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LOCAL WELL-POSEDNESS OF THE GENERALIZED CUCKER-SMALE MODEL

WITH SINGULAR KERNELS

José A. Carrillo1, Young-Pil Choi2 and Maxime Hauray3

Abstract. In this paper, we study the local well-posedness of two types of generalized kinetic Cucker-
Smale (in short C-S) equations. We consider two different communication weights in space with
nonlinear coupling of the velocities, v|v|β−2 for β > 3−d

2
, where singularities are present either in space

or in velocity. For the singular communication weight in space, ψ1(x) = 1/|x|α with α ∈ (0, d−1), d ≥ 1,
we consider smooth velocity coupling, β ≥ 2. For the regular one, we assume ψ2(x) ∈ (L∞loc∩Liploc)(R

d)
but with a singular velocity coupling β ∈ ( 3−d

2
, 2). We also present the various dynamics of the

generalized C-S particle system with the communication weights ψi, i = 1, 2 when β ∈ (0, 3). We
provide sufficient conditions of the initial data depending on the exponent β leading to finite-time
alignment or to no collisions between particles in finite time.

1. Introduction

In the last years, collective behavior patterns, as a dynamic feature of autonomous agents, have received a
great deal of attention from many different disciplines such as statistical physics, mathematics, biology, control
theory..., due to its engineering, physical, and biological applications [2, 3, 9, 13, 21, 24, 25, 27, 28]. In this work,
we focus on two particular types of generalized flocking models, among the large number of mathematical
descriptions, based on Individual Based Models, dealing with interactions between individuals.

More precisely, let f = f(x, v, t) be the one-particle distribution function at a spatial domain x, v ∈ Rd at
time t in dimension d > 1. The probability density function f in phase space is determined by a Vlasov-like
equation of the form

∂tf + v · ∇xf +∇v ·
[
F (f)f

]
= 0, (x, v) ∈ Rd × Rd, t > 0, (1.1)

subject to initial data

f(x, v, 0) = f0(x, v), (x, v) ∈ Rd × Rd, (1.2)

where F denotes the alignment force between particles:

F (f)(x, v, t) = −
∫
Rd×Rd

ψ(x− y)∇vφ(v − w)f(y, w, t)dydw. (1.3)
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Here, the potential function φ(v) for the velocity coupling is given by

φ(v) =
1

β
|v|β , where β > 0.

Depending on the communication weight ψ in space, we will work with two different cases:

• (HA) Singular communication weight and super-linear velocity coupling:

ψ(x) = ψ1(x) :=
1

|x|α
with α ∈ (0, d− 1) and β ≥ 2.

• (HB) Regular communication weight and sub-linear velocity coupling:

ψ(x) = ψ2(x) ≥ 0 symmetric, with ψ2 ∈ (L∞loc ∩ Liploc) (Rd) and β ∈
(

3− d
2

, 2

)
.

The notation for the space ψ2 ∈ Liploc(Rd) means that for any compact set K ⊂ Rd, there is some constant
LK > 0 such that

|ψ2(x)− ψ2(y)| ≤ LK |x− y|, x, y ∈ K.
Note that the alignment force of the original Cucker-Smale(in short C-S) model Fcs(f) is given by Fcs(f) = F (f)

with ψ = ψ̃ and β = 2, where

ψ̃(x) =
1

(1 + |x|2)γ
, γ > 0.

For the original C-S model, rigorous asymptotic flocking estimates depending on the decay rate of the regular
communication weight are discussed in [11,12]. Later, these estimates are improved and refined in the literature
[7, 16,18].

As particle approximations of the kinetic equations (1.1), we consider the following ODE system:

dxi(t)

dt
= vi(t), (xi(t), vi(t)) ∈ Rd × Rd, t > 0,

dvi(t)

dt
=

1

N

N∑
j=1

ψ(xj(t)− xi(t))
vj − vi

|vj − vi|2−β
, i = 1, · · · , N,

(1.4)

with the initial data
(xi(0), vi(0)) =: (x0

i , v
0
i ).

Note that the kinetic equations (1.1) can be formally derived from the particle system (1.4) as the number of
particles N goes to infinity.

Despite the interest of the C-S model and its variants for flocking dynamics, there are several drawbacks for
real applications. Among them, our study is dealing with two issues; collision avoidance between individuals and
general coupling of their velocities. For the real applications of C-S model, e.g., unmanned aerial vehicles [25], it
is important to avoid any collision between the individuals. However the original C-S model [11,12] does not take
into account this, and as a consequence, there are some studies to prevent the collisions by adding new forcing
terms to control the distance between individuals [10, 23] or considering a singular communication weight [1].
Singular communication rates with linear velocity coupling have been treated in [1,26] dealing mainly with the
existence theory and large-time behavior for the particle system (1.4). In [1], the authors identified the initial
configurations preventing the pairwise collisions in a finite-time when the singularity of the communication
weight is strong enough, α ≥ 1. The one-dimensional C-S particle system (1.4) was treated in [26]. The author
showed existence of piecewise weak solutions when the singularity of the communication weight is sufficiently
weak, α < 1. Concerning the velocity coupling, the original C-S model has a linear coupling for velocities which
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can be obtained as a rigorous singular limit of a damped chain of oscillators in one dimension [17]. In this paper,
we consider the nonlinear velocity coupling which is averaged over the strength of the relative speed with the
exponent β.

The main results of this work are two-fold. We first establish the local well-posedness of weak solutions to
the kinetic C-S equations (1.1)-(1.2), where the communication weight and velocity coupling are given by either
assumptions (HA) or (HB). In both cases, the general framework for the well-posedness of solutions can not
be applied due to the singularity either in position or velocity, and it has not been addressed in the literature
to the best of our knowledge. We adapted the strategy of our recent work [6] to overcome these difficulties.
In case of enough regularity of the communication weight and coupling for velocity in the forcing term, the
well-posedness for these kinetic equations describing the collective behavior is discussed in [4]. We also refer
to [19,20] for the issue of the derivation of mean-field Vlasov-type equations with a singular kernel.

On the other hand, we present several qualitative properties of the dynamics for the C-S particle system
(1.4). In [5, 15], the formation of asymptotic flocking for the particle system (1.4) is discussed with the regular

communication weight ψ̃. According to the different strengths of the nonlinearity β ∈ (0, 3) in the velocity
coupling, we provide the sufficient conditions on the initial data leading to finite-time alignment or to no
collisions between particles in finite time.

The rest of this paper is organized as follows. In Section 2, we briefly provide definition and properties
of Wasserstein distances, and state our main results on well-posedness and large-time behavior. Section 3 is
devoted to give the details of the proof of a unique weak solution to the system (1.1) for each case. Our
strategy is first to construct approximate solutions, and obtain the uniform bounds of approximate solutions
with respect to the regularization. Then we finally show that the approximate solutions are Cauchy sequences,
and let the parameter of regularization tend to zero to have the existence of the weak solutions. Finally, in the
last section we investigate the dynamics of the generalized C-S particle system (1.4) with different strengths of
the nonlinearity of the velocity coupling.

Notations: | · | denotes the Euclidean distance, and Pp(Rd) stands for the set of probability measures with
bounded moments of order p ∈ [1,∞). For notational simplicity, we also use the following notations throughout
the paper: For 1 ≤ p ≤ ∞,

‖g‖Lp := ‖g‖Lp(U) where U can be either Rd or Rd × Rd,

‖g‖L1∩Lp := ‖g‖L1 + ‖g‖Lp , and ‖g‖ := ‖g‖L∞(0,T ;L1∩Lp).

2. Preliminaries and main results

2.1. Mathematical tools

In this part, we present several definition and properties of Wasserstein distances that will be mainly used
in our arguments for the well-posedness.

Definition 2.1. (Wasserstein p-distance) Let ρ1, ρ2 be two Borel probability measures on Rd. Then the
Euclidean Wasserstein distance of order 1 ≤ p <∞ between ρ1 and ρ2 is defined as

dp(ρ1, ρ2) := inf
γ

(∫
Rd×Rd

|x− y|p dγ(x, y)

)1/p

,

and, for p =∞ (this is the limiting case, as p→∞),

d∞(ρ1, ρ2) := inf
γ

(
sup

(x,y)∈supp(γ)

|x− y|

)
,
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where the infimum runs over all transference plans, i.e., all probability measures γ on Rd × Rd with marginals
ρ1 and ρ2 respectively, ∫

Rd×Rd
φ(x)dγ(x, y) =

∫
Rd
φ(x)ρ1(x)dx,

and ∫
Rd×Rd

φ(y)dγ(x, y) =

∫
Rd
φ(y)ρ2(y)dy,

for all φ ∈ Cb(Rd).

Note that Pp(Rd), 1 ≤ p <∞ is a complete metric space endowed with the p-Wassertein distance dp, see [29].
We refer to [14,22] for more details in the case of the d∞ distance.

In particular for p = 1, Wasserstein-1 distance d1 is equivalent to the bounded Lipschitz distance which is
also called Monge-Kantorovich-Rubinstein distance:

d1(ρ1, ρ2) = sup

{∫
Rd
ϕ(ξ)(ρ1(ξ)− ρ2(ξ))dξ

∣∣∣ϕ ∈ Lip(Rd), Lip(ϕ) ≤ 1

}
,

where Lip(Rd) and Lip(ϕ) denote the set of Lipschitz functions on Rd and the Lipschitz constant of a function
ϕ, respectively. We also remind the definition of the push-forward of a measure by a mapping in order to give
the relation between Wasserstein distances and optimal transportation.

Definition 2.2. Let ρ1 be a Borel measure on Rd and T : Rd → Rd be a measurable mapping. Then the
push-forward of ρ1 by T is the measure ρ2 defined by

ρ2(B) = ρ1(T −1(B)) for B ⊂ Rd,

and denoted as ρ2 = T #ρ1.

We recall in the next proposition some classical properties, which proofs may be found in [29].

Proposition 2.1. (i) The definition of ρ2 = T #ρ1 is equivalent to∫
Rd
φ(x) dρ2(x) =

∫
Rd
φ(T (x)) dρ1(x)

for all φ ∈ Cb(Rd). Given a probability measure with bounded p-th moment ρ0, consider two measurable mappings
X1, X2 : Rd → Rd, then the following inequality holds:

dpp(X1#ρ0, X2#ρ0) ≤
∫
Rd×Rd

|x− y|pdγ(x, y) =

∫
Rd
|X1(x)−X2(x)|pdρ0(x).

Here, we used as transference plan γ = (X1 ×X2)#ρ0 in Definition 2.1.

(ii) Given {ρk}Nk=1 and ρ in P1(Rd), the following statements are equivalent:

• d1(ρk, ρ)→ 0 as k → +∞.
• ρk converges to ρ weakly-* as measures and∫

Rd
|ξ|ρk(ξ)dξ →

∫
Rd
|ξ|ρ(ξ)dξ, as n→ +∞.

Finally, we recall a priori energy estimates of kinetic Cucker-Smale model.
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Lemma 2.1. Let f be any smooth solutions to the system (1.1). Then we have

(i)
d

dt

∫
Rd×Rd

f dxdv = 0,
d

dt

∫
Rd×Rd

vf dxdv = 0,

(ii)
1

2

d

dt

∫
Rd×Rd

|v|2f dxdv = −1

2

∫
R2d×R2d

ψ(x− y)|v − w|βf(x, v, t)f(y, w, t)dxdydvdw.

2.2. Main results

In this part, we introduce the notion of weak solution in our frameworks, and state our main results on the
well-posedness to the kinetic equations (1.1) and large-time behavior of solutions to the particle system (1.4).

We first present two cases depending on the singularity of communication weight and the strength of non-
linearity for velocity coupling.

• Case A (Singular communication weight and super-linear velocity coupling): For the alignment force
defined by the communication weight and velocity coupling satisfying (HA), we assume that the initial
data f0 has compact support in velocity, and it belongs to Lp for some 1 < p ≤ ∞, and the exponent
α satisfies

(α+ 1)p′ < d,

where p′ is the conjugate of p, i.e., p′ := p/(p− 1).
• Case B (Regular communication weight and sub-linear velocity coupling): For the alignment force term

defined by the communication weight and velocity coupling satisfying (HB), we assume that the initial
data f0 has compact support in position and velocity, it belongs to Lp for some 1 < p ≤ ∞, and the
exponent β of nonlinear velocity coupling satisfies

(3− 2β)p′ < d for β ∈
(

3− d
2

, 1

)
and (2− β)p′ < d for β ∈ (1, 2).

Definition 2.3. For a given T ∈ (0,∞), f is a weak solution of (1.1) on the time-interval [0, T ) if and only if
the following condition are satisfied:

(1) f ∈ L∞(0, T ; (L1
+ ∩ Lp)(Rd × Rd)) ∩ C([0, T ];P1(Rd × Rd)),

(2) For all Ψ ∈ C∞c (Rd × Rd × [0, T ]),∫
Rd×Rd

f(x, v, T )Ψ(x, v, T )dxdv −
∫ T

0

∫
Rd×Rd

f
(
∂tΨ +∇xΨ · v +∇vΨ · F (f)

)
dxdvdt

=

∫
Rd×Rd

f0(x, v)Ψ0(x, v)dxdv,

where Ψ0(x, v) := Ψ(x, v, 0).

We now state our first result on the local existence of a unique weak solution.

Theorem 2.1. Suppose that either the assumptions of Case A or those of Case B hold, and the initial data f0

satisfies

f0 ∈ (L1
+ ∩ Lp)(Rd × Rd) ∩ P1(Rd × Rd).

Then there exist T > 0 and unique weak solution f to the system (1.1) in the sense of Definition 2.3 on the time
interval [0, T ]. Furthermore, if fi, i = 1, 2 are two such solutions to (1.1), then we have the following d1-stability
estimate.

d

dt
d1(f1(t), f2(t)) ≤ Cd1(f1(t), f2(t)), for t ∈ [0, T ],

where C is a positive constant.
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Our second result is on the dynamics of the generalized Cucker-Smale particle system (1.4). For this, we
assume further that either ψ = ψ1(s) with α ≥ 1, or ψ = ψ2(s) satisfying that

0 < ψ2(s1) ≤ ψ2(s2) for 0 ≤ s2 ≤ s1 <∞, and ψ2(s)→ 0 as s→∞ .

Note that the original alignment force of Cucker-Smale model satisfies the conditions of ψ2. Without loss of
generality, we may assume that

N∑
k=1

vi(0) = 0.

We also set

‖x(t)‖∞ := max
1≤i≤N

|xi(t)|, ‖v(t)‖∞ := max
1≤i≤N

|vi(t)|, and ηm,X(t) := min
1≤i,j≤N

|xi(t)− xj(t)|.

Then our second result is stated as follows.

Theorem 2.2. Let (x, v) be any smooth solutions to the system (1.4) with initial data (x0, v0) satisfying

‖x0‖∞ > 0, ‖v0‖3−β∞ <
(3− β)C0

2
min

{∫ 2‖x0‖∞

0

ψ(s)ds,

∫ ∞
2‖x0‖∞

ψ(s)ds

}
, (2.1)

where C0 is a positive constant independent of t, ‖x0‖∞ := ‖x(0)‖∞, and ‖v0‖∞ := ‖v(0)‖∞. Then the follow-
ings hold:

• If β = 2, we have exponential alignment,

‖v(t)‖∞ ≤ ‖v0‖∞ exp

{
−C0ψ(2xM )t

2

}
,

where xM is a positive constant defined by

‖v0‖3−β∞ =
(3− β)C0

2

∫ 2xM

2‖x0‖∞
ψ(s)ds.

Furthermore, if η0
m,X := ηm,X(0) > ‖v0‖∞

C0ψ(2xM ) , then we have no finite-time collision between particles and

‖v(t)‖∞ ≥ ‖v0‖∞ exp
{
−ψ(η∗m,X)t

}
,

where η∗m,X := η0
m,X −

‖v0‖∞
C0ψ(2xM ) > 0.

• If β ∈ (0, 2), we have finite-time alignment,

‖v(t)‖∞ ≤
(
‖v0‖2−β∞ − (2− β)C0ψ(2xM )t

2

) 1
2−β

.

Furthermore if η0
m,X > T ∗‖v0‖∞, then we have no collision between particles, where

T ∗ :=
4‖v0‖2−β

(2− β)C0ψ(2xM )
.
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• If β ∈ (2, 3), we have polynomial alignment,

‖v(t)‖∞ ≤
(
‖v0‖2−β∞ +

(β − 2)C0ψ(2xM )t

2

)− 1
β−2

.

Remark 2.1. 1. Note that if α ∈ [1, d− 1) for d > 2, then
∫ 2‖x0‖∞

0
ψ1(s)ds =∞ and this yields that we only

need the following condition for v0 in (2.1):

‖v0‖3−β∞ <
(3− β)C0

2

∫ ∞
2‖x0‖∞

ψ1(s)ds.

2. In the case of β = 2, if we choose the initial data for position x0 such that η0
m,X > ‖v0‖∞

C0ψ(2xM ) , then there

is no collision between particles and alignment for velocities in a finite time. Similarly, if we select the initial
data x0 satisfying η0

m,X > T ∗‖v0‖∞ when β ∈ (0, 2), then the particles do not collide with each other until T ∗.

3. Local well-posedness of the generalized Cucker-Smale models

In this section, we provide a detailed proof of Theorem 2.1 under the assumptions of Case A. Since the
arguments for the Case B are similar to this, we will give a sketch of proof for it in the last part of this section.
We also notice that it is enough to show Theorem 2.1 in the Case A when β = 2 due to the estimate on the
support of f in velocity (see Lemma 3.1 below). We will denote by F1(f) the alignment force (1.3) in case
ψ = ψ1(s).

3.1. A regularized model

In this part, we will consider a regularized model. For this, we first introduce a standard mollifier θ:

θ(x) = θ(−x) ≥ 0, θ ∈ C∞0 (Rd), supp θ ⊂ B(0, 1),

∫
Rd
θ(x)dx = 1,

and we set a sequence of smooth mollifiers:

θε(x) :=
1

εd
θ
(x
ε

)
.

Here B(0, 1) := {x ∈ Rd : |x| ≤ 1}. Then we define the mollified communication weight ψ1
ε as ψ1

ε := ψ1 ∗ θε for
each ε > 0. Since ψ1

ε ∈ C∞(Rd), we deduce from well-posedness theories in [4, 16,18] that there exists a unique
global solution fε which has compact support in velocity to the following equations.

∂tfε + v · ∇xfε +∇v ·
[
F ε1 (fε)fε

]
= 0, (x, v) ∈ Rd × Rd, t > 0,

F ε1 (fε)(x, v, t) :=

∫
Rd×Rd

ψ1
ε(x− y)(w − v)fε(y, w, t)dydw, (x, v) ∈ Rd × Rd, t > 0,

fε(x, v, 0) =: f0(x, v), (x, v) ∈ Rd × Rd.

(3.1)

For the solution fε to the system (3.1), we will show the uniform Lp-bound of fε in ε. For this, we first need to es-
timate the growth of the kinetic velocity. Consider the forward bi-characteristics Zε(s) := (Xε(s; 0, x, v), Vε(s; 0, x, v))
satisfying the following ODE system:

dXε(s)

ds
= Vε(s),

dVε(s)

ds
=

∫
Rd×Rd

ψ1
ε (Xε(s)− y) (w − Vε(s))fε(y, w, s)dydw,

(3.2)
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where fε is the unique global solution to the system (3.1). Set Ωε(t) and Rvε(t) the v-projection of compact
suppfε(·, t) and maximum value of v in Ωε(t), respectively:

Ωε(t) := {v ∈ Rd : ∃(x, v) ∈ Rd × Rd such that fε(x, v, t) 6= 0}, Rvε(t) := max
v∈Ωε(t)

|v|.

Then we have the following growth estimate for support of fε in velocity.

Lemma 3.1. Let Zε(t) be the solution to the particle trajectory (3.2) emanating from an initial point in the
support of f0. Then we have

Rvε(t) ≤ Rvε(0) = Rv0 := max
v∈Ω(0)

|v|,

i.e., the support of f(x, v, t) in velocity is uniformly bounded by the one of f0(x, v).

Proof. For the proof, we employ the same idea in [7, Section 4]. We choose Vε(t) that make the value of Rvε(t)

such that
dRvε (t)
dt is well-defined to obtain

1

2

d

dt
(Rvε(t))

2
=

1

2

d

dt
|Vε(t)|2 = Vε(t) ·

d

dt
Vε(t)

=

∫
Rd×Rd

ψ1
ε (Xε(t)− y) (w − Vε(t)) · Vε(t)fε(y, w, t)dydw

≤ 0.

Here we used the fact that for any w ∈ Ωε(t), (w − Vε(t)) · Vε(t) ≤ 0. This completes the proof. �

Remark 3.1. Set Ω̃0 := B(0, Rv0). Then it follows from Lemma 3.1 that Ωε(t) ⊂ Ω̃0 for t ≥ 0.

We now show the Lp-estimate of fε with the help of the estimate in Lemma 3.1.

Proposition 3.1. Let fε be the solution to system (3.1). Then there exists a T > 0 such that the uniform
L1 ∩ Lp-estimate of fε

sup
t∈[0,T ]

‖fε‖L1∩Lp ≤ C,

holds, where C is a positive constant independent of ε.

Proof. First, we easily find
d

dt

∫
Rd×Rd

fεdxdv = 0,

and this yields ‖fε‖L1 = ‖f0‖L1 . We next turn to Lp-estimate of fε. It is a straightforward to get

d

dt

∫
Rd×Rd

fpε dxdv = −(p− 1)

∫
Rd×Rd

(∇v · (F ε1 (fε))) f
p
ε dxdv.

For the estimate of ‖∇v · (F ε1 (fε))‖L∞ , we use a cut-off function χ1 ∈ C∞c (Rd) defined by

χ1(x) :=

{
1 |x| ≤ 1,

0 |x| > 1.

Note that ψ1
ε can be decomposed into two terms:

ψ1
ε(x) = ψ1 ∗ θε = (ψ1(χ1 + (1− χ1))) ∗ θε = (ψ1χ1) ∗ θε + (ψ1(1− χ1)) ∗ θε,

and
‖(ψ1χ1) ∗ θε‖Lp′ ≤ ‖ψ

1χ1‖Lp′ ≤ C, ‖(ψ1(1− χ1)) ∗ θε‖L∞ ≤ ‖ψ1(1− χ1)‖L∞ ≤ 1,
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due to αp′ < d. Here C is a positive constant depending only on d, α, and p. Thus we obtain

|∇v · (F ε1 (fε))| ≤ d
∫
Rd×Rd

|(ψ1χ1) ∗ θε||fε|dydw + d

∫
Rd×Rd

|(ψ1(1− χ1)) ∗ θε||fε|dydw

≤ C(Rv0)
1
p′ ‖ψ1χ1‖Lp′‖fε‖Lp + ‖ψ1(1− χ1)‖L∞‖fε‖L1

≤ C‖fε‖L1∩Lp ,

where C is a positive constant independent of ε. Hence we have

d

dt
‖fε‖L1∩Lp ≤ Cd

(
1− 1

p

)
‖fε‖2L1∩Lp ,

and this yields that there exists a T > 0,

sup
t∈[0,T ]

‖fε‖L1∩Lp ≤ C,

where C is a positive constant depending on the p, d, T, α,Rv0 , and ‖f0‖L1∩Lp , but not ε.
�

Remark 3.2. 1. It is easy to find the estimate of first moments of fε. In fact, it directly follows from (3.1)
that

d

dt

∫
Rd×Rd

|v|fεdxdv =

∫
Rd×Rd

v

|v|
· F ε1 (fε)fεdxdv

≤
∫
R2d×R2d

ψ1
ε(x− y)|w|fε(x, v)fε(y, w)dxdvdydw

−
∫
R2d×R2d

ψ1
ε(x− y)|v|fε(x, v)fε(y, w)dxdvdydw

= 0,

where we used ψ1
ε(x) = ψ1

ε(−x), and the change of variables (x, v)↔ (y, w). This yields

‖vfε‖L∞(0,T ;L1) ≤ ‖vf0‖L1 . (3.3)

Since
d

dt

∫
Rd×Rd

|x|fεdxdv ≤
∫
Rd×Rd

|v|fεdxdv,

we deduce from (3.3) that
‖xfε‖L∞(0,T ;L1) ≤ ‖xf0‖L1 + T‖vf0‖L1 .

2. It follows from the definition of ψ1
ε that

ψ1
ε(x) =

∫
Rd

1

|x− y|α
θε(y)dy

≤
∫
{y:|y|< |x|2 }

θε(y)

|x− y|α
dy +

∫
{y:|y|≥ |x|2 }

θε(y)

|x− y|α
dy

≤ 2αε

|x|α

∫
Rd
θε(y)dy + 1{|x|≤2ε}

∫
{y: ε≥|y|}

θε(y)

|x− y|α
dy

≤ C

|x|α
+
Cεα

|x|α

∫
{y: ε≥|y|}

θε(y)

|x− y|α
dy ≤ C

|x|α
.

(3.4)
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Thus we obtain

|ψ1
ε(x)− ψ1

ε(y)| ≤ C|x− y|
min(|x|, |y|)1+α

, (3.5)

where C is independent of ε.

We now show the growth estimate for d1(fε(t), fε′(t)).

Proposition 3.2. Let fε and fε′ be two solutions of the system (3.1). Then there exists C independent of ε
and ε′ such that

d

dt
d1(fε(t), fε′(t)) ≤ C(d1(fε(t), fε′(t)) + ε+ ε′) ,

holds for all t ≥ 0.

Proof. We first define flows Zε := (Xε, Vε), Zε′ := (Xε′ , Vε′) : R+ × R+ × Rd × Rd → Rd × Rd generated from
(3.1) satisfying 

d

dt
Xε(t; s, x, v) = Vε(t; s, x, v),

d

dt
Vε(t; s, x, v) = F ε1 (fε)(Zε(t; s, x, v), t),

(Xε(s; s, x, v), Vε(s; s, x, v)) = (x, v),

(3.6)

and 

d

dt
Xε′(t; s, x, v) = Vε′(t; s, x, v),

d

dt
Vε′(t; s, x, v) = F ε

′

1 (fε′)(Zε′(t; s, x, v), t),

(Xε′(s; s, x, v), Vε′(s; s, x, v)) = (x, v),

(3.7)

for all s, t ∈ [0, T ]. Since ψ1
ε , ψ

1
ε′ ∈ C∞, (3.6) and (3.7) are well-defined for s, t ∈ [0, T ]. We now choose an optimal

transport map T 0 = (T 0
1 (x), T 0

2 (v)) between fε(t0) and fε′(t0) for fixed t0 ∈ [0, T ), i.e., fε′(t0) = T 0#fε(t0). It is
known from [8] that such an optimal transport map exists when fε(t0) is absolutely continuous with respect to the
Lebesgue measure. Then we apply the similar argument in [16, Lemma 5.5] to obtain fε(t) = Zε(t; t0, ·, ·)#fε(t0)
and fε′(t) = Zε(t; t0, ·, ·)#fε′(t0) using the mass transportation (not necessarily optimal) notation of push-
forward. More precisely, we obtain that for any g ∈ C1

c (Rd × Rd × [0, T ]),∫
Rd×Rd

g(x, v, t)fε(x, v, t)dxdv −
∫
Rd×Rd

g(x, v, t0)fε(x, v, t0)dxdv

=

∫ t

t0

∫
Rd×Rd

(∂sg + v · ∇xg + F ε1 (fε) · ∇vg) fε(x, v, s)dxdvds.

(3.8)

We now choose

g(x, v, t) := h(Xε(s; t, x, v), Vε(s; t, x, v)), for a fixed t,

where h ∈ C1
c (Rd × Rd). This makes the right hand side of (3.8) vanishing and∫

Rd×Rd
h(x, v)fε(x, v, t)dxdv =

∫
Rd×Rd

h(Xε(t0; t, x, v), Vε(t0; t, x, v))fε(x, v, t0)dxdv. (3.9)

Thus we conclude fε(t) = Zε(t; t0, ·, ·)#fε(t0). The same argument can be applied to get fε′(t) = Zε(t; t0, ·, ·)#fε′(t0).
We also notice that

T t#fε(t) = fε′(t), where T t = Zε′(t; t0, ·, ·) ◦ T 0 ◦ Zε(t0; t, ·, ·).
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By Definition 2.1, when p = 1, we obtain

d1(fε(t), fε′(t)) ≤
∫
Rd×Rd

|Zε(t; t0, x, v)− Zε′(t; t0, T 0(x, v))|fε(x, v, t0)dxdv.

Set

Qε,ε′(t) :=

∫
Rd×Rd

|Zε(t; t0, x, v)− Zε′(t; t0, T 0(x, v))|fε(x, v, t0)dxdv.

Then straightforward computations yield

d

dt
Qε,ε′(t)

∣∣∣
t=t0+

≤
∫
Rd×Rd

|Vε(t; t0, x, v)− Vε′(t; t0, T 0(x, v))|fε(x, v, t0)dxdv
∣∣∣
t=t0+

+

∫
Rd×Rd

∣∣∣F ε1 (fε)(Zε(t; t0, x, v), t)− F ε
′

1 (fε′)(Zε′(t; t0, T 0(x, v)), t)
∣∣∣ fε(x, v, t0)dxdv

∣∣∣∣
t=t0+

=: I + J .

For the estimate of I, it is easy to find

I =

∫
Rd×Rd

|v − T 0
2 (v)|fε(x, v, t0)dxdv ≤ Cd1(fε(t0), fε′(t0)). (3.10)

For the estimate of J , we notice that

J =

∫
Rd×Rd

∣∣∣∣ ∫
Rd×Rd

ψ1
ε(x− y)(w − v)fε(y, w, t0)dydw

−
∫
Rd×Rd

ψ1
ε′(T 0

1 (x)− y)(w − T 0
2 (v))fε′(y, w, t0)dydw

∣∣∣∣fε(x, v, t0)dxdv

=

∫
Rd×Rd

∣∣∣∣ ∫
Rd×Rd

ψ1
ε(x− y)(w − v)fε(y, w, t0)dydw

−
∫
Rd×Rd

ψ1
ε′(T 0

1 (x)− T 0
1 (y))(T 0

2 (w)− T 0
2 (v))fε(y, w, t0)dydw

∣∣∣∣fε(x, v, t0)dxdv.

For notational simplicity, we omit the time dependency on t0 in the rest of computations. We decompose J
into two parts:

J =

∫
Rd×Rd

|J1 + J2|fε(x, v)dxdv,

where

J1 :=

∫
Rd×Rd

(
ψ1
ε(x− y)− ψ1

ε′
(
T 0

1 (x)− T 0
1 (y)

))
(w − v)fε(y, w)dydw,

J2 :=

∫
Rd×Rd

ψ1
ε′
(
T 0

1 (x)− T 0
1 (y)

) (
(w − v)−

(
T 0

2 (w)− T 0
2 (v)

))
fε(y, w)dydw.

For the estimates of J , we divide it into two steps for the sake of the reader.

• In Step A, we show∫
Rd×Rd

|J1|fεdxdv ≤ C max(‖fε‖, ‖fε′‖)d1(fε(t0), fε′(t0)) + C‖fε‖2(ε+ ε′), (3.11)
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where C is a positive constant independent of ε, ε′, and ‖f‖ = ‖f‖L∞(0,T ;L1∩Lp).

• In Step B, we show ∫
Rd×Rd

|J2|fεdxdv ≤ C‖fε′‖d1(fε(t0), fε′(t0)),

where C is a positive constant independent of ε and ε′.

Step A: By adding and subtracting, we find that

J1 ≤
∫
Rd×Rd

∣∣(ψ1
ε − ψ1

ε′)(x− y)
∣∣ |w − v|fε(y, w)dydw

+

∫
Rd×Rd

∣∣ψ1
ε′(x− y)− ψ1

ε′
(
T 0

1 (x)− T 0
1 (y)

)∣∣ |w − v|fε(y, w)dydw.

(3.12)

It follows from a similar estimate to (3.4) that

|ψ1
ε(x)− ψ1(x)| ≤

∫
Rd
|ψ1(x− y)− ψ1(x)|θε(y)dt

≤ 2

∫
Rd

(
1

|x|1+α
+

1

|x− y|1+α

)
|y|θε(y)dy

≤ 2ε

∫
{y: ε≥|y|}

(
1

|x|1+α
+

1

|x− y|1+α

)
θε(y)dy

≤ Cε

|x|1+α
.

(3.13)

Then we use (3.13) to obtain∫
R2d×R2d

∣∣(ψ1
ε − ψ1)(x− y)

∣∣ |w − v|fε(y, w)fε(x, v)dxdvdydw

≤ 2Rv0

∫
R2d×Ω̃2

0

∣∣(ψ1
ε − ψ1)(x− y)

∣∣ fε(y, w)fε(x, v)dxdvdydw

≤ Cε
∫
R2d×Ω̃2

0

1

|x− y|1+α
fε(y, w)fε(x, v)dxdvdydw

≤ Cε
∫
Rd×Rd

(∫
{y:|x−y|<1}×Ω̃0

+

∫
{y:|x−y|≥1}×Ω̃0

1

|x− y|1+α
fε(y, w)dydw

)
fε(x, v)dxdv

≤ Cε
∫
Rd×Rd

(∫
{y:|x−y|≤1}

1

|x− y|(1+α)p′
dy

) 1
p′

‖fε‖Lp + ‖fε‖L1

 fε(x, v)dxdv

≤ Cε‖fε‖2 ≤ Cε. (3.14)

Similarly, we get ∫
R2d×R2d

∣∣(ψ1
ε′ − ψ1)(x− y)

∣∣ |w − v|fε(y, w)fε(x, v)dxdvdydw ≤ Cε′.

Thus we have ∫
R2d×R2d

∣∣(ψ1
ε − ψ1

ε′)(x− y)
∣∣ |w − v|fε(y, w)fε(x, v)dxdvdydw ≤ C(ε+ ε′). (3.15)
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Concerning the second term in the right hand side of (3.12), we employ (3.5) and use the change of variables
(x, v)↔ (y, w) to find∫

R2d×Ω̃2
0

∣∣ψ1
ε′(x− y)− ψ1

ε′
(
T 0

1 (x)− T 0
1 (y)

)∣∣ |w − v|fε(x, v)fε(y, w)dxdvdydw

≤ 2Rv0

∫
R2d×Ω̃2

0

(
|T 0

1 (x)− x|
|T 0

1 (x)− T 0
1 (y)|1+α

+
|T 0

1 (x)− x|
|x− y|1+α

)
fε(x, v)fε(y, w)dxdvdydw

=: K1 +K2.

By direct computations, we get

K1 = 2Rv0

∫
Rd×Rd

|T 0
1 (x)− x|fε(x, v)

(∫
Rd×Ω0

1

|T 0
1 (x)− y|1+α

fε′(y, w)dydw

)
dxdv

≤ C‖fε′‖
∫
Rd×Rd

|T 0
1 (x)− x|fε(x, v)dxdv ≤ C‖fε′‖d1(fε(t0), fε′(t0)),

where we used the same estimates in (3.14) to obtain∫
Rd×Ω̃0

1

|T 0
1 (x)− y|1+α

fε′(y, w)dydw ≤ C‖fε′‖.

Similarly, we also obtain K2 ≤ C‖fε‖d1(fε(t0), fε′(t0)). This yields∫
R2d×R2d

∣∣ψ1
ε′(x− y)− ψ1

ε′
(
T 0

1 (x)− T 0
1 (y)

)∣∣ |w − v|fε(x, v)fε(y, w)dxdvdydw

≤ C max(‖fε‖, ‖fε′‖)d1(fε(t0), fε′(t0)).

(3.16)

We now combine (3.15) and (3.16) to conclude our desired claim.

Step B: A straightforward computation yields that∫
Rd×Rd

|J2|fε dxdv

≤
∫
R2d×R2d

∣∣ψ1
ε′
(
T 0

1 (x)− T 0
1 (y)

)∣∣ ∣∣w − T 0
2 (w)

∣∣ fε(x, v)fε(y, w)dxdydvdw

+

∫
R2d×R2d

∣∣ψ1
ε′
(
T 0

1 (x)− T 0
1 (y)

)∣∣ ∣∣v − T 0
2 (v)

∣∣ fε(x, v)fε(y, w)dxdydvdw

=: J 1
2 + J 2

2 .

On the other hand, we can easily find that

J 1
2 =

∫
Rd×Rd

(∫
Rd×Ω0

∣∣ψ1
ε′
(
T 0

1 (x)− T 0
1 (y)

)∣∣ fε(x, v)dxdv

) ∣∣w − T 0
2 (w)

∣∣ fε(y, w)dydw

≤ C‖fε′‖
∫
Rd×Rd

|w − T 0
2 (w)|fε(y, w)dydw ≤ C‖fε′‖d1(fε(t0), fε′(t0)),

where we used the estimates in (3.14) again. Similarly, we get

J 2
2 ≤ C‖fε′‖d1(fε(t0), fε′(t0)),
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and this deduces ∫
Rd×Rd

|J2|fε dxdv ≤ C‖fε′‖d1(fε(t0), fε′(t0)). (3.17)

We now combine (3.10), (3.11) and (3.17) to find

d

dt
Qε,ε′(t)

∣∣∣
t=t0+

≤ C(d1(fε(t0), fε′(t0)) + ε+ ε′).

We finally write the integral form, dividing t− t0, and taking the limit t→ t+0 to conclude

d

dt
d1(fε(t), fε′(t))

∣∣∣
t=t+0

≤ C(d1(fε(t0), fε′(t0) + ε+ ε′).

Since t0 is arbitrary in [0, T ), this yields

d

dt
d1(fε(t), fε′(t)) ≤ C(d1(fε(t0), fε′(t0) + ε+ ε′),

where C is independent of ε and ε′. �

3.2. Existence and uniqueness of weak solutions (limit as ε→ 0)

It follows from Proposition 3.2 that {fε}ε>0 is a Cauchy sequence in C([0, T ];P1(Rd ×Rd)), and this implies
that there exists a limit curve of measure f ∈ C([0, T ];P1(Rd × Rd)), and f ∈ L∞(0, T ; (L1

+ ∩ Lp)(Rd × Rd)).
Thus it only remains to show that f is a solution of the Cucker-Smale model (1.1). Choose a test function
Ψ(x, v, t) ∈ C∞c (Rd × Rd × [0, T ]), then fε satisfies∫

Rd×Rd
Ψ0(x, v)f0(x, v)dxdv

=

∫
Rd×Rd

Ψ(x, v, T )fε(x, v, T )dxdv +

∫ T

0

∫
Rd×Rd

∂tΨ(x, v, t)fε(x, v, t)dxdvdt

−
∫ T

0

∫
Rd×Rd

(∇xΨ) · vfεdxdvdt−
∫ T

0

∫
Rd×Rd

(∇vΨ) · F ε1 (fε)fεdxdvdt,

(3.18)

where Ψ0(x, v) = Ψ(x, v, 0). We can easily show that the first, second, and third terms in the rhs of (3.18)
converge to ∫

Rd×Rd
Ψ(x, v, T )f(x, v, T )dxdv +

∫ T

0

∫
Rd×Rd

∂tΨ(x, v, t)f(x, v, t)dxdvdt

−
∫ T

0

∫
Rd×Rd

(∇xΨ) · vfdxdvdt as ε→ 0,

since fε → f in C([0, T ];P1(Rd × Rd)). We also notice that∣∣∣∣∣
∫ T

0

∫
R2d×R2d

(ψ1
ε − ψ1)(x− y)(∇vΨ) · (w − v)fε(x, v)fε(y, w)dxdvdydwdt

∣∣∣∣∣
≤ CεRv0‖∇vΨ‖L∞(0,T ;L∞(Rd×Rd))

∫ T

0

∫
R2d×Ω̃2

0

1

|x− y|1+α
fε(x, v)fε(y, w)dxdvdydwdt

≤ Cε‖fε‖2 ≤ Cε→ 0 as ε→ 0 ,
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where we used the decomposition in near and far fields as in (3.14). Thus in order to obtain∫ T

0

∫
Rd×Rd

(∇vΨ) · F ε1 (fε)fεdxdvdt→
∫ T

0

∫
Rd×Rd

(∇vΨ) · F1(f)fdxdvdt,

it only remains to show∫ T

0

∫
R2d×R2d

ψ1(x− y)(∇vΨ) · (w − v)fε(x, v)fε(y, w)dxdvdydwdt

→
∫ T

0

∫
R2d×R2d

ψ1(x− y)(∇vΨ) · (w − v)f(x, v)f(y, w)dxdvdydwdt,

(3.19)

as ε→ 0. For this, we introduce a cut-off function χδ ∈ C∞c (Rd) such that

χδ(x) =

{
1 if |x| ≤ δ
0 if |x| ≥ 2δ

.

Then since (1− χδ(x− y))ψ1(x− y)(w− v) · ∇vΨ is a Lipschitz function and fε → f in C([0, T ];P1(Rd ×Rd)),
we find ∫ T

0

∫
R2d×R2d

(1− χδ)ψ1(x− y)(∇vΨ) · (w − v)fε(x, v)fε(y, w)dxdvdydwdt

→
∫ T

0

∫
R2d×R2d

(1− χδ)ψ1(x− y)(∇vΨ) · (w − v)f(x, v)f(y, w)dxdvdydwdt,

(3.20)

as ε→ 0 for any δ > 0. On the other hand, the remaining term is estimated as follows:∫ T

0

∫
R2d×R2d

χδ(x− y)ψ1(x− y)(∇vΨ) · (w − v)fε(x, v)fε(y, w)dxdvdydwdt

≤ Cδ
∫ T

0

∫
{(x,y)∈Rd×Rd: |x−y|≤2δ}×Ω̃2

0

1

|x− y|1+α
fε(x, v)fε(y, w)dxdvdydwdt

≤ Cδ → 0 as δ → 0,

(3.21)

and similarly, we also have∫ T

0

∫
R2d×R2d

χδ(x− y)ψ1(x− y)(∇vΨ) · (w − v)f(x, v)f(y, w)dxdvdydwdt ≤ Cδ → 0, (3.22)

as δ → 0 due to the fact that f has a compact support in velocity. Hence we conclude the convergence (3.19)
combining (3.20), (3.21), and (3.22). Uniqueness of the weak solutions fε is just followed from Proposition 3.2.
More specifically, let f1, f2 ∈ L∞(0, T ; (L1

+ ∩ Lp)(Rd × Rd)) ∩ C([0, T ];P1(Rd × Rd)) be the weak solutions to

the system (1.1) with same initial data f0 ∈ (L1
+ ∩ Lp)(Rd × Rd) ∩ P1(Rd × Rd) satisfying the Case A. Then

Proposition 3.2 yields that

d

dt
d1(f1(t), f2(t)) ≤ C max(‖f1‖, ‖f2‖)d1(f1(t), f2(t)), for t ∈ [0, T ].

This completes the proof for the Case A.
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Proposition 3.3. Let f be a weak solutions to (1.1) on the time-interval [0, T ) in the sense of Definition 2.3.
Then f is determined as the push-forward of the initial density through the flow map generated by (v, F1(f)).

Proof. Consider the following flow map:
d

dt
X(t; s, x, v) = V (t; s, x, v),

d

dt
V (t; s, x, v) = F1(f)(X(t; s, x, v), V (t; s, x, v), t),

(X(s; s, x, v), V (s; s, x, v)) = (x, v),

(3.23)

for all s, t ∈ [0, T ]. Then since f has compact support in v, the flow map (3.23) is well-defined using the same
argument in the proof of Proposition 3.2. Moreover we can use the similar argument to (3.9) to have∫

Rd×Rd
h(x, v)f(x, v, t)dxdv =

∫
Rd×Rd

h(X(0; t, x, v), V (0; t, x, v))f0(x, v)dxdv,

for t ∈ [0, T ]. This yields that f is determined as the push-forward of the initial density through the flow map
(3.23). �

Proof of Theorem 2.1 in the Case B. Similarly, we first regularize the nonlinear velocity coupling as ∇φε(v) :=
v

|v|2−β2+ε
, and define the fε by this regularized system. Then we easily find that the estimates of support of f

in position and velocity, and first momentums using the same arguments in Lemma 3.1 and Remark 3.2. The
remaining parts are obtained by using the similar arguments in Section 3. �

4. Dynamics of the generalized Cucker-Smale particle system

We recall our generalized Cucker-Smale particle system:

dxi(t)

dt
= vi(t),

dvi(t)

dt
=

1

N

N∑
j=1

ψ(xj(t)− xi(t))
vj − vi

|vj − vi|2−β
, i = 1, · · · , N.

(4.1)

Here, the communication weight is either ψ1 or ψ2 as defined in the introduction.
Note that we can choose an index i such that ‖v(t)‖∞ = |vi(t)| at any time t. Then it follows from [5, 15]

that
d

dt
‖v(t)‖2∞ ≤ −C0ψ(2‖x(t)‖∞)‖v(t)‖β∞, for β ∈ (0, 3),

where C0 is a positive constant depending only on β. It is also clear to obtain
∣∣∣d‖x‖∞dt

∣∣∣ ≤ ‖v‖∞. We now take

the similar argument in [1, 16], and define two Lyanpunov type functionals E±(x, v):

E±(x(t), v(t)) :=
1

3− β
‖v(t)‖3−β∞ ± C0

2
Ψ(2‖x(t)‖∞),

where Ψ(·) is a primitive of ψ.
We next present two lemmas that can be obtained by using the similar arguments in [1, 16].



ESAIM: PROCEEDINGS AND SURVEYS 33

Lemma 4.1. Let (x, v) be any smooth solutions to the system (4.1). Then we have

(i) E±(x(t), v(t)) ≤ E±(x0, v0).

(ii) ‖v(t)‖3−β∞ +
(3− β)C0

2

∣∣∣∣∣
∫ 2‖x(t)‖∞

2‖x0‖∞
ψ(s)ds

∣∣∣∣∣ ≤ ‖v0‖3−β∞ .

Lemma 4.2. Let (x, v) be any smooth solutions to the system (4.1). If the initial data (x0, v0) satisfies

‖x0‖∞ > 0, ‖v0‖3−β∞ <
(3− β)C0

2
min

{∫ 2‖x0‖∞

0

ψ(s)ds,

∫ ∞
2‖x0‖∞

ψ(s)ds

}
,

then there exist positive constants xm, xM > 0 such that

‖x(t)‖∞ ∈ [xm, xM ],
d

dt
‖v(t)‖2∞ ≤ −C0ψ(2xM )‖v(t)‖β∞,

where xm and xM are defined by

‖v0‖3−β∞ =
(3− β)C0

2

∫ ‖2x0‖∞

2xm

ψ(s)ds and ‖v0‖3−β∞ =
(3− β)C0

2

∫ 2xM

2‖x0‖∞
ψ(s)ds,

respectively.

Proof of Theorem 2.2. The inequalities for ‖v(t)‖∞ are clearly obtained from the results in Lemma 4.2. Con-
cerning the initial configuration for avoiding collisions between particles, a straightforward computation yields
that for β = 2

|ηm,X(t)− η0
m,X | ≤

∣∣∣∣∫ t

0

dηm,X(s)

ds
ds

∣∣∣∣
≤ 2‖v0‖∞

∫ t

0

e−
C0ψ(2xM )s

2 ds

≤ ‖v0‖∞
C0ψ(2xM )

.

Thus we conclude that

ηm,X(t) ≥ η0
m,X − |ηm,X(t)− η0

m,X | ≥ η0
m,X −

‖v0‖∞
C0ψ(2xM )

> 0.

Similarly, for β ∈ (0, 2), we have

|ηm,X(t)− η0
m,X | ≤

∫ t

0

‖v(s)‖∞ds ≤ T ∗‖v0‖∞,

and this deduces

ηm,X(t) ≥ η0
m,X − T ∗‖v0‖∞ > 0.

This completes the proof. �
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