 11–19, Toronto, ON, Canada, November 2017.

[28] W. Fu and T. Menzies, “Revisiting unsupervised learning for
defect prediction,” in Proceedings of the 2017 11th Joint

12 Scientific Programming

https://github.com/yangxingguang/LocalJIT
http://www.abeacha.com/NIST_press_release_bugs_cost.htm
http://www.abeacha.com/NIST_press_release_bugs_cost.htm

Meeting on Foundations of Software Engineering (ESEC/FSE),
pp. 72–83, Paderborn, Germany, September 2017.

[29] Q. Huang, X. Xia, and D. Lo, “Supervised vs. unsupervised
models: a holistic look at effort-aware just-in-time defect
prediction,” in Proceedings of the IEEE International Con-
ference on Software Maintenance and Evolution (ICSME),
pp. 159–170, Shanghai, China, September 2017.

[30] Q. Huang, X. Xia, and D. Lo, “Revisiting supervised and
unsupervised models for effort-aware just-in-time defect
prediction,” Empirical Software Engineering, pp. 1–40, 2018.

[31] S. Herbold, A. Trautsch, and J. Grabowski, “Global vs. local
models for cross-project defect prediction,” Empirical Soft-
ware Engineering, vol. 22, no. 4, pp. 1866–1902, 2017.

[32] M. E. Mezouar, F. Zhang, and Y. Zou, “Local versus global
models for effort-aware defect prediction,” in Proceedings of
the 26th Annual International Conference on Computer Sci-
ence and Software Engineering (CASCON), pp. 178–187,
Toronto, ON, Canada, October 2016.

[33] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis, Wiley, Hoboken, NJ, USA,
1990.

[34] S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic
literature review and meta-analysis on cross project defect
prediction,” IEEE Transactions on Software Engineering,
vol. 45, no. 2, pp. 111–147, 2019.

[35] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?,” Mining Software Repositories, vol. 30,
no. 4, pp. 1–5, 2005.

[36] F. Wilcoxon, “Individual comparisons by ranking methods,”
Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[37] N. Cliff, Ordinal Methods for Behavioral Data Analysis,
Psychology Press, London, UK, 2014.

[38] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek,
“Appropriate statistics for ordinal level data: should we really
be using t-test and cohensd for evaluating group differences
on the nsse and other surveys,” in Annual Meeting of the
Florida Association of Institutional Research, pp. 1–33, 2006.

Scientific Programming 13

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable

Computing

Hindawi

www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi

www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scientific
Programming

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

