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Local Watermarks: Methodology and Application
to Behavioral Synthesis

Darko Kirovski and Miodrag Potkonjak

Abstract—Recently, the electronic design automation industry has
adopted the intellectual property (IP) business model as a dominant
system-on-chip development platform. Since copyright fraud has been
recognized as the most devastating obstruction to this model, a number
of techniques for IP protection have been introduced. Most of them
rely on a selection of a global solution to a design optimization problem
according to a unique user-specific digital signature. Although such
techniques provide strong proof of authorship, they fail to provide an
effective procedure for watermark detection when a protected core design
is augmented into a larger design. To address this fundamental issue, we
introduce local watermarks, an IP protection technique which facilitates
watermark detection in many realistic design and adversarial scenarios,
while satisfying the demand for low overhead and design transparency. We
demonstrate the efficiency of the new IP protection paradigm by applying
its principles to a set of behavioral synthesis tasks such as operation
scheduling and template matching.

Index Terms—Behavioral synthesis, intellectual property protection, op-
eration scheduling, template matching, watermarking.

I. INTRODUCTION

Recently, a number of techniques have been proposed for intellec-
tual property protection (IPP) of designs and tools at various design
levels: design partitioning [1], physical layout [2], combinational logic
synthesis [3], [4], behavioral synthesis [5], and design-for-test [6]. All
of these techniques encode a user’s digital signature as a set of ad-
ditional design constraints, augment these constraints into the orig-
inal design specification, and optimize this input specification using an
off-the-shelf design tool that retrieves the final optimized design spec-
ification. The solution produced by the optimization tool satisfies both
the original and user-specific constraints. This property is the key to en-
abling a low likelihood that another algorithm (or designer) can build
such a solution with only the original design specifications as a starting
point. Although efficient, these techniques lack support for several im-
portant requirements.

• Effective signature detection.Since the encoding of a digital
signature is dependent upon the structure of theentire design
specification, detecting an embedded signature requires unique
identification of each component of the design [3]. Thus, even a
small design alteration by the adversary may negligibly, but sig-
nificantly alter the identifiers of design components resulting in
ineffective watermark detection.

• Protection of design partitions. Although current IPP tech-
niques are effective in protecting overall designs, they do not
provide protection for design partitions. Namely, in many designs
(cores), their parts may have substantial and independent value
(for example, a discrete cosign transform filter in an MPEG
codec).

• Watermark detection in systems with embedded IP.Com-
monly, a misappropriated design is augmented into a larger
system. In order to detect design’s watermark in the suspected
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Fig. 1. Global flow of the generic approach for local watermarking behavioral synthesis solutions.

system, existing IPP techniques require an accurate design
extraction from the system, a task of substantial computational
difficulty in the case when the system is optimized for integra-
tion.

We introducelocal watermarks, a generic IPP technique that hides
statistically imperceptible secrets in solutions to numerous combina-
torial optimization problems, while providing the aforementioned pro-
tection requirements. As in the previous IPP techniques, a local wa-
termark is encoded as a set of design constraints which does not exist
in the original specifications. The constraints are uniquely dependent
upon the author’s signature. Rather than embedding a single error-cor-
rected watermark over the entire design, as in the previous techniques,
in local watermarking, a number of “small” watermarks are randomly
augmented in the design. “Small,” in a sense that the constraints of each
watermark are placed in a smaller part (locality) of the design. Each wa-
termark exists and can be detected in its locality independently upon the
remainder of the design. Therefore, such watermarks enable protection
for parts of the design because the copy detection algorithm does not
need to see the entire design in order to decode the added constraints.

Effective detection of watermarks is enabled for two reasons funda-
mental for design IPP. First, as opposed to global design watermarking
techniques, in order to obliterate the copyright protection, an adversary
needs to significantly alter the entire design to prevent detection of all
augmented local watermarks. Second, design partitions as small as the
locality of a watermark are protected and can be identified as embedded
in another design.

We have applied the generic IPP methodology of local watermarks
on two behavioral synthesis tasks: template matching and operation
scheduling. In order to determine the efficacy of developed protection
techniques, we have quantified the strength of proof of ownership as
well as the overhead induced by local watermarks. The added con-
straints may result in a synthesis tradeoff. The more constraints, the
stronger the proof of authorship, but the higher the overhead on the so-
lution quality.

Watermarking designs at the behavioral synthesis level enables IP
commerce of optimized behavioral specifications and register transfer
level designs, which is exceptionally important for application-specific
systems. Local watermarks can also protect behavioral synthesis tools
and designs at levels of abstraction equal or lower than behavioral syn-
thesis. This property is becoming increasingly important because of
the progress of reverse engineering technologies (e.g., Take Apart Ev-
erything Under The Sun Co., Colorado Springs, CO [7]) which enable
precise, fast, and confidential retrieval of a design netlist. In essence, a
behavioral specification created by a designer is protected by adding a
set of local watermarks to the optimized behavioral specification. The
local watermarks remain in the design in the subsequent phases of the
design process. Similarly, unlicensed usage of a behavioral synthesis

tool or a direct copy of an implementation of a synthesis algorithm into
another tool can be detected in the case when the tool/algorithms embed
watermarks in their solutions.

II. PRELIMINARIES

With no loss of generality, we selected as our computational model
synchronous data flow (SDF) [8]. SDF is a special case of a data flow
in which the number of data samples produced or consumed by each
node on each invocation is specifieda priori. Nodes can be scheduled
statically at compile time onto application-specific integrated circuit
or programmable processors. We restrict our attention to the homo-
geneous SDF, where each node consumes and produces exactly one
sample on every execution. This model is well suited for specification
of single task computations in numerous application domains such as a
DSP and communications. The syntax of a targeted computation is de-
fined as a hierarchical control-data flow graph (CDFG) [9]. A CDFG
represents the computation as a flow graph, with nodes, data edges,
and control edges. The semantics underlying the syntax of the CDFG
format is that of the SDF flow model.

The are two crucial questions related to localized watermark detec-
tion: 1) how to recover the specification of the suspected design from
its implementation and 2) how to recover a CDFG from that specifi-
cation (not necessarily at the behavioral level). There are a number of
references [10]–[12] that document a number of standard techniques to
reverse engineer even highly complex integrated circuits (ICs). Once
the specification is available, one can easily recover its finite state ma-
chine (FSM) and, thus, the schedule and assignments used in the IC.
Even when the FSM is distributed and uses local decoders, it is straight-
forward enough to determine which paths are used in the datapath in a
particular control step by observing control signals to multiplexers and
other control logic associated with datapath components. Note that this
is true even if a design is programmable [13].

III. PARADIGM OF LOCAL WATERMARKS AS AN IPP TOOL

The generic approach for protecting solutions to behavioral synthesis
using local watermarks is shown in Fig. 1. Watermarking of an original
behavioral specification is performed in a synthesis preprocessing step.
In that step, the specification is augmented with one or several sets of
pseudorandomized design constraints which encode the author’s sig-
nature. Each set is attached to a particular pseudorandomly selected
locality within the design specification. For example, while uniquely
marking a solution to graph coloring, a local watermark is embedded
in a random subgraph.

After the algorithm retrieves a solution to the given problem, the
added constraints are removed from the optimized design specifica-
tion, producing a design which satisfies both user-specific and orig-
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inal constraints. The likelihood that another algorithm applied to the
original nonconstrained design specification retrieves a solution which
accidentally satisfies also the user-specific constraints (solution coin-
cidencePc) has to be small in order to have strong proof of authorship
(1 � Pc).

During copy detection, the goal is to find at least one local watermark
in a particular design. Since each watermark has the property of being
detectable within its own locality, the attacker is not safe even if the
misappropriated solution is embedded or cut. Hence, a local watermark
has to be all of the following:

• hardly recognizable in a given design;
• difficult to find in a nonconstrained design;
• hard to remove by a finite set of solution transformations;
• easy to detect using exhaustive search and knowing the structure

of each local watermark.

IV. IPP PROTOCOLS FORBEHAVIORAL SYNTHESIS

In this section, we describe the technical details behind the data
hiding, watermark detection, and attacking processes for the developed
local watermarkingtechniques for two behavioral synthesis tasks—op-
eration scheduling and template matching.

A. Operation Scheduling

Schedulingis the process of partitioning the set of operations in the
CDFG into groups such that the operations in the same group can be
executed concurrently in one control step, while taking into considera-
tion possible tradeoffs between total execution time and hardware cost.
Scheduling determines the total number of control steps needed to ex-
ecute all operations in the CDFG, the minimum number of functional
modules for design, and the lifetimes of variables. For scheduling, there
are two basic approaches—heuristics [14] and integer linear program-
ming (ILP) [15].

The key steps in the local watermarking protocol for operation
scheduling are

• Domain selection,i.e., selection of a subtreeT 2 CDFG which
represents the domain where a watermark is embedded;

• Domain identification, i.e., assignment of a unique identifier to
each operation inT ;

• Constraint encoding,i.e., creation and addition of user-specific
constraints (temporal edges) which, when added toT , enforce
additional temporal dependencies among operations that do not
exist in the original specification.

Domain Selection and Identification:A simple but ineffective way
to perform domain selection is to randomly select a noden 2 CDFG
and then select its fanin tree of distanceD as the resultingT . In order to
strengthen the difficulty of tampering an existing watermark or finding
an arbitrary watermark in a solution, we selectT of desired cardinality
� = jT j in the following way. First, we randomly select a nodeno 2
CDFG and identify a subtreeTo as a fanin tree ofno with max-distance
� fromno. Next, we assign a unique identifier to each node inTo using
a node ordering routine that sorts nodes inTo based on an ordered list of
sorting criteria. We propose three criteria for sorting nodes in a CDFG.1

Relationni > nj holds if:

, where node , has a level
if the longest path in the CDFG from to

equals .
, where quantifies the

number of nodes in the transitive fanin

1An example of similar ordering for netlists is given in [3].

tree of that contains all nodes with
maximal distance from .

where
, and returns the unique

identifier for the functionality performed
by node , in the fanin tree of
that consists of all nodes with maximal
distance from . All possible distinct
operations are uniquely identified
(e.g., addition is identified with 1,
multiplication with 2, etc.).

The sorting procedure first determines the order of two nodesni and
nj according to the first criterion. IfLi = Lj , then the second criterion
is consulted, etc. CriteriaC2 andC3 are tried for increasing values of
Dx until all nodes in the subtree are uniquely identified.

Once all nodes are uniquely identified, subtreeT 2 To is selected
using an author-specific pseudorandom sequence of bits. For example,
the sequence can be generated using the RC4 stream cipher by itera-
tively encrypting a certain standard seed number keyed with the au-
thor’s digital signatureD[16]. In order to determineT , the water-
marking procedure traverses the subtreeTo in a top-down (in reverse
direction of edges) breadth-first fashion. At each traversed node, the
author-unique bit sequence determines 1) at least one input to include
in the next level of breadth-first search and 2) whether each of the re-
maining inputs should be included or excluded from the list of suc-
ceeding nodes to be visited during the breadth-first search. In general,
the exclusion of inputs can be done with a given probability. The se-
lection process cannot be misinterpreted because of the unique identi-
fication of each node input.

Constraint Encoding:The pseudocode for constraint encoding is
presented in Fig. 2. In this step, the selected subtreeT is augmented
with edges which indicate temporal dependencies between operations.
Such edges are standard nomenclatures for behavioral descriptions
(e.g., HYPER [9]). A temporal edge enforces that its source operation
is scheduled before its destination operation. The temporal edges are
augmented according to the author’s digital signature on a subsetT 0

of nodes of the subtreeT . For each nodeni 2 T 0, there exists at least
one more nodenj 2 T 0 with an overlapping scheduling period, i.e.,
asap(nj) + 1 > alap(ni) or asap(ni) + 1 < alap(nj). Functions
alap(�) andasap(�) return the ”as late as possible” and ”as soon as
possible” control steps, respectively, for the argument operation.

In addition, each nodeni 2 T 0 must have a laxity ofC�(1��), where
C is the length of the CDFG’s critical path and� > 0 is a user-spec-
ified parameter. A nodeni has alaxity of x if the longest path that
containsni traverses the CDFG and has a length ofx. The restric-
tion with respect to the node’s overlapping “asap-alap” lifetimes and
laxity is imposed to avoid significant timing overhead and to increase
the scheduling freedom for the operations in the domain which results
in strengthened authorship proof. If cardinalityT 0 is less than some
predetermined� 0, the entire process of subtree selection is repeated.

Temporal edges are added to an ordered set of nodesT 00 in the fol-
lowing way. The author-specific pseudorandomly generated bitstream
is used to identify a pseudorandomly ordered selectionT 00 2 T 0 of
K of nodes fromT 0, whereK is a user-defined parameter. Different
authors would have additional constraints imposed on two different
sets ofK-node selections. In the order of appearance, for each node
ni 2 T 00, we identify a setg 2 T 00 of nodes where each nodenj 2 g

has overlapping life periods withni, asap(ni) + 1 > alap(nj), or
asap(nj) + 1 < alap(ni). Using the author-specific bitstream, the
watermarking procedure selects one nodenk from g and draws a tem-
poral edgeei betweenei(ni ! nk). The watermarking process is ter-
minated when allK temporal edges are drawn. The marking process
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Fig. 2. Pseudocode of the proposed protocol for constraint encoding of local watermarks for marking solutions to operation scheduling.

is transparent with respect to the design tool. After constraint addition,
the designer runs the scheduler to determine an optimized scheduling
which satisfies the constraints imposed by the original design specifica-
tion as well as the additional constraints. During the detection process,
the marking process is repeated with a modification that constraints are
only verified. The detection procedure visits each node in theCDFG
and checks whether it represents a rootno of the memorized subtreeT
and whether the scheduling of nodes inT corresponds to the additional
constraints that a marked solution would have.

Discussion: The key to the efficiency of such watermarking ap-
proach lies in the following three facts.

First, for each CDFG, the approximate likelihood of coincidence of
finding an arbitrary watermark in a solution is approximately equal to
Pc �

K

i=1
 W (ei)= N(ei), where functions W (ei) and N (ei)

for an edgeei(ns ! nd) return the number of possible different sched-
ules in which operationns is scheduled afternd with and without the
added temporal edges, respectively. According to published results, we
have assumed the Poisson distribution of the operation’s “asap-alap”
times as well as that second order effects have negligible influence on
the actual scheduling probabilities [14]. Obviously, for large selected
subtrees, the strength of the approximate proof of authorshipf1�Pcg
can be made very strong. A small example of determiningPc for an
exemplary design is presented in Fig. 3. For example, two operations
O[i] andO[j] can be scheduled in 77 different ways. However, there
are only ten possible schedulings howO[j] can be scheduled before
O[i]. For an edgee(O[i]! O[j]), the corresponding cardinalities are
 W (e) = 10 and N (e) = 77. Since the exhaustive enumeration of
solutions, in general, results in exponential runtimes, we have used a
trivial exhaustive enumeration technique to calculate these probabili-
ties only for small examples.

Second, the technique has solid resistance against tampering. The at-
tacker may try to modify the output locally in such a way that the water-
mark disappears or the proof of authorship is lowered below a predeter-
mined standard. Thus, the watermarking scheme has to be such that, to
delete the watermark and still preserve solution quality, the attacker has
to perturb a great deal of the obtained solution, forcing him/her to re-
peat the design process. For example, consider a design that has a total
of 100 000 operations which satisfy the laxity requirement with 100 ad-
ditional temporal edges imposed for watermarking purposes. Consider
that the attacker aims to reduce the likelihood of authorship by doing
local changes to the design. To reduce the proof of authorship to one in a
million, under the assumption of averageE[ W (ei)= N(ei)] = 1=2,
the attacker has to alter the execution order of at least 31 729 pairs of
nodes, i.e., alter 63% of the final solution.

Third, the one-way property of the pseudorandom bitstream gener-
ator prohibits the attacker to locally modify the design in order to aug-
ment her/his signature. Namely, this finite set of modifications would
require the knowledge of the inverse to the bitstream generator. Such
an easy-to-compute inverse function is not known for several encryp-
tion schemes including RC4 [16].

Motivational Example: We demonstrate the developed protocol
for local watermarking of scheduling solutions using a simple
example—fourth order parallel IIR filter. The unscheduledCDFG
for this filter structure is illustrated in Fig. 4. An example subtree
T 2 CDFG is presented at the bottom of Fig. 3. Assuming that
T 0 = T , the ordered set of temporal edge sources isC1, C2, C4,
C7, A2, and the set of destination nodes isC3, C4, C8, C6, A3. For
example, the temporal edgee1(C1 ! C3) imposes that operation
C1 should be executed beforeC3. The total number of scheduling
solutions of the originalT subtree is 166, while only 15 solutions can
be obtained when the additional constraints are imposed. Thus, for
this small example, the likelihood of solution coincidence is equal to
Pc = 15=166. Obviously,Pc is in exponential correspondence with
respect to theCDFG cardinalities. An example of a final solution to
the additionally constrained scheduling problem is shown in the upper
left corner of Fig. 3.

B. Template Matching

In template mapping at the behavioral level, groups of primitive
operations are replaced with more complex and specialized hardware
units which are designed to implement common operations and are op-
timized for low area, power, or delay [17]–[19]. The template mapping
step involves template matching, template selection, and clock selec-
tion. In this paper, we address only the problem of local watermarking
template matching solutions.

A protocol forglobal watermarking of a variant of such a problem
has been introduced by Kirovskiet al. [3]. Their constraint encoding
technique assigns a signature-specific subset of circuit’s internal nodes
to become pseudoprimary outputs (PPOs), thus inducing the optimiza-
tion algorithm to preserve these nodes as visible in the technology map-
ping solution. We introduce a novel approach for constraint encoding of
mapping problems. The key idea guiding the new constraint encoding
protocol is enforcement of node-to-module matching by constraint ma-
nipulation in accordance with the user’s digital signature. Particular
matchings are enforced to appear by assigning the nodes neighboring
the matched module to become PPOs. In the remainder of this section,
the watermarking protocol is explained in more detail and the approach
is demonstrated using an explanatory example.
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Fig. 3. Example of local watermarking scheduling solutions: fourth order parallel IIR filter.

Fig. 4. Example of local watermarking template matching solutions: fourth
order parallel IIR filter.

The protocol for local watermarking of template matching solutions
relies on the process of identifying a uniquely enumerated subtreeT of
the originalCDFGwhich is augmented with user-specific constraints.
The process of identifying the subtreeT is signature dependent, i.e.,
for a single signature only one subtreeT , starting from a random root

nodeno in theCDFGcan be determined. We have adopted the same se-
quence of steps forDOMAIN SELECTION AND IDENTIFICATION as imple-
mented in the equivalent protocol for watermarking operation sched-
uling solutions. Therefore, we introduce only the constraint encoding
protocol formally presented using the pseudocode in Fig. 5.

Constraint Encoding:The constraint encoding procedure imposes
additional constraints on the selected subtreeT with the goal to isolate
particular groups of operations that can be matched to the templates
available from a given library. An example of such matching is illus-
trated in Fig. 4. In order to isolate the two-adder template matched with
A5 andA6, variablesPO1, PO2, andPO3 in the neighborhood are as-
signed to become PPOs. Since one of the inputs toA6 is a primary input,
it is not additionally constrained. An important fact is that any variable
in theCDFG (not only the ones in the subtreeT ) can be a part of the
subset of variables that has to be promoted to PPOs. Addition of these
constraints may affect the matchings along the critical path resulting
in decreased solution quality. Therefore, from the selected subtreeT ,
we exclude all nodes that are on the critical path (of lengthC opera-
tions) or paths of laxity greater thanC � (1� �) operations, where� is
a user-defined parameter. This exclusion creates a new subset of nodes
denoted asT 0 2 T .

The encoding procedure embeds the watermark iteratively in a loop
which contains two steps.

In the first step, given the subset of nodesT
0 and a library of mod-

ulesL, all possible nodes-to-modules matchings are exhaustively enu-
merated. The complexity of this task is at mostO(� 0

�), where� is
the number of modules in the library. A module is defined as a set of
operation trees. Each operation in each module is uniquely identified.
The result of the enumeration is an ordered listM of matchings. A
matchingm = f(n ./ O)jmjg denotes a set ofjmj pairs of nodes
n with their corresponding operationsO in the module selected for
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Fig. 5. Pseudocode of the proposed protocol for constraint encoding during local watermarking of template matching solutions.

matching. For example, in the explanatory example, operationA9 can
be matched in five different ways: as first addition inT1, as second ad-
dition in T1 with no mapping for the first addition, or asA5 or A7 as
first additions, and as an addition inT2. The enumeration procedure as-
signs a unique identifier for each matching. This procedure is described
using the pseudocode in Fig. 5.

In the second step, the author-specific pseudorandomly generated
bitstream is used to point to one of the matchingsmi fromM. Then,
within the entireCDFG, all variables that are used as inputs/outputs
to/from the operations covered by the module inmi are assigned to be-
come PPOs. Next, all operationsni 2 mi are marked as “processed.”
In the next iteration, nodes that are marked as “processed” are not con-
sidered during enumeration of matchings (steps4� 8). The constraint
encoding loop is repeatedZ times whereZ is a user-specified param-
eter with an important tradeoff. The higher the number of iterations, the
stronger the proof of authorship. Conversely, more preselected match-
ings constrain the optimization abilities of the design tool applied after
the local watermarking procedure. The security implications of local
watermarking applied to template matching are equivalent to the ones
described for operation scheduling.

Motivational Example: The presented watermarking protocol is
demonstrated using the fourth order parallel IIR filter. The CDFG of
the filter and the available library of templates are presented in Fig. 4.
The watermarking process has isolated the following matchings {(A5,
A6), (A9, A7), (A8, C7)} (shaded in Fig. 4). The nonshaded matchings
indicate a possible solution to this instance of the template matching
problem.

The likelihood of solution coincidence for this protocol equals the
number of nodes in the originalCDFGfrom which one can find the sub-
treeT times the number of solutions of qualityQ for the watermarked
design specification divided by the number of solutions of qualityQ

for the nonwatermarked (nonconstrained) design specification. For an
optimization goal of minimizing the number of modules that cover a
given CDFG, a solution of qualityQ implicates that the CDFG is cov-
ered withQ modules. Since this approach for computingPc requires

explicit enumeration of all possible solutions, which can be exponen-
tially dependent upon theCDFGcardinalities, we opt to use an approx-
imate technique for determiningPc: Pc �

Z

i=1
Solutions(mi)

�1.
FunctionSolutions(mi) returns the number of different matchings for
all nodes covered by the enforced templatemi. In the example in Fig. 4,
a pair of nodes (A5, A6) can be covered in the following six ways (see
the equation at the bottom of the page).

V. EXPERIMENTAL RESULTS

We have conducted a set of experiments in order to evaluate the ef-
ficacy of local watermarking on the operation scheduling and template
matching tasks. We have applied local watermarks to operation sched-
uling using a set of benchmark programs specified in C—the Medi-
aBench set of benchmarks [20]. Temporal edges were induced using
additional operations with unit operators (e.g., additions with variables
assigned to zero at runtime). Note that in the actual implementation the
added instructions must be extracted from binaries for security and per-
formance reasons. All programs were compiled for a four-issue very
long instruction word machine with four arithmetic-logic units, two
branch and two memory units, and 8-KB cache [21]. The code was
compiled for the described machine using the retargetable IMPACT C
compiler [22].

The obtained results for operation scheduling are presented in
Table I. The first two columns present the name of the application and
its number of operationsN . For each application, we have augmented
local watermarks within a subtree of cardinality� = 10 � � � N ,
a = 0:2, 0.5. In columns three and five, we present the likelihood
of solution coincidencePc for K = 0:2 � � . Columns four and six
demonstrate the percentage of increase of execution time induced by
the augmented code due to watermarks. As presented, all IPP prop-
erties enabled by local watermarking were provided with negligible
performance overhead.

The results of experiments conducted to test the template matching
algorithm are presented in Table II. The local watermarking

A5 A6 A5 A6 A5 A6
A5; A9

A1; A5

A6

A6; C5

A5; A9

A1

A6; C5

A6; C5

A1; A5

A5; A6

A6

A5; A6



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003 1283

TABLE I
EXPERIMENTAL RESULTSDESCRIBING THEEFFICIENCY OFAPPLIED LOCAL

WATERMARKING PROTOCOLS TOOPERATION SCHEDULING

TABLE II
EXPERIMENTAL RESULTSDESCRIBING THEEFFICIENCY OFAPPLIED LOCAL

WATERMARKING PROTOCOLS TOTEMPLATE MATCHING

techniques for template matching were tested on a set of small real-life
designs [9]. We used HYPER as a behavioral synthesis tool [9].
Columns 1–4 present the design’s description, number of available
control steps, critical path, and number of variables. Column 5 quan-
tifies the percentage� of templates that were enforcedZ = 0:07 � � ,
T = CDFG. Finally, column 6 presents the percentage of increase
of the count of used modules to cover the entire design with respect
to two design strategies: nonwatermarked and watermarked. Knowing
the simplicity of target benchmark designs, the order of the likelihood

of design coincidence ranged from10�5 to 10�27 for all specified
designs. Therefore, note that in both the operation scheduling and
template matching task, local watermarking has been applied as an
effective IPP methodology providing partial protection with low
overhead and high confidence and reliability.

VI. CONCLUSION

We have introducedlocal watermarking, an IPP technique which
enables protection of design partitions, provides an easy procedure for
watermark detection, and enables detection of watermarks when the
misappropriated design or its part is augmented into another larger de-
sign. We have applied the new IPP technology to a subset of behav-
ioral synthesis tasks: operation scheduling and template matching. We
have demonstrated that the difficulty of erasing author’s signature or
finding another signature in the synthesized design can arbitrarily be
made computationally difficult. The watermarking method has been
experimented on a set of benchmarks, where high likelihood of author-
ship has been achieved with negligible overhead in solution quality.
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A Simulation Framework for Energy-Consumption
Analysis of OS-Driven Embedded Applications

T. K. Tan, A. Raghunathan, and N. K. Jha

Abstract—Energy consumption has become a major focus in the design
of embedded systems (e.g., mobile computing and wireless communication
devices). In particular, a shift of emphasis from hardware-oriented low-en-
ergy design techniques to energy-efficient embedded software design has
occurred progressively in the past few years. To that end, various tech-
niques have been developed for the design of energy-efficient embedded
software. In operating system (OS)-driven embedded systems, the OS has
a significant impact on the system’s energy consumption directly (energy
consumption associated with the execution of the OS functions and ser-
vices), as well as indirectly (interaction of the OS with the application soft-
ware).

As a first step toward designing energy-efficient OS-based embedded
systems, it is important to analyze the energy consumption of embedded
software by taking the OS energy characteristics into account. To facilitate
such studies, we present, in this work, an energy simulation framework
that can be used to analyze the energy consumption characteristics of an
embedded system featuring the embedded Linux OS running on the Stron-
gARM processor. The framework allows software designers to study the
energy consumption of the system software in relation to the application
software, identify the energy hot spots, and perform design changes based
on the knowledge of the OS energy consumption characteristics as well as
application-OS interactions.

Index Terms—Embedded system, energy analysis, energy simulation, op-
erating system.

I. INTRODUCTION

The complexity of embedded system software and the underlying
hardware, tight performance and power budgets, and aggressive
time-to-market schedules, usually necessitate the use of sophisticated
runtime software support. In embedded systems where a single
processor executes many different system tasks (each system task
may be further divided into communicating processes), the use of an
embedded operating system (OS) for runtime execution support is
quite common. The use of an embedded OS significantly impacts both
performance and energy consumption. Representative investigations
of performance issues related to the use of an OS can be found in
[1]–[4]. However, in modern microprocessors, where idle or sleep
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modes are usually exploited by software, performance optimization
does not necessarily lead to energy optimization. Not much literature
deals with energy consumption issues related to an embedded OS.
The effect of a real-time OS on the energy consumption of embedded
software was illustrated in [5] using�C/OS and SPARClite processor,
where it was shown that the OS could consume a significant portion
of the total energy consumption. However, this was just a first step.
Much remains to be done to fully appreciate and model the impact of
an embedded OS on software energy consumption.

In this paper, we present an energy simulation framework that en-
ables simulation of an embedded Linux OS on a typical hardware plat-
form based on the Intel StrongARM processor. We have also made
this energy simulation framework available for public use (please visit
http://www.ee.princeton.edu/~tktan/emsim to download our simulator,
EMSIM). As described in Section III, such a simulation imposes spe-
cial requirements in terms of modeling the functionalities of the hard-
ware platform. Function and process-based energy accounting has been
implemented to provide energy analysis capability, enabling users to
identify specific energy hot spots in embedded software programs, and
better guide code optimizations.

The remainder of the paper is organized as follows. In the next sec-
tion, we present some previous work and highlight our contributions.
Section III presents the design and validation of our simulator. Sec-
tion IV describes a case study that demonstrates the usefulness of our
energy simulation framework. Section V discusses several limitations
and design issues pertaining to our simulator. Section VI presents the
conclusion and future work.

II. RELATED WORK AND OUR CONTRIBUTIONS

In this section, we discuss related work and highlight our contribu-
tions.

A. Related Work

Many instruction-level energy simulators based on the in-
struction-level power modeling approach have emerged since its
introduction in [6]. Applications of the instruction-level modeling
technique include [5], [7]–[15], and enhancement of the basic ideas
leading to either more accurate or efficient modeling techniques are
presented in [7], [16]–[18]. Mehtaet al. [10] described an energy
simulator based on the DLX architecture which they used to evaluate
several compiler optimization techniques for low-energy software. Li
et al. [8] presented an energy simulation framework for an embedded
hardware-software system based on Fujitsu’s SPARClite processor.
Simunic et al. [7] enhanced cycle-accurate models of an embedded
system based on the StrongARM SA-1100 processor to estimate en-
ergy consumption and battery life. Such embedded system simulators
could be used to perform design space exploration for low power.
JouleTrack[11], a web-based energy simulation tool, performs energy
estimation using models that separate the energy consumption into a
first-order component that depends only on the operating frequency
and voltage, and a second-order component that considers instruction
statistics. They also presented techniques to separate out the energy
consumption due to leakage from the energy consumption due to
switching.

A complementary approach to instruction-level power modeling is
through the use of structure-based power modeling. In this approach,
the power consumption of the microprocessor in each execution cycle is
estimated by summing up the power consumption of all the active func-
tional blocks in that cycle. The total energy consumption of a program
is obtained by accumulation of processor power consumption over the
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