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ABSTRACT

We present a variational model with local weighted Gaussian

curvature as regularizer. We show its convexity for an area-

weight function and provide a closed-form solution for this

case. The corresponding regularization coefficient has a the-

oretical bound. Moreover, we prove that the model is con-

vex for a wide range of weight functions and show that it can

be efficiently solved using splitting techniques. Finally, we

demonstrate several applications of the model in image de-

noising, smoothing, texture decomposition, image sharpen-

ing, and regularization-coefficient optimization.

Index Terms— Gaussian curvature, regularization, con-

vex model, variational form, image processing

1. INTRODUCTION

Reconstructing a signal from discrete samples, such as image

pixels or a point cloud, is a fundamental task. However, since

both the topology and the metric on the samples are miss-

ing, it is not clear what the true signal should be, especially

in regions devoid of samples. Conceptually, there are two

approaches to recovering the signal: interpolation (find miss-

ing data) and model fitting (reduce error). Both approaches

require predefined basis functions that ideally reflect geomet-

ric properties of the signal, such as connectivity, smoothness,

sparsity, or curvature. These implicitly assumed properties

constitute the prior knowledge about the signal. Their imposi-

tion may render the reconstruction problem well-posed. Fre-

quently used priors include sparsity in the spatial and/or fre-

quency domain, total variation (TV), mean curvature (MC) [1,

2, 3], and Gaussian curvature (GC) [4, 5, 2, 6, 7].

Variational methods have been successfully used in image

restoration [8, 9, 10, 2, 11], segmentation [12, 13], and in-

painting [14]. Here, we show how to impose weighted Gaus-

sian curvature (WGC) priors in a variational framework.

1.1. Variational Framework

Let S = {si(~x) : i = 1 . . . N} be the samples with spatial

positions ~x = (x, y)T . We aim at recovering an image U(~x)
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such that

min
U∈Fs

E(U) =

∫

~x∈Ω

Φ1(U, S) d~x+ λ

∫

~x∈Ω

Φ2(U) d~x. (1)

Φ1 is a data-fitting (loss) functional between the recovered

image U and samples S. Φ2 is a regularization functional on

U . The parameter λ is a scalar regularization coefficient. Ω is

the image domain, and Fs is a suitable function space for U .

Frequently, Φ1 is a distance metric, such as the Euclidean

distance, Mahalanobis distance, Hausdorff distance, or Lp

distance. The choice of distance metric depends on how the

data were obtained, the noise distribution and magnitude, the

targeted reconstruction error, and the desired computational

efficiency. Common choices are the L2 distance to filter

Gaussian noise or the L1 distance to filter outliers.

Φ2 has to be designed with several goals in mind: 1) it

should be efficient to compute; 2) it should have a mathe-

matical meaning; 3) it should generate satisfactory results;

4) it should be easily adopted into different models. Even

though there are many well-known regularization terms, such

as Tikhonov, the ℓ2 norm of the gradient, TV, MC, total cur-

vature (TC) [13], etc., none of them fulfills all of these char-

acteristics. We show that WGC regularization has all of the

above features.

Recently, curvature regularization has been adopted in

variational frameworks for various image-processing prob-

lems, including inpainting [14], smoothing [15, 13], and

segmentation [13, 16].

1.2. Gaussian Curvature

Let ~Ψ = (~x, U(~x)) be the image surface. We then have the

first and second fundamental form:

F =

(

1 + U2
x , UxUy

UxUy, 1 + U2
y

)

(2)

D =

(

~Ψxx · ~n, ~Ψxy · ~n
~Ψyx · ~n, ~Ψyy · ~n

)

, (3)

where subscripts denote differentiation with respect to the

corresponding variable. The normal vector is given by ~n =
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(−Ux,−Uy,1)√
1+U2

x+U2
y

. Gaussian curvature (GC) is defined as:

G(U(~x)) =
det(D)

det(F )
=

UxxUyy − U2
xy

(1 + U2
x + U2

y )
2
. (4)

From the right-hand side of Eq. 4, we have:

G(U(~x)) = (UxxUyy−U2
xy)/(1+2‖∇U‖22+‖∇U‖42) , (5)

which means that UxxUyy − U2
xy is a good approximation to

G when ‖∇U‖22 is small. This inspires our construction of an

area-weighted Gaussian curvature regularizer for variational

problems.

Previously, GC has been used in several diffusion-based

models [4, 2, 6, 7], which are generally based on the geomet-

ric flow [4]
∂

∂t
U = ∇ · (φ(G)∇U) (6)

with initial condition U0 = S and proper boundary con-

ditions. The function φ is monotonic. This anisotropic

diffusion process is similar to the Perona-Malik model [17].

Edge-indicator weights can be used to preserve edges during

flow evolution [7]. A comparison of MC, GC, and TV has

been done in Refs. [6, 2]. The model we present here is not

diffusion-based.

1.3. Motivation and Contributions

GC is an intrinsic property of the surface and is indepen-

dent of how the surface is embedded in external coordi-

nates. Moreover, surfaces with zero GC can be isometrically

mapped onto a plane without distortion. Minimizing GC can

hence be seen as making the image surface As Planar As

Possible (APAP). The Ricci flow drives the surface toward

constant GC by evolving its Riemann metric [18].

Total GC, however, is related to the surface’s topology

through the Gauss-Bonnet theorem:

Theorem 1
∫

~Ψ
G d~Ψ+

∫

∂~Ψ
Gb d~b = 2πχ(~Ψ) ,

where Gb is the boundary curvature, d~b a length element, and

χ the Euler characteristic of ~Ψ. Because of this dependence,

we minimize WGC instead of total GC.

A second reason is that the WGC model is more general,

since different weight functions can be adopted. The resulting

model is convex over a wide range of weight functions.

The Euler-Lagrange equation relates the variational frame-

work (Eq. 1) to diffusion models (Eq. 6). For diffusion flows,

however, a CFL stability condition has to be satisfied at ev-

ery iteration, limiting computational performance especially

for large images or videos. Convex models can be solved

without any CFL limit using solvers such as Primal/Dual

methods [19] or split-Bregman methods [20].

Our contributions here are:

1) We propose a new variational model with WGC regular-

ization that is not based on anisotropic diffusion.

2) We prove that our model is convex for a wide range weight

functions and present a closed-form solution for an area-

weight function.

3) We provide a theoretical bound for the regularization coef-

ficient and analyze a low-rank approximation to our model.

4) We derive an orthogonal basis that enables multi-resolution

analysis for images of the same size.

5) We demonstrate several applications of WGC priors in

image denoising, sharpening, and cartoon/texture decompo-

sition.

2. WEIGHTED GAUSSIAN CURVATURE

We take Φ1 = 1
2 (U − S)2 and Φ2 = G(U)θ(~x), where θ(~x)

is a weight function. We further take Fs to be the ℓ2 space.

Then, our model is defined as:

min
U∈ℓ2

E(U) =

∫

~x∈Ω

1

2
(U − S)2 d~x+ λ

∫

~Ψ

G(U)θ d~Ψ . (7)

2.1. Closed-Form Solution for Area Weights

In principle, the weight function θ can be chosen arbitrar-

ily. Motivated by Eq. 4, we choose θ(~x) = (1 + U2
x +

U2
y )

3

2 , which is related to the surface area element d~Ψ =

d~x
√

1 + U2
x + U2

y . The resulting WGC hence becomes an

area-weighted GC. This weight is also the determinant of the

Hessian matrix, which is commonly used for point or line de-

tection, and is also related to tensor diffusion. We hence have:

G(U)θ(~x)d~Ψ =det(D) det(F )d~x

=(UxxUyy − U2
xy)d~x .

(8)

The resulting energy functional is:

E(U) =

∫

Ω

1

2
(U −S)2 d~x+λ

∫

Ω

(UxxUyy −U2
xy) d~x . (9)

It can be rewritten in discrete form as:

E(Û) =
1

2
(Û − Ŝ)T (Û − Ŝ) + λÛT

W Û , (10)

where Û and Ŝ are discrete forms of U and S, respectively.

W = A
T
xxAyy−A

T
xyAxy , where A·· is the matrix of central-

difference approximations to the second derivatives with re-

spect to the subscript variables.

This model has a closed-form solution, which is not pos-

sible for diffusion-based models [4, 2, 6, 7]:

∂

∂Û
E(Û) = (Û − Ŝ) + λW 2Û = 0 (11)

=⇒ (I + λW 2)Û = Ŝ , (12)

where W 2 = W
T +W .
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2.1.1. Computational Efficiency

It is worth noting that M = I + λW 2 is independent of Û ,

which means that the entire matrix can be pre-computed and

reused for images of the same size, as in a video sequence.

Moreover, W is a very sparse matrix, which renders solving

the above equation efficient. Table 1 compares the runtime of

our model with that of a TV model [8]. This efficiency also

allows optimizing the regularization parameter λ using line

search.

Image Size 64× 64 128× 128 256× 256

Our Model 0.02496 0.1314 0.5963

TV1 2.187 2.354 6.041

TV2 0.9409 2.892 5.983

Table 1. Runtime in seconds on a 2 GHz Intel Core i7 using

Matlab R2012b.

2.1.2. Convexity and Bound for λ

We provide a proof that W is positive-semidefinite (PSD),
implying that our model is convex, if λ is bounded. Let

P =
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0 . . . . . .

. . . 1

1 0 0 . . . 0

















be a circulant square matrix of size mn×mn (m×n are the

image dimensions). It is then clear that Pmn = I and Axx =
−2I +P +P

−1. Similarly, Ayy = −2I +P
m +P

−m and

Axy = 1
4 (P

m+1+P
−m−1−P

m−1−P
−m+1). Therefore,

W is PSD with spectral radius ρ(W ) ≤ 16. This implies that

M is PSD if λ > − 1
2ρ(W ) .

2.1.3. Multi-Scale Analysis and Low-Rank Approximation

The eigenvectors vi of W provide a complete orthogonal ba-

sis for all images of size m×n. The resulting basis is reminis-

cent of certain wavelet filters. Some example basis functions

are shown in Fig. 1. They also provide a novel way to solve

Eq. 12 in the sense of a low-rank approximation.

Let W vi = γivi, i = 1, . . . , (mn), where γi are the

corresponding eigenvalues. Then, Ŝ =
mn
∑

i=1

βivi and Û =

mn
∑

i=1

αivi. Due to orthogonality, αi =
βi

1+2λγi
. We solve this

linear system for i < K, where K is a pre-defined rank-

approximation order.

1Lena image, ǫ = 1, max iteration=80
2cameraman image, ǫ = 1, max iteration=80

(a) v1 (b) v2 (c) v3 (d) v11

(e) v16 (f) v17 (g) v24 (h) v29

Fig. 1. Some example basis functions vi.

2.2. General Weights with Edge Preservation

In the general case when θ(~x) = ω(‖∇~Ψ‖), Eq. 7 can be

rewritten in discrete form as:

E(Û) =
1

2
(Û − Ŝ)T (Û − Ŝ) + λÛT

WWωÛ) , (13)

where Wω is a diagonal matrix corresponding to the weight

function ω. More specifically, Wω(i, i) = ω(‖∇~Ψ‖)

(1+U2
x+U2

y )
3

2

.

Then:

∂

∂Û
E(Û) ≈ (Û − Ŝ) + λW 2WωÛ = 0 (14)

=⇒ (I + λW 2Wω)Û = Ŝ . (15)

This model has no closed-form solution. However, it can

be efficiently solved using the split weighted Gaussian curva-

ture (SWGC) algorithm given below.

Algorithm 1 SWGC: Split Weighted Gaussian Curvature

Require: Ŝ, λ
1: compute W 2, Wω(Ŝ), set Û0 = Ŝ, k = 0
2: while max{|Ûk+1 − Ûk|} < tol do

3: compute W
ω(‖∇~Ψ‖)

4: compute Ûk+1 from Eq. 15

5: k = k + 1
6: end while

Ensure: Û

2.2.1. Convexity and Bound for λ

Wω is PSD for a wide range of functions ω. Therefore,

WWω is PSD and λ is bounded as λ > − 1
2ρ(WWω) . It is

straightforward to get a bound for ω. For example, when ω is

the identity function, ρ(Wω) ≤ 1.
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(a) original image (b) λ = 0.1 (c) λ = 1 (d) λ = 10

(e) original image (f) λ = −0.01 (g) λ = −0.02 (h) λ = −0.03

Fig. 2. Image smoothing (top row) and sharpening (bottom

row) using area-weighted GC for different λ.

Fig. 3. A line profile from Fig. 2 for image smoothing.

3. APPLICATIONS

We demonstrate the application of WGC in image smoothing,

sharpening, cartoon/texture decomposition, image denoising,

and regularization-coefficient optimization.

3.1. Image Smoothing and Sharpening

Figure 2 shows the results of image smoothing and sharp-

ening using our WGC model with the area-weight function

and with different parameters (sharpening with negative λ >
− 1

2ρ(W ) ). A line profile is compared with TV3 in Fig. 3.

In Fig. 4, image smoothing is shown with edge-preserving

weights (ω is the identity function); a detail patch is shown in

the row below. In practice, three to four iterations of SWGC

are enough.

3.2. Cartoon/Texture Decomposition and Denoising

We compare the area-weighted GC model with TV regular-

ization for cartoon/texture decomposition and image denois-

ing. The result is shown in Fig. 5 for ǫ = 1.5 in TV and

λ = 30 in WGC.

For denoising, the image is corrupted with additive Gaus-

sian noise of magnitude σ = 10. Denoising results by TV3

and WGC (area weight) with λ = 0.48 are shown in Fig. 5.

The final mean-square errors for TV and WGC are 70.77 and

56.54, respectively.

3TV uses ǫ = 1 and max iteration = 80

(a) original image (b) λ = 0.1 (c) λ = 1 (d) λ = 10

(e) original image (f) λ = 0.1 (g) λ = 1 (h) λ = 10

Fig. 4. Image smoothing with edge-preserving weights (ω is

the identity function).

(a) original image (b) cartoon by TV (c) texture by TV (d) cartoon WGC

(e) texture WGC (f) noisy image (g) denoise by TV (h) denoise WGC

Fig. 5. Cartoon/texture decomposition and denoising.

3.3. Regularization-Coefficient Optimization

To the best of our knowledge, searching for the optimal regu-

larization coefficient λ is hard in general. The computational

efficiency of our model, however, allows the use of line search

to optimize the regularization coefficient in Eq. 7 by solving

Eq. 12. We did this for the image denoising experiment above.

4. CONCLUSION AND FURTHER WORK

We have presented weighted Gaussian curvature regulariza-

tion in a variational framework. The resulting model is con-

vex over a wide range of weight functions and has a closed-

form solution for the special case of area weights. We have

shown a bound on λ and presented an efficient algorithm to

numerically solve the model when no closed-form solution

is available. We have demonstrated the proposed model in

several applications ranging from image smoothing to sharp-

ening, denoising, and cartoon/texture decomposition.

Weighted Gaussian curvature can be further extended to

3D images and to point-cloud surfaces [21].
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