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Abstract

In this project, we consider a variety of ac-driven, inhomogeneous sine-Gordon equa-

tions describing an infinitely long Josephson junctions with phase shifts, driven by a

microwave field. First, the case of a small driving amplitude and a driving frequency

close to the natural (defect) frequency is considered. We construct a perturbative ex-

pansion for the breathing mode to obtain equations for the slow time evolution of the

oscillation amplitude. We show that, in the absence of an ac-drive, a breathing mode

oscillation decays with a rate of at least O(t
−1/4) and O(t

−1/2) for 0−π − 0 and 0− κ

junctions, respectively. Multiple scale expansions are used to determine whether, e.g.,

an external drive can excite the defect mode of a junction (a breathing mode), to switch

the junction into a resistive state. Next, we extend the study to the case of large oscilla-

tion amplitude with a high frequency drive. Considering the external driving force to

be rapidly oscillating, we apply an asymptotic procedure to derive an averaged non-

linear equation, which describes the slowly varying dynamics of the sine-Gordon field.

We discuss the threshold distance of 0 − π − 0 junctions and the critical bias current

in 0 − κ junctions in the presence of ac drives. Then, we consider a spatially inhomo-

geneous sine-Gordon equation with two regions in which there is a π-phase shift, and

a time periodic drive, modelling 0 − π − 0 − π − 0 long Josephson junctions. We dis-

cuss the interactions of symmetric and antisymmetric defect modes in long Josephson

junctions. We show that the amplitude of the modes decay in time. In particular, ex-

citing the two modes at the same time will increase the decay rate. The decay is due

to the energy transfer from the discrete to the continuous spectrum. For a small drive

amplitude, there is an energy balance between the energy input given by the external

drive and the energy output due to radiative damping experience by the coupled mode.

Finally, we consider spatially inhomogeneous coupled sine-Gordon equations with a

time periodic drive, modelling stacked long Josephson junctions with a phase shift. We

derive coupled amplitude equations considering weak coupling and strong coupling

in the absence of ac-drive. Next, by considering the strong coupling with time periodic

drive, we expect that the amplitude of oscillation tends to constant for long times.
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CHAPTER 1

Introduction

1.1 Superconductivity and the physics of Josephson junctions

In this section we discuss the basic properties of Josephson junctions. In order to un-

derstand Josephson junctions, it is important to consider the microscopic theory behind

them. We first present a short review of superconductivity, its history and extra ordin-

ary features. We then discuss Josephson effect and related terminology to Josephson

junctions. We also derive the relations which describe the dynamics of the Josephson

junctions.

1.1.1 Superconductivity

Superconductivity is one of the most exciting topics in solid state physics. Supercon-

ductivity arises due to the formation of Cooper pairs, which are spin zero bosons (sub-

atomic particles), made of two spin 1/2 electrons. Superconductivity is a phenomenon

of exactly zero electrical resistance occurring in certain materials below a characteristic

temperature. It was discovered by Dutch physicist Heike Kamerlingh-Onnes in 1911.

In the course of investigation of the electrical resistance of different metals at liquid

helium temperatures, Kamerlingh-Onnes observed that the resistance of a sample of

mercury dropped from 0.08 Ω at above 4oK to less than 3 × 10−6
Ω at about 3oK and

this drop occurs over a temperature interval of 0.010K.

In 1933 German physicist Walter Meissner and Robert Ochsenfeld discovered a phe-

nomenon now known as the Meissner effect, shown in Fig: 1.1, where lowering the

temperature of an object below Tc in the presence of magnetic field, causes the magnetic

field to be expelled from the object [1]. The occurrence of the Meissner effect indicates

that superconductivity cannot be understood simply as the idealization of perfect con-

ductivity in classical physics. It was a breakthrough for theories of superconductivity

1



CHAPTER 1: INTRODUCTION

Figure 1.1: The Meissner effect. A superconductor in an external magnetic field is

cooled below its superconducting transition temperature Tc, and the mag-

netic flux, B, is abruptly expelled.

because it allowed superconductivity to be treated thermodynamically and, it helped

the development of the London equations.

In 1935 Fritz and Heinz London proposed a theory explaining that the Meissner effect

was a consequence of minimization of electromagnetic free energy carried by super-

conducting current [2]. The London brothers derived the equations

∂j

∂t
=

nse
2

m
E, (1.1.1)

∇× j = −nse
2

mc
B. (1.1.2)

Here E and B are respectively the electric and magnetic fields in the superconductors,

e is the elementary charge of an electron, m is the mass of electron and ns is the density

of Cooper pairs. The j term in Equations (1.1.1) and (1.1.2) is the quantum mechanical

current given by

j =
i q h̄

2 m
(φ∇φ∗ − φ∗∇φ)− q2

m c
A.φφ∗, (1.1.3)

with q = −2 e and vector potential A. The total wave function φ = φ(t) is described

by

φ =
√

ns.exp(i ϕ), (1.1.4)

where ϕ is the phase of the wave function. Equation (1.1.1) describes perfect conduct-

ivity, since any electric field accelerates the superconducting electrons rather than sus-

2



CHAPTER 1: INTRODUCTION

taining their velocity against resistance as described by Ohm’s law in a normal con-

ductor. Equation (1.1.2) when combined with Maxwell’s equation

∇× B = 4πj/c, (1.1.5)

gives

∇2B =
1

λ2
L

B, (1.1.6)

with λL =
√

mc2/4πnse2. This equation describes that the applied magnetic field de-

cays exponentially inside the superconductors with the characteristic decay given by

the London penetration depth λL.

In 1950, Landau and Ginzburg produced a mathematical theory to model supercon-

ductivity. This Ginzburg–Landau theory does not claim to explain the mechanism

giving rise to superconductivity, instead it studies the microscopic properties of su-

perconductors with the help of general thermodynamic arguments.

In 1957, the disappearance of electrical resistivity was modelled in terms of electron

pairing in the crystal lattice by John Bardeen, Leon Cooper, and Robert Schrieffer in

what is commonly called the BCS theory. According to this theory, pairs of electrons

can behave very differently from single electrons which are fermions and must obey the

Pauli exclusion principle. Pauli exclusion principle is the quantum mechanical prin-

ciple which states that the total wave function for two identical fermions is antisym-

metric with respect to exchange of the particles. Pairs of electrons act more like bosons

which can condense into the same energy level. The electron pairs have a slightly lower

energy and leave an energy gap above them, of the order of 0.001 eV, which inhibits

the kind of collision interactions which lead to ordinary resistivity. For temperatures

where the thermal energy is less than the band gap, the material exhibits zero resistivity.

Bardeen, Cooper, and Schrieffer received the Nobel Prize in 1972 for the development

of the BCS theory.

A new era in the study of superconductivity began in 1986 with the discovery of high

critical temperature superconductors. Two IBM scientists Georg Bednorz and Alex

Müller claimed that they had discovered a new class of ceramic superconductors in

1986. One of these compounds, containing yttrium, barium, copper and oxygen, be-

came superconducting at the almost balmy ’critical’ temperature (Tc), of 90K. In the

ensuing frenzy of activity, more members of this layered cuprate superconductor fam-

ily were identified, with Tc’s ranging up to an amazing 133K. These discoveries opened

the door to superconductors and devices cooled by much cheaper liquid nitrogen.

Superconductivity occurs in a wide variety of materials, including simple elements like

tin and aluminium, various metallic alloys and some heavily-doped semiconductors.

3
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The electrical resistivity of a metallic conductor decreases gradually as temperature is

lowered. In ordinary conductors, such as copper or silver, this decrease is limited by

impurities and other defects. Even near absolute zero, a real sample of a normal con-

ductor shows some resistance. In a superconductor, the resistance drops rapidly to zero

when the material is cooled below its critical temperature. An electric current flowing

in a loop of superconducting wire can continue indefinitely with no power source.

Superconducting magnets are some of the most powerful electromagnets made of su-

perconducting coils. The idea of making superconducting magnets was proposed by

Heike Kamerlingh-Onnes after he discovered superconductivity in 1911, but the first

superconducting magnet was built by George Yntema in 1954 using niobium wire and

achieved a field of 0.71T at 4.2K. They are used in MRI (Magnetic Resonance Imaging)

machines, mass spectrometers, etc. It can also be used for magnetic separation, where

weakly magnetic particles are extracted from a background of less or non-magnetic

particles, as in the pigment industries.

In past decades, superconductors were used to build experimental digital computers

using cryotron switches. The cryotron works on the principle that magnetic fields des-

troy superconductivity. It consists of two superconducting wires (e.g. tantalum and

niobium) with different critical temperatures (Tc). A straight wire of tantalum (having

a lower Tc) is covered around with a wire of niobium in a single layer coil. The wires are

electrically separated from each other. When this device is dipped in a liquid helium

bath, both wires become superconducting and hence offer no resistance to the passage

of electric current. In superconducting state, tantalum can carry a large amount of cur-

rent (compared to its normal state). Now, when current is passed through the niobium

coil (wrapped around tantalum) it produces a magnetic field, which in turn reduces

the superconductivity of the tantalum wire and hence reduces the amount of the cur-

rent that can flow through the tantalum wire. Hence one can control the amount of the

current that can flow in the straight wire with the help of small current in the coiled

wire. We can think of the tantalum straight wire as a "gate" and the coiled niobium as

a "control".

More recently, superconductors have been used to make digital circuits based on rapid

single flux quantum technology, radio frequency and microwave filters for mobile

phone base stations. Superconductors are used to build Josephson junctions which

are the building blocks of SQUIDs (superconducting quantum interference devices),

the most sensitive magnetometers known. Other markets are arising where the re-

lative efficiency, size and weight advantages of devices based on high-temperature

superconductivity outweigh the additional costs involved. Promising future applica-

tions include high-performance smart grid, electric power transmission, transformers,

4
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power storage devices, electric motors, magnetic levitation devices, fault current lim-

iters, nanoscopic materials such as buckyballs, nanotubes, composite materials and

superconducting magnetic refrigeration.

1.1.2 Josephson effect

The Josephson effect is one of the most important phenomena in superconductivity. It

is a stimulating topic of research in both experimental and theoretical physics, and also

a source of widely used practical applications. It is a quantum mechanical effect which

predicts that the electron belonging to the metal has a small chance of being found of

the material. If the two superconducting metals are almost brought together leaving

just a small gap containing an insulator, the electrons can jump from one supercon-

ductor to the other. If a potential difference is applied, a current can flow from one

metal to the other, even in the presence of an insulator as shown in the Fig: 1.2. This

phenomenon is called the Josephson effect and the apparatus used is called a Joseph-

son junction.

In 1962 British physicist Brian David Josephson explained the tunnelling processes

through a weak link as the quantum mechanical tunnelling of Cooper pairs. He pre-

dicted the Josephson effect. Soon afterwards, systems where two superconducting elec-

trodes are coupled via an insulator, were named Josephson junctions. The schematic

diagram can be seen in Fig: 1.2. He also predicted the exact form of the current and

voltage relations for the junction. Experimental work proved that he was right, and

Josephson was awarded the 1973 Nobel Prize in Physics for his work. Since then, the

Josephson effect that describes the flow of a supercurrent through a tunnel barrier, have

been a subject of considerable research.

The flow of electrons along superconductors in the absence of an applied voltage, is

called the Josephson current. The movement of electrons across the barrier is called

Josephson tunnelling. Numerous ways of forming such weak links have been explored

for both metallic low-temperature superconductors (LTS) and oxide high-temperature

superconductors (HTS). In a Josephson junction, the nonsuperconducting barrier sep-

arating the two superconductors must be very thin. If the barrier is an insulator, it

has to be on the order of 30Å thick or less. When the two superconductors are moved

closer to about 30Å separation, quasiparticles can flow from one superconductor to the

other by means of single electron tunnelling. When the separation is reduced to 10Å,

Cooper pairs can flow from one superconductor to the other. In this case, phase correl-

ation is realised between the two superconductors, and the whole Josephson junction

behaves as a single superconductor. This phenomenon is often called weakly supercon-
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Figure 1.2: Josephson junction Model.

ducting, because of the smaller values of the critical parameter involved. If the barrier

is another metal (nonsuperconducting), it can be as much as several microns thick.

Josephson junctions can be formed in many ways, such as superconductor-normal

metal-superconductor, thin film bridges, grain boundary junctions, point contact, etc.

The difference in phases of the quantum mechanical waves in the two superconductors

of the Josephson junction is called the Josephson phase and is denoted by ϕ(x, t). If

ψ1 = Aeiθ1 and ψ2 = Aeiθ2 represent the quantum mechanical waves, the Josephson

phase ϕ is given by

ϕ = θ2 − θ1 +
2π

Φ0

∫ 2

1

−→
A .

−→
dl , (1.1.7)

where
−→
A is the vector potential,

−→
dl is the element of line integration from the first su-

perconductor with phase θ1 to the second superconductor with phase θ2 in a Josephson

junction. Due to the quantisation in superconductors

Φ0 = h̄/2 e ≈ 2.07 × 10−15 Wb, (1.1.8)

is the magnetic flux quantum. The supercurrent that flows through a conventional

Josephson junction (Is) is given by

Is = Ic sin(ϕ), (1.1.9)

where Ic > 0 is the critical current, that is, the maximum current that can pass through

the junction without dissipation. Until a critical current is reached, electron pairs can

tunnel across the barrier without any resistance.

If a direct voltage is applied to the junction terminals, the current of the electron pairs

crossing the junction oscillates at a frequency which depends on the applied voltage

6
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V and fundamental constants, that is, the electron charge e and the Planck constant

h̄. Conversely, if an AC voltage of frequency is applied to the junction terminals by

microwave irradiation, the current of Cooper pairs tends to synchronize with this fre-

quency (and its harmonics) and a direct voltage appears at the junction terminals.

Mathematically we write

I = Ic sin
(

ϕ +
2eV

h̄
t

)
,

describing an AC-current with frequency

ω = 2πυ =

(
2e

h̄

)
V.

The relation between the frequency υ and the voltage V is given by

υ

V
= 483.6

MHz

µV
. (1.1.10)

In most cases, this frequency, υ, lies in the microwave regime. µV represent micro volt,

i.e. one millionth of a volt in the above relation. The phenomenon of a direct current

crossing from the insulator in the absence of electromagnetic field, owing to tunnelling

is called the DC Josephson effect, which lies between supercurrent ±I, and depends on

the temperature and geometry of the junction.

The technology for fabricating Josephson junctions has come a long way since the

1960’s. The first junctions were made of soft materials such as lead. In the early 1970’s

it became increasingly clear that it was convenient to divide the theory of Josephson

junctions into separate parts: solid state physics and dynamics. The objective of solid

state physics is to derive general expressions relating the functions I(t), V(t) for su-

perconductivity, while the latter part begins with these expressions, and describe the

various phenomena observed in Josephson junctions. The problems of dynamics have

proved to have more variety and complexity, mainly due to two reasons. First, the

Josephson junction supercurrent has an unusual and highly nonlinear dependence on

electromagnetic field. Second, the extremely high sensitivity of the supercurrent to the

electromagnetic field leads to its high sensitivity to oscillation. A considerable number

of observed properties of the junctions cannot be explained without taking the oscilla-

tions into account. As a result of these reasons, the study of some dynamical phenom-

ena, such as chaotic behaviour, classical and quantum dynamics and statics of solitons

had begun.

In the early 1980’s a more robust technology based on niobium was developed. The dis-

covery of the high-temperature cuprate superconductors in 1986 led many researchers

to try and develop Josephson junctions based on these materials.

7
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1.1.3 Josephson relations

There are several different approaches to obtaining the basic Josephson relations (for

more explanation, see [3, 4, 5]). Here we discuss a simple derivation due to the Amer-

ican physicist Richard Feynman, based on the two level system shown in Fig: 1.3. This

method suggests a powerful tool for understanding of unusual Josephson phenomena.

Let us suppose that ψL, ψR are the quantum mechanical wave functions shown in the

Figure 1.3. These wave function amplitudes represent Cooper pairs and satisfy the

Schrödinger equation on each side of insulating barrier,

ih̄
∂ψL

∂t
= µ1ψL + KψR, (1.1.11)

ih̄
∂ψR

∂t
= µ2ψR + KψL, (1.1.12)

where µ1, µ2 are potential energies of superconductor and K is a constant represent-

ing the coupling across the barrier. Let us choose the zero level of energy such that

µ1 = −µ2 and substitute µ1 − µ2 = 2eV, where 2e is the charge of the current carrying

particle. Equation (1.1.11), (1.1.12) then become

ih̄
∂ψL

∂t
= eVψL + KψR, (1.1.13)

ih̄
∂ψR

∂t
= −eVψR + KψL, (1.1.14)

where wave functions ψL, ψR are complex valued functions. To solve (1.1.13)-(1.1.14),

we take |ψi|2 to be the density of pairs in two superconductors

ψL =
√

n1eiθ1 , (1.1.15)

ψR =
√

n2eiθ2 . (1.1.16)

Substituting (1.1.15), (1.1.16) into (1.1.13), (1.1.14) we obtain

h̄
∂n1

∂t
= 2 K

√
n1n2 sin(θ2 − θ1), (1.1.17)

−h̄
∂n2

∂t
= 2 K

√
n1n2 sin(θ2 − θ1), (1.1.18)

h̄
∂θ1

∂t
= K

√
n2

n1
cos(θ2 − θ1)− eV, (1.1.19)

h̄
∂θ2

∂t
= K

√
n1

n2
cos(θ2 − θ1) + eV. (1.1.20)

The current through the junction must be equal to change in the density, i.e.,

∂n1

∂t
= −∂n2

∂t
. (1.1.21)

8
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Figure 1.3: Two superconductors separated by a thin insulator, I.

The time derivative of the density of Cooper pairs describes charge transport, so we

write

∂n1

∂t
= Is. (1.1.22)

Writing

Ic = 2K
√

n1n2/h̄, ϕ = θ2 − θ1,

we obtain

Is = Ic sin (ϕ) , (1.1.23)
∂ϕ

∂t
=

(
2e

h̄

)
V. (1.1.24)

Equations (1.1.23), (1.1.24) represent the general equations governing Josephson junc-

tions. The first Josephson equation shows that the phase difference between order

parameters leads supercurrent flow through the junction. The later Josephson equa-

tion shows that a voltage across the junction leads to time dependent phase difference.

At time t = 0, the junction is in the ground state ϕ(0) = 0, and, at time t, the junction

has the phase ϕ (τ). The total free energy of the Josephson junction is given by the

integral

EI(ϕ) =
∫ t

0
IsV dt. (1.1.25)

Using relations (1.1.23) and (1.1.24) together with (1.1.8), we obtain

EI(ϕ) =
Φ0

2π

∫ t

0
Ic sin (ϕ) dϕ =

Φ0 Ic

2π
(1 − cos ϕ). (1.1.26)

9
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The energy EI(ϕ) is the potential energy accumulated inside the junction and depends

only on the current state of the junction. The constant of integration is chosen such that

the energy EI(ϕ) is zero for the ground state ϕ = 2kπ, (k ∈ Z).

There are many general properties for the Josephson phase relation.

• Changing the phase across the junction by 2π does not change the physical state of

the junction, that is, Equation (1.1.23) is a 2π-periodic function

I (ϕ) = I(ϕ + 2nπ), (1.1.27)

for any n ∈ Z.

• A DC supercurrent can flow if there is a change of the phase of order parameter as one

crosses the barrier. That is, in the absence of any current, the phase gradient must be

zero and both electrodes form a single superconductor with a common phase. Hence

if θ1 = θ2, then

I(0) = I(2 n π) = 0, (1.1.28)

where n is any integer.

• The direction of the flow of supercurrent also changes with the direction of the phase

I(ϕ) = −I(−ϕ). (1.1.29)

However this does not hold when the time-reversible symmetry is broken (for explana-

tion, see [6, 7]). There is a characteristic length called the Josephson penetration length

λJ . On the basis of the Josephson penetration depth, λJ , Josephson junctions are clas-

sified into short and long Josephson junctions.

1.2 Josephson junctions and the sine-Gordon equation

In this section, we discuss long Josephson junctions and the sine-Gordon equation as a

model for long Josephson junctions. We briefly describe the applications of Josephson

junctions. We also study the dynamics of Josephson junctions with an arbitrary phase

jump θ(x), which can be describe by an additional term in the sine-Gordon equation in

the nonlinearity.

1.2.1 Modelling long Josephson junctions

A long Josephson junction (or transmission line) is a Josephson junction which has one

or more dimensions longer than the Josephson penetration depth L ≥ λJ ( L is x or

10
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Figure 1.4: Resistively Capacitively Shunted Junction model of Josephson junction.

The Josephson channel, denoted by ”X” is shunted by a resistance R and

capacitance C.

y direction andλJ is Josephson penetration depth ). In a long Josephson junction, the

phase ϕ is a function of one or two spatial coordinates, i.e. ϕ(x, t), ϕ(x, y, t). In a short

Josephson junction, phase ϕ is a function of time but not of spatial coordinates, i.e. the

junction is assumed to be point-like in space.

A common way of modelling Josephson junctions is to use the so-called Resistively

Capacitively Shunted Junction (RCSJ) model shown in Fig. 1.4. The junction is repres-

ented by an ideal Josephson junction shunted by a capacitor, C, and a resistor, R. The

capacitive channel describes the displacement current due to the geometric shunting

capacitance C and the resistive channel describes the dissipation. Here we follow the

guidelines presented in [8, 9, 10, 11, 12].

The Josephson phases in an elementary loop [13] between two points with coordinates

x and x + dx are

ϕ(x + dx)− ϕ(x) =
2π

Φ0
(ϕe(x)− L(x)IL(x)) , (1.2.1)

and using Kirchhoff equations for current

IL (x + dx)− IL(x) = Ie(x)− I(x), (1.2.2)

where ϕ(x) is the Josephson phase at the point x, ϕe(x) is the external magnetic flux,

L(x) is the inductance, IL(x) is the total current in the electrodes per unit length along

x, I(x) is the AC Josephson current and Ie(x) is the bias current density in the junction.

Assuming that the interval dx is infinitesimal

I(x) = J(x)w(x)dx, (1.2.3)

Ie(x) = Je(x)w(x)dx, (1.2.4)

L(x) =
u0d

′

w(x)
dx, (1.2.5)

ϕe(x) = u0(
−→
H .−→n )dx = u0H(x)Λdx, (1.2.6)

11
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where w(x) is the width of the junction, µ0 is the vacuum permeability, d
′ ≈ 2λ1 is

the effective magnetic thickness with λ1 is the London penetration depth, H(x) is the

magnetic field through the bulk superconducting loop is quantized in unit of Φ0 =

πh̄/e, −→n is the unit normal to the plane of the junction and Λµ0H is the magnetic flux

per unit length. Putting Equations (1.2.5)-(1.2.6) into (1.2.1), we obtain

∂ϕ

∂x
=

2π

Φ0

[
u0H(x)Λ − u0d

′

w(x)
IL(x)

]
, (1.2.7)

Using relations (1.2.2) with (1.2.3)-(1.2.4)

∂IL(x)

∂x
= w(x) (Je(x)− J(x)) , (1.2.8)

after simple calculation, from (1.2.7) and (1.2.8) we obtain

Φ0

2πu0d′ ϕxx −
Λ

d′ Hx(x) = J(x)− Je(x). (1.2.9)

The equation describing RSJ circuit

J(x) = Jc sin(ϕ) +
V

R
+ C

dV

dt
. (1.2.10)

Substituting relation (1.2.10) into (1.2.9) and using the Josephson junction relation (1.1.24)

together with (1.1.8), we obtain the (1+1)-dimensional partial differential equation

Φ0

2πu0d′ Jc
ϕxx = sin(ϕ) +

Φ0

2πRu0d′ ϕt +
Φ0C

2πu0
ϕtt −

Je(x)

Jc
+

Λ

Jcd′ Hx(x). (1.2.11)

The governing equation of one-dimensional long Josephson junction is thus

λ2
J ϕxx − ω−2

p ϕtt − sin ϕ = ω−1
c ϕt − Je(x)/jc + QHx(x), (1.2.12)

with

λ2
J =

Φ0

2πu0d′ Jc
, ω−1

c =
Φ0

2πRu0d′ , ω−2
p =

Φ0C

2πu0
, Q =

2πµ0Λλ2
J

Φ0
,

where subscripts x and t denote partial derivatives with respect to spatial and tem-

poral coordinates, λJ is the Josephson penetration depth, ωp is the Josephson plasma

frequency, ωc is the characteristic frequency and Je(x)/jc is the bias current density,

normalized to the critical current density jc. One uses the normalised sine-Gordon

equation

ϕx̃x̃ − ϕt̃t̃ − sin(ϕ) = αϕt̃ − γ + hx(x), (1.2.13)

where the spatial coordinate is normalized to the Josephson penetration depth λJ (

x̃ = x/λJ) and time is normalised to the inverse plasma frequency ω−1
p (t̃ = tωp).

12
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The parameter α = 1/
√

βc is the dimensionless damping parameter, βc is McCumber-

Stewart parameter, γ = Je(x)/jc is a normalised bias current and the field h is norm-

alised as h(x) = 2H(x)/Hc1, where Hc1 = Φ0/(πµ0ΛλJ) is the critical field for long

Josephson junction which is equal to the field in the center of fluxon [8]. The applied

biased current does not need to be small, but can be taken to be small to be able to

perform perturbation analysis. The respective boundary conditions can be adjusted

to consider geometrical aspects and experimental conditions. If the right hand side of

Equation (1.2.13) is zero, it reduces to the sine-Gordon equation, which is Hamiltonian

and is completely integrable. Physically this means that the superconductors are ideal,

and there are no quasi-particle currents.

1.2.2 Josephson junctions with phase shift

In a standard long Josephson junction, the ground state of the system is constant,

ϕ(x) = sin−1 γ, where γ is an applied constant (dc) bias current. A novel type of

Josephson junction was proposed by Bulaevskii et al. [14, 15], in which a nontrivial

ground-state can be realised, characterised by the spontaneous generation of a frac-

tional fluxon, i.e. a vortex carrying a fraction of magnetic flux quantum. This remark-

able property can be invoked by intrinsically building piecewise constant phase-shifts,

θ(x), into the junction. Examples are given in Equation (1.2.14) and (1.2.16) below. Due

to the phase-shift, the supercurrent relation then becomes I ∼ sin(ϕ + θ). Due to the

nontrivial properties of Josephson junctions with phase shifts, they may have prom-

ising applications in information storage and information processing [16, 17].

Josephson phase discontinuities may appear in specially designed long Josephson junc-

tions. A junction containing a region with a phase jump of π is called a 0−π Josephson

junction. The Josephson junctions have a π-discontinuity of the Josephson phase at a

point where 0 and π parts join. The phase-shift (jump) in Josephson phase is described

by θ(x), where

θ(x) =

{
0, |x| > 0,

π, |x| < 0,
(1.2.14)

and the Josephson junction is governed by

ϕxx − ϕtt − sin(ϕ + θ(x)) = αϕt − γ. (1.2.15)

A sketch of 0 − π Josephson junction can be seen in Fig: 1.5. The Josephson phase dis-

continuity was first proposed in [14]. It was suggested that π phase-shifts may occur

in the sine-Gordon equation due to magnetic impurities. There are many technologies
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Figure 1.5: Schematic drawing of a 0 − π Josephson junction. The bias current is

shown by the left-pointing arrows. The semifluxon is described as a cir-

culating current around the discontinuity point.

available for manufacturing 0 − π Josephson junctions [18, 19]. They were fabricated

by using d-wave superconductors [20, 21, 22, 23, 24] or were obtained using a ferro-

magnetic barrier [25, 26]. Present technological advances can also impose a π phase-

shift in a long Josephson junction as they promise important advantages for Josephson

junction based electronics. A 0 − π Josephson junction admits a half magnetic flux

(semifluxon), sometimes called π-fluxon, at the discontinuity point [23]. A semifluxon

is represented by a π-kink solution of the 0 − π sine-Gordon equation [27].

A π-junction defines the situation when the Josephson coupling between the two su-

perconductors becomes real and negative, that is, energy is minimized as the phase

difference between the two superconductors is π, in contrast to the case of a normal

junction. The occurrence of the π-phase behaviour can be usually due to the magnetic

ordering, strong correlation effect near the tunnelling interface [28].

Recently, a long Josephson junction geometry which allows us to create arbitrary dis-

continuities was suggested and successfully tested [29]. In this long Josephson junction

a pair of closely situated current injectors creates an arbitrary κ- discontinuity (not only

κ = ±π) of the Josephson phase, with κ being proportional to the current passing

through the injectors [29, 30]. This value of the phase discontinuity is denoted by κ

with 0 < κ < 2π, because the phase is 2π periodic, and is given by

θ(x) =

{
0, x < 0,

−κ, x > 0.
(1.2.16)

Such systems are called 0 − κ Josephson junctions. The κ-vortex carrying the flux ϕ =

−ϕ0κ/2π, automatically appears to recompense the κ-discontinuity [29, 31]. Two types

of fractional vortices may exist in a 0 − κ long Josephson junction, i.e. 0 − κ and 2π − κ

[31]. The κ-vortex is the ground state (presumably only when κ < π), while the latter

is the excited state of the system.
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Phase discontinuities (1.2.14), and (1.2.16) are the simplest configurations admitting a

uniform and a nonuniform ground state, respectively.

The eigenfrequency of fractional vortices plays a vital role in long Josephson junctions.

Classical devices which use the fractional Josephson vortices do not operate at frequen-

cies near the eigenfrequency. For example, a low eigenfrequency of the system indic-

ates that the system is close to the instability region. The eigenfrequency of the ground

state in the simplest case of Josephson junctions with one or two phase-shifts has been

calculated theoretically in [32, 33, 34, 35, 36, 37]. More importantly, the eigenfrequency

of the ground state of a 0 − κ junction has recently been confirmed experimentally in

[38, 39]. The experimental measurements were performed by applying microwave ra-

diation of fixed frequency and power to the Josephson junction.

1.2.3 Applications of Josephson junctions

Electronic circuits can be built from Josephson junctions, especially digital logic cir-

cuitry. Many researchers are working on building ultrafast computers using Josephson

logic. Important applications of Josephson junctions include their applicability for lo-

gic devices based on the Josephson effect for high-performance computers [40, 41, 42].

Josephson junctions can also be fashioned into circuits called SQUIDs (superconduct-

ing quantum interference devices) [43, 44]. These devices are extremely sensitive and

useful for constructing extremely sensitive magnetometers and voltmeters. For ex-

ample, one can make a voltmeter that can measure picovolts, about 1,000 times more

sensitive than other available voltmeters.

The achievements in Josephson-junction technology have made it possible to develop

a variety of sensors for detecting ultralow magnetic fields and weak electromagnetic

radiation. They have also enabled the fabrication, testing, and application of ultrafast

digital rapid single flux quantum circuits as well as the design of large-scale integrated

circuits for signal processing and general purpose computing. Significant applications

of Josephson junctions can also be found in many areas, e.g. in medicine for measure-

ment of small currents in the brain and the heart.

The Josephson junctions are one of most important tool for superconducting electron-

ics, including sensitive superconducting magnetometers [45], superconducting ratchets,

amplifiers [46, 47, 48], superconducting terahertz emitters [49], superconducting cir-

cuits and quantum information [50]. Recent interest in the studies of dynamics of

Josephson junctions was stimulated by proposals [51] and realisations [52] of several

novel terahertz devices based on layered superconductors, which can be modelled as

a stack of identical intrinsic Josephson junctions. Vortices in long Josephson junctions
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[53, 54] or Josephson junction arrays [55, 56], have been investigated.

The investigation of quantum ratchets [57, 58] is a fascinating new field for research.

A particle in a periodic potential lacking spatial reflection symmetry, is known as a

ratchet potential [59]. A ratchet potential is a periodic potential which lacks reflection

symmetry in one dimension. If the kink experiences a ratchet potential, then the cur-

rent needed to move the kink Josephson junction in one direction is different to that

needed to move it in the opposite direction. A ratchet potential exhibits this net uni-

directional motion in the absence of a net driving force. Ratchets can produce a direct

current when driven by nonequilibrium noise. The rachets have many realisations

in nature and in artificial nanodevices, like cold atoms, colloidal magnetic particles,

single-molecule optomechanical devices, fluxons in superconductors, and many other

systems. In Josephson junction systems, various realisations of ratchet effect have been

investigated [48, 56].

Some important advantages of Josephson junction based ratchets are as follows.

• directed motion results in an average dc voltage which is easily detected experiment-

ally.

• Josephson junctions are fast devices which can operate in a broad frequency range

from dc to ∼100 GHz, capturing a lot of spectral energy.

• by varying junction design and bath temperature, both overdamped and under-

damped regimes are accessible.

• one can operate Josephson ratchets in the quantum regime [46, 58].

There are several types of long Josephson junctions. Most notably the in-line, overlap

and annular junctions. For both experimental and theoretical studies, the most con-

venient object to study is an annular circular long Josephson junction, in which the net

number of initially trapped fluxons is conserved, hence new solitons may only be cre-

ated as fluxon-antifluxon pairs [60, 61]. Annular Josephson junctions offer applications

in sources of highly coherent microwave radiation [61], radiation detectors [62] and

have a potential for designing fluxon qubits [63, 64] and fluxon rachets [53, 54].

1.3 The sine-Gordon equation and its soliton solutions

In this section we discuss the sine-Gordon equation and briefly describe various prop-

erties and applications of the equation. We present the general theory of solitons and

their applications. We also discuss some particular soliton solutions of the unperturbed

sine-Gordon equation called kinks and breathers.
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1.3.1 The sine-Gordon equation

The partial differential equation first appeared in differential geometry and relativistic

field theory. Its name is wordplay on its more general form the Klein-Gordon equation.

The equation, as well as several solution techniques, were known in the 19th century,

but the equation gained its great importance in 1970’s when it was realized that it led to

soliton solutions with elastic collisional properties. The sine-Gordon equation became

the focus of research in mathematics and physics because it appears in many systems,

for example, pattern formation, period-doubling, stochastic oscillations [65, 66, 67, 68],

dislocations in crystals [69], charge density waves [70], information transport in micro-

tubules [71], nonlinear optics [72], the propagation of localised magnetohydrodynamic

modes in plasma physics [73], etc.

The basic nonlinear localised excitations of sine-Gordon system can be presented as an

asymptotic superposition of elementary excitations of three kinds, i.e. the one-soliton

(kink), the two-soliton (breather) solution and phonons. The one-soliton (kink) and the

two-soliton (breather) solution play important roles in many fields of physics and in

particular the influence of various perturbations on the soliton behaviour is of great

interest.

There have been many methods developed to approximate analytical solutions to sine-

Gordon equations, namely inverse scattering transform [74], variational iteration method

[75], homotopy analysis [76], and some numerical methods. Here we discuss the solu-

tions of sine-Gordon equation (1.2.13) with the right hand side vanishes, i.e.

utt − uxx + sin u = 0, (1.3.1)

which is completely integrable and has exact solutions for travelling 2π-kink (antikink)

and the breather.

In the low amplitude case where sin(u) ≈ u, the completely integrable sine-Gordon

Equation (1.3.1) is approximated by wave equation

utt − uxx + u = 0. (1.3.2)

This is called a (linear) Klein-Gordon equation. It is a linear equation, and so has a su-

perposition principle. However, there are no localized traveling wave solutions. Sub-

stitute u(x, t) = F(ζ) with ζ = x − ct and by the chain rule obtain

utt = c2F
′′
(ζ), uxx = F

′′
(ζ),

so under the substitution the equation becomes

F
′′
(ζ)− 1

1 − c2 F(ζ) = 0, (1.3.3)
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so if c2
< 1 then

F(ζ) = a+eζ/
√

1−c2
+ a−e−ζ/

√
1−c2

, (1.3.4)

which is unbounded and not localized solution. Similarly, if c2
> 1 then

F(ζ) = a cos
(

ζ/
√

c2 − 1
)
+ b sin

(
ζ/
√

c2 − 1
)

, (1.3.5)

which is bounded and periodic (not pulse-like). A plane wave solution of the form

u(x, t) = Ae(kx−ωt)i, (1.3.6)

substituting into the linear Klein-Gordon equation, admits the relation

ω =
√

1 + k2, (1.3.7)

where k is the wave number and ω is the frequency. This formula is called dispersion

relation. Equation (1.3.7) shows that for k ∈ R, ω is real and the equilibrium solution

u = 0 of (1.3.2) is stable, i.e. perturbations away from u = 0 do not grow exponentially.

Similarly, if u = π + û, with û ≤ 1, Equation (1.3.2) can be linearized to obtain

ûtt − ûxx − û = 0, (1.3.8)

which gives the dispersion relation

ω =
√

k2 − 1. (1.3.9)

Hence we conclude that if k2
< 1, then ω ∈ C \ R and û and ( hence u(x, t)) grow

exponentially in time, i.e. u = π is unstable.

1.3.2 Brief history of solitons

An interesting feature of the sine-Gordon equation is the existence of the so-called

soliton-solutions. Before discussing such soliton solutions of the equation, we will

briefly discuss the history of solitons.

The theory of solitons is very attractive in the field of mathematics with its deep ideas

and amazing aspects. The theory is related to many areas of mathematics and has

many applications to physical sciences. The soliton concept has a broad area of research

due to significant role in different scientific fields such as fluid dynamics, astrophysics,

plasma physics, magneto-acoustics [77, 78, 79, 80], etc.

In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet

or pulse) that maintains its shape while it travels at constant speed. Solitons are caused
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by a balancing of nonlinear and dispersive effects in the medium. Solitons arise as

the solutions of a widespread class of weakly nonlinear dispersive partial differential

equations describing physical systems. The basic expression of a solitary wave solution

is the form

u (x, t) = f (x − ct) , (1.3.10)

where c is the speed of wave propagation. For c > 0 the wave moves in the posit-

ive direction and for c < 0 it moves in the negative direction. Also f , f
′
, f

′′ −→ 0 as

x − ct −→ ±∞. However the solutions of nonlinear equations have a variety of shapes,

e.g, sech ,sech 2, arctan
(

er(x−ct)
)

. Solitary waves appear in a variety of types such as

solitons, kink, peakons and cuspons.

The term "soliton" was introduced in the 1960’s, but the scientific research of solitons

had started in the 19th century by John Scott Russell (1808-1882) who observed a sol-

itary wave in the Union Canal in Scotland [81]. He then performed some experiments

in the laboratory in a small-scale wave tank in order to study the phenomenon more

carefully and named it the Wave of Translation. Russell derived the relation

c2 = g (h + a) , (1.3.11)

which determines the speed of the solitary wave. In the above relation, c is the speed

of the solitary wave, a is the amplitude above the water surface, h is finite depth, and g

is the acceleration due to gravity. Therefore these solitary waves are also called gravity

waves. Russell’s observation perplexed physicists for a long time and caused much

controversy, because it could not be explained by linear water wave theory. In 1895,

Diederik Johannes Korteweg (1848–1941) and Gustav de Vries (1866–1934) derived an

equation for water waves in shallow channels, and confirmed the existence of solitons.

They noticed that while dispersion causes a water wave to decay, nonlinear effects

can cause it to steepen. After detailed theoretical analysis, in 1895 Diederik Korteweg

and Gustav de Vries derived the famous nondimensionalized wave equation called the

Korteweg-de Vries (KdV) equation [82]

ψt + ψxxx + 6ψψx = 0, (1.3.12)

where ψt describes the time evolution of water surface, ψ ψx represent nonlinearity for

the steeping of wave, and ψxxx represents linear dispersion that describes the spreading

of wave. This equation admits travelling solitary waves [80, 83]

ψ (x, t) =
1
2

c sech 2√c (x − ct) , (1.3.13)

where c is the wave speed. The KdV equation is a general model for the study of weakly

nonlinear waves, including leading order nonlinearity and dispersion. The nonlinear
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and dispersive terms in the KdV equation describes the propagation of long waves of

small but finite amplitude in a dispersive media. These solitary wave solutions corres-

pond to the wave of translation in Russell’s observation.

Until the 1960’s the properties of solitons were not well understood. In 1965 Zabusky

and Kruskal [84] numerically discovered the elastic collision between KdV solitary

waves. A remarkable quality of these waves was that they could collide with each

other and yet preserve their shape and speed after collision, and then in 1967, Gardner,

Green, Kruskal and Miura [85] introduced the inverse scattering transform to integrate

the nonlinear wave equations, and solved the KdV equation analytically. This revolu-

tionary work initiated an exceptional burst of research in soliton theory. In subsequent

years, many other nonlinear equations such as the nonlinear Schrödinger (NLS) equa-

tion, the sine-Gordon equation, and the Kadomtsev-Petviashvili (KP) equation were

solved by this method, and such equations are now called integrable. These equations

admit solitonic behaviour and infinite number of exact solutions.

The theory of solitons provides a fascinating insight into nonlinear processes, in which

the combination of dispersion and nonlinearity together lead to the appearance of

solitons. The mathematical theory of these equations is a broad and highly active field

of mathematical research. Solitons are stable solitary wave solutions of these equations.

As the term "soliton" suggests, these solitary waves behave like particles. When they

are located far apart, each of them is approximately a travelling wave with constant

shape and velocity. As two such solitary waves get closer, they gradually deform and

finally merge into a single wave packet. This wave packet, however, soon splits into

two solitary waves with the same shapes and velocities as before the "collision". Dur-

ing the collision of solitons the solution cannot be represented as a linear combination

of two soliton solutions but after the collisions solitons recover their shapes and the

only result of collision is a phase shift.

Integrable equations, such as the sine-Gordon equation and the KdV equation can sup-

port soliton solutions which travel without change of shape. Perturbations, such as

damping, dispersion, and high order nonlinearity can be taken into account, as a phys-

ical system is modelled by perturbed equations. In perturbed systems, solitons may

not propagate with fixed speeds, and their shape may be slowly distorted overtime.

In non-integrable systems, collisions can be more complicated, and the outcome can

depend on initial conditions in a sensitive fractal manner.
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1.3.3 Soliton solutions

1.3.3.1 Kink (antikink) solution

The 1-soliton solution of the sine-Gordon equation is called a kink and represents a

twist in the variable ϕ which takes the system from one solution ϕ = 0 to an adjacent

one with ϕ = 2π. The 1-soliton solution in which ϕ decreases is called an antikink.

It should be noted that a static kink does not emit any radiation, neither does it emit

radiation if it is moving at a constant velocity. Sine-Gordon kinks are perfect examples

of solitons in the mathematical sense in which when two or more solitons (anti-solitons)

collide, they pass through other and the only consequence of the scattering is a phase-

shift. Since the colliding solitons recover their velocity and shape, such interactions are

called ’elastic’.

To determine the solitary wave solution (kink or antikink) for Equation (1.3.1), we let

u (x, t) = f (x − ct) ,

which gives the one solitary wave solution

u (x, t) = 4 arctan
[

exp
(
± x − ct√

1 − c2

)]
, (1.3.14)

which represents a localized solitary wave, travelling at any velocity |c| < 1. We ob-

serve that u(x, t) −→ 0 as x −→ ∓∞ and u(x, t) −→ 2π as x −→ ±∞ as shown in the

Fig: 1.6.

The kinks have been used to describe crystal dislocations, domain walls representing

structural phase transitions in incommensurate, ferroelectric, and ferromagnetic sys-

tems, polymerization mismatches in polyacetyline, spinwaves, charged density waves,

and energy transfer along hydrogen-bonded molecular chains. It has been noted that

kinks are extremely stable under the influence of external forces, however, the influence

of high frequency parametric force may change the dynamics of sine-Gordon system

dramatically [86]. It has also been observed that if a kink is accelerated with some ex-

ternal force, or its shape is deformed, it can emit radiation in the form of scalar particles

[87, 88].

In the context of long Josephson junctions, the soliton-solution describes Josephson

vortices (fluxons). Fluxon is a circulating current across the insulator due to the phase

difference between the electron’s wave functions in the superconductors. This fluxon

can be forced to move along the junction by applying an exterior bias current to the

junction’s superconductors. Fluxons are highly robust and stable objects. They emerge

due to topological reasons. Therefore they are also called topological solitons.
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Figure 1.6: kink and antikink solution for sine-Gordon equation.

The solution of the sine-Gordon Equation (1.3.1) represents a fluxon if the total phase

difference ϕ along the junction varies from 0 to 2π as x varies from −∞ to ∞. Similarly

if the flux quantum makes a phase variation from 2π to 0 along the junction as x varies

from −∞ to ∞, then it is called an antifluxon (antikink). This phase variation can be

seen in Fig: 1.6, which represents a fluxon (kink) and antifluxon (antikink).

The study of fluxons in Josephson junctions has been the subject of interest over the

last few decades due to their nonlinear nature and applications [45, 46, 64, 89].

1.3.3.2 Kink-kink and kink-antikink collisions

The interactions of 2-soliton solutions of sine-Gordon equation can be classified into

several distinct cases, like collision of two kinks, collision of two anti-kinks, collision of

a kink and anti-kink and the bound kink-antikink state known as the breather. During

the collision of solitons the solution cannot be represented as a linear combination of

two soliton solutions but after the collision, solitons recover their shapes.

The solutions for the kink-kink collision of sine-Gordon Equation (1.3.1) can be read as

u(x, t) = 4 arctan




v sinh
(

x√
1−v2

)

cosh
(

vt√
1−v2

)


 . (1.3.15)

In the kink-kink collision, kinks move toward each other with velocities ±v, and ap-

proaches towards origin from t → −∞ and moving away with the same velocities for

t → ∞ as shown in the Fig: 1.7.
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Figure 1.7: Space-time representation of kink-kink collision oscillating with velocity

v = 0.5.

Similarly the solution for a kink-antikink pair can be obtained in the form [90, 91]

u(x, t) = 4 arctan




sinh
(

vt√
1−v2

)

v cosh
(

x√
1−v2

)


 . (1.3.16)

Exact kink-kink and kink-antikink solutions of the sine-Gordon equation show that

kinks repel each other, while kinks and antikinks attract each other [92, 93] as shown

in the Fig: 1.8.

1.3.3.3 Breather solution

The 2-soliton localized periodic solution of the sine-Gordon equation is called a breather.

The term breather originates from the characteristic that breathers are localized in

space and oscillate (breathe) in time [74]. Breathers may be considered as dynam-

ical bound states of the kink-antikink pair, with a frequency lying below the linear

spectrum (1.3.7). The existence of kink-antikink bound states has been interpreted as

a resonance phenomenon between the natural excitation frequency of the kink profile

and the frequency of oscillation of the bound kink-antikink system.

The exactly integrable sine-Gordon equation [74] and the nonlinear Schrödinger equa-

tion [94] are examples of one-dimensional partial differential equations that have breather
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Figure 1.8: Space-time representation of kink-antikink collision oscillating with fre-

quency v = 0.1.

solutions. Discrete nonlinear Hamiltonian lattices can have breather solutions, if the

breather main frequency and all its multipliers are located outside of the phonon spec-

trum of the lattice.

There are two types of breathers namely standing or travelling ones. Standing breath-

ers correspond to localized solutions whose amplitude varies in time. They are some-

times called oscillons.

An exact breather solution of Equation (1.3.1) by using inverse scattering transform [74]

is

u(x, t) = 4 arctan

[ √
1 − ω2 cos(ω t)

ω cosh(
√

1 − ω2x)

]
, (1.3.17)

which is periodic in time t for ω < 1 and decays exponentially when moving from

x = 0.
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Figure 1.9: Space-time plot of the moving breather solution, oscillating with the fre-

quency ω ≈ 0.5.

1.4 Mathematical techniques

In this section, we briefly describe the historical and physical background of asymptotic

technique of multiple scale expansions, and the method of averaging used in Chapters

2, 3 and 4.

1.4.1 Perturbation methods

Exact analytical solutions of nonlinear differential equations are only possible for a lim-

ited number of special classes of differential equations. To find the general solutions,

scientists have devoted considerable time and effort to develop efficient approximate

methods. There are two distinct categories of approximation method for analysing

nonlinear systems, i.e. numerical methods and asymptotic (perturbation) methods.

The main advantages of the asymptotic approach is that it provides analytical approx-

imations for many simple nontrivial problems which are suitable for subsequent dis-

cussion and interpretation. Perturbation methods start with a simplified form of the

original problem, which can be solved exactly. The solved simplified problem is then

"perturbed" by a small term to make the conditions closer to the real problem. The key

property is that the solution of the perturbed problem is close to the solution of the

simplified problem.
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The practical significance of asymptotic methods is in finding useful fundamental struc-

tural properties of the original equation. The history of perturbation theory back goes

to the seventeenth century, when Euler (1772) dealt with perturbed oscillatory systems

in his research on the motion of the moon. The basic perturbation theory for differ-

ential equations was enhanced in the 19th century. Charles-Eugene Delaunay (1860)

studied the perturbative expansion for the Earth-Moon-Sun system and discovered the

method called the problem of small denominators, and this problem led Henri Poin-

caré to make one of the first deductions of the existence of chaos, called the "butterfly

effect", that even a very small perturbation can have a large effect on a system.

Delaunay recognized the major difficulty in the avoidance of the unbounded terms in

series solution, and produced the first systematic series, called Floquet’s characteristic

exponent. Soon after that, Poincáre (1886) produced a systematic averaging procedure

for a Hamiltonian system. Brown (1931) illustrated Bohlin’s method for nonlinear res-

onance. Bohlin’s method was an improved version of Delaunay’s, with the same basic

idea but without the inconvenience of numerous changes of variables.

In the late 20th century, broad dissatisfaction with perturbation theory in the quantum

physics community, including not only the difficulty of going beyond second order in

the expansion, but also questions about whether the perturbative expansion is even

convergent, has led to a strong interest in the area of non-perturbative analysis, that

is, the study of exactly solvable models. To improve the accuracy of asymptotic ex-

pansions by including more terms in expansions is not generally valid, because the

asymptotic expansion makes the statement about the series in the limit of ϵ → 0, where

increasing the number of terms means taking the limit n → ∞. Increasing the order of

terms, an asymptotic expansion does not necessarilly to converge. However, if it con-

verges, it does not have to converge to the function that was expanded. We end by

noting that perturbation approximations are an art rather than science. There are no

routine methods appropriate to all problems.

1.4.2 Multiscale methods

The method of multiple scales is a general method applicable to a wide range of prob-

lems in science and engineering to approximate nonlinear partial differential equations.

Multiscale expansions are a way of solving nonlinear systems which can be applied

when there are two or more considerably different scales.

The multiple scales method is able to deal with situations in which parameters intro-

duced in the perturbative construction have a slow dependence on the space and time

variables, and allows one to determine this dependence. This slow dependence is a
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result of the energy carried away from the internal mode by the radiation waves. Clas-

sical perturbation methods generally break down because of resonances that lead to

what are called ”secular terms”. With multiscale methods one obtains new equations,

which could be different from the initial one and are sufficient to the given problems.

Multiscale expansions can be applied to integrable and non-integrable systems. The

result for the non-integrable systems can be both integrable or non-integrable, but for

the integrable system, we obtain integrable systems.

In this thesis we used the systematic perturbation methods multiple-scale analysis to

study the dynamics of the sine-Gordon equation with perturbations.

1.4.3 The method of averaging

The method of averaging is used to study certain time-varying systems by analyzing

easier, time-invariant properties of the original system. The method of averaging is

different from the method of multiple scales but is often used in conjunction with it, to

analyze perturbations to strongly nonlinear partial differential equations with oscillat-

ory solutions. The effect of rapidly varying perturbations on the dynamics of nonlinear

systems’s may lead to a strong change of the systems behaviour in the sense of dynam-

ics averaged over the fast timescale. Such an effect may be obtained by applying a dir-

ect ac-driving force of large amplitude [95]. The first usage of the method of averaging

is attributed to Van der Pol, and it has been used more widely to examine oscillations

since the work of Krylov and Bogoliubov [96].

The idea of the method is to determine conditions under which solutions of an autonom-

ous dynamical system which includes high frequencies can be used to approximate

solutions of a more complicated (i.e. non-autonomous) time-varying dynamical sys-

tem [97] which only evolves on the slow time scale. It provides a means to assess the

cumulative effect of small terms over a long time interval [98]. Applications of the

method of averaging can be found in nonlinear oscillations, stability analysis, bifurca-

tion theory, vibrational control, and many other areas.

1.5 Aim of this thesis

The governing equation we consider in this thesis is

ϕxx(x, t)− ϕtt(x, t) = sin (ϕ + θ(x))− αϕt(x, t) + γ + h cos(Ωt), x ∈ R, t > 0, (1.5.1)

which describes an infinitely long Josephson junction with phase-shifts θ(x), damping

α, and driven by a microwave field. The applied time periodic (ac) drive has amp-
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litude h, which is proportional to the applied microwave power, and frequency Ω. The

term γ is the applied dc bias current. Our aim is to analyze the equation, explain its

behaviour, and if possible, predict novel characteristics of the system for technological

applications.

We begin in Chapter 2, by considering the sine-Gordon equation as a model which

describes infinitely long Josephson junctions with phase shifts. We construct a perturb-

ative expansion for the breathing mode to obtain equations for the slow time evolution

of the oscillation amplitude from our expansion. A similar approach has been used

by Oxtoby and Barashenkov [99, 100] for the ϕ4 equation. The multiple scales expan-

sion is the best way to introduce the slow dependence on space and time variables,

and to determine this dependence. We shall avoid arithmetic unboundedness in ra-

diation functions by using multiscale expansions. We show in Sections 2.2 and 2.4

that, in the absence of an ac-drive, a breathing mode oscillation decays with a rate of

at least O(t−1/4) and O(t−1/2) for junction with a uniform and nonuniform ground

state, respectively. In Sections 2.3 and 2.5 we extend our multiple scale analysis to the

governing equation driven by microwave field. Chapter 2 also covers radiation from a

breathing mode.

We confirm our analytical results numerically. Using numerical computations, we

show that there is a critical driving amplitude at which the junction switches to the

resistive state. Yet, it appears that the switching process is not necessarily caused by

the breathing mode. We show a case where a junction switches to a resistive state due

to the continuous wave background becoming modulationally unstable.

In Chapter 3, we study the dynamics of a κ-kink in the long Josephson junction in the

presence of rapidly varying driving force modelled by the sine-Gordon equation. The

ac-drive is assumed to be fast compared to the system’s natural frequency. We de-

rive analytically an averaged equation for the slowly-varying dynamics. Our method

uses multiscale expansions rather than direct averaging to analyze the dynamics of

kink solitons. This averaged equation is a double sine-Gordon equation. This equation

describes the kink dynamics in the long time where behaviour depends strongly on

the short time-scale dynamics. We also obtain analytically and numerically the critical

value of the applied bias current, γ, above which there are no static semifluxons in the

presence of ac drive.

In Chapter 4, we consider a spatially inhomogeneous sine-Gordon equation with a

double well potential and a time periodic drive modelling 0 − π − 0 − π − 0 long

Josephson junctions. A phase shift formation acting as a double well potential is con-

sidered. In Section 4.2, we construct a perturbation expansion to solve the unperturbed
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sine-Gordon equation for the coupled mode to obtain equations for the slow time evol-

ution of oscillation amplitude in 0 − π − 0 − π − 0 junction. In Section 4.3, the method

of multiple scales is applied to obtain the amplitude of oscillation in the presence of

driving.

We discuss the interactions of symmetric and antisymmetric defect modes in the long

Josephson junctions. We show that the modes decay in time. In particular, exciting the

two modes at the same time will increase the decay rate. The decay is due to the energy

transfer from the discrete to the continuous spectrum. For small drive amplitude, there

is an energy balance between the energy input given by the external drive and the

energy output due to radiative damping experienced by the coupled mode.

In Chapter 5, we consider a spatially inhomogeneous coupled sine-Gordon equations

with a time periodic drive, modelling stacked long Josephson junctions with phase

shift. In Section 5.2 and 5.3, we construct the analytical approximation of two stacked

long Josephson junctions as coupled sine-Gordon equations with different magnetic in-

ductance. By considering weak coupling we show that amplitude of oscillation decays

to steady state as t → ∞. Similarly in the absence of ac-drive for strong coupling the

amplitude equations decay at the order O(t−1/4). In Section 5.4, the method of multiple

scales is applied to obtain the amplitude of oscillation in the presence of driving. By

considering the strong coupling with time periodic drive, we expect that the amplitude

of oscillation tends to constant for a long time.
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Breathing modes of long Josephson

junctions with phase-shifts

The contents of the chapter have been published in SIAM Journal on Applied Mathematics, vol.

71, no. 1, pp. 242-269, (2011) [101].

2.1 Introduction

A Josephson junction is made by sandwiching a thin layer of a nonsuperconducting

material between two layers of superconducting material. The devices are named after

Brian Josephson, who predicted in 1962 that pairs of superconducting electrons could

"tunnel" right through the nonsuperconducting barrier from one superconductor to

another. This is due to the quantum mechanical waves in the two superconductors of

the Josephson junction overlapping with each other.

If we denote the difference in phases of the wave functions by ϕ, and the spatial and

temporal variables along the junction by x and t, respectively, then the electron flow

tunnelling across the barrier, i.e., the Josephson current, I is proportional to the sine of

ϕ(x, t), i.e., I ∼ sin ϕ(x, t). In a ideal long Josephson junction, the phase difference ϕ

satisfies a sine-Gordon equation.

The sine-Gordon equation occurs widely in the study of nonlinear systems, because of

its multisoliton solutions, solitary wave solutions, periodic solutions and many more.

The basic nonlinear localised excitations of sine-Gordon system are divided into two

groups: the one-soliton (kink) and the two-soliton (breather) solution. Kinks have been

used to describe crystal dislocations [102], domain walls representing structural phase

transitions in incommensurate, ferroelectric, and ferromagnetic systems, polymeriz-

ation mismatches in polyacetyline, spinwaves, charged density waves, and energy
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transfer along hydrogen-bonded molecular chains. It has been noted that kinks are

extremely stable under the influence of external forces, however, the influence of high

frequency parametric force may change the dynamics of sine-Gordon system dramat-

ically [86].

The sine-Gordon equation describes a variety of physical systems, for example, the

propagation of magnetic flux in long Josephson junction [45], pattern formation, period-

doubling, stochastic oscillations [65, 66, 67, 68], information transport in microtubules

[71], nonlinear optics [72], the propagation of localised magnetohydrodynamic modes

in plasma physics [73], etc.

In a standard long Josephson junction, the energetic ground state of the system is ϕ(x, t)

constant (both in time and in space) satisfying sin ϕ = γ, where γ is an applied con-

stant (dc) bias current, which is taken to be zero here. A novel type of Josephson junc-

tion was proposed by Bulaevskii, Kuzii, and Sabyanin [14, 15], in which a nontrivial

ground state can be realized, characterized by the spontaneous generation of a frac-

tional fluxon, i.e., a vortex carrying a fraction of a magnetic flux quantum. This remark-

able property can be invoked by intrinsically building piecewise constant phase-shifts

θ(x) into the junction. Due to the phase-shift, the supercurrent relation then becomes

I ∼ sin(ϕ + θ). Presently, one can impose a phase-shift in a long Josephson junction

using several methods (see, e.g., [18, 19] and references therein).

Due to these properties, Josephson junctions with phase shifts may have promising

applications in information storage and processing [16, 17]. Because of their potential

applications, the next natural question is, "what is the eigenvalue of the ground state?"

It is important because Josephson junction–based devices should not operate at fre-

quencies close to the eigenfrequency of the system, as unwanted parasitic resonances

can be induced.

The eigenfrequency of the ground state in the simplest case of Josephson junctions with

one and two phase-shifts has been theoretically calculated in [32, 33, 34, 35, 36, 37].

More important, the eigenfrequency calculation in the former case has been recently

confirmed experimentally in [38, 39]. The experimental measurements were performed

by applying microwave radiation of fixed frequency and power to the Josephson junc-

tion. At some frequency, the junction, interestingly, switches to the resistive state, char-

acterized by a nonzero junction voltage. In terms of the phase-difference ϕ, the aver-

aged Josephson voltage ⟨V⟩ is proportional to

⟨V⟩ ∼ 1
T

∫ T

0

∫

x∈D
ϕt(x, t) dx dt, (2.1.1)

where D is the domain of the problem and T ≫ 1. It was conjectured that the driving
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frequency at which switching occurs is the same as the eigenfrequency of the ground

state [38]. It is assumed that the jump to the resistive state is due to the resonant excita-

tion of the breathing mode of the ground state and the applied microwaves, similar to

the resonance phenomena observed in a periodically driven short (point-like) Joseph-

son junction reported in [103, 104, 105].

It was also noted in [38] that the accuracy of the microwave spectroscopy depends on

the magnitude of the eigenfrequency. To measure a large natural frequency, the method

requires an applied microwave with high power, which influences the measurement

due to the nonlinearity of the system. Here, we consider an infinitely long Josephson

junction with phase-shifts and no applied constant (dc) bias current. We show that

in such a system, the breathing mode cannot be excited to switch the junction into a

resistive state provided that the microwave amplitude is small enough. This is the

case even when the applied drive frequency is the same as the eigenfrequency, because

of higher harmonic excitations from continuous wave emission. In other words, the

breathing mode experiences radiative damping. Such damping is not present in short

junctions, as the phase difference ϕ in that limit is effectively independent of x. This

confirms the observed experimental results.

The governing equation we consider herein is

ϕxx (x, t)− ϕtt (x, t) = sin (ϕ + θ(x)) + h cos (Ωt) , x ∈ R, t > 0, (2.1.2)

describes an infinitely long Josephson junction with phase-shifts, θ(x), driven by a mi-

crowave field h cos(Ωt). Equation (2.1.2) is dimensionless, and x and t are normal-

ized by the Josephson penetration length λJ and the inverse plasma frequency ω−1
p ,

respectively. The applied time periodic ac-drive in the governing equation above has

amplitude h, which is proportional to the applied microwave power, and frequency Ω.

Here we study two cases of the internal phase-shift

θ (x) =

{
0, |x| > a,

π, |x| < a,
(2.1.3)

with a < π/4, as Φ0 (x, t) = 0(mod2π) as the ground state for 0 − π − 0 Josephson

junction. Studying the stability of the constant solution, one finds there is a critical facet

length ac = π/4 above which the solution is unstable and the ground state is spatially

nonuniform [32].

θ (x) =

{
0, x < 0,

−κ, x > 0,
(2.1.4)

with 0 < κ < 2π, which is called 0 − κ Josephson junction. The internal phase

shift 2.1.3, 2.1.4 are the simplest configurations admitting a uniform and a nonuniform
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ground state, respectively. The phase field ϕ is then naturally subject to the continuity

conditions at the position of the jump in the Josephson phase (the discontinuity), i.e.,

ϕ(±a−) = ϕ(±a+), ϕx(±a−) = ϕx(±a+), (2.1.5)

for the 0 − π − 0 junction and

ϕ(0−) = ϕ(0+), ϕx(0−) = ϕx(0+), (2.1.6)

for the 0 − κ junction.

The unperturbed 0 − π − 0 junction, i.e., (2.1.2) and (2.1.3) with h = 0, has

Φ0 = 0(mod 2π), (2.1.7)

as the ground state, and by linearizing around the uniform solution we find a localized

breathing mode [32]

Φ1(x, t) = eiωt





cos(a
√

1 + ω2)e
√

1−ω2(a+x), x < −a,

cos(x
√

1 + ω2), |x| ≤ a,

cos(a
√

1 + ω2)e
√

1−ω2(a−x), x > a,

(2.1.8)

with the oscillation frequency ω given by the implicit relation

a =
1√

1 + ω2
tan−1

√
1 − ω2

1 + ω2 , ω2
< 1. (2.1.9)

As for the unperturbed 0 − κ junction, i.e., (2.1.2) and (2.1.4) with h = 0, the ground

state of the system is (mod 2π)

Φ0(x, t) =

{
4 tan−1 ex0+x, x < 0,

κ − 4 tan−1 ex0−x, x > 0,
(2.1.10)

where x0 = ln tan (κ/8). Physically, Φ0 in (2.1.10) represents a fractional fluxon that

is spontaneously generated at the discontinuity. A scanning microscopy image of frac-

tional fluxons can be seen in, e.g., [23, 106]. Linearizing around the ground state Φ0 in

(2.1.10), we obtain the breathing mode [33, 35]

Φ1(x, t) = Φ̃1(x)eiωt, (2.1.11)

with

Φ̃1(x) =

{
eΛ(x0+x) [tanh(x0 + x)− Λ] , x < 0,

eΛ(x0−x) [tanh(x0 − x)− Λ] , x > 0,
(2.1.12)

Λ =
√

1 − ω2, (2.1.13)
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Figure 2.1: The typical dynamics of a breathing mode (top) and a wobbling kink (bot-

tom) in an undriven 0 − π − 0 and 0 − κ junction, respectively.

and the oscillation frequency

ω(κ) = ±
√

1
2

cos
κ

4

(
cos

κ

4
+

√
4 − 3 cos2 κ

4

)
, (2.1.14)

which satisfies ω(0) = ± 1, and ω(2 π) = 0. In addition to the eigenfrequency (2.1.9)

or (2.1.14), a ground state in a Josephson junction also has a continuous spectrum in

the range ω2
> 1.

If a ground state is perturbed by its corresponding localized mode, then the perturba-

tion will oscillate periodically. The typical evolution of the initial condition

ϕ = Φ0(x) + B0Φ1(x, 0), ϕt(x, 0) = 0, (2.1.15)
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for some small initial amplitude B0 = 1/2Φ(0, 0), and h = 0 is shown in the top and

bottom panels of Figure 2.1 for the two cases above (2.1.3)-(2.1.4). For a 0 − π − 0

junction, one can see a clear mode oscillation on top of the uniform background state

ϕ = 0. The mode of oscillation do not grow. Later calculation determine that the mode

decay for a long time (see Figure 2.2). In the case of a 0 − κ junction, the periodic

oscillation of the localized mode makes the fractional kink oscillate about the point of

discontinuity, x = 0.

Using a multiple scale expansion, we show that in the absence of an ac-drive, such a

breathing mode oscillation decays with a rate of at most O(t−1/4) and O(t−1/2) for a

junction with a uniform and nonuniform ground state, respectively.

The coupling of a spatially localized breathing mode to radiation modes via a nonlin-

earity with the same decay rates has been discussed and obtained by others in several

contexts (see [99] and references therein). Interactions of a breathing mode and a to-

pological kink, creating the so-called “wobbling kink” or simply “wobbler” have also

been considered before; see [99, 100] and the references therein to ϕ4 wobblers and

[107, 108, 109] for sine-Gordon wobblers. Nonetheless, the problem and results presen-

ted herein are novel and important from several points of view, which include the fact

that our fractional wobbling kink is in principle different from the “normal” wobbler.

Usually, a wobbler is a periodically expanding and contracting kink, due to the inter-

action of the kink and its odd eigenmode. Because our system is not translationally

invariant, our wobbler will be composed of a fractional kink and an even eigenmode,

representing a topological excitation oscillating about the discontinuity point (see also

[110] for a similar situation in discrete systems, where a lattice kink interacts with its

even mode). Such an oscillation can certainly be induced by a time-periodic direct driv-

ing, as considered herein. More important, our problem is relevant and can be readily

confirmed experimentally (see also, e.g., [111, 112, 113] for experimental fabrications of

0 − π − 0 Josephson junctions).

The presentation of the Chapter 2 is as follows. In Section 2.2, we construct a perturba-

tion expansion for the breathing mode to obtain equations for the slow-time evolution

of the oscillation amplitude in a 0 − π − 0 junction by eliminating secular terms from

our expansion. In Section 2.3, the method of multiple scales is applied to obtain the

amplitude oscillation in the presence of driving, extending the preceding section. In

Section 2.4 and 2.5, we apply the perturbation method to the wobbling kink in a 0 − κ

junction. We confirm our analytical results numerically in Section 2.6.

We also show in the same section that there is a threshold drive amplitude above which

the junction switches to the resistive state. Yet, we observe that the switching to the
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resistive state is due to the modulational instability of the background. We conclude

the present work in Section 2.7.

2.2 Freely oscillating breathing mode in a 0 − π − 0 junction

In this section we construct a breathing mode of the sine-Gordon Equation (2.1.2) with

h = 0 and θ given by (2.1.3).

We apply a perturbation method to (2.1.2) by writing

ϕ = ϕ0 + ϵ ϕ1 + ϵ2ϕ2 + ϵ3ϕ3 + · · · , (2.2.1)

where ϵ is a small parameter, which is the initial amplitude in perturbation expansion

for the undriven case. We will assume latter that b = ϵB, so that b is the natural amp-

litude oscillating mode, which is the small amplitude we will actually measure. We

further use multiple scale expansions introducing the slow-time and space variables

Xn = ϵnx, Tn = ϵnt, n = 0, 1, 2, . . . , (2.2.2)

which describe long times and distances. In the small limit of ϵ, the scales become

uncoupled and may be considered as independent variables.

In the following, we use the notation

∂n =
∂

∂Xn
, Dn =

∂

∂Tn
, (2.2.3)

such that the derivatives with respect to the original variables in terms of the scaled

variables using the chain rule are given by

∂

∂x
= ∂0 + ϵ ∂1 + ϵ2∂2 + ϵ3∂3 + · · · , (2.2.4)

∂

∂t
= D0 + ϵ D1 + ϵ2D2 + ϵ3D3 + · · · . (2.2.5)

Substituting these expansions into the perturbed sine-Gordon Equation (2.1.2) along

with the expansion of ϕ and equating like powers of ϵ, we obtain a hierarchy of partial

differential equations (PDEs):

O(1) : ∂2
0ϕ0 − D2

0ϕ0 = sin(θ + ϕ0), (2.2.6)

O(ϵ) : ∂2
0ϕ1 − D2

0ϕ1 − cos(θ + ϕ0)ϕ1 = 2D0D1ϕ0 − 2∂0∂1ϕ0. (2.2.7)

Solutions to the equations above for the 0 − π − 0 junction are given by

ϕ0(X0, T0) = 0, (2.2.8)
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and

ϕ1(X0, X1, . . . , T0, T1, . . . ) = B(X1, . . . , T1, . . .)Φ1(X0, T0) + c.c., (2.2.9)

where Φ1 is given by (2.1.8). B(X1, . . . , T1, . . . ) is the amplitude of the breathing mode,

which is a function of the slow-time and space variables only. Throughout the chapter

c.c. stands for the complex conjugate of the immediately preceding term.

2.2.1 Equation at O(ϵ2)

Next, we consider the O(ϵ2) equation

∂2
0ϕ2 − D2

0ϕ2 − cos(θ + ϕ0)ϕ2 = 2D0D1ϕ1 − 2∂0∂1ϕ1. (2.2.10)

Evaluating the right-hand side for the different regions, we obtain

∂2
0ϕ2 − D2

0ϕ2 − ϕ2 = 2 cos(a
√

1 + ω2)
[
iωD1B −

√
1 − ω2∂1B

]
e
√

1−ω2(a+X0)+iωT0 ,

∂2
0ϕ2 − D2

0ϕ2 + ϕ2 = 2
[
iωD1B cos(X0

√
1 + ω2) +

√
1 + ω2∂1B sin(X0

√
1 + ω2)

]
eiωT0 ,

∂2
0ϕ2 − D2

0ϕ2 − ϕ2 = 2 cos(a
√

1 + ω2)
[
iωD1B +

√
1 − ω2∂1B

]
e
√

1−ω2(a−X0)+iωT0 .

for X0 < −a, |X0| < a, and X0 > a, respectively. These are linear wave equations with

forcing at frequency ω. Substituting the spectral ansatz

ϕ2(X0, X1, . . . , T0, T1, . . . ) = ϕ̃2(X0, X1, . . . , T1, . . . )eiωT0 , (2.2.11)

we obtain the corresponding set of ordinary differential equations (ODEs) with forcing

term, which has the frequency ω,

∂2
0ϕ̃2 − (1 − ω2)ϕ̃2 = 2 cos(a

√
1 + ω2)

[
iωD1B −

√
1 − ω2∂1B

]
e
√

1−ω2(a+X0),

∂2
0ϕ̃2 + (1 + ω2)ϕ̃2 = 2

[
iωD1B cos(X0

√
1 + ω2) +

√
1 + ω2∂1B sin(X0

√
1 + ω2)

]
,

∂2
0ϕ̃2 − (1 − ω2)ϕ̃2 = 2 cos(a

√
1 + ω2)

[
iωD1B +

√
1 − ω2∂1B

]
e
√

1−ω2(a−X0).

We write the above equations in the form

Lψ (x) = f (x) , (2.2.12)

where L is a linear self-adjoint operator (L = L†) given by the left hand side of the

above system, and ζ : T → R is a smooth periodic function. Let L2(R) be the Hilbert

space with complex inner product

⟨g, h⟩ =
∫

∞

−∞

g(ξ)h(ξ)dξ. (2.2.13)
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Here g(ξ) is the complex conjugate of g(ξ). The Fredholm theorem states that the ne-

cessary and sufficient condition for the inhomogeneous equation Lψ = f (x) to have a

bounded solution is that f (x) be orthogonal to the null-space of the operator L. Hence,

the solvability condition provided by the Fredholm theorem is
∫

∞

−∞

L f (x) dx = 0. (2.2.14)

By applying the theorem, we find the solvability condition

D1B = 0. (2.2.15)

The bounded solution of (2.2.10) is given by

ϕ2 = ∂1BeiωT0





C21e
√

1−ω2X0 − X0 cos
(

a
√

1 + ω2
)

e
√

1−ω2(a+X0) + c.c., X0 < −a,

C22 cos
(

X0
√

1 + ω2
)
− X0 cos

(
X0

√
1 + ω2

)
+ c.c., |X0| ≤ a,

C23e−
√

1−ω2X0 − X0 cos
(

a
√

1 + ω2
)

e
√

1−ω2(a−X0) + c.c., X0 > a,

where C21 = C23 = cos
(

a
√

1 − ω2
)

and C22 are constants of integration that have to

be found by applying the continuity conditions at the discontinuity points X0 = ±a.

It should be noted that ∂1B, as well as ∂nB in later calculations, does not appear in the

solvability conditions. Therefore, we take the simplest choice by setting

∂1B = 0. (2.2.16)

This choice is also in accordance with the fact that if ∂1B were nonzero, then (ϵ2ϕ2)

would become greater than (ϵϕ1), as X0 → ±∞ due to the term (X0e
√

1−ω2(a∓X0)) in the

expression of ϕ2 above, leading to a nonuniformity in the perturbation expansion of ϕ.

Hence we conclude that

ϕ2(X0, . . . , T0, . . . ) = 0. (2.2.17)

2.2.2 Equation at O(ϵ3)

The equation at the third order in the perturbation expansion is

∂2
0ϕ3 − D2

0ϕ3 − cos(θ)ϕ3 = 2(D0D2 − ∂0∂2)ϕ1 + (D2
1 − ∂2

1)ϕ1 −
1
6

ϕ3
1 cos(θ). (2.2.18)

Having evaluated the right-hand side using the functions ϕ0 and ϕ1, and splitting the

solution into components proportional to simple harmonics, we obtain

∂2
0ϕ3 − D2

0ϕ3 − cos(θ)ϕ3 =





F1, X0 < −a,

F2, |X0| ≤ a,

F3, X0 > a,

(2.2.19)
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where F1, F2, F3 are given by

F1 = 2
(

iωD2B −
√

1 − ω2∂2B
)

cos
(

a
√

1 + ω2
)

e
√

1−ω2(a+X0)+iωT0

−1
2

B|B|2 cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a+X0)+iωT0

−1
6

B3 cos3(a
√

1 + ω2)e3
√

1−ω2(a+X0)+3iω T0 ,

F2 =
[
2 iωD2B cos

(√
1 + ω2X0

)
+ 2∂2B

√
1 + ω2 sin

(√
1 + ω2X0

)

+
1
2

B|B|2 cos3
(√

1 + ω2X0

) ]
eiωT0 +

1
6

B3 cos3
(√

1 + ω2X0

)
e3iωT0 ,

F3 = 2
(

iωD2B +
√

1 − ω2∂2B
)

cos
(

a
√

1 + ω2
)

e
√

1−ω2(a−X0)+iωT0

−1
2

B|B|2 cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a−X0)+iωT0

−1
6

B3 cos3(a
√

1 + ω2)e3
√

1−ω2(a−X0)+3iω T0 .

These are linear wave equations with forcing at frequencies ω and 3ω. The former

frequency is resonant with the discrete eigenmode, and the latter is assumed to lie in

the continuous spectrum (phonon band),

9ω2
> 1. (2.2.20)

This forcing is localised to the region near the origin and acts as a source of radiation.

With this assumption e3iωT0 ϕ
(3)
3 will not decay in space and e3iωT0 ϕ

(3)
3 + c.c. will describe

right and left moving radiation when x → ±∞. Hence, the frequency-tripling effects

of the nonlinearity have caused the breathing mode to become a source of radiation. It

should be noted that ω = ω(a) shown in (2.1.9).

As (2.2.18) is linear, the solution can be written as a combination of solutions each with

frequencies as in the forcing terms, that is,

ϕ3 = ϕ
(0)
3 + ϕ

(1)
3 eiωT0 + c.c. + ϕ

(2)
3 e2iωT0 + c.c. + ϕ

(3)
3 e3iωT0 + c.c. (2.2.21)

This implies that ϕ
(1)
3 satisfies the following inhomogeneous equations:

∂2
0ϕ

(1)
3 −

(
cos(θ)− ω2) ϕ

(1)
3 =





2 iω D2B cos
(

a
√

1 + ω2
)

e
√

1−ω2(a+X0)

− 1
2 B|B|2 cos3

(
a
√

1 + ω2
)

e3
√

1−ω2(a+X0), X0 < −a,

2 iω D2B cos
(√

1 + ω2X0

)

+ 1
2 B|B|2 cos3

(√
1 + ω2X0

)
, |X0| < a,

2 iω D2B cos
(

a
√

1 + ω2
)

e
√

1−ω2(a−X0)

− 1
2 B|B|2 cos3

(
a
√

1 + ω2
)

e3
√

1−ω2(a−X0), X0 > a.
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In the above equation, it should be noted that we have imposed

∂2B = 0, (2.2.22)

as previously discussed.

The solvability condition for the first harmonic gives

D2B = k1B|B|2 i, (2.2.23)

where

k1 =

(
3 − 7 ω4 − 2 ω6 − 2 ω2 + 6

√
1 − ω4 tan−1

(√
1−ω2

1+ω2

))

32 ω
(

1 + ω2 +
√

1 − ω4 tan−1
(√

1−ω2

1+ω2

)) . (2.2.24)

We can write the solution of the Equation (2.2.23) is

B = ei(k1T2+C(T3,...,X3,... )), (2.2.25)

but this solution is purely oscillatory. In order to determine the stability, we need to

go to higher orders. We do not solve further the solvability conditions individually, as

solving the individual equations repeated at the different scales does not work because

the equations cover more than one time scale. We will combine the slow time scale

equations (solvability conditions) before solving them.

The solution for the first harmonic is then given by

ϕ
(1)
3 (X0, T0) = B|B|2





υ1(X0), X0 < −a,

υ2(X0), |X0| < a,

υ3(X0), X0 > a,

(2.2.26)

where

υ1(X0) = C31e
√

1−ω2X0 −
√

2 (1 + ω2)
(

k31e2
√

1−ω2X0 − k̃31

)
e
√

1−ω2X0

64 ω
√

1 − ω2 u1
,

υ2(X0) = C32Re(ei
√

1+ω2X0)− k̃32Re(ei
√

1+ω2X0)− k32Im(ei
√

1+ω2X0)

16
√

1 + ω2u2
,

υ3(X0) = C33e−
√

1−ω2X0 −

(
k33e2

√
1−ω2X0 − k̃33

)
e−

√
1−ω2X0

32
√
(2 − ω2)(1 − ω2) u1

,

with

u1 = 1 + ω2 +
√

1 − ω4 tan−1



√

1 − ω2

1 + ω2


 , (2.2.27)

u2 = ω2 +
√

1 − ω4 tan−1
(√

1 − ω4
)

. (2.2.28)
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Expressions for the functions k3j and k̃3j, j = 1, 2, 3, are given in (2.A.1)–(2.A.6). The

coefficients C31 = C32 and C33 are constants of integration that should be determined

from the continuity conditions at X0 = ±a.

We do not consider the equation for the second harmonic ϕ
(2)
3 , as it does not appear

in the leading order of the sought-after asymptotic equation describing the behavior of

breathing mode amplitude.

The equation for the third harmonic ϕ
(3)
3 is

∂2
0ϕ

(3)
3 −

(
cos(θ)− 9ω2) ϕ

(3)
3 =





− 1
6 cos3(

√
1 + ω2a)e3

√
1−ω2(a+X0), X0 < −a,

1
6 cos3(

√
1 + ω2X0), |X0| < a,

− 1
6 cos3(

√
1 + ω2a)e3

√
1−ω2(a−X0), X0 > a,

whose solution, using the same procedure as above, is given by

ϕ
(3)
3 (X0, T0) = B3





P31(X0), X0 < −a,

P32(X0), |X0| < a,

P33(X0), X0 > a,

(2.2.29)

where

P31(X0) = C̃31e
√

1−9 ω2X0 − 1
48

cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a+X0),

P32(X0) = C̃32 cos(
√

1 + 9 ω2X0)−
1

192 ω2

(
ω2 − 3

)
cos

(
X0

√
1 + ω2

)
,

P33(X0) = C̃33e−
√

1−9 ω2X0 − 1
48

cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a−X0),

and C̃31, C̃32, and C̃33 are nonzero constants of integration that also are determined from

the continuity conditions at the discontinuity points.

Note that due to the assumption (2.2.20), the second term in P31(X0) and P33(X0) will

decay to zero. With the assumption (2.2.20), we see that e3iωT0 ϕ
(3)
3 + c.c. describes the

left moving radiation for X0 < −a and right moving radiation for X0 > a, which are

responsible for energy loss in the final amplitude equation.

2.2.3 Equation at O(ϵ4)

Solving equation at O
(
ϵ4
)
,

∂2
0ϕ4 − D2

0ϕ4 − cos (θ + ϕ0) ϕ4 = 2 (D0D1 − ∂0∂1) ϕ3 + 2 (D1D2 + D0D3) ϕ1

−2 (∂1∂2 + ∂0∂3) ϕ1, (2.2.30)

from the solvability condition

D3B = 0, ∂3B = 0, (2.2.31)
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and hence we impose

ϕ4 = 0, (2.2.32)

which is similar to the case of ϕ2.

2.2.4 Equation at O(ϵ5)

Equating terms at O(ϵ5) gives the equation

∂2
0ϕ5 − D2

0ϕ5 − ϕ5 cos θ = 2(D0D4 − ∂0∂4)ϕ1 + 2(D3D1 − ∂3∂1)ϕ1

+(D2
2 − ∂2

2)ϕ1 + (D2
1 − ∂2

1)ϕ3 + 2(D2D0 − ∂2∂0)ϕ3

+

(
−1

2
ϕ2

1ϕ3 +
1

120
ϕ5

1

)
cos (θ) . (2.2.33)

Having calculated the right-hand side using the known functions, we again split the

solution into components proportional to simple harmonics, as we did before. The

equation for the first harmonic is given by

∂2
0ϕ

(1)
5 −

(
cos θ − ω2) ϕ

(1)
5 =





G1, X0 < −a,

G2, |X0| < a,

G3, X0 > a,

(2.2.34)

where

G1 = 2 iω D4B cos
(

a
√

1 + ω2
)

e
√

1−ω2(a+X0)

−B|B|4
[
k1

2 cos
(

a
√

1 + ω2
)

e
√

1−ω2(a+X0) + 2ωk1υ1(X0)

+
1
2

cos2
(

a
√

1 + ω2
)

e2
√

1−ω2(a+X0)(3υ1(X0) + P31(X0))

− 1
12

cos5
(

a
√

1 + ω2
)

e5
√

1−ω2(a+X0)
]
,

G2 = 2 iω D4B cos
(

X0

√
1 + ω2

)
− B|B|4

[
k1

2 cos
(

X0

√
1 + ω2

)
+ 2ωk1υ2(X0)

−1
2

cos2
(

X0

√
1 + ω2

)
(3 υ2(X0) + P32(X0)) +

1
12

cos5
(

X0

√
1 + ω2

) ]
,

G3 = 2 iω D4B cos
(

a
√

1 + ω2
)

e
√

1−ω2(a−X0)

−B|B|4
[
k1

2 cos
(

a
√

1 + ω2
)

e
√

1−ω2(a−X0) + 2ωk1υ3(X0)

+
1
2

cos2
(

a
√

1 + ω2
)

e2
√

1−ω2(a−X0)(3 υ3(X0) + P33(X0))

− 1
12

cos5
(

a
√

1 + ω2
)

e5
√

1−ω2(a−X0)
]
.

Here, υ1(X0), υ2(X0), υ3 (X0) are the bounded solutions of ϕ
(1)
3 (X0, T0), and P31(X0),

P32(X0), P33(X0) are the bounded solutions of ϕ
(3)
3 (X0, T0) as solved above.
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The solvability condition of (2.2.34) is

D4B = k2B|B|4, (2.2.35)

where

k2 = − Υ2 i

2ωΨ(ω)
, (2.2.36)

Υ2 = k2
1Ψ(ω) + 2ωk1ζ + α + β + γ,

Ψ(ω) =

(√
1 + ω2 +

√
1 − ω2 tan−1

(√
1−ω2

1+ω2

))

√
1 − ω4

,

ζ =
∫ −a

−∞

υ1(X0) cos
(

a
√

1 + ω2
)

e
√

1−ω2(a+X0)dX0

+
∫ a

−a
υ2(X0) cos

(
X0

√
1 + ω2

)
dX0

+
∫

∞

a
υ3(X0) cos

(
a
√

1 + ω2
)

e
√

1−ω2(a−X0)dX0,

α =
1
2

∫ −a

−∞

(3 υ1(X0) + P31(X0)) cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a+X0)dX0

− cos6(a
√

1 + ω2)

72
√

1 − ω2
,

β = −1
2

∫ a

−a
(3 υ2(X0) + P32(X0)) cos3

(
X0

√
1 + ω2

)
dX0

+
1

12

∫ a

−a
cos6

(
X0

√
1 + ω2

)
dX0,

γ =
1
2

∫
∞

a
(3 υ3 (X0) + P33(X0)) cos3

(
a
√

1 + ω2
)

e3
√

1−ω2(a−X0)dX0

−cos6(a
√

1 + ω2)

72
√

1 − ω2
.

We postpone the continuation of the perturbation expansion to higher orders, as we

have obtained the decaying oscillatory behavior of the breathing amplitude (2.2.23)

and (2.2.35), which is our main objective.

2.2.5 Amplitude equation

By noting that

dB

dt
= ϵD1B + ϵ2D2B + ϵ3D3B + ϵ4D4B + . . . , (2.2.37)
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and defining b = ϵ B, so that b is the natural amplitude of the breathing mode, i.e. the

small amplitude one would actually measure. we combine (2.2.15), (2.2.23), (2.2.31),

and (2.2.35) to obtain

db

dt
= k1b|b|2 i + k2b|b|4 +O(ϵ6). (2.2.38)

It should be noted that k1 is real number and b, k2 are complex numbers. Since we

know that

∂|b|2
∂t

=
∂(bb∗)

∂t
= b

∂b∗

∂t
+ b∗

∂b

∂t
, (2.2.39)

where b∗ denotes the complex conjugate of b. We express the amplitude equation in

terms of unscaled variables:

∂|b|2
∂t

= 2Re(k2)|b|6. (2.2.40)

One can calculate that the solution of (2.2.40) satisfies the relation

|b(t)| =

( |b(0)|4
1 − 4 Re (k2) |b(0)|4t

)1/4

, (2.2.41)

where b(0) is the initial amplitude of oscillation. The value of k2 is given by Equation

(2.2.36). Calculating the real part of k2 numerically, one obtains that Re(k2) < 0 for all

values of a < π/4. This equation describes the gradual decrease in the amplitude of

the breathing mode with order O(t−1/4) as it emits energy in the form of radiation.

Remark 1. The O
(
t−1/4) decay of the oscillation amplitude is because of our assumption

(2.2.20). If one has (3ω)2
< 1 instead, then the decay rate will be smaller than O

(
t−1/4), as

the coefficient k2 in (2.2.35) would be purely imaginary.

This leads us to the following conjecture

Conjecture 1. If n ≥ 3 is an odd integer such that

1/(n − 2)2
> ω2

> 1/n2,

then the decay rate of the breathing mode oscillation in 0 − π − 0 Josephson junctions with

a < π/4 is of order O(t−1/(n+1)).

This conjecture implies that the closer the eigenfrequency ω is to zero, i.e., a → π/4,

the longer the lifetime of the breathing mode oscillation.
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2.3 Driven breathing mode in a 0 − π − 0 junction

We now consider breathing mode oscillations in a 0 − π − 0 junction in the presence

of external driving with frequency near the natural breathing frequency of the mode,

i.e., (2.1.2) and (2.1.3) with h ̸= 0 and Ω = ω(1 + ρ).

By rescaling the time Ωt = ωτ, (2.1.2) becomes

ϕxx(x, τ)− (1 + ρ)2ϕττ(x, τ) = sin (ϕ + θ) +
1
2

h
(

eiωτ + c.c.
)

. (2.3.1)

Here, we use the driving amplitude and frequency are very small, namely,

h = ϵ3H, ρ = ϵ3R, (2.3.2)

with H, R ∼ O(1). Other scaling for h and ρ can also be consider (see section 2.5). Due

to the time rescaling above, our slow temporal variables are now defined as

Xn = ϵnx, Tn = ϵnτ, n = 0, 1, 2, . . . . (2.3.3)

In this case, we still use the shorthand notation (2.2.3), though the time is rescalled

slightly τ/1 + ρ. Performing a perturbation expansion order by order as before, one

obtains the same perturbation expansion up to and including O(ϵ2) as in the undriven

case above.

2.3.1 Equation at O(ϵ3)

At third order, we obtain

∂2
0ϕ3 − D2

0ϕ3 − cos(θ)ϕ3 = (D2
1 − ∂2

1)ϕ1 + 2(D0D2 − ∂0∂2)ϕ1 + 2RD2
0ϕ0

−1
6

ϕ3
1 cos(θ) +

1
2

H
(

eiωτ + c.c.
)

. (2.3.4)

The only difference from the undriven case is the presence of a harmonic drive in the

last term.

The first harmonic component of the above equation gives us the solvability condition

D2B = k1B|B|2 i + l1H i, (2.3.5)

where

l1 =

√
1 + ω2

√
2 ω

(
1 + ω2 +

√
1 − ω4 tan−1

(√
1−ω2

1+ω2

)) , (2.3.6)
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and k1 is as given by (2.2.24). The solution for the first harmonic can be readily obtained

as

ϕ
(1)
3 =





B|B|2υ1(X0) + Hυ̃1(X0), X0 < −a,

B|B|2υ2(X0) + Hυ̃2(X0), |X0| < a,

B|B|2υ3(X0) + Hυ̃3(X0), X0 > a,

where

υ̃1(X0) = ℵ̃31e
√

1−ω2X0 −
√

1 + ω2
(
1 − ω2

)
tan−1

(√
1−ω2

1+ω2

)

2 (1 − ω2)3/2
u1

+
eu+X0

(
(ω4 − 1)X0 +

√
1 − ω2(1 + ω2)

)
− 2

√
1 − ω2(1 + ω2)

4 (1 − ω2)3/2
u1

,

υ̃2(X0) = ℵ̃32Re(ei
√

1+ω2X0) +
1

2 (1 + ω2)

−
√

1 + ω2X0Im (ei
√

1+ω2X0) + Re(ei
√

1+ω2X0)√
2
√

1 + ω2 u2
,

υ̃3(X0) = ℵ̃33e−
√

1−ω2X0 −
tan−1

(√
1−ω2

1+ω2

)

2 u1

+
e−

√
1−ω2X0((eu − 2e

√
1−ω2X0)

√
1 − ω2(1 + ω2) + 2 euX0(1 − ω4))

4 (1 − ω2)3/2 u1
,

with u =
√

1 − ω2 tan−1(
√

1−ω4

1+ω2 ). The values of u1, u2 are given in Equations (2.2.27)–

(2.2.28). The constants of integration ℵ̃31 = ℵ̃33 and ℵ̃32 are determined by applying

the continuity conditions at the discontinuity points. The terms in ϕ1
3 (see υ̃1(X0) −

−υ̃3(X0)) proportional to driving amplitude ( H ) are independent of X0. We therefore

see that leading order driving term enters the equation. (the leading order driving

also appears at O(ϵ5) ). We expect that, this leads the system to a non-zero constant

amplitude, over the fast time scale as t → ∞.

One can check that the solution for the third harmonic ϕ
(3)
3 (X0, T0), as well as ϕ

(2)
3 , is

the same as in the undriven case.

2.3.2 Equation at O(ϵ4)

The equation at O(ϵ4) is

∂2
0ϕ4 − D2

0ϕ4 − cos (θ + ϕ0) ϕ4 = 2 (D0D1 − ∂0∂1) ϕ3 + 2 (D1D2 + D0D3) ϕ1

−2 (∂1∂2 + ∂0∂3) ϕ1 + 2 RD2
0ϕ1, (2.3.7)
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with the solvability condition

D3B = −i ω B R. (2.3.8)

This implies that

ϕ4(X0, T0) = 0, (2.3.9)

as for the case of ϕ2.

2.3.3 Equation at O(ϵ5)

At O(ϵ5), we obtain

∂2
0ϕ5 − D2

0ϕ5 − ϕ5 cos (θ) = 2(D0D4 − ∂0∂4)ϕ1 + 2(D3D1 − ∂3∂1)ϕ1 + 4RD0D1ϕ1

+(D2
2 − ∂2

2)ϕ1 + (D2
1 − ∂2

1)ϕ3 + 2(D2D0 − ∂2∂0)ϕ3

−
(

1
2

ϕ2
1ϕ3 −

1
120

ϕ5
1

)
cos(θ) + 2R D2

0ϕ2. (2.3.10)

Evaluating the right-hand side, we again split the solution into components propor-

tional to simple harmonics as we did before. For the first harmonic, we obtain that

∂2
0ϕ

(1)
5 −

(
cos θ − ω2) ϕ

(1)
5 =





M1, X0 < −a,

M2, |X0| < a,

M3, X0 > a,

(2.3.11)

where

M1 =
(

2 iω D4B − k1
2B|B|4 − k1l1|B|2H

)
cos

(
a
√

1 + ω2
)

e
√

1−ω2(a+X0)

−2 ω
(

k1B|B|4 + l1|B|2H
)

υ1(X0) +
1
12

B|B|4 cos5
(

a
√

1 + ω2
)

e5
√

1−ω2(a+X0)

−1
2

B|B|4 (3 υ1 (X0) + P31 (X0)) cos2
(

a
√

1 + ω2
)

e2
√

1−ω2(a+X0)

−1
2

H
(

2 |B|2 + B2
)

υ̃1 (X0) cos2
(

a
√

1 + ω2
)

e2
√

1−ω2(a+X0),

M2 =
(

2 iω D4B − k1
2B|B|4 − k1l1|B|2H

)
cos

(
X0

√
1 + ω2

)

−2 ω
(

k1B|B|4 + l1|B|2H
)

υ2 (X0)−
1

12
B|B|4 cos5

(
X0

√
1 + ω2

)

+
1
2

B|B|4 (3 υ2 (X0) + P32 (X0)) cos2
(

X0

√
1 + ω2

)

+
1
2

H
(
2 |B|2 + B2) υ̃2(X0) cos2

(
X0

√
1 + ω2

)
,

M3 =
(

2 iω D4B − k1
2B|B|4 − k1l1|B|2H

)
cos

(
a
√

1 + ω2
)

e
√

1−ω2(a−X0)

−2 ω
(

k1B|B|4 + l1|B|2H
)

υ3(X0) +
1
12

B|B|4 cos5
(

a
√

1 + ω2
)

e5
√

1−ω2(a−X0)

−1
2

B|B|4 (3 υ3(X0) + P33(X0)) cos2
(

a
√

1 + ω2
)

e2
√

1−ω2(a−X0)

−1
2

H
(

2 |B|2 + B2
)

υ̃3(X0) cos2
(

a
√

1 + ω2
)

e2
√

1−ω2(a−X0).
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The solvability condition for (2.3.11) is

D4B = k2 B|B|4 +
(
l2|B|2 + l3B2)Hi, (2.3.12)

where l1 is given by (2.3.6) and

l2 =
Υ3,1

2ωΨ(ω)
, l3 =

Υ3,2

2ωΨ(ω)
,

Υ3,1 = k1l1Ψ(ω) + 2ωl1ζ + 2 (α2 + β2 + γ2) ,

Υ3,2 = α2(X0) + β2(X0) + γ2(X0),

α2 =
1
2

∫ −a

−∞

υ̃1(X0) cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a+X0)dX0,

β2 = −1
2

∫ a

−a
υ̃2(X0) cos3

(
X0

√
1 + ω2

)
dX0,

γ2 =
1
2

∫
∞

a
υ̃3(X0) cos3

(
a
√

1 + ω2
)

e3
√

1−ω2(a−X0)dX0.

So far we have obtained the sought-after leading order behavior of the breathing amp-

litude. Performing the same calculation as in (2.2.40), we obtain the governing dynam-

ics of the oscillation amplitude in the presence of an external drive

ω

Ω

db

dt
= k1b|b|2i + k2 b|b|4 + l1hi +

(
l2|b|2 + l3b2) hi − i ω b ρ +O(ϵ6). (2.3.13)

From Equation (2.3.13), one can deduce that a nonzero external driving can induce a

breathing dynamic. It is expected that for large t, there will be a balance between the

external drive and the radiation damping.

2.4 Freely oscillating breathing mode in a 0 − κ junction

In this section, we consider (2.1.2) with θ given by (2.1.4), describing the dynamics of

the Josephson phase in the 0 − κ long Josephson junction.

By applying the method of multiple scales and the perturbation expansion as before to

the governing equation, we obtain from the leading order O(1) and O(ϵ) that

ϕ0 = Φ0(X0), ϕ1 = B(X1 . . . , T1 . . .)Φ1(X0, T0) + c.c., (2.4.1)

where B(X1 . . . , T1 . . .) is the amplitude of wobbling mode, depends on slow time and

space variables. The value of Φ0 and Φ1 are given by (2.1.10) and (2.1.11), respectively.

2.4.1 Correction at O(ϵ2)

Using the fact that ϕ0 is a function of X0 only, the equation at O(ϵ2) is

∂2
0ϕ2 − D2

0ϕ2 − cos(θ + ϕ0)ϕ2 = 2D0D1ϕ1 − 2∂0∂1ϕ1 −
1
2

ϕ2
1 sin(θ + ϕ0). (2.4.2)
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After a simple algebraic calculation, one can recognize the right-hand side consists of

functions with frequencies 0, ω, and 2ω. Therefore, solutions to the above equation can

be written as

ϕ2 = ϕ
(0)
2 + ϕ

(1)
2 eiωT0 + c.c. + ϕ

(2)
2 e2iωT0 + c.c., (2.4.3)

which implies that ϕ
(0)
2 , ϕ

(1)
2 , and ϕ

(2)
2 respectively satisfy the inhomogeneous equations

in the regions X0 < 0 and X0 > 0

(
∂2

0 − cos(θ + ϕ0)
)

ϕ
(0)
2

= −|B|2




e2
√

1−ω2(x0+X0)
[
tanh(x0 + X0)−

√
1 − ω2

]2
sin(ϕ0), X0 < 0,

e2
√

1−ω2(x0−X0)
[
tanh(x0 − X0)−

√
1 − ω2

]2
sin(ϕ0 − κ), X0 > 0,

(
∂2

0 + ω2 − cos(θ + ϕ0)
)

ϕ
(1)
2

=





2
[(

iωD1B − ∂1B
√

1 − ω2
) (

tanh(x0 + X0)−
√

1 − ω2
)

−∂1B sech2(x0 + X0)
]
e
√

1−ω2(x0+X0), X0 < 0,

2
[(

iωD1B + ∂1B
√

1 − ω2
) (

tanh(x0 − X0)−
√

1 − ω2
)

+ ∂1B sech2(x0 − X0)
]
e
√

1−ω2(x0−X0), X0 > 0,
(

∂2
0 + 4ω2 − cos(θ + ϕ0)

)
ϕ
(2)
2

= −B2

2





e2
√

1−ω2(x0+X0)
[
tanh(x0 + X0)−

√
1 − ω2

]2
sin(ϕ0), X0 < 0,

e2
√

1−ω2(x0−X0)
[
tanh(x0 − X0)−

√
1 − ω2

]2
sin(ϕ0 − κ), X0 > 0.

By using arguments as in the preceding sections, we set

D1B = 0, ∂1B = 0.

Hence, we find that ϕ
(1)
2 (X0, T0) = 0.

The solutions for the other harmonics are

ϕ
(0)
2 = |B|2

{
E0(X0), X0 < 0,

Ẽ0(X0), X0 > 0,
(2.4.4)

ϕ
(2)
2 = B2

{
E2(X0), X0 < 0,

Ẽ2(X0), X0 > 0,
(2.4.5)

where E0(X0), Ẽ0(X0), E2(X0), and Ẽ2(X0) are as given by (2.A.7)–(2.A.10). C01, C02,

C21, and C22 are constants of integration that should be found by applying a continuity

condition at the point of discontinuity X0 = 0.
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In the following, we will assume that the harmonic 2ω is in the continuous spectrum,

that is,

4ω2
> 1. (2.4.6)

With this assumption, ϕ
(2)
2 (X0, T0) will not decay in space, and e2iωT0 ϕ

(2)
2 (X0, T0) + c.c.

describes right–moving radiation for positive X0 and left moving radiation for negat-

ive X0.

2.4.2 Correction at O(ϵ3)

Equating the terms at O(ϵ3) gives the equation

∂2
0ϕ3 − D2

0ϕ3 − cos(θ + ϕ0)ϕ3 = (2D0D2 − 2∂0∂2)ϕ1 + (D2
1 − ∂2

1)ϕ1

+ (2D0D1 − 2∂0∂1)ϕ2 − ϕ1ϕ2 sin(θ + ϕ0)

−1
6

ϕ3
1 cos(θ + ϕ0), (2.4.7)

where we have used the fact that ϕ0 depends only on X0. Having calculated the right-

hand side using the known functions ϕ0, ϕ1, and ϕ2, we again split the solution into

components proportional to the harmonics of the right-hand side. Specifically for the

first harmonic, we have

(
∂2

0 + ω2 − cos (θ + ϕ0)
)

ϕ
(1)
3 =

{
L1, X0 < 0,

L2, X0 > 0,
(2.4.8)

where

L1 = 2iω D2B
[
tanh(x0 + X0)−

√
1 − ω2

]
e
√

1−ω2(x0+X0)

−B|B|2 (E0(X0) + E2(X0)) sin(ϕ0)
[
tanh(x0 + X0)−

√
1 − ω2

]
e
√

1−ω2(x0+X0)

−1
2

B|B|2 cos(ϕ0)
[
tanh(x0 + X0)−

√
1 − ω2

]3
e3

√
1−ω2(x0+X0),

L2 = 2iω D2B
[
tanh(x0 − X0)−

√
1 − ω2

]
e
√

1−ω2(x0−X0)

−B|B|2
(

Ẽ0(X0) + Ẽ2(X0)
)

sin(ϕ0 − κ)
[
tanh(x0 − X0)−

√
1 − ω2

]
e
√

1−ω2(x0−X0)

−1
2

B|B|2 cos(ϕ0 − κ)
[
tanh(x0 − X0)−

√
1 − ω2

]3
e3

√
1−ω2(x0−X0).

The solvability condition of the equation will give us

D2B = m1B|B|2, (2.4.9)

where

m1 = − Υ i

Ψ1(ω)
, (2.4.10)
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and

Υ =
∫ 0

−∞

f1(X0)dX0 +
∫

∞

0
f2(X0)dX0 +

1
2

∫ 0

−∞

f3(X0)dX0 +
1
2

∫
∞

0
f4(X0)dX0,

Ψ1(ω) =
2 ω e2

√
1−ω2x0

(
2
√

1 − ω2 + 2 − ω2 − e2 x0

(
2
√

1 − ω2 + ω2 − 2
))

√
1 − ω2(1 + e2x0)

,

f1(X0) = −2 (E0(X0) + E2(X0)) sech (x0 + X0) tanh(x0 + X0)

× [tanh (x0 + X0)−
√

1 − ω2]
2
e2

√
1−ω2(x0+X0),

f2(X0) = 2
(

Ẽ0(X0) + Ẽ2(X0)
)

sech (x0 − X0) tanh(x0 − X0)

×
[
tanh(x0 − X0)−

√
1 − ω2

]2
e2

√
1−ω2(x0−X0),

f3(X0) =
[
tanh (x0 + X0)−

√
1 − ω2

]4
(1 − 2 sech 2(x0 + X0))e

4
√

1−ω2(x0+X0),

f4(X0) =
[
tanh (x0 − X0)−

√
1 − ω2

]4
(1 − 2 sech 2(x0 − X0))e

4
√

1−ω2(x0−X0).

We will not continue the perturbation expansion to higher orders, as we have obtained

the leading order behavior of the wobbling amplitude.

Using the chain-rule and writing b = ϵB, we obtain

∂b

∂t
= m1b|b|2. (2.4.11)

It can be derived that

∂|b|2
∂t

= 2 Re(m1)|b|4, (2.4.12)

with the solution given by

|b| =

√
|b(0)|2

1 − 2 Re(m1)|b(0)|2t
, (2.4.13)

and the initial amplitude b(0). It can be clearly seen that the oscillation amplitude of

the breathing mode decreases in time with order O(t−1/2). The value m1 is given by

Equation (2.4.10). Calculating the real part of m1 numerically (the imaginary part can

be calculated analytically ), one obtains that Re(m1) < 0 for all values of ω(κ) with

0 < κ ≤ π.

Remark 2. Similar to Remark 1, the O(t−1/2) amplitude decay is caused by the assumption

(2.4.6).

One therefore can introduce a similar conjecture as before.

Conjecture 2. If n ≥ 2 is an integer such that

1/(n − 1)2
> ω2

> 1/n2,

then the decay rate of the breathing mode oscillation in 0 − κ Josephson junctions is O(t−1/n).
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2.5 Driven breathing modes in a 0 − κ junction

We now consider breathing mode oscillations in 0 − κ junctions in the presence of

external driving with frequency near the natural breathing frequency of the mode,

i.e., (2.1.2) and (2.1.4) with h ̸= 0 and Ω = ω(1 + ρ). Taking the same scaling as in

the case of a driven 0 − π − 0 junction, we obtain (2.3.1). Yet, here we assume that the

driving amplitude and frequency are small, i.e.,

h = ϵ2H, ρ = ϵ2R, (2.5.1)

with H, R ∼ O(1). Performing the same perturbation expansion as before, up to O(ϵ)

we obtain the same equations as in the undriven case, which we omit for brevity.

2.5.1 Correction at O(ϵ2)

The equation at O(ϵ2) in the perturbation expansion is

∂2
0ϕ2 − D2

0ϕ2 − cos(θ + ϕ0)ϕ2 = 2 (D0D1 − ∂0∂1) ϕ1 −
1
2

ϕ2
1 sin(θ + ϕ0)

+
1
2

H
(

eiωτ + c.c.
)

. (2.5.2)

Again, one can write the solution ϕ2 as a combination of solutions with harmonics

present in the right-hand side. In this case, the first harmonic component is different

from the undriven case due to the driving, yielding the solvability condition

D1B = mHi, (2.5.3)

where

m =
η(x0, ω)

2Ψ1(ω)
, m ∈ R

η(x0, ω) =
∫ 0

−∞

e
√

1−ω2(x0+X0)
[
tanh(x0 + X0)−

√
1 − ω2

]
dX0

+
∫

∞

0
e
√

1−ω2(x0−X0)
[
tanh (x0 − X0)−

√
1 − ω2

]
dX0.

The solution for the first harmonic is

ϕ
(1)
2 (X0, T0) = H

{
g(X0) + n(X0), X0 < 0,

g̃(X0) + ñ(X0), X0 > 0,
(2.5.4)
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where

g(X0) =
Cg1

(
2
√

1 − ω2 + 2 − ω2 − ω2e2 (x0+X0)
)

e
√

1−ω2(x0+X0)

1 + e2( x0+X0)

+
η(x0, X0)

2Ψ1(ω)
g1(X0),

g̃(X0) =
Cg2

(
2
√

1 − ω2 − 2 + ω2 + ω2e−2 (x0−X0)
)

e
√

1−ω2(x0−X0)

1 + e−2( x0−X0)

−η(x0, X0)

2Ψ1(ω)
g̃1(X0),

n(X0) =
Ch1

(
2
√

1 − ω2 + 2 − ω2 − ω2e2 (x0+X0)
)

e
√

1−ω2(x0+X0)

1 + e2( x0+X0)

+

(
ω2e2 (x0+X0) − 2

√
1 − ω2 − 2 + ω2

)
e
√

1−ω2(x0+X0)A1(X0)

4ω4
√

1 − ω2(1 + e2(x0+X0))

+

(
ω2e2 (x0+X0) + 2

√
1 − ω2 − 2 + ω2

)
e−

√
1−ω2(x0+X0)A2(X0)

4ω4
√

1 − ω2(1 + e2( x0+X0))
,

ñ(X0) =
Ch2

(
ω2e−2 (x0−X0) + 2

√
1 − ω2 − 2 + ω2

)
e
√

1−ω2(x0−X0)

1 + e−2( x0−X0)

+

(
ω2e−2 (x0−X0) − 2

√
1 − ω2 + 2 − ω2

)
e−

√
1−ω2(x0−X0)A3(X0)

4ω4
√

1 − ω2(1 + e−2( x0−X0))

+
(e−2 (x0−X0)ω2 + 2

√
1 − ω2 − 2 + ω2)e

√
1−ω2(x0−X0)A4(X0)

4ω4
√

1 − ω2(1 + e−2( x0−X0))
.

Here, g1(X0), g̃1(X0), and Aj, j = 1, . . . , 4, are given by (2.A.11)–(2.A.16). Cg1, Cg2, Ch1,

and Ch2 are constants of integration chosen to satisfy continuity conditions. The other

harmonics are the same as in the undamped, undriven case.

2.5.2 Correction at O(ϵ3)

Equating the terms at O(ϵ3) gives the equation

∂2
0ϕ3 − D2

0ϕ3 − cos(θ + ϕ0)ϕ3 = 2(D0D2 − ∂0∂2)ϕ1 + (D2
1 − ∂2

1)ϕ1

+ 2 (D0D1 − ∂0∂1) ϕ2 − ϕ1ϕ2 sin(θ + ϕ0)

−1
6

ϕ3
1 cos(θ + ϕ0) + 2RD2

0ϕ1. (2.5.5)

The solvability condition for the first harmonic of the above equation gives

D2B = m1B|B|2 − ωBR i. (2.5.6)
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Equations (2.5.3) and (2.5.6) are the leading order equations governing the oscillation

amplitude of the breathing mode. Combining equations (2.5.3) and (2.5.6) in terms of

the original variable b(t) gives

ω

Ω

∂b

∂t
= mhi + m1b|b|2 − iωbρ, m ∈ R, m1 ∈ C. (2.5.7)

As with (2.3.13), one expects that a nonzero external drive (m) induces a breathing

mode oscillation.

2.6 Numerical calculations

To check our analytical results obtained in the above sections, we have numerically

solved the governing Equation (2.1.2), with θ(x) given by (2.1.3) or (2.1.4). We discretize

the Laplacian operator using a central difference and integrate the resulting system of

differential equations using a fourth-order Runge–Kutta method, with a spatial and

temporal discretization ∆x = 0.02 and ∆t = 0.004, respectively. The computational

domain is x ∈ (−L, L), with L = 50. At the boundaries, we use a periodic boundary

condition. To model an infinitely long junction, we apply an increasing damping at the

boundaries to reduce reflected continuous waves incoming from the boundaries. In all

the results presented herein, we use the damping coefficient

α =

{
(|x| − L + xα) /xα, |x| > (L − xα),

0, |x| < (L − xα);
(2.6.1)

i.e., α increases linearly from α = 0 at x = ±(L − xα) to α = 1 at x = ±L. We have

taken xα = 20. To ensure that the numerical results are not influenced by the choice

of the parameter values, we have taken different values as well as different boundary

conditions and damping, where we obtained quantitatively similar results.

In this section, for the 0 − π − 0 junction we fix the facet length a = 0.4, which implies

that ω ≈ 0.73825, and for the 0 − κ junction we set κ = π, which implies that x0 ≈
−0.8814 and ω ≈ 0.8995. For the choice of parameters above, we obtain the coefficients

in the analytically obtained approximations (2.2.40), (2.3.13), (2.4.11), and (2.5.7) as

k1= 0.04330, k2= -0.00324-0.0140 i, l1= 0.6068,

l2=-0.10027, m1= -0.01820-0.0809 i, l3= 0.05934,

m=- 0.6236.

First, we consider the undriven case, h = 0. With the initial condition (2.1.15) and

B(0) =
1

2Φ1(0, 0)
, (2.6.2)
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Figure 2.2: The envelope of the oscillation amplitude of the breathing mode in a 0 −
π − 0 (top panel) and 0 − κ (bottom panel) junction. The solid curves are

from the original governing Equation (2.1.2), clearly indicating the decay

of the oscillation. Analytical approximations (2.2.41) for the top panel and

(2.4.13) for the bottom panel are shown as dashed lines.

where Φ1(x, t) is given by (2.1.8) for 0 − π − 0 junctions and by (2.1.11) for 0 − κ junc-

tions, we record the envelope of the oscillation amplitude ϕ(0, t) from the governing

Equation (2.1.2). In Figure 2.2, we plot ϕ(0, t) as solid lines for the 0 − π − 0 and 0 − κ

junctions in the top and bottom panels, respectively. From Figure 2.2, one can see

that the oscillation amplitude decreases in time. The mode experiences damping. The

damping is intrinsically present because the breathing mode emits radiation due to

higher harmonics excitations with frequency in the dispersion relation.

It is instructive to compare the numerical results with our analytical calculations. With

55



CHAPTER 2: BREATHING MODES OF LONG JOSEPHSON JUNCTIONS WITH

PHASE-SHIFTS

the initial condition

ϕ(x, t) = Φ0(x) + B(t)Φ̃1(x), (2.6.3)

where

B(t) = b(t)eiωt + b(t)e−iωt, (2.6.4)

and Φ̃1(x) is given by (2.1.12). From (2.6.4) and by assuming Im(b(0)) = 0, we have

b(0) = B(0)/2, (2.6.5)

where B(0) is given by (2.6.2). Since our asymptotics are only expected to be valid for

long times, while there could be a short initial transient, it may be necessary to allow a

fitting parameter F. therefore, we take

b(0) = B(0)/2F, (2.6.6)

where F is a fitting parameter. The analytical approximation is then given by 2F|b(t)|,
where |b(t)| is given by (2.2.41) and (2.4.13) for the 0 − π − 0 and 0 − κ Josephson

junctions, respectively. In general, the factor F is simply F = 1. Yet, by treating F as

a fitting parameter we observed that the best fit is not given by the aforementioned

value. For the initial condition (2.6.2), we found that optimum fits are, respectively,

provided by F = 1.03 and F = 0.9, which are both close to the expected value of F = 1.

Our approximation is shown as a dashed line in Figure 2.2, where one can see a good

agreement with the numerically obtained oscillation. In the top panel, the approxima-

tion coincides with the numerical result.

Next, we consider the case of driven Josephson junctions, (2.1.2) with h ̸= 0. In this

case, the initial condition to the governing Equation (2.1.2) is (2.1.15), with

B0 = 0. (2.6.7)

Taking Ω = ω ( hence ρ = 0 ), we present the amplitude of the oscillatory mode ϕ(0, t)

of 0 − π − 0 junctions with h = 0.002 and h = 0.003 in the top and middle panels,

respectively, of Figure 2.3. These are typical dynamics of the oscillation amplitude of

the breathing mode, where for the first case the envelope oscillates periodically over a

long time scale, and for the second case the amplitude tends to a constant.

To assess the accuracy of the asymptotic analysis, we have solved the amplitude Equa-

tions (2.3.13) and (2.5.7) numerically using a fourth-order Runge–Kutta method with a

relatively fine time discretization parameter, as exact analytical solutions are not avail-

able. The analytical approximation is again given by 2F|b(t)|, where F in this case is

56



CHAPTER 2: BREATHING MODES OF LONG JOSEPHSON JUNCTIONS WITH

PHASE-SHIFTS

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

φ(
0
,t
)

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

φ(
0
,t
)

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

t

φ(
0
,t
)−

κ/
2

Figure 2.3: The same as in Figure 2.2, but for nonzero driving amplitude. Top and

middle panels correspond to driven 0 − π − 0 junctions with h = 0.002

and h = 0.003, respectively. Bottom panel corresponds to driven 0 − κ

junctions with h = 0.01. 57
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taken to be exactly F = 1. It is important to note that ideally ρ = 0, as the driving

frequency was taken to be the same as the internal frequency of the infinitely–long

continuous Josephson junctions. Yet, one needs to note that to simulate the governing

equation numerically, it is discretized and solved on a finite interval, which implies

that the system’s internal frequency is likely to be different from the original equation.

Therefore, ρ may not be necessarily zero.

Treating ρ as a fitting parameter, we are able to find a good agreement between the

numerics and the approximations for ρ ≈ 0. Shown in the top panel of Figure 2.3 as

a dashed line is the approximation (2.3.13) using ρ = 0.00607, where one can see that

our approximation is in good agreement, as it is indistinguishable from the numerical

result. In the middle panel, as dashed and dash-dotted lines, are the approximations

for the driving amplitude h = 0.003 with ρ = 0.006 and ρ = 0.00665, respectively. The

two values of ρ give a good approximations in different time intervals. It is surprising

to see that the amplitude equation is still able to quantitatively capture the numerical

result, considering the large amplitude produced by the forcing, which is beyond the

smallness assumption of the oscillation amplitude.

In the bottom panel of Figure 2.3, we plot the amplitude of the breathing mode in the

0 − κ junction case with h = 0.01. One can see that the envelope of the oscillation

amplitude tends to a constant. The dashed curve depicts our approximation (2.5.7)

with ρ = −0.0015, and good agreement is obtained.

Considering the panels in Figure 2.3, we observe that the mode in the two junction

types does not oscillate with an unbounded or growing amplitude. After a while, there

is a balance of energy input into the breathing mode due to the external drive and

the radiative damping. The regular oscillation of the mode in the top panel indicates

that the junction voltage vanishes, even when the driving frequency is the same as the

system’s eigenfrequency. This raises the question of whether the breathing mode of a

junction with a phase-shift can be excited further by increasing the driving amplitude

to switch the junction to a nonzero voltage. To answer this question, we have solely

used numerical simulations of (2.1.2), as it is beyond our perturbation analysis.

In the top left and right panels of Figure 2.4, we present the average voltage (2.1.1)

with T = 100 as a function of the external driving amplitude h for the case of 0 −
π − 0 and 0 − κ junctions, respectively. We have taken different values of T, where we

obtained similar results. One can clearly see that in both cases, there is a minimum

amplitude above which the junction has a large nonzero voltage. For the first and

second junctions, the critical amplitude is, respectively, h ≈ 0.34 and h ≈ 0.1. The time

dynamics of the transition from the superconducting state ⟨V⟩ ≈ 0 to a resistive state
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Figure 2.4: The average voltage ⟨V⟩ as a function of the driving amplitude h in a

0 − π − 0 (top left) and a 0 − κ (top right) junction, respectively. Bottom

panels show the dynamics at the switching point, where the voltage be-

comes nonzero.

|⟨V⟩| ≫ 0 is shown in the bottom panels of the same figure.

From the panels, it is important to note that apparently the switch from a supercon-

ducting to a resistive state is not caused by the breathing mode, but rather because of

the continuous wave background emitted by the breathing mode. It shows that the

continuous wave becomes modulationally unstable. As the typical dynamics, the in-

stability causes breathers to be created, which then interact and destroy the breathing

mode. Hence, we conclude that a breathing mode in these cases cannot be excited to

make the junction resistive by applying an external drive, even with a relatively large

driving amplitude.

2.7 Conclusions

We have considered a spatially inhomogeneous sine-Gordon equation with a time-

periodic drive, modelling a microwave–driven long Josephson junctions with phase-

shifts. Due to the inhomogeneity, the system has a breathing mode corresponding to a
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periodic in time and localised in space solution. We constructed a perturbation expan-

sion for the breathing mode with a small amplitude excitations to obtain equations for

the slow time evolution of the oscillation amplitude for the 0− π − 0 and 0− κ Joseph-

son junctions respectively. We used multiple scales method which deals with situations

in which parameters introduced in the perturbative construction have a slow depend-

ence on the space and time variables, and allows one to determine this dependence.

We showed that this slow dependence is a result of the energy carried away from the

internal mode by the radiation waves. A similar approach has been used by Oxtoby

and Barashenkov [99, 100] for the ϕ4 equation.

We derived differential equations for the slowly varying oscillation amplitude for the

0 − π − 0 and 0 − κ Josephson junctions respectively. We avoided arithmetic unboun-

dedness in radiation functions by using multiscale expansion. The obtained amplitude

equations do not predict unbounded or growing amplitude, which is arrested by the

terms k2b|b|4 (see(2.2.38)) for 0 − π − 0 junction and m1b|b|2 (see(2.4.11)) for 0 − κ junc-

tion. This shows that the emission of radiation has the effect of damping the breathing.

The damping is present because the breathing mode emits radiation due to frequency

tripling effect of the nonlinearity, which causes the breathing mode to become a source

of radiation. We showed that in the absence of an ac-drive, a breathing mode oscillation

which decays with rates of at most O(t−1/4) and O(t−1/2) for junctions with uniform

and nonuniform ground states, respectively.

Next, we applied the method of multiple scales to obtain the oscillation amplitude

in the presence of external driving with frequency near the natural frequency of the

wobbler in the 0 − π − 0 and 0 − κ junctions. The presence of nonzero external drive

settles the breathing mode oscillation to a stable fixed point as t → ∞. We show that

there is a balance of energy input into the breathing mode due to the external drive and

the radiative damping.

In the context of Josephson junctions, the study is mentioned by recent experiments as

the measurement of the eigenfrequency of Josephson junctions with phase shifts. It was

conjectured that the driving frequency at which switching to a resistive state occurs is

the same as the eigenfrequency of the ground state [38].

From an analytical results, we have shown that in an infinitely long Josephson junction,

an external drive cannot excite the defect mode of a junction, i.e., a breathing mode, to

switch the junction into a resistive state. We used numerical computations to compare

our theoretical analysis, and obtained a good agreement.

From the numerical simulations, for a small drive amplitude, there is an energy bal-

ance between the energy input from the external drive and the energy output due to
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so-called radiative damping experienced by the mode. When the external drive amp-

litude is large enough, the junction can switch to a resistive state. This is caused by a

modulational instability of the continuous wave emitted by the oscillating mode.

Despite the agreement with the experiments obtained herein, our analysis is based on

a simplified model. It is of interest to extend the study to the case of dc, driven long but

finite Josephson junctions with phase-shifts, as experimentally used in [38, 39].

In microwave driven finite junctions, the boundaries can be a major external drive (see,

e.g., [114, 115]), which is not present in our study. A constant dc-bias current, which

plays an important role in the measurements reported by Buckenmaier and collabor-

ators in [38], is not included in our work, even though the results presented herein

should still hold for small constant drive. Another open problem is the interaction of

multiple defect modes in Josephson junctions with phase-shifts as fabricated by [116],

which will be addressed in Chapter 4. This is experimentally relevant, as the so-called

zigzag junctions have been successfully fabricated by Hilgenkamp et al. [23].
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2.A Appendix: Explicit expressions

The functions k3j and k̃3j in the expression of υj (2.2.26), j = 1, 2, 3, are given by

k31 = 2 ω tan−1



√

1 − ω2

1 + ω2



(

e3 u+2 X0
√

1−ω2
(1 + ω2)

3
2 + 3 euX0

√
1 − ω4

)
(2.A.1)

+
2 e3 u+2 X0

√
1−ω2

ω (1 + ω2)2
√

1 − ω2
− euω X0

(
2 ω6 − 3 + 2 ω2 + 7 ω4

)
,

k̃31 =
eu+2 X0

√
1−ω2

ω
√

1 − ω4 tan−1
(√

1−ω2

1+ω2

) (
e2 u+2 X0

√
1−ω2

(1 + ω2) + 3
)

√
1 − ω2

(2.A.2)

+
e3 u+4 X0

√
1−ω2

ω
(
1 + ω2)2

√
1 − ω2

− eu+2 X0
√

1−ω2
ω
(
2 ω6 − 3 + 2 ω2 + 7 ω4)

2
√

1 − ω2
,

k32 =
sin
(

2
√

1 + ω2X0

)
(2ω2 + 3)(ω2 + 1)2

4
√

1 + ω2
+

X0

2
(2ω2 + 3)(ω2 + 1)2 (2.A.3)

+
2 cos3

(√
1 + ω2X0

)
sin
(√

1 + ω2X0

) (√
1 − ω4 tan−1

(√
1−ω2

1+ω2

)
+ 1 + ω2

)

√
1 + ω2

,

k̃32 =
cos2

(√
1 + ω2X0

) (
6
√

1 − ω4 tan−1
(√

1−ω2

1+ω2

)
− 7 ω4 − 2 ω2 + 3 − 2 ω6

)

2
√

1 + ω2
(2.A.4)

−
2 cos4

(√
1 + ω2X0

) (√
1 − ω4 tan−1

(√
1−ω2

1+ω2

)
+ 1 + ω2

)

√
1 + ω2

,

k33 =
eu−2 X0

√
1−ω2 (2 ω6 − 3 + 2 ω2 + 7 ω4)

2
√

1 − ω2
−
(
1 + ω2)2

e3 u−4 X0
√

1−ω2

√
1 − ω2

(2.A.5)

−

(
e2 u + e2 uω2 + 3 e2 X0

√
1−ω2

)
eu−4 X0

√
1−ω2√1 − ω4 tan−1

(√
1−ω2

1+ω2

)

√
1 − ω2

,

k̃33 = −(2 e3 u−2 X0
√

1−ω2
)
(
1 + ω2)



√

1 + ω2 tan−1



√

1 − ω2

1 + ω2


− (1 + ω2)√

1 − ω2


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+euX0


6
√

1 − ω4 tan−1


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√
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1 + ω2


− 7 ω4 − 2 ω2 + 3 − 2 ω6


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The functions Ej(X0) and Ẽj(X0) in ϕ
(j)
2 (2.4.4)–(2.4.5) (j = 0, 2) are given by

E0(X0) =
e(X0+x0)C01

1 + e2(X0+x0)
− 2 (2 +

√
1 − ω2)e(X0+x0)(2

√
1−ω2+3)

√
1 − ω2(1 + e2(X0+x0))5

(2.A.7)

− (1 +
√

1 − ω2)e(2
√

1−ω2+1)(X0+x0)

√
1 − ω2(1 + e2(X0+x0))5

−2 (2 −
√

1 − ω2)e(X0+x0)(2
√

1−ω2+7) + 6 e(X0+x0)(5+2
√

1−ω2)
√

1 − ω2(1 + e2(X0+x0))5

+
2 (1 + 2

√
1 − ω2 − ω2)e(X0+x0)(2

√
1−ω2+3)

(1 + e2(X0+x0))5
,

Ẽ0(X0) =
e(X0−x0)C02

1 + e2(X0−x0)
+

2 e(−X0+x0)(2
√

1−ω2−7)(2 +
√

1 − ω2)√
1 − ω2(1 + e2(X0−x0))5

(2.A.8)

−2 e(−X0+x0)(2
√

1−ω2−3)(2 −
√

1 − ω2)− 6 e(−X0+x0)(2
√

1−ω2−5)
√

1 − ω2(1 + e2(X0−x0))5

+
e(x0−X0)(2

√
1−ω2−1)(1 −

√
1 − ω2) + e(x0−X0)(2

√
1−ω2−9)(1 +

√
1 − ω2)√

1 − ω2(1 + e2(X0−x0))5
,

E2(X0) =

(
2ω2e2(X0+x0) − (1 +

√
1 − 4ω2 − 2ω2)

)
e
√

1−4ω2(X0+x0)C21

1 + e2(X0+x0)
(2.A.9)

−

((
2
√

1 − ω2 + 1
)

e3(X0+x0) + (2
√

1 − ω2 − 1)e7(X0+x0)
)

e2
√

1−ω2(X0+x0)

(1 + e2(X0+x0))5

+
−6

√
1 − ω2e(X0+x0)(5+2

√
1−ω2) − e2

√
1−ω2(X0+x0)+X0+x0(1 +

√
1 − ω2)

2(1 + e2(X0+x0))5

+
(1 −

√
1 − ω2)e(X0+x0)(9+2

√
1−ω2)

2(1 + e2(X0+x0))5
,

Ẽ2(X0) =

(
2 ω2e2 (X0−x0) + 2 ω2 +

√
1 − 4 ω2 − 1

)
e−

√
1−4 ω2(X0−x0)C22

1 + e2(X0−x0)
(2.A.10)

+

(
e9 (X0−x0) − 2 e3 (X0−x0) − e(X0−x0)

)
e−2

√
1−ω2(X0−x0)

2(1 + e2(X0−x0))5

+
2e−(X0−x0)(2

√
1−ω2−7) + 4e−(X0+x0)(2

√
1−ω2−3)

√
1 − ω2

2(1 + e2(X0−x0))5

+

√
1 − ω2(6 e−(X0−x0)(2

√
1−ω2−5) + e−(X0−x0)(2

√
1−ω2−1))

2(1 + e2(X0−x0))5

+

√
1 − ω2(e−(X0−x0)(2

√
1−ω2−9) + 4 e−(X0−x0)(2

√
1−ω2−7))

2(1 + e2(X0−x0))5
.
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The functions g1(X0), g̃1(X0), and Aj, j = 1, . . . , 4, in (2.5.5)–(2.5.5) are

g1(X0) =
((x0 + X0)ω2 + 1)

√
1 − ω2 − 1

2 ω2 + 1)e(x0+X0)(
√

1−ω2+2)

ω
√

1 − ω2( 1
2 + e2(x0+X0) + 1

2 e4(x0+X0))
(2.A.11)

+

(
(x0 + X0)ω4 − (x0 + X0 − 5

2 )ω
2 − 2

)√
1 − ω2e

√
1−ω2(x0+X0)

2ω
√

1 − ω2(ω + 1)(ω − 1)( 1
2 + e2(x0+X0) + 1

2 e4(x0+X0))

+
(2 + (− 1

2 + x0 + X0)ω2)(ω2 − 1))e
√

1−ω2(x0+X0)

2ω
√

1 − ω2(ω + 1)(ω − 1)( 1
2 + e2(x0+X0) + 1

2 e4(x0+X0)

+
ω2((x0 + X0)ω2 − x0 − X0 − 1

2 )
√

1 − ω2e(x0+X0)(4+
√

1−ω2)

2ω
√

1 − ω2(ω + 1)(ω − 1)( 1
2 + e2(x0+X0) + 1

2 e4(x0+X0))

+
((−x0 − X0 − 1

2 )ω
2 + x0 + X0 +

1
2 )e

(x0+X0)(4+
√

1−ω2)

2ω
√

1 − ω2(ω + 1)(ω − 1)( 1
2 + e2(x0+X0) + 1

2 e4(x0+X0))
,

g̃1(X0) =
((1 − (x0 − X0)ω2)

√
1 − ω2 + 1

2 ω2 − 1)e(
√

1−ω2−2)(x0−X0)

ω
√

1 − ω2( 1
2 + e−2(x0−X0) + 1

2 e−4(x0−X0))
(2.A.12)

+
((2 + (− 1

2 − x0 + X0)ω2)(ω2 − 1) + 2ω4)e−
√

1−ω2(−x0+X0)

2ω
√

1 − ω2(ω + 1)(ω − 1)( 1
2 + e−2(x0−X0) + 1

2 e−4(x0−X0))

+
(((X0 − x0)ω4 + (x0 − X0 +

5
2 )ω

2)
√

1 − ω2)e−
√

1−ω2(−x0+X0)

2ω
√

1 − ω2(ω + 1)(ω − 1)( 1
2 + e−2(x0−X0) + 1

2 e−4(x0−X0))

+
ω2((−x0 + X0)ω2 + x0 − X0 − 1

2 )
√

1 − ω2e−(−x0+X0)(
√

1−ω2−4)

2ω
√

1 − ω2(ω + 1)(ω − 1)( 1
2 + e−2(x0−X0) + 1

2 e−4(x0−X0))

+
(ω + 1)(−x0 + X0 +

1
2 )(−1 + ω)e−(−x0+X0)(

√
1−ω2−4)

2ω
√

1 − ω2(ω + 1)(ω − 1)( 1
2 + e−2(x0−X0) + 1

2 e−4(x0−X0))
,

A1(X0) =
∫
(

2
√

1 − ω2 − 2 + ω2 + ω2e2(x0+X0)
)

e−
√

1−ω2(x0+X0)

1 + e2( x0+ X0)
dX0, (2.A.13)

A2(X0) =
∫
(

2
√

1 − ω2 + 2 − ω2 − ω2e2 (x0+X0)
)

e
√

1−ω2(x0+X0)

1 + e2( x0+ X0)
dX0, (2.A.14)

A3(X0) =
∫
(

2
√

1 − ω2 − 2 + ω2 + ω2e−2 (x0−X0)
)

e
√

1−ω2(x0−X0)

1 + e−2 (x0− X0)
dX0, (2.A.15)

A4(X0) =
∫
(

2
√

1 − ω2 + 2 − ω2 − ω2e−2 (x0−X0)
)

e−
√

1−ω2(x0−X0)

1 + e−2 (x0− X0)
dX0. (2.A.16)
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CHAPTER 3

Rapidly oscillating ac-driven long

Josephson junctions with

phase-shifts

The contents of this chapter have been submitted to Physica D (Nonlinear Phenomena).

3.1 Introduction

A Josephson junction is an electronic circuit consisting of two superconductors connec-

ted by a thin non-superconducting layer, and is the basis of a large number of develop-

ments both in fundamental research and in application to electronic devices [45]. Even

though there is no applied voltage difference, a flow of electrons can tunnel from one

superconductor to the other due to the overlapping quantum mechanical waves in the

two superconductors of the Josephson junction. If we denote the difference in phases

of the wave functions by ϕ and the spatial and temporal variable along the junction by

x and t, respectively, the electron flow tunnelling across the barrier, i.e. the Josephson

current, I is proportional to the sine of ϕ(x, t). In an ideal long Josephson junction, the

phase difference ϕ satisfies the sine-Gordon equation.

A particular solution of the sine-Gordon equation is a kink solution, which is a topo-

logical soliton. The solution represents a twist in the variable ϕ which takes the sys-

tem from one solution ϕ = 0 to an adjacent one with ϕ = 2π. In the context of long

Josephson junctions, this kink corresponds to a vortex of supercurrent, which can be

formed inside the Josephson barrier. The supercurrents circulate around the vortex’s

center and carry a magnetic field with the total flux equal to a single flux quantum

Φ0 ≈ 2.07 × 10−15Wb. Therefore, such a vortex is also referred to as a (Josephson)
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fluxon. The study of fluxons in Josephson junctions has been the subject of interest

over the last few decades due to their nonlinear nature and applications [45, 46, 64, 89].

One of the important properties of Josephson junctions is their behaviour when irradi-

ated with external radio-frequency (rf) microwave fields [9, 117]. This can be modelled

by a sine-Gordon equation driven with a periodic (ac) force. In particular, interactions

of fluxons in long Josephson junctions and ac-drives may yield rich dynamics, includ-

ing oscillatory and effectively progressive motions of fluxons (see, e.g., [118, 119, 120]

and references therein). Microwave driven Josephson junctions have also been used to

study this ratchet effect, that is, the unidirectional motion under the influence of a force

with zero mean [46, 121]. When the driving frequency and amplitude of the applied

microwave are larger than the Josephson plasma frequency ωp, one may also obtain

unstable, but long-lived half-fluxons (π-kinks), which are not present in the undriven

system [122, 123].

Recently, the study of the effects of microwave field radiation has been extended to the

so-called Josephson junctions with phase-shifts both experimentally and theoretically

[38, 39, 124, 125]. Such junctions were first proposed by Bulaevskii et al. [14, 15]. A

nontrivial ground-state can be realized in the junctions, characterised by the spontan-

eous generation of a fractional fluxon, i.e. a vortex carrying a fraction of magnetic flux

quantum. This remarkable property can be invoked by intrinsically building piece-

wise constant phase-shifts θ(x) into the junction. Due to the phase-shift, the super-

current relation becomes I ∼ sin(ϕ + θ). Presently, one can impose phase-shifts in

long Josephson junctions using several methods, such as by installing magnetic im-

purities [126] or Abrikosov vortices [127], using multilayer junctions with controlled

thicknesses over the insulating barrier [128, 129], pairs of current injectors [29] and

junctions with unconventional order parameter symmetry [20, 23, 130]. When irradi-

ated with magnetic fields, such novel types of junctions exhibit interesting dynamics,

such as half-integer Shapiro steps [124] and different characteristics of self-resonance

modes known as Fiske modes [131]. As the aforementioned works were concentrated

on the dynamics of the junctions, in this chapter we consider for the first time the in-

fluence of high-frequency radiation fields to the existence of static ground states of the

junctions.

The dynamics of the phase difference ϕ of a Josephson junction with phase-shifts is

modelled by the perturbed sine-Gordon equation

ϕtt(x, t)− ϕxx(x, t) + sin (ϕ + θ) = γ − αϕt + f cos(Ωt). (3.1.1)

Equation (3.1.1) is dimensionless, x and t are normalized to the Josephson penetration

length λJ and the inverse plasma frequency ω−1
p , respectively, and α is the damping
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coefficient due to electron tunnelling across the junction. The parameter γ represents

an applied (dc) bias current. The applied time periodic (ac) drive is represented by

the final term of the governing equation above. Because of the nondimensionalisation

of the temporal variable t, the Josephson plasma frequency ωp corresponds to Ω = 1.

Here, we consider the experimentally relevant case Ω ≫ 1. The case Ω < 1 has been

considered theoretically in Chapter 2 (see also [38, 39] for the experiments).

In this chapter, we consider two particular configurations of phase shift, namely

θ(x) =

{
0, |x| > a,

π, |x| < a,
(3.1.2)

and

θ(x) =

{
0, x < 0,

−κ, x > 0,
(3.1.3)

which are referred to as the 0 − π − 0 and 0 − κ Josephson junctions, respectively. The

phase field ϕ is then naturally subject to the continuity conditions at the position of the

jump in the Josephson phase (the discontinuity), i.e.

ϕ(±a−) = ϕ(±a+), ϕx(±a−) = ϕx(±a+), (3.1.4)

for the 0 − π − 0 junction and

ϕ(0−) = ϕ(0+), ϕx(0−) = ϕx(0+), (3.1.5)

for the 0 − κ junction. The quantity ϕxx may be discontinuous at the points where θ is

discontinuous.

The unperturbed 0 − π − 0 junction, i.e. (3.1.1) and (3.1.2) with γ = f = 0, has

Φ0 (x, t) = 0, (3.1.6)

(mod 2π) as the ground state. Studying the stability of the constant solution, one finds

there is a critical facet length ac = π/4 above which the solution is unstable and the

ground state is spatially nonuniform [32]. The ground state represents a pair of frac-

tional fluxons of opposite polarities. A scanning microscopy image of fractional fluxons

can be seen in, e.g., [23, 106].

As for the unperturbed 0− κ junction, i.e. (3.1.1) and (3.1.3) with γ = f = 0, the ground

state of the system is (mod 2π)

Φ0(x, t) =

{
4 tan−1 ex0+x, x < 0,

κ − 4 tan−1 ex0−x, x > 0,
(3.1.7)
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where x0 = ln tan (κ/8). Physically, Φ0 (x, t) (3.1.7) represents a fractional fluxon that is

spontaneously generated at the discontinuity. In the presence of an applied dc bias cur-

rent (γ ̸= 0), the fractional fluxon will be deformed. When the current is large enough,

the static ground state will cease to exist and the junction switches to a resistive state by

alternately releasing travelling fluxons and antifluxons. The minimum current at which

the junction switches to such a state is called the critical current γc = 2 sin(κ/2)/κ

[132, 133].

When f ̸= 0, the threshold distance in 0 − π − 0 junctions and the critical current γc in

0 − κ junctions can be expected to be different. Here, we show that rapidly oscillating

ac drives will increase the threshold distance in 0 − π − 0 junctions and decrease the

critical current in 0 − κ junctions. This is the main result of the present chapter. We

derive and study an ‘average’ equation describing the average dynamics of the system.

The average equation has the form of a double sine-Gordon equation, and is obtained

through the method of averaging. The idea of the method is to determine conditions

under which solutions of an autonomous dynamical system can be used to approx-

imate solutions of a more complicated (i.e. non-autonomous) time-varying dynamical

system. Here, the method is based on multiple time scales analysis.

A double sine-Gordon equation describing the slow-time dynamics of a rapidly driven

sine-Gordon equation was obtained previously through restricting the phase ϕ to Four-

ier series expansion [134, 135] and normal form technique [122]. In the normal form

technique, several canonical transformations are applied to the Hamiltonian system

to move mean-zero terms to higher order [136, 137]. In [134, 135], Kivshar et al. de-

compose the phase ϕ into the sum of slowly- and rapidly- varying parts. The method

solely uses asymptotic expansions rather than averaging over the fast oscillation. In

both methods, the coefficients of the double sine-Gordon equation are given in terms

of the Bessel functions. With the method proposed herein, one has more control on the

scales of the driving parameters and the coefficients of the ’average’ equation are given

by simple explicit functions, which will be shown later to be a series expansion of the

coefficients obtained in [122, 134, 135].

This chapter is organised as follows; in Sections 3.2 and 3.3, we derive the average

equation that represents the slowly-varying dynamics of the phase due to direct ac

driving force. In Section 3.4, we discuss the threshold facet length of 0−π− 0 junctions,

and the critical bias currents in 0− κ junctions in the presence of ac drives, based on our

analytical results obtained in Section 3.2. Numerical results accompanying our analysis

are presented in Section 3.5. Interestingly for the critical current in 0 − κ junctions we

show numerically that there is a critical driving amplitude, which is a function of the
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driving frequency, at which the critical dc current is zero. Finally, Section 3.6 is devoted

to conclusions.

3.2 Multiscale averaging with large driving amplitude

In this section, we derive an average nonlinear equation to describe the slowly-varying

dynamics of the sine-Gordon model (3.1.1). Even though in the following we derive

an average equation for a general configuration θ(x), we will see that the phase shift

does not play any role in the derivation. We consider a particularly experimentally-

relevant case where the ac force is rapidly oscillating, i.e. Ω ≫ 1, and define a small

parameter 0 < ϵ = 1/Ω ≪ 1. In experiments the drive amplitude f can be small or

large. Nevertheless, as we will see later and as noted in [134, 135] when f ∼ Ω
2 or

larger the modulation due to the fast oscillating drive will no longer be small. Because

of that, we consider a drive amplitude scaled as

f = F/ϵ3/2, (3.2.1)

with F ∼ O(1). For a reason that it is close to the threshold scaling, but the calculation

is relatively simple and tractable. Other scaling, including the experimentally relevant

case of small f , can be considered similarly.

Clearly the system (3.1.1) not only depends on the t = O(1)−time scale, but also on

the fast time scale t = O(ϵ), hence we define a series of timescales

Tn = ϵn/2t, n = −2,−1, 0, . . . . (3.2.2)

We seek a solution in terms of the asymptotic expansion

ϕ (x, t) = ϕ0 + ϵ1/2ϕ1 + ϵ ϕ2 + ϵ3/2ϕ3 + ϵ2ϕ4 + . . . , (3.2.3)

where ϕj = ϕj(x, T−2, T−1, T0, . . . ).

It should be noted that T−2 = t/ϵ is the fast variable and it will be shown later that ϕ0

is independent of T−2. For 0 < ϵ ≪ 1 the variable T−2 changes more rapidly than Tj

for j > −2, and we can think of Tj(j > −2) as being constant. When considering the

problem over the slow timescales, we will assume that the average

⟨ϕi⟩ =
1

2 π

∫ 2π

0
ϕi(x, T−2, . . . ) dT−2 = 0, (3.2.4)

that is, ϕi(x, T−2, T−1, . . . ), i = 1, 2, . . . , has zero mean and is periodic in T−2 with

period 2π. The assumption (3.2.4) is possible because any arbitrary function in ϕi that is
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independent of T−2 can be absorbed into ϕ0. In this way, ϕ0(x, T−2, T−1, T0, . . . ) repres-

ents the average of ϕ(x, t) and for that reason the governing equation for ϕ0 is referred

to as the ’average’ equation.

Denoting Dn = ∂/∂Tn, the multiscale expansion for the time variable implies that par-

tial derivative becomes

∂

∂t
= ϵ−1D−2 + ϵ−1/2D−1 + D0 + ϵ1/2D1 + ϵ D2 + ϵ3/2D3 + ϵ2D4 + . . . . (3.2.5)

Substituting (3.2.3) and (3.2.5) into (3.1.1), expanding and collecting powers of ϵ, one

obtains a hierarchy of equations.

Terms of order O(ϵ−2) give

D2
−2ϕ0 = 0, (3.2.6)

which implies

ϕ0(x, T−2, . . . ) = C(x, T−1, T0, . . . )T−2 + C0(x, T−1, T0, . . . ), (3.2.7)

where C and C0 are arbitrary at this stage. We set C(x, T−1, T0, . . . ) = 0, so that ϕ0 is

periodic in T−2. This shows that the first term in the multiscale expansion is independ-

ent of T−2. In other words

ϕ0 = ϕ0(x, T−1, T0, . . . ). (3.2.8)

Terms of order O(ϵ−3/2) give

D2
−2ϕ1 + 2 D−2D−1ϕ0 = F cos(T−2). (3.2.9)

By using the solution (3.2.8), we obtain the solution at O(ϵ−3/2) as

ϕ1(x, T−2, T−1, . . . ) = −F cos(T−2) + C1(x, T−1, T0, ...). (3.2.10)

Here and in the following calculations, we set the unknown function C1(x, T−1, T0, ...) =

0 since such a term would make ϕ1 violate the assumption (3.2.4). Hence

ϕ1(x, T−2, T−1, . . . ) = −F cos(T−2). (3.2.11)

The terms of order O(1/ϵ) give

D2
−2ϕ2 + 2D−2D−1ϕ1 +

(
2D−2D0 + D2

−1 + αD−2
)

ϕ0 = 0. (3.2.12)

Since ϕ1 is independent of T−1 and ϕ0 is independent of T−2, the above equation can be

simplified to

D2
−2ϕ2 + D2

−1ϕ0 = 0. (3.2.13)
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To obtain a bounded ϕ2, we average (3.2.13) over T−2 using (3.2.4)

D2
−1ϕ0 = 0, (3.2.14)

which implies that ϕ0 is independent of T−1. Thus, we conclude from (3.2.8) and (3.2.14)

that

ϕ0 = ϕ0(x, T0, T1, . . . ). (3.2.15)

Subtracting (3.2.14) form (3.2.13), we obtain

D2
−2ϕ2 = 0, (3.2.16)

which can be integrated to obtain

ϕ2(x, T−2, T−1, . . . ) = 0. (3.2.17)

Note that condition (3.2.14) can also be obtained from the Fredholm alternative. At

any order expansion, the equation we obtain is always of the form Lψ (T−2) = g (T−2)

where L = D2
−2 is clearly a self-adjoint operator and g : T → R is a smooth 2π-

periodic function, with T being the circle of length 2π. Let L2(T) be the Hilbert space

of 2π-periodic with inner product

< y(T−2), z(T−2) > =
∫

T

y(T−2)z(T−2) dT−2, (3.2.18)

where y is the complex conjugate of y. The Fredholm theorem states that the necessary

and sufficient condition for the inhomogeneous equation Lψ = g to have a bounded

solution is that g(T−2) be orthogonal to the null-space of the operator L. In L2(T) the

null-space is clearly spanned by a (normalized) constant solution ψ = 1. Hence, the

solvability condition provided by the Fredholm theorem is

∫ 2π

0
g(T−2) dT−2 = 0. (3.2.19)

This condition is what we refer to as the solvability condition in the following calcula-

tions.

From the terms of order O(ϵ−1/2), we obtain

D2
−2ϕ3 + α D−2ϕ1 = 0, (3.2.20)

which can be integrated to

ϕ3(x, T−2, T−1, . . . ) = α F sin(T−2). (3.2.21)
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The terms of order O(1) give

D2
−2ϕ4 − ϕ0,xx + D2

0ϕ0 + α D0ϕ0 + sin (ϕ0 + θ)− γ = 0. (3.2.22)

Averaging over the fast-time scale, we obtain the solvability condition

− ϕ0,xx + D2
0ϕ0 + αD0ϕ0 + sin(ϕ0 + θ)− γ = 0, (3.2.23)

which subtracting (3.2.23) from (3.2.22) yields D2
−2ϕ4 = 0, hence

ϕ4(x, T−2, T−1, . . . ) = 0. (3.2.24)

Equation (3.2.23) will be used later in the construction of our averaged equation.

The terms of the order of O(ϵ1/2) give

D2
−2ϕ5 + α (D−2ϕ3 + D1ϕ0) + 2D0D1ϕ0 + cos (ϕ0 + θ) ϕ1 = 0, (3.2.25)

with the solvability condition

2 D0D1ϕ0 + α D1ϕ0 = 0. (3.2.26)

Subtracting (3.2.26) from (3.2.25), we obtain

D2
−2ϕ5 + α D−2ϕ3 + cos (ϕ0 + θ) ϕ1 = 0, (3.2.27)

whose solution is

ϕ5(x, T−2, . . . ) = −F cos (ϕ0 + θ) cos(T−2) + α2 F cos(T−2). (3.2.28)

The terms of order O(ϵ) give

D2
−2ϕ6 + 2D−2D−1ϕ5 + 2 D0D2ϕ0 + D2

1ϕ0 + αD2ϕ0 −
1
2

ϕ2
1 sin (ϕ0 + θ) = 0, (3.2.29)

which gives the solvability condition

(
2D0D2 + D2

1
)

ϕ0 + αD2ϕ0 −
1
2
⟨ϕ2

1⟩ sin (ϕ0 + θ) = 0. (3.2.30)

Subtracting (3.2.30) from (3.2.29), we obtain

D2
−2ϕ6 + 2 D−2D−1ϕ5 −

1
2
(
ϕ2

1 − ⟨ϕ2
1⟩
)

sin (ϕ0 + θ) = 0. (3.2.31)

In [122, 134, 135], a double sine-Gordon equation is obtained as the governing equation

for the dynamics on the slow timescale. To obtain a similar equation for ϕ0, we need to

proceed with the further calculations. Nevertheless, from hereon we are not going to
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calculate the explicit solutions of ϕj(j ≥ 6) that contribute to higher-order corrections,

we focus on finding the solvability conditions.

From the terms of order O(ϵ3/2), we obtain

D2
−2ϕ7 + 2D−2D−1ϕ6 +

(
2D−2D0 + D2

−1
)

ϕ5 + 2 (D0D3 + D1D2) ϕ0

+α (D−2ϕ5 + D3ϕ0) + cos (ϕ0 + θ)

(
ϕ3 −

1
6

ϕ3
1

)
= 0, (3.2.32)

from which one obtains the solvability condition

2 (D0D3 + D1D2) ϕ0 + α D3ϕ0 = 0. (3.2.33)

The terms of the order of O(ϵ2) give

D2
−2ϕ8 + 2D−2D−1ϕ7 + 2D−2D0ϕ6 + D2

−1ϕ6 + 2 (D−2D1 + D−1D0) ϕ5

+2(D0D4 + D1D3)ϕ0 + D2
2ϕ0 + α (D−2ϕ6 + D−1ϕ5 + D4ϕ0)

+

(
1

24
ϕ4

1 − ϕ3ϕ1

)
sin (ϕ0 + θ) = 0. (3.2.34)

Using the Fredholm alternative, the solvability condition for the above equation is

D2
2ϕ0 + (2 D0D4 + 2 D1D3) ϕ0 + α D4ϕ0 +

1
24

⟨ϕ4
1⟩ sin (ϕ0 + θ) = 0. (3.2.35)

Terms of order O(ϵ5/2) give

D2
−2ϕ9 + 2 D−2D−1ϕ8 + 2 D−2D0ϕ7 + D2

−1ϕ7 + 2 (D−2D1 + D−1D0) ϕ6

+2 (D−2D2 + D−1D1) ϕ5 + D2
0ϕ5 + 2 (D0D5 + D1D4 + D2D3) ϕ0

+α
(

D−1ϕ6 + D0ϕ5 + D−2ϕ7 + D5ϕ0

)
+ cos (ϕ0 + θ) ϕ5

−
(

1
2

ϕ3ϕ2
1 −

1
120

ϕ5
1

)
cos (ϕ0 + θ) = 0, (3.2.36)

which yields the solvability condition

2(D0D5 + D1D4 + D2D3)ϕ0 + αD5ϕ0 = 0. (3.2.37)

Terms of order O(ϵ3) give

D2
−2ϕ10 + 2 D−2D−1ϕ9 + 2 D−2D0ϕ8 + D2

−1ϕ8 + 2 (D−2D1 + D−1D0) ϕ7

+D2
0ϕ6 + 2 (D−2D2 + D−1D1) ϕ6 + 2 (D−2D3 + D−1D2 + D0D1) ϕ5 + D2

3ϕ0

+2 (D1D5 + D2D4 + D0D6) ϕ0 + α
(

D6ϕ0 + D−2ϕ8 + D−1ϕ7 + D0ϕ6 + D1ϕ5

)

+
(1

6
ϕ3ϕ3

1 −
1

720
ϕ6

1 −
1
2

ϕ2
3 − ϕ5ϕ1

)
sin (ϕ0 + θ) + cos (ϕ0 + θ) ϕ6 = 0,(3.2.38)
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from which we obtain the solvability condition

D2
3ϕ0 + 2 (D1D5 + D2D4 + D0D6) ϕ0 + αD6ϕ0

−
[
⟨ϕ5ϕ1⟩+

1
720

⟨ϕ6
1⟩+

1
2
⟨ϕ2

3⟩
]

sin (ϕ0 + θ) = 0. (3.2.39)

We will not proceed further, as we have obtained a double-angle term in the average

equation, through the terms ⟨ϕ5ϕ1⟩ (see, (3.2.11) and (3.2.28)).

To obtain an average equation, we add Equations (3.2.14), (3.2.23), (3.2.26), (3.2.30),

(3.2.33), (3.2.37), (3.2.35), (3.2.39), to obtain the averaged equation up to O(ϵ3) as

∂2ϕ0

∂t2 − ∂2ϕ0

∂x2 + α
∂ϕ0

∂t
+ sin (ϕ0 + θ)− γ =

[1
2

ϵ⟨ϕ2
1⟩ −

1
24

ϵ2⟨ϕ4
1⟩

+ϵ3
(
⟨ϕ5ϕ1⟩+

1
720

⟨ϕ6
1⟩+

1
2
⟨ϕ2

3⟩
) ]

sin (ϕ0 + θ) , (3.2.40)

calculating the right hand side, thus

∂2ϕ0

∂t2 − ∂2ϕ0

∂x2 + α
∂ϕ0

∂t
− γ =

(
ϵF2

4
− ϵ2F4

64
+

ϵ3F6

2304
− ϵ3α2F2

4
− 1
)

sin(ϕ0 + θ)

+
ϵ3F2

4
sin (2ϕ0 + 2θ) , (3.2.41)

reintroducing the original scaling (3.2.1) , we obtain the ‘average’ equation the double

sine-Gordon equation

∂2ϕ0

∂x2 − ∂2ϕ0

∂t2 − α
∂ϕ0

∂t
+ γ = j1 sin(ϕ0 + θ)− j2 sin (2 ϕ0 + 2 θ) , (3.2.42)

with

j1 = 1 − f 2

4 Ω4 +
f 4

64 Ω8 +
α2 f 2

4 Ω6 − f 6

2304 Ω12 + . . . , (3.2.43)

j2 =
f 2

4 Ω6 + . . . . (3.2.44)

In [122, 134, 135], using different methods and for θ ≡ 0, the coefficients ji of the aver-

age equation above were given by

j1 = J0 (a1) +
a2

1α2 (J2(a1)− J0(a1))

4Ω2 +
a1α2 J1(a1)

Ω2 , (3.2.45)

j2 =
J2
1(a1)

Ω2 +
a2

1α2 J0(a1)J2(a1)

32Ω4 +
a1α2 J1(a1)J2(a1)

16Ω4 , (3.2.46)

with a1 = − f /Ω
2 and Ji for i = 0, 1, 2 are Bessel functions of the first kind. Via simple

inspection, one can confirm that (3.2.43) and (3.2.44) are the leading order series expan-

sions of (3.2.45) and (3.2.46). With the method proposed herein, one has more control

on the scales of the driving parameters and the coefficients of the ’average’ equation

are given by simple explicit functions.
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3.3 Multiscale averaging with small driving amplitude

Next, we consider the case of slowly oscillating direct driving force in the sine-Gordon

Equation (3.1.1) with, Ω = 1/ϵ, f = ϵ H. In experiments the drive amplitude f can be

small or large. Nevertheless, as we noted in [134, 135] when f ∼ Ω
2. Therefore other

scaling, including the experimentally relevant case of f , can be considered similarly.

In order to derive an average equation, we use multiscale expansion

Tn = ϵnt, n = −1, 0, 1, 2, . . . , (3.3.1)

ϕ = ϕ0 + ϵ ϕ1 + ϵ2ϕ2 + ..., (3.3.2)

where ϕi(x, T−1, T0, T1, ..) are periodic in T−1 with period 2π. For the problem above, it

should be noted that we choose T−1 = t/ϵ as the fast variable. For further details see

Section 3.2.

To derive an effective equation for the function ϕ0, we substitute (3.3.2) into (3.1.1),

expanding order by order to obtain a hierarchy of equations.

The terms at order O(ϵ−2), give

D2
−1ϕ0 = 0, (3.3.3)

which implies

ϕ0 = ϕ0(T0, T1, ..). (3.3.4)

This shows that ϕ0(T0, T1, ..) is independent of T−1.

The terms at order O(1/ϵ), give

D−1
2ϕ1 + 2 D−1D0ϕ0 + α D−1ϕ0 = 0, (3.3.5)

by integrating over 0 ≤ T−1 ≤ 2π we obtain

ϕ1(x, T−1, T0, T1...) = 0. (3.3.6)

The terms at order O(1), give

D−1
2ϕ2 − ϕ0,xx + D0

2ϕ0 + α D0ϕ0 + sin (ϕ0 + θ(x))− γ = 0. (3.3.7)

The solvability condition for this equation is

− ϕ0,xx + D0
2ϕ0 + α D0ϕ0 + sin (ϕ0 + θ(x))− γ = 0, (3.3.8)
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from (3.3.7) and (3.3.8) we obtain

D−1
2ϕ2 = 0, (3.3.9)

which implies

ϕ2(x, T0, T1, ..) = 0. (3.3.10)

The terms at order O(ϵ) give

D−1
2ϕ3 + 2D0D1ϕ0 + αD1ϕ0 + (D2

0 + αD0 + cos(ϕ0 + θ))ϕ1

= H cos (T−1) , (3.3.11)

the solvability condition for the above equation is

2 D0D1ϕ0 + α D1ϕ0 = 0. (3.3.12)

Subtracting (3.3.12) from (3.3.11) and integrating twice, we obtain

ϕ3(x, T−1, T0, T1, ..) = −H cos(T−1). (3.3.13)

Terms at order O(ϵ2) give

D2
−1ϕ4 +

(
2 D0D2 + D2

1
)

ϕ0 + α (D−1ϕ3 + D2ϕ0) = 0, (3.3.14)

for which the solvability condition is

(
2 D0D2 + D2

1
)

ϕ0 + α D2ϕ0 = 0. (3.3.15)

Subtracting (3.3.15) from (3.3.14) we obtain

ϕ4(x, T−1, T0, T1, ..) = α H sin (T−1) . (3.3.16)

The terms at order O(ϵ3), give

D2
−1ϕ5 + 2 (D2D1 + D3D0) ϕ0 + α (D−1ϕ4 + D3ϕ0) + cos (ϕ0 + θ) ϕ3 = 0, (3.3.17)

the solvability condition for which is

2 (D2D1 + D3D0) ϕ0 + α D3ϕ0 = 0. (3.3.18)

Subtracting (3.3.18) from (3.3.17) we have

D2
−1ϕ5 + α D−1ϕ4 + cos (ϕ0 + θ(x)) ϕ3 = 0, (3.3.19)

by integrating the above equation, we obtain

ϕ5(x, T−1, T0, T1, ..) = α2 H cos(T−1)− H cos (ϕ0 + θ(x)) cos(T−1). (3.3.20)
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From hereon, we do not calculate the explicit solutions as they do not appear in the final

averaged equation. However, we will calculate the solvability conditions to obtain an

averaged equation for ϕ0.

The terms at order O(ϵ4), give

D2
−1ϕ6 + 2 D−1D0ϕ5 +

(
D2

2 + 2 D4D0 + 2 D1D3
)

ϕ0 + α (D−1ϕ5 + D4ϕ0)

+ cos (ϕ0 + θ(x)) ϕ4 = 0, (3.3.21)

the solvability condition for the above equation is

(
D2

2 + 2 D4D0 + 2 D1D3
)

ϕ0 + α D4ϕ0 = 0. (3.3.22)

The terms at order O(ϵ5) give

D2
−1ϕ7 + 2D−1D0ϕ6 +

(
2D−1D1 + D2

0
)

ϕ5 + 2 (D2D3 + D0D5) ϕ0 + 2 D4D1ϕ0

+α (D−1ϕ6 + D0ϕ5 + D5ϕ0) + cos (ϕ0 + θ(x)) ϕ5 = 0, (3.3.23)

the solvability condition for which is

2 (D2D3 + D0D5 + D4D1) ϕ0 + α D5ϕ0 = 0. (3.3.24)

The terms at order O(ϵ6) give

D2
−1ϕ8 + 2 D−1D0ϕ7 +

(
2 D−1D1 + D2

0
)

ϕ6 + 2 (D−1D2 + D0D1) ϕ5 + D2
3ϕ0

+2 (D2D4 + D0D6 + D1D5) ϕ0 + α (D−1ϕ7 + D0ϕ6 + D1ϕ5) + αD6ϕ0

−1
2

sin (ϕ0 + θ(x)) ϕ2
3 + cos (ϕ0 + θ(x)) ϕ6 = 0, (3.3.25)

the solvability condition for which is

D3
2ϕ0 + 2 (D2D4 + D0D6 + D1D5) ϕ0 + αD6ϕ0 −

1
2
⟨ϕ2

3⟩ sin (ϕ0 + θ) = 0. (3.3.26)

The terms at order O(ϵ7) give

D2
−1ϕ9 + 2 D−1D0ϕ8 +

(
2 D−1D1 + D2

0
)

ϕ7 + 2 (D2D−1 + D1D0) ϕ6 + D2
1ϕ5

+2 (D−1D3 + D2D0) ϕ5 + 2 (D1D6 + D5D2 + D4D3 + D7D0) ϕ0 + αD0ϕ7

+α (D−1ϕ8 + D7ϕ0 + D2ϕ5 + D1ϕ6)− sin (ϕ0 + θ(x)) ϕ4ϕ3

+ cos (ϕ0 + θ(x)) ϕ7 = 0, (3.3.27)

the solvability condition for which is

2 (D1D6 + D5D2 + D4D3 + D7D0) ϕ0 + α D7ϕ0 = 0. (3.3.28)
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The terms at order O(ϵ8) give

D2
−1ϕ10 + 2 D−1D0ϕ9 +

(
2 D−1D1 + D2

0
)

ϕ8 + 2 (D2D−1 + D1D0) ϕ7 + D2
1ϕ6

+2 (D−1D3 + D2D0) ϕ6 + 2 (D−1D4 + D3D0 + D2D1) ϕ5 +
(

D2
4 + 2D1D7

)
ϕ0

+2 (D8D0 + D3D5 + D6D2) ϕ0 + α (D−1ϕ9 + D0ϕ8 + D3ϕ5 + D8ϕ0 + D1ϕ7)

+α D2ϕ6 −
(

ϕ5ϕ3 +
1
2

ϕ4
2
)

sin (ϕ0 + θ(x)) + cos (ϕ0 + θ(x)) ϕ8 = 0, (3.3.29)

the solvability condition for which is

D2
4ϕ0 + 2 ( D1D7 + D8D0 + D3D5 + D6D2) ϕ0

−
(
⟨ϕ5ϕ3⟩+

1
2
⟨ϕ2

4⟩
)

sin (ϕ0 + θ(x)) = 0. (3.3.30)

Adding (3.3.8), (3.3.12), (3.3.15), (3.3.18), (3.3.22), (3.3.24), (3.3.26), (3.3.28), (3.3.30), with

appropriate scalings, we obtain the averaged equation up to O(ϵ8) as

∂2ϕ0

∂t2 − ∂2ϕ0

∂x2 + α
∂ϕ0

∂t
+ sin (ϕ0 + θ(x))− γ

=

[
ϵ6⟨ϕ2

3⟩+ ϵ8
(
⟨ϕ3ϕ5⟩+

1
2
⟨ϕ2

4⟩
)]

sin (ϕ0 + θ(x)) . (3.3.31)

The right hand side can be calculated further

∂2ϕ0

∂x2 − ∂2ϕ0

∂t2 − α
∂ϕ0

∂t
+ γ = J1 sin (ϕ0 + θ(x))− J2 sin (2ϕ0 + 2θ(x)) , (3.3.32)

with

J1 = 1 − f 2

2 Ω4 +
α2 f 2

4 Ω6 + . . . , (3.3.33)

J2 =
f 2

4 Ω6 . (3.3.34)

Noting the similarity between (3.2.43) and (3.3.33), we may expect that the average

Equation (3.2.42) will also provide a good approximation on the case | f | ≪ 1. Because

of that, in the following we will only consider (3.2.42).

3.4 Critical facet length and critical current in long Josephson

junctions with phase-shifts

In this section, we discuss the effect of the oscillating drive to the ground state of

Josephson junctions with phase-shifts θ (x) defined by (3.1.2) or (3.1.3).
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3.4.1 0 − π − 0 junctions without dc-current

We consider first the case of 0− π − 0 junctions, i.e. θ (x) given by (3.1.2) in the absence

of a constant bias current (γ = 0). Note that the length of the π region is also referred

to as the facet length. The ground state of such a junction crucially depends on the

parameter a. As mentioned above, there is a critical facet length ac above which the

ground state is nonuniform. Such a ground state represents an antiferromagnetically

ordered semivortex-antisemivortex state [32].

One may calculate the critical facet length of the average Equation (3.2.42) through

calculating the value of a at which the zero solution changes its stability. Using a simple

calculation, one can obtain the linearized equation about ϕ0 = 0 of (3.2.42)

φ1,xx − φ1,tt = j1 cos(θ)φ1 − 2 j2 cos (2θ) φ1, (3.4.1)

whose solution can be easily calculated as

φ1(x, t) = B eiωt





cos(a
√

j1 − 2 j2 + ω2)e
√

j1−2 j2−ω2(a+x), x < −a,

cos(x
√

j1 − 2 j2 + ω2), |x| < a,

cos(a
√

j1 − 2 j2 + ω2)e
√

j1−2 j2−ω2(a−x), x > a.

(3.4.2)

The relation a = a(ω) is then given by

a =
tan−1

(√
j1−2j2−ω2

j1−2j2+ω2

)

√
j1 − 2j2 + ω2

. (3.4.3)

Half the critical facet length ac is defined as the point where ω = 0, that is,

ac =
π

4
√

j1 − 2 j2
. (3.4.4)

3.4.2 0 − κ junctions with constant bias current

For the phase-shift configuration θ (x) given by (3.1.3), there is a critical bias current γc

above which the junction has no static ground states. Here, we follow the calculation

of, e.g., [27] to derive an analytical approximation to the critical bias current in the

presence of ac-drive. First, we rescale

x =
x̃√
j1

, d̃ = − j2
j1

, γ̃ =
γ

j1
, γ̃c =

γc

j1
. (3.4.5)

With the above scalings, Equation (3.2.42) becomes

∂2ϕ0

∂x̃2 = sin (ϕ0 + θ) + d̃ sin (2 (ϕ0 + θ))− γ̃. (3.4.6)
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The boundary conditions at the discontinuity point x̃ are given by [32, 138, 139]

ϕ0(0+) = ϕ0(0−),
∂

∂x̃
ϕ0(0+) =

∂

∂x̃
ϕ0(0−). (3.4.7)

Next, we need to determine the equation for ϕ0 x̃. The first integral of Equation (3.4.6)

is

1
2

(
∂ϕ0

∂x̃

)2

= − cos(ϕ0 + θ)− d̃

2
cos (2 (ϕ0 + θ))− γ̃ϕ0 + C±, (3.4.8)

where C± are constants of integration, i.e. C+ for the region x > 0 and C− for x < 0.

The constants are obtained from the boundary conditions

lim
x̃→±∞

ϕ0(x̃) = ϕ0± ,

a consequence of this

lim
x̃→±∞

ϕ0x̃
(x̃) = 0,

which correspond to kink solutions with nonzero constant drive. The integral constants

C± can then be calculated as

C− = cos(ϕ0−) +
d̃

2
cos (2 ϕ0−) + γ̃ϕ0− , (3.4.9)

C+ = cos(ϕ0+ − κ) +
d̃

2
cos (2 ϕ0+ − κ) + γ̃ϕ0+ . (3.4.10)

Equations (3.4.6) and (3.4.8) and the conditions in (3.4.7) determine γc as a function of

κ and d̃.

Rather than obtaining an explicit expression of γ for any d̃, here we calculate it per-

turbatively for small d̃, which is relevant for the scaling (3.2.1). Hence, we expand all

quantities as follows

ϕ0 ≈ ϕ(0) + d̃ ϕ(1), γ̃ ≈ γ̃(0) + d̃ γ̃(1), γ̃c ≈ γ̃
(0)
c + d̃ γ̃

(1)
c .

Substituting these expansions into (3.4.6) and (3.4.8), equating the O(d̃) terms we ob-

tain the equations

ϕ
(1)
x̃x̃ =

{
ϕ(1) cos(ϕ(0)) + sin 2 (ϕ(0))− γ̃(1), (x̃ < 0),

ϕ(1) cos(ϕ(0) − κ) + sin 2 (ϕ(0) − κ)− γ̃(1), (x̃ > 0),
(3.4.11)

ϕ
(0)
x̃ ϕ

(1)
x̃ =





ϕ
(1)
− sin(ϕ(0)

− )− ϕ(1) sin(ϕ(0))− γ̃(0)(ϕ(1) − ϕ
(1)
− )

−γ̃(1)(ϕ(0) − ϕ
(0)
− ) + 1

2 (cos 2 (ϕ(0)
− )− cos 2 (ϕ(0))), (x̃ < 0),

ϕ
(1)
+ sin(ϕ(0)

+ − κ)− ϕ(1) sin(ϕ(0) − κ)− γ̃(0)(ϕ(1) − ϕ
(1)
+ )

−γ̃(1)(ϕ(0) − ϕ
(0)
+ ) + 1

2 (cos 2 (ϕ(0)
+ − κ)− cos 2 (ϕ(0) − κ)), (x̃ > 0),

(3.4.12)
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where

ϕ
(i)
± = lim

x̃→±∞

ϕ(i), i = 0, 1.

We also conclude that

ϕ
(0)
− = arcsin γ̃(0) = ϕ

(0)
+ − κ, (3.4.13)

ϕ
(1)
− = ϕ

(1)
+ =

γ̃(1)
√

1 − γ̃(0)2
. (3.4.14)

From the condition (cf. (3.4.7))

lim
x̃→0+

ϕ
(i)
x̃x̃ = lim

x̃→0−
ϕ
(i)
x̃x̃ , i = 0, 1,

we obtain

ϕ(0)(0) =
κ

2
+

π

2
, ϕ(1)(0) = −2 cos(κ/2).

The critical bias current of O(1) and O(d̃) are then given respectively by

γ̃
(0)
c = −2 sin(κ/2)

κ
, γ̃

(1)
c = 0, (3.4.15)

i.e. the second harmonic does not influence the critical current. Hence, reverting to

scaling (3.4.5) at leading order the critical current is

γc = −2 j1 sin(κ/2)
κ

, (3.4.16)

from which we obtain that the ac-drive term of amplitude f has the effect of reducing

the critical bias current by an amount of O( f 2/Ω
4).

3.5 Numerical results

Here, we compare the analytical results obtained in the preceding section with the nu-

merics of the original governing Equation (3.1.1). In all the results presented herein,

we set α = 0.2. We use periodic boundary conditions in a relatively long domain,

i.e. |x| < L, L ≫ 1 (particularly for L = 100), to simulate the infinite regime. The

derivative with respect to x is approximated with either finite difference or spectral

discretization with the spatial discretization δx = 0.05. The derivative with respect to t

is integrated using a Runge-Kutta solver of fourth order using the temporal discretiza-

tion δt = 0.005.
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Figure 3.1: We plot ϕx against (x,t) to illustrate the time dynamics of the phase-

difference ϕ of (3.1.1) with θ given in (3.1.2), f = 140 and Ω = 10. Half

the facet length is depicted in the caption of each panel.
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Figure 3.2: The left panel shows the amplitude of the ground state ∆ of the junction

as a function of a. Filled circles are data from (3.1.1) and solid line is from

(3.2.42). The right panel depicts half the critical facet length ac as a func-

tion of the oscillation amplitude f with Ω = 10. Filled-circles are data

obtained from a numerical simulation of the governing Equation (3.1.1)

and the solid line is the analytical result (3.4.4) with ji obtained using our

method (3.2.43)-(3.2.44). The dashed line is the analytical result (3.4.4) with

ji from [134, 135], i.e. (3.2.45)-(3.2.46).
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3.5.1 0 − π − 0 junctions without a constant bias current

First, we consider the ground state of 0 − π − 0 junctions with γ = 0. In the absence

of ac drives ( f = 0), when half the facet length a is larger than π/4, the uniform zero

solution is unstable [32].

Figure 3.1(a) shows the dynamics of the phase-difference ϕ(x, t) for a = 1. At t = 0, we

use a zero initial displacement and velocity. With f = 140 and Ω = 10, one notices that

the zero solution is stable, even though a > π/4. Yet, when a = 1.1 it can be easily seen

in Fig. 3.1(b) that the ground state is nonuniform. In the left panel of Fig. 3.2, we show

the amplitude of the ground state ∆ as a function of half the facet length a (filled circles).

Because the background is rapidly oscillating due to the presence of the ac drive, here

we calculate ∆ as the temporal average of the quantity δϕ = ϕ(L, t)− ϕ(0, t) after the

transient state disappears. Half the critical facet length is the point where a solution

with nonzero ∆ bifurcates from the trivial solution (∆ = 0, corresponds to uniform

solution). From the figure 3.1(a), one can deduce that the critical facet length is larger

than π/4 for nonzero f . The solid line in the figure is the amplitude of the ground state

∆ obtained from the average Equation (3.2.42) with ji given by (3.2.43)-(3.2.44). We see

that (3.2.42) indeed approximates the slow time dynamics of (3.1.1).

Performing the same calculations at several values of f , one will obtain ac( f ). The

right panel of Figure 3.2 shows the numerical results obtained from solving the gov-

erning Equation (3.1.1). We also plot in the same figure (solid curve) the analytical

approximation given by (3.4.4) with ji given by (3.2.43)-(3.2.44), where good agreement

is obtained. For completeness, we also plot the analytical approximation (3.4.4) with

ji given by (3.2.45)-(3.2.46). For Ω = 10, one can note that the numerics deviates from

the approximations at f ≈ 220. Using our method, we may need a different scaling to

capture this range of f . One possibility is to choose Ω = 1/ϵ and f = F/ϵp, where

p ≥ 2. Nevertheless, it can be seen that, e.g., for p = 2, the leading order terms (cf.

(3.2.6)) will contain the drive F sin(T−2). In other words, the leading order term in the

expansion of ϕ will be due to the ac force, unlike the case considered herein. Such a

scaling can still be analysed using the method presented in this work and this case is

suggested as future work.

3.5.2 0 − κ junctions with constant bias current

Next, we study the effect of ac-drive to the critical bias current of a 0− κ junction. Here,

we only consider the case of κ = π, which is representative for this type of junctions as

the other values of κ can be calculated similarly.
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Figure 3.3: we plot ϕx against (x,t) to illustrate the time dynamics of the phase-

difference ϕ of (3.1.1) with θ given in (3.1.3), f = 140 and Ω = 10. The

constant bias current is depicted in the caption of each panel.

In the absence of an ac-drive, it is known that when γ > 2/π, 0 − π junctions switch

into a resistive state where at the point of the phase-shift, i.e. the discontinuity point,

fluxons and antifluxons are periodically released.

Using numerical simulation to determine the critical bias current γc of Eq. (3.1.1) with

θ(x) given in (3.1.3), one cannot immediately apply a fixed constant γ, as this will create

shock and will switch the junction into nonzero voltage states. Because of that, in the

simulation we slowly increase the bias current

γ = γ∞ (1 − e−t/τ), (3.5.1)

with τ = 100. This choice of function allows the ground state to gradually adjust itself

to the presence of the ac-drive. Larger values of τ have been tested as well and we did

not see any prominent quantitative difference. At t = 0, the initial profile is an exact

solution of the system with f = 0 and a zero initial velocity.

In Fig. 3.3(a) we show a typical evolution of ϕx in the presence of an ac-drive with

f = 140 and Ω = 10 and an external bias current that is slowly increased to the value

of γ∞ = 0.36. One can notice that the nonuniform state is deformed due to the dc bias

current and tends to a steady state in the limit t → ∞.

In Fig. 3.3(b), we depict the dynamics of the variable ϕx when γ∞ = 0.37. Here, we see

a periodic release of fluxons and antifluxon indicating that the value of the bias current

is above the threshold value γc. It is important to note that 0.37 < 2/π, i.e. the presence

of f ̸= 0 can indeed decrease the value of the critical bias current γc.
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Figure 3.4: Plot of the critical bias current density γc as a function of the forcing amp-

litude f , with Ω = 10. Filled-circles are data obtained from the governing

Equation (3.1.1) and solid line is the analytical result (3.4.4) with ji obtained

using our method (3.2.43)-(3.2.44). The dashed line is the analytical result

(3.4.16) with ji from [134, 135], i.e. (3.2.45)-(3.2.46).

The critical bias current γc for different values of the driving amplitude f with Ω = 10

is shown in Fig. 3.4, where the filled circles are data obtained numerically from (3.1.1)

and the solid line is the analytical result (3.4.16) with ji given by (3.2.43)-(3.2.44). We

observe good agreement between the approximation and the numerics. Note that there

is a threshold value of f at which the critical bias current vanishes, i.e. at f ≈ 240. As the

ac-driving amplitude is increased further, we obtain a situation where the numerical

data deviates slightly from the approximation.

As a comparison, we also plot the analytical approximation (3.4.16) with ji given by

(3.2.45)-(3.2.46), where we still obtain good agreement between numerics and the ap-

proximation. Hence, we argue that the deviation is due to the truncation error in

(3.2.43)-(3.2.44), unlike the case in 0 − π − 0 junctions in the previous section.

3.6 Conclusions

We have studied the dynamics of long Josephson junctions with phase-shifts in the

presence of a rapidly varying driving force modelled by a periodically driven sine-

Gordon equation. We considered the experimentally relevant case of large driving

frequency compared to the system’s plasma frequency. The case Ω < 1 has been con-
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sidered theoretically in [38, 39, 101]. We derived analytically an average equation for

the slowly-varying dynamics using multiple scales analysis. The obtained equation

takes the form of a damped, forced double sine-Gordon equation.

A double sine-Gordon equation describing the slow-time dynamics of a rapidly driven

sine-Gordon equation without phase shift was obtained previously through restricting

the phase ϕ(x, t) to a Fourier series expansion [134, 135] and a normal form technique

[122]. In the normal form technique, several canonical transformations are applied to

the Hamiltonian system to move mean-zero terms to higher order [136, 137]. In [134,

135], Kivshar et al. decompose the phase ϕ(x, t) into the sum of slowly- and rapidly-

varying parts. The method solely uses asymptotic expansions rather than averaging

over the fast oscillation. In both methods, the coefficients of the double sine-Gordon

equation are given in terms of Bessel functions.

With the method proposed herein, one has more control on the scales of the driving

parameters and the coefficients of the ’average’ equation are given by simple expli-

cit functions. We obtained analytically the critical value of the applied constant bias

current γc for the 0 − κ junctions and the the critical facet length in the absence of an

external constant bias current for the 0 − π − 0 junctions from the averaged double

sine-Gordon equation.

In the absence of an ac drive, studying the stability of the constant solution in 0 −
π − 0 junction, one finds that there is a critical facet length ac = π/4 above which the

solution is unstable and the ground state is spatially nonuniform [32], which represents

a pair of fractional fluxons of opposite polarities. Here we showed analytically and

numerically that in the presence of an ac drive the threshold distance ac in 0 − π − 0

junction increases. To compare our approximation as well as that obtained in [134, 135]

with numerics, we observed that the numerics slightly deviates at a particular driving

amplitude. Using our method, it seems that we require a different scaling of an external

drive amplitude mentioned in this work. The applicability of the method presented in

this work in that case is suggested as future work.

Next, we studied the effect of ac-drive to the critical bias current of a 0 − κ junction.

Here, we only considered the case of κ = π, which is representative for this type of

junctions as the other values of κ can be calculated similarly.

It is known that in the presence of an applied dc bias current (γ ̸= 0), the fractional

fluxon will be deformed. When the current is large enough, the static ground state

will cease to exist and the junction switches to a resistive state by alternately releasing

travelling fluxons and antifluxons. In the absence of an external ac-drive the minimum

current at which the junction switches to such a state is called the critical current γc =
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2 sin(κ/2)/κ [132, 133]. Hence, 0 − π junctions are in a resistive state when γ > 2/π

with fluxons and antifluxons being periodically released from the discontinuity point.

Using numerical simulations, we determined the critical bias current in the presence

of an external ac-drive in 0 − κ junctions. We showed numerically that in the presence

of an ac-drive the value of the critical bias current γc decreased which confirmed the

approximation.
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CHAPTER 4

Localised defect modes of

sine-Gordon equation with a double

well potential with phase-shift

4.1 Introduction

A Josephson junction is a system where two superconducting electrodes are coupled

via an insulator whose properties were first predicted by Josephson [140] and ob-

served experimentally by Anderson et al. [141]. The Josephson tunnelling that de-

scribes the flow of supercurrent through a tunnel barrier is a subject of considerable

research. The flow of electrons along the superconductors, in the absence of an ap-

plied voltage, is called the Josephson current and the movement of electrons across the

barrier is called Josephson tunnelling. Josephson junctions have many applications in

electronics, including sensitive superconducting magnetometers [45], superconducting

ratchets, amplifiers [46, 47, 48], superconducting terahertz emitters [142], and quantum

information [50].

Josephson phase discontinuities may appear in specially designed long Josephson junc-

tions. A junction containing a region with a phase jump of π is called a 0−π Josephson

junction and is described by 0 − π sine-Gordon equation. The Josephson phase has a

π discontinuity at the point where 0 and π parts join. The idea of π phase shift in

Josephson junctions was first proposed by Bulaevskii [14, 15]. It was suggested that π

phase-shifts may occur in the sine-Gordon equation due to magnetic impurities. There

are many technologies available for manufacturing 0 − π Josephson junctions [18, 19].

They were fabricated by using d-wave superconductors [20, 21, 22, 23, 24] or were

obtained using a ferromagnetic barrier [25, 26].
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Present technological advances can also impose a π phase-shift in a long Josephson

junction as they promise important advantages for Josephson junction based electron-

ics. A 0 − π Josephson junctions also admits a half magnetic flux (semifluxon), some-

times called π-fluxon, at the discontinuity point [23]. A semifluxon is represented by a

π-kink solution of the 0 − π sine-Gordon equation [27].

The supercurrent, I, in Josephson junctions is proportional to the sine of the phase-

difference of the electrons across the insulator, which is denoted by ϕ, i.e. I ∼ sin ϕ.

Due to the phase-shift, which is denoted by θ(x), the supercurrent relation is I ∼
sin(ϕ + θ). Presently, one can impose a phase-shift in a long Josephson junction us-

ing several methods [18, 19, 128, 129, 130]. There are many promising technologies

available for fabricating 0 − π Josephson junctions, including using d-wave supercon-

ductors [20, 21, 22, 23, 24] or using a ferromagnetic barrier [25, 26]. A Josephson junc-

tion with phase shift shows a variety of interesting physical phenomena and reveals

promising applications in superconducting electronics.

The dynamics of a Josephson junction with a double well potential are of particular

interest. The dynamics of localised modes in a double-well potential in Josephson junc-

tions can be described by two dynamical variables using a two mode approximation.

The validity of the two-mode approximation for Bose Einstien condensates in a double

well potential has been considered [143, 144, 145]. It has also been used in localized

mode interactions in 0 − π long Josephson junctions [146], in annular Josephson junc-

tions for manipulation of a trapped vortex [147], and Josephson tunnelling of dark

solitons [148].

Here, we consider the dynamics of long Josephson junction governed by perturbed

sine-Gordon equation

ϕxx(x, t)− ϕtt(x, t) = sin (ϕ + θ) + h cos(Ωt), x ∈ R, t > 0, (4.1.1)

for the one dimensional phase difference ϕ(x, t) between the two superconductors of

the junction. In Equation (4.1.1), x denotes the coordinate along the junction normal-

ized to the Josephson penetration depth λJ , and time t is normalized to the inverse

plasma frequency ω−1
p . The applied time periodic drive in the governing equation has

an amplitude h and frequency Ω. Here we study the internal phase shift formation as

a double well potential

θ(x) =





0, |x| > L + a,

π, L < |x| < L + a,

0, 0 < |x| < L,

(4.1.2)

called a 0 − π − 0 − π − 0 Josephson junction. The phase difference, ϕ, is naturally
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subject to the continuity conditions at the position of the jump in the Josephson phase

(the discontinuity), i.e.

lim
x→±{L,L+a}+

ϕ(x, t) = lim
x→±{L,L+a}−

ϕ(x, t), (4.1.3)

lim
x→±{L,L+a}+

ϕx(x, t) = lim
x→±{L,L+a}−

ϕx(x, t). (4.1.4)

We consider the ground state for 0 − π − 0 − π − 0 junction ϕ0 = 0 (mod 2π). To find a

coupled-mode oscillation for Josephson junctions, we consider the interactions of two

modes of different symmetries, i.e. symmetric and antisymmetric, or even and odd.

We are interested in time periodic states with frequencies λ1, λ2, such that λ1 < λ2

corresponding in the physical space to solutions of the sine-Gordon equation in the

form

ϕ1(X0, T0) = B1Φ1(X0)e
i λ1 T0 + c.c. + B2Φ2(X0)e

i λ2 T0 + c.c., (4.1.5)

where B1 = B1(T1, T2, ...), B2 = B2(T1, T2, ...) are unknown time-dependent complex

amplitude of oscillations. c.c. stands for the complex conjugate throughout the pro-

ceeding work. By linearizing Equation (4.1.1) around the uniform solution, we find the

bounded solutions satisfying the boundary conditions (4.1.3) and (4.1.4) are

Φ1(X0) =





e−
√

1−λ2
1(X0−L−a), X0 > L + a,

cos
(√

1 + λ2
1(X0 − L − a)

)

+C1 sin
(√

1 + λ2
1(X0 − L − a)

)
, L < X0 < L + a,

K1 cosh
(√

1 − λ2
1 X0

)
, 0 < X0 < L,

(4.1.6)

Φ2(X0) =





e−
√

1−λ2
2(X0−L−a), X0 > L + a,

cos
(√

1 + λ2
2(X0 − L − a)

)

+C2 sin
(√

1 + λ2
2(X0 − L − a)

)
, L < X0 < L + a,

K2 sinh
(√

1 − λ2
2 X0

)
, 0 < X0 < L,

(4.1.7)

as given by Susanto et al. [146], with the oscillation frequencies λ1 and λ2, satisfying
√

1 − λ4
1

tan(
√

1 + λ2
1 a)

− λ2
1 − e−2

√
1−λ2

1L = 0, (4.1.8)

√
1 − λ4

2

tan(
√

1 + λ2
2 a)

− λ2
2 ∓ e−2

√
1−λ2

2L = 0, (4.1.9)

and

Ci = −
√

1 − λ2
i

1 + λ2
i

, Ki =
2 e−

√
1−λ2

i L sin(
√

1 + λ2
i a)

√
1 − λ4

i

. (4.1.10)
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The two eigenvalues λi are functions of a and L.

Due to the nonlinear coupling, energy transfers from the discrete mode to the continu-

ous spectrum has been addressed before by Soffer et al. [149, 150]. This phenomenon is

responsible for the time decay [151, 152, 153, 154]. The same decay rates for the single

mode oscillation have been discussed and obtained in [99, 100, 101]. We show that the

two modes also decay in time. In particular exciting two modes at the same time will

increase the decay rate. We also consider the case when one of the wells confines the

excited state.

In Section 4.2, we construct a perturbation expansion to solve the unperturbed sine-

Gordon equation for the coupled mode to obtain equations for the slow time evolution

of oscillation amplitude in 0 − π − 0 − π − 0 junction. In Section 4.3, the method of

multiple scales is applied to obtain the amplitude of oscillation in the presence of driv-

ing. Section 4.4 is devoted to the discussions for the obtained results in the previous

sections and numerical calculations, which confirm our asymptotic calculations.

4.2 Freely oscillating breathing mode in 0 − π − 0 − π − 0

junctions

In this section we construct the dynamics of long Josephson junctions governed by

sine-Gordon Equation (4.1.1), with h = 0, and θ(x) given by (4.4.1), which represents

a double well potential comprising two π−junctions of length a separated by a 0−
junction of length 2 L. We apply a perturbation expansion to equation (4.1.1) by writing

ϕ = ϕ0 + ϵ ϕ1 + ϵ2ϕ2 + ϵ3ϕ3 + . . . , (4.2.1)

where ϵ is a small parameter, which is the initial amplitude of the breathing mode

oscillation in the perturbation expansion for the undriven case. We further use multiple

scales expansions by introducing the slow space and time variables

Xn = ϵnx, Tn = ϵnt, n = 0, 1, 2, . . . . (4.2.2)

The multiscale expansions is asymptotic,i.e.only valid for small amplitudes of the breath-

ing mode. However, in the small amplitude limit the expansion provides a faithful

description of the breather, independent of any assumptions and mode pre-selections.

We also use the notation

∂n =
∂

∂Xn
, Dn =

∂

∂Tn
, (4.2.3)
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so that the derivatives with respect to the original variables in terms of the scaled vari-

ables using the chain rule are given by

∂

∂x
= ∂0 + ϵ ∂1 + ϵ2∂2 + ϵ3∂3 + · · · , (4.2.4)

∂

∂t
= D0 + ϵ D1 + ϵ2D2 + ϵ3D3 + · · · . (4.2.5)

Inserting (4.2.2) into Equation (4.1.1) and equating like powers of ϵ we find a system

of partial differential equations for the functions of the slow time and space variables

X0, T0.

4.2.1 Leading order and first correction equations

At leading and next order, we obtain

O(1) : ∂2
0ϕ0 − D2

0ϕ0 = sin(θ + ϕ0). (4.2.6)

O(ϵ) : ∂2
0ϕ1 − D2

0ϕ1 = cos(θ + ϕ0)ϕ1 + 2D0D1ϕ0 − 2∂0∂1ϕ0. (4.2.7)

A stable solution representing a uniform background for Equation (4.2.6) is

ϕ0(X0, T0) = 0, (4.2.8)

while the solution for Equation (4.2.7) for 0 − π − 0 − π − 0 junction is given by

ϕ1(X0, T0) = B1Φ1(X0)e
i λ1 T0 + c.c. + B2Φ2(X0)e

i λ2 T0 + c.c., (4.2.9)

with Φ1,2 given by (4.1.6)–(4.1.7), satisfying the conditions, Φ1(−X0) = Φ1(X0) and

Φ2(−X0) = −Φ2(X0). To derive an effective equation for the complex mode amp-

litudes B1, B2, we continue the perturbation expansion order by order and proceed to

find the solvability conditions for the coupled equations.

4.2.2 Equation at O(ϵ2)

The terms at the order O(ϵ2) give

∂2
0ϕ2 − D2

0ϕ2 − cos(θ)ϕ2 = 2D0D1ϕ1 − 2∂0∂1ϕ1. (4.2.10)

Substituting the spectral ansatz

ϕ2(X0, T0) = ϕ̃21(X0)e
iλ1T0 + c.c. + ϕ̃22(X0)e

iλ2T0 + c.c., (4.2.11)

we obtain the corresponding set of ordinary differential equations

∂2
0ϕ̃21 − (cos(θ)− λ2

1)ϕ̃21 = 2 iλ1D1B1Φ1, (4.2.12)

∂2
0ϕ̃22 − (cos(θ)− λ2

2)ϕ̃22 = 2 iλ2D1B2Φ2. (4.2.13)
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To find a bounded solution for ϕ̃21, ϕ̃22, Equations (4.2.12), (4.2.13) generate constraints

on the right hand sides that are solvability conditions which lead to an important equa-

tion for the amplitudes B1, B2 as well as to equations at higher order when the expan-

sion is continued further [155, 156].

We write equations (4.2.12)–(4.2.13) in the form

Lψ (x) = f (x) , (4.2.14)

where L is a linear self-adjoint operator (L = L†) given by the left hand side of the

above system, and ζ : T → R is a smooth periodic function. Let L2(R) be the Hilbert

space with complex inner product

⟨g, h⟩ =
∫

∞

−∞

g(ξ)h(ξ)dξ. (4.2.15)

Here g(ξ) is the complex conjugate of g(ξ). The Fredholm theorem states that the ne-

cessary and sufficient condition for the inhomogeneous equation Lψ = f (x) to have a

bounded solution is that f (x) be orthogonal to the null-space of the operator L. Hence,

the solvability condition provided by the Fredholm theorem is
∫

∞

−∞

L f (x) dx = 0. (4.2.16)

By applying the theorem, we find the solvability conditions for the above system are

D1B1 = 0, D1B2 = 0. (4.2.17)

Hence Bj are independent of T1.

By putting the solvability conditions (4.2.17) in Equations (4.2.12)–(4.2.13), we obtain

the result which is similar to that at O(ϵ), that is, Equation (4.2.7). Due to uniformity

in the perturbation expansion we conclude that ϕ2(X0, T0) = 0.

4.2.3 Equation at O(ϵ3)

Equating terms at O(ϵ3), we obtain an equation of the form

∂2
0ϕ3 − D2

0ϕ3 − cos(θ + ϕ0)ϕ3 = 2(D0D2 − ∂0∂2)ϕ1 + (D2
1 − ∂2

1)ϕ1

−1
6

ϕ3
1 cos(θ). (4.2.18)

Calculating the right hand side of Equation (4.2.18), we obtain

∂2
0ϕ3 − D2

0ϕ3 − cos(θ + ϕ0)ϕ3 (4.2.19)

= 2 iλ1D2B1Φ1eiλ1T0 + 2 iλ2D2B2Φ2eiλ2T0 − 1
6

[
B3

1Φ
3
1e3 iλ1T0 + B3

2Φ
3
2e3 iλ2T0

+3 B1|B1|2Φ
3
1eiλ1T0 + 3 B2|B2|2Φ

3
2eiλ2T0 + 3 B2

1B2 Φ
2
1 Φ2e(2 λ1−λ2)T0 i

+3 B1B2
2Φ1Φ

2
2e(2 λ2−λ1)T0 i + 6 |B1|2B2Φ

2
1Φ2eλ2T0 i + 6 B1|B2|2Φ1Φ

2
2eλ1T0 i

+3 B2
1B2Φ

2
1Φ2e(2 λ1+λ2)T0 i + 3 B1B2

2Φ1Φ
2
2e(2 λ2+λ1)T0 i

]
cos(θ) + c.c.. (4.2.20)
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This equation has solutions in which there is a nonlinear resonant interaction between

the bound state and continuous radiation, which leads to energy transfer from the "dis-

crete" to "continuous" mode. The solutions in continuous spectrum are referred to as

"phonon modes".

Equation (4.2.20) is linear, so its solution can be written as the linear combination of

solutions with frequencies present in the forcing terms, therefore the solution will con-

sist of the harmonics present in Equation (4.2.20), that is

ϕ3 = ϕ311eiλ1T0 + c.c. + ϕ312eiλ2T0 + c.c. + ϕ321e(2λ1+λ2)T0 i + c.c.

+ϕ322e(2λ1−λ2)T0 i + c.c. + ϕ331e3i λ1T0 + c.c. + ϕ332e3i λ2T0 + c.c.

+ϕ341e(2 λ2+λ1)T0 i + c.c. + ϕ342e(2 λ2−λ1)T0 i + c.c.. (4.2.21)

The functions ϕ311, ϕ312 are functions of the space variable X0 which satisfy the follow-

ing linear inhomogeneous equations

∂2
0ϕ311 −

(
cos (θ + ϕ0)− λ2

1

)
ϕ311 =





E1, X0 > L + a,

E2, L < X0 < L + a,

E3, 0 < X0 < L,

(4.2.22)

∂2
0ϕ312 −

(
cos (θ + ϕ0)− λ2

2

)
ϕ312 =





F1, X0 > L + a,

F2, L < X0 < L + a,

F3, 0 < X0 < L,

(4.2.23)

with

E1 = 2 iλ1D2B1 Φ1 −
1
2

B1|B1|2 Φ
3
1 − B1|B2|2 Φ1Φ

2
2, (4.2.24)

E2 = 2 iλ1D2B1 Φ1 +
1
2

B1|B1|2 Φ
3
1 + B1|B2|2 Φ1Φ

2
2, (4.2.25)

E3 = 2 iλ1D2B1 Φ1 −
1
2

B1|B1|2 Φ
3
1 − B1|B2|2 Φ1Φ

2
2, (4.2.26)

F1 = 2 iλ2D2B2 Φ2 −
1
2

B2|B2|2 Φ
3
2 − B2|B1|2 Φ2Φ

1
2, (4.2.27)

F2 = 2 iλ2D2B2 Φ2 +
1
2

B2|B2|2 Φ
3
2 + B2|B1|2 Φ2Φ

1
2, (4.2.28)

F3 = 2 iλ2D2B2 Φ2 −
1
2

B2|B2|2 Φ
3
2 − B2|B1|2 Φ2Φ

1
2. (4.2.29)

The homogenous solutions of these equations are given by the eigenfunctions (4.1.6)

and (4.1.7). Using the Fredholm alternative, the solvability conditions for Equations

(4.2.22)–(4.2.23) are

D2B1 = α1 B1|B1|2 i + α2 B1|B2|2 i, (4.2.30)

D2B2 = α3 B2|B2|2 i + α4 B2|B1|2 i, (4.2.31)
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with

α1 = − p2

p1
, α2 = − p3

p1
, α3 = − p5

p4
, α4 = − p6

p4
,

given in Section (4.A.1) with explicit expressions. Putting the conditions (4.2.30)–(4.2.31)

into (4.2.22)–(4.2.23) respectively and solving, then we obtain a bounded solution of the

form

ϕ311 = B1





ψ1, X0 > L + a,

ψ2, L < X0 < L + a,

ψ3, 0 < X0 < L,

(4.2.32)

ϕ312 = B2





ψ4, X0 > L + a,

ψ5, L < X0 < L + a,

ψ6, 0 < X0 < L,

(4.2.33)

where ψi, for i = 1, 2, .., 6, can be seen in Section (4.A.1). To obtain the final amplitude

equations, we have to find bounded solutions for other harmonics present in (4.2.20),

as these will appear in next stage. To do this we assume that

(3λ1)
2
> 1, (4.2.34)

i.e. the third harmonics lie in continuous (phonon) spectrum. For λ2 > λ1 and with

assumption (4.2.34), so we have

(2 λ1 + λ2)
2
> 1, (2 λ2 + λ1)

2
> 1, (4.2.35)

also lies in the continuous spectrum. The equations for the harmonics (2 λ1 + λ2),

(2 λ1 − λ2) are

∂2
0ϕ321 + (2 λ1 + λ2)

2 ϕ321 − cos(θ + ϕ0)ϕ321 = −1
2

B2
1B2Φ

2
1Φ2 cos(θ),

∂2
0ϕ322 + (2 λ1 − λ2)

2 ϕ322 − cos(θ + ϕ0)ϕ322 = −1
2

B2
1B2Φ

2
1Φ2 cos(θ),

with bounded solutions

ϕ321 = B2
1 B2





ψ7, X0 > L + a,

ψ8, L < X0 < L + a,

ψ9, 0 < X0 < L,

(4.2.36)

ϕ322 = B2
1 B2





ψ10, X0 > L + a,

ψ11, L < X0 < L + a,

ψ12, 0 < X0 < L,

(4.2.37)
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where ψ7, . . . , ψ12 are given in 4.A.1. The equations for the third harmonics are

∂2
0ϕ331 + 9 λ2

1ϕ331 − cos(θ + ϕ0)ϕ331 = −1
6

B3
1Φ

3
1 cos(θ),

∂2
0ϕ332 + 9 λ2

2ϕ332 − cos(θ + ϕ0)ϕ332 = −1
6

B3
2Φ

3
2 cos(θ),

with solutions

ϕ331 = B3
1





ψ13, X0 > L + a,

ψ14, L < X0 < L + a,

ψ15, 0 < X0 < L,

(4.2.38)

ϕ332 = B3
2





ψ16, X0 > L + a,

ψ17, L < X0 < L + a,

ψ18, 0 < X0 < L,

(4.2.39)

where ψ13, . . . , ψ18 are given by in Section 4.A.1. The equations for the harmonics

(λ1 + 2 λ2), (λ1 − 2 λ2) are

∂2
0ϕ341 + (λ1 + 2 λ2)

2 ϕ341 − cos(θ + ϕ0)ϕ341 = −1
2

B1B2
2Φ1Φ

2
2 cos(θ),

∂2
0ϕ342 + (λ1 − 2 λ2)

2 ϕ342 − cos(θ + ϕ0)ϕ342 = −1
2

B1B2
2Φ1Φ

2
2 cos(θ),

with solutions

ϕ341 = B1 B2
2





ψ19, X0 > L + a,

ψ20, L < X0 < L + a,

ψ21, 0 < X0 < L,

(4.2.40)

ϕ342 = B2
2 B1





ψ22, X0 > L + a,

ψ23, L < X0 < L + a,

ψ24, 0 < X0 < L.

(4.2.41)

The functions ψ19, . . . , ψ24 are given in Section 4.A.1. With the assumption (4.2.34) i.e.

λ1 > 1/3, we see that solutions ϕ321, ϕ311, ϕ332, ϕ341 describe the right moving radiation

in X0 > L+ a and left moving radiation in X0 < L, which are responsible for the energy

loss in the final amplitude equations.

4.2.4 Equation at O(ϵ4)

The terms at the order O(ϵ4) give

D0
2ϕ4 − ∂0

2ϕ4 − cos (Φ0 + θ) ϕ4 = 2 (D1D2 + D0D3 − ∂1∂2 − ∂0∂3) ϕ1

+2 (D0D1 − ∂0∂1) ϕ3

+

(
1

24
ϕ4

1 − ϕ3ϕ1

)
sin (ϕ0 + θ) . (4.2.42)
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Using the same procedure as we did before the solvability conditions for the above

equations are

D3B1 = 0, D3B2 = 0, (4.2.43)

and hence we impose that ϕ4 = 0, as we did for ϕ2. This implies that Bj = Bj(T2, T4, . . . )

are independent of T3.

4.2.5 Equation at O(ϵ5)

Equating terms at O(ϵ5) gives the equation

∂0
2ϕ5 − D0

2ϕ5 − cos(θ)ϕ5 = 2(D0D4 − ∂0∂4)ϕ1 + 2(D3D1 − ∂3∂1)ϕ1 + (D2
2 − ∂2

2)ϕ1

+(D2
1 − ∂2

1)ϕ3 + 2(D2D0 − ∂2∂0)ϕ3

+

(
−1

2
ϕ1

2ϕ3 +
1

120
ϕ1

5
)

cos(θ). (4.2.44)

It should be noted that we have ignored all the terms involving ϕi, i = 0, 2, 4, in (4.2.44)

for simplification as these have no role in the expansion. Having calculated the right

hand side using the known functions ϕ1, ϕ3, we again split the solution into compon-

ents proportional to simple harmonics as we did before, and calculate the first har-

monic, as we expect to obtain the leading order amplitude equation. The equations for

the first harmonics are given by

∂2
0ϕ511 −

(
cos(θ)− λ2

1
)

ϕ511 =





G1, X0 > L + a,

G2, L < X0 < L + a,

G3, 0 < X0 < L,

(4.2.45)

∂2
0ϕ512 −

(
cos(θ)− λ2

2
)

ϕ512 =





H1, X0 > L + a,

H2, L < X0 < L + a,

H3, 0 < X0 < L,

(4.2.46)

where Gi, Hi are given in Section 4.A.1.

We do not calculate the other harmonics as we expect to obtain oscillatory behaviour

over the long time scale of the localised mode here. Using the Fredholm theorem the

solvability conditions for the first harmonics are

D4B1 = β1B1|B1|4 + β2B1|B2|4 + β3B1|B1|2|B2|2, (4.2.47)

D4B2 = γ1B2|B2|4 + γ2B2|B1|4 + γ3B2|B1|2|B2|2. (4.2.48)

where βi, γi are given in Section 4.4.
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We do not proceed further to perturbation expansion of high orders, as we have ob-

tained the equations governing the decaying oscillatory behaviour of the localized

modes for a system with two regions of phase shift, which has the effect in a double–

well potential.

4.2.6 Amplitude equations

By noting that

d

dt
B1 = ϵD1B1 + ϵ2D2B1 + ϵ3D3B1 + ϵ4 D4B1 + . . . , (4.2.49)

d

dt
B2 = ϵD1B2 + ϵ2D2B2 + ϵ3D3B2 + ϵ4 D4B2 + . . . , (4.2.50)

writing bi = ϵBi, i = 1, 2, so that bi is the natural amplitude of oscillating modes, which

is the small amplitude we actually measure. The parameter ϵ is the initial amplitude

in perturbation expansion for the undriven case. Combining the solvability conditions

(4.2.17), (4.2.30), (4.2.31), (4.2.43), (4.2.47), (4.2.48), we obtain the system of two coupled

equations,

d

dt
|b1|2 = 2

(
Re(β1)|b1|6 + Re(β2)|b1|2|b2|4 + Re(β3)|b1|4|b2|2

)

+O(ϵ6), (4.2.51)
d

dt
|b2|2 = 2

(
Re(γ1)|b2|6 + Re(γ2)|b2|2|b1|4 + Re(γ3)|b2|4|b1|2

)

+O(ϵ6). (4.2.52)

By assuming that Re(βi), Re(γi) < 0, for i = 1, 2, 3 as will be shown later in Section 4.4,

Equations (4.2.51)–(4.2.52) describe the gradual decrease in the amplitude of coupled

oscillations due to energy emission in the form of radiation. Here we discuss two types

of solutions.

When b2 = 0, and b1 ̸= 0, Equations (4.2.51)–(4.2.52), satisfy the relation

|b1(t)| =

( |b1(0)|4
1 − 4 Re (γ1) |b1(0)|4t

)1/4

, (4.2.53)

since Re(γ1) < 0, this describes algebraic decay of b1 with increasing time. Similarly

when b1 = 0, and b2 ̸= 0, we obtain

|b2(t)| =

( |b2(0)|4
1 − 4 Re (β1) |b2(0)|4t

)1/4

, (4.2.54)

similarly since Re(β1) < 0, this describes algebraic decay of b2 with increasing time.
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4.2.7 Resonance condition: (3λ1)
2
< 1 < (3λ2)

2

In the previous subsection we considered the case when (3λ2)2
> (3λ1)

2
> 1. Here we

choose values of L and a such that

(3λ1)
2
< 1 < (3λ2)

2. (4.2.55)

By using the same perturbation expansion as at the start of this section, the solvability

conditions at O(ϵ2) are

D1B1 = 0, D1B2 = 0, (4.2.56)

hence Bi = Bi(T2, T3, . . . ). Solving the Equation (4.2.18) we obtain the solvability con-

dition

D2B1 = d11B1|B1|2 i + d12B1|B2|2 i, (4.2.57)

D2B2 = d21B2|B2|2 i + d22B2|B1|2 i. (4.2.58)

With the assumption (4.2.55) we observe that the solution ϕ332, ϕ321, ϕ341 describe the

right moving radiation for X0 > L + a and left moving radiation for X0 < L. Similarly

from equation (4.2.42) at O(ϵ4) we obtain

D3B1 = 0, D3B2 = 0. (4.2.59)

Hence Bj = Bj(T2, T4, . . . ). Solving Equation (4.2.44) and using (4.A.1)–(4.A.6), the

solvability conditions at O(ϵ5) are

D4B1 = e11B1|B1|4 i + e12B1|B2|4 + e13B1|B1|2|B2|2, (4.2.60)

D4B2 = e21B2|B2|4 + e22B2|B1|4 + e23B2|B1|2|B2|2. (4.2.61)

Combining Equations (4.2.57), (4.2.58), (4.2.60) and (4.2.61), we obtain

d|b1|2
dt

= 2
(

Re(e12)|b1|2|b2|4 + Re(e13)|b1|4|b2|2
)
+O(ϵ6), (4.2.62)

d|b2|2
dt

= 2
(

Re(e21)|b2|6 + Re(e22)|b2|2|b1|4 + Re(e23)|b2|4|b1|2
)

+O(ϵ6). (4.2.63)

It is interesting to note that even though (3λ1)
2
< 1. The coupled Equations (4.2.62)–

(4.2.63) still show that ϕ1 decay in time. For (4.2.62)–(4.2.63), if b2 = 0, then b1 = 0.

When b1 = 0, and b2 ̸= 0, we obtain

|b2(t)| =

( |b2(0)|4
1 − 4 Re (e21) |b2(0)|4t

)1/4

, (4.2.64)

clearly shows the decay in the long time.
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4.3 Driven breathing mode in 0 − π − 0 − π − 0 junctions

We now consider the dynamics of a perturbed sine-Gordon equation, that is, Equation

(4.1.1) perturbed by a time-dependent external force modelling a driven 0 − π − 0 −
π − 0 junction with h ̸= 0 and Ω = λ1(1 + ρ). For notational compactness, we make

transformation

Ωt = λ1τ. (4.3.1)

The Equation (4.1.1) then becomes

ϕxx(x, τ)− (1 + ρ)2ϕττ(x, τ) = sin (ϕ + θ) +
1
2

h
(

eiλ1τ + c.c.
)

. (4.3.2)

Here, we assume that the driving amplitude h is small and the driving frequency is

close to resonance with the fundamental mode of the homogenous system. In this case

we consider

h = ϵ3H, ρ = ϵ3 R, (4.3.3)

with H, R ∼ O(1). Due to the time rescaling above, our slow temporal variables are

now defined as

Xn = ϵnx, Tn = ϵnτ, n = 0, 1, 2, . . . , (4.3.4)

with the short hand notation (4.2.3). Performing the perturbation expansion order by

order as in Section 4.2, we obtain the same perturbation expansion up to O(ϵ2).

4.3.1 Equation at O(ϵ3)

The terms at order of O(ϵ3) give

∂2
0ϕ3 − D2

0ϕ3 − cos(θ + ϕ0)ϕ3 = 2(D0D2 − ∂0∂2)ϕ1 + (D2
1 − ∂2

1)ϕ1

−1
6

ϕ3
1 cos(θ) +

1
2

H(eiλ1τ + c.c.). (4.3.5)

Calculating the right hand side, we obtain various harmonics, namely

∂2
0ϕ3 − D2

0ϕ3 − cos(θ + ϕ0)ϕ3

= 2 iλ1D2B1Φ1eiλ1T0 + 2 iλ2D2B2Φ2eiλ2T0 − 1
6

[
B3

1Φ
3
1e3 iλ1T0 + B3

2Φ
3
2e3 iλ2T0

+3 B1|B1|2Φ
3
1eiλ1T0 + 3 B2|B2|2Φ

3
2eiλ2T0 + 3 B2

1B2Φ
2
1Φ2e(2 λ1+λ2)T0 i

+3 B1B2
2Φ1Φ

2
2e(2 λ2+λ1)T0 i + 3 B2

1B2 Φ
2
1 Φ2e(2 λ1−λ2)T0 i + 6 B1|B2|2Φ1Φ

2
2eλ1T0 i

+3 B1B2
2Φ1Φ

2
2e(2 λ2−λ1)T0 i + 6 |B1|2B2Φ

2
1Φ2eλ2T0 i

]
cos θ +

1
2

Heiλ1τ + c.c.. (4.3.6)
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Using (4.2.21), we split the harmonics as in Section 4.2. Using the Fredholm alternative,

the solvability condition for the first harmonic is

D2B1 = α1B1|B1|2 i + α2B1|B2|2 i + µ1H i, (4.3.7)

where αi, µ1 are given in Section (4.4). The solvability condition D2B2 is the same as

(4.2.31). With (4.3.7), the solution for the first harmonic is obtained in the form

ϕ̃311 =





Z1e−
√

1−λ1
2(X0−L−a) + B1Ψ1 + H Ψ2 X0 > L + a,

Z2 cos
(√

1 + λ1
2 (X0 − L − a)

)
+ B1Ψ3+

Z3 sin
(√

1 + λ1
2 (X0 − L − a)

)
+ H Ψ4, L < X0 < L + a,

Z4 cosh
(√

1 − λ2
1X0

)
+ B1Ψ5 + H Ψ6, 0 < X0 < L,

(4.3.8)

where Ψi = Ψi

(
|B1|2, |B2|2, λ1, λ2

)
for i = 1, 2, 3, 4 that appears in ϕ̃311 can be seen in

Section 4.A.1. The constant of integration Zi = Zi

(
B1, H, |B1|2, |B2|2, λ1, λ2

)
for i =

1, 2, 3, 4 that appears in ϕ̃311, can be found by applying the continuity conditions at the

discontinuity points. We do not calculate the other harmonics appearing in (4.3.6) as

these are similar to the undriven case considered in Section 4.2.

4.3.2 Equation at O(ϵ4)

Equating terms at O(ϵ4) we obtain

D0
2ϕ4 − ∂0

2ϕ4 − cos (Φ0 + θ) ϕ4 = 2 (D1D2 + 2 D0D3 − ∂1∂2 − ∂0∂3) ϕ1

+2 (D0D1 − ∂0∂1) ϕ3 + 2 RD0
2ϕ1

+

(
1

24
ϕ4

1 − ϕ3ϕ1

)
sin (ϕ0 + θ) . (4.3.9)

Calculating the right hand side and applying the Fredholm alternative, the solvability

conditions for the first harmonics are

D3B1 = −λ1 B1 R i, D3B2 = −λ2 B2 R i. (4.3.10)

At this stage we impose that ϕ4 = 0.

Since λ1, λ2, R ∈ R these are purely oscillating being given by

B1 = B1(T2, T4, . . . )e−λ1RT3i, (4.3.11)

B2 = B2(T2, T4, . . . )e−λ2RT3i. (4.3.12)
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4.3.3 Equation at O(ϵ5)

The terms at the order of O(ϵ5) give

∂2
0ϕ5 − D2

0ϕ5 − ϕ5 cos (θ) = 2(D0D4 − ∂0∂4)ϕ1 + 2(D3D1 − ∂3∂1)ϕ1 + 4 R D0D1ϕ1

+(D2
2 − ∂2

2)ϕ1 + (D2
1 − ∂2

1)ϕ3 + 2(D2D0 − ∂2∂0)ϕ3

−
(

1
2

ϕ2
1ϕ3 −

1
120

ϕ5
1

)
cos(θ). (4.3.13)

In calculating the right hand side, we consider only the first harmonics as our main aim

is to obtain the amplitude equation at this stage, i.e.

∂2
0ϕ511 −

(
cos(θ)− λ2

1
)

ϕ511 =





L1, X0 > L + a,

L2, L < X0 < L + a,

L3, 0 < X0 < L,

(4.3.14)

∂2
0ϕ512 −

(
cos(θ)− λ2

1
)

ϕ512 =





M1, X0 > L + a,

M2, L < X0 < L + a,

M3, 0 < X0 < L,

(4.3.15)

where Li, Mi are given in Section 4.A.2.

Using the Fredholm alternative, the solvability conditions for Equations (4.3.14)-(4.3.15)

are

D4B1 = a1B1|B1|4 + a2B1|B2|4 + a3B1|B1|2|B2|2

+
(
a4|B1|2 + a5|B2|2 + a6B2

1
)

Hi, (4.3.16)

D4B2 = c1B2|B2|4 + c2B2|B1|4 + c3B1|B2|2|B2|2

+c4B2
(

B1 + B1
)

H i. (4.3.17)

where aj, cj are given in Section 4.A.1.

4.3.4 Amplitude equations

Equations (4.3.16), (4.3.17) are the leading order equations for the coupled mode oscilla-

tions. Combining all the solvability conditions (4.2.30), (4.3.7), (4.3.10), (4.3.16), (4.3.17),

and considering bi = ϵBi for i = 1, 2 we obtain

Ω

λ1

∂b1

∂t
= α1b1|b1|2 i + α2b1|b2|2 i + µ1h i − λ1b1 ρ i + a1b1|b1|4 + a2b1|b2|4

+a3b1|b1|2|b2|2 +
(
a4|b1|2 + a5|b2|2 + a6b2

1
)

h i +O(ϵ6), (4.3.18)
Ω

λ1

∂b2

∂t
= α3b2|b2|2 i + α4b2|b1|2 i − λ2b2 ρ i + c1b2|b2|4 + c2b2|b1|4

+c3b2|b1|2|b2|2 + c4 b2

(
b1 + b1

)
h i +O(ϵ6), (4.3.19)
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where αi are given in Section 4.A.1.

From the above equations, we expect that the presence of a non-zero external drive will

induce the mode oscillations. Note in Equations (4.3.18)–(4.3.19), there is a solution

with b2 = 0 and b1 ̸= 0 as well as b1 ̸= 0 and b2 ̸= 0, but with b1 = 0 and b2 ̸= 0, is in

general impossible (it requires |b2|2 = µ1/a5).

4.3.5 Resonance condition: (3λ1)
2
< 1 < (3λ2)

2 in the driven case

Now we consider the case in section 4.2.7, but in the driven case. Repeating the same

procedure as above, the solvability conditions at O(ϵ2) and O(ϵ4) are the same as Equa-

tions (4.2.56) and (4.3.10).

The solvability condition at O(ϵ3) from Equation (4.3.5) gives

D2B1 = d11B1|B1|2 i + d12B1|B2|2 i + d13H i, (4.3.20)

D2B2 = d21B2|B2|2 i + d22B2|B1|2 i. (4.3.21)

Similarly from Equation (4.3.13) the solvability conditions at O(ϵ5) yield

D4B1 = ζ11B1 |B1|4 i + ζ12B1 |B2|4 + ζ13B1 |B1|2 |B2|2

+
(

ζ14 |B1|2 + ζ15 |B2|2 + ζ16B2
1

)
H i, (4.3.22)

D4B2 = ζ21B2|B2|4 + ζ22B2|B1|4 + ζ23B2|B1|2|B2|2

+ζ24(B1 + B̄1)B2H i. (4.3.23)

Combining (4.2.30), (4.3.10), (4.3.20)–(4.3.21) and (4.3.22)–(4.3.23) and considering bi =

ϵBi for i = 1, 2, we obtain amplitude equations of the form

Ω

λ1

∂b1

∂t
= d11b1|b1|2 i + d12b1|b2|2 i + d13h i − λ1b1 ρ i + ζ11b1|b1|4 i + ζ12b1|b2|4

+ζ13b1|b1|2|b2|2 +
(
ζ14|b1|2 + ζ15|b2|2 + ζ16b2

1
)

h i +O(ϵ6), (4.3.24)
Ω

λ1

∂b2

∂t
= d21b2|b2|2 i + d22b2|b1|2 i − λ2b2 ρ i + ζ21b2|b2|4 + ζ22b2|b1|4

+ζ23b2|b1|2|b2|2 + ζ24

(
b1 + b1

)
b2 h i +O(ϵ6). (4.3.25)

Similar to (4.3.18)-(4.3.19), from the above equations we also expect that the non-zero

external drive amplitude induces coupled mode oscillations.

Note in Equations (4.3.24)–(4.3.25), there is a solution with b2 = 0 and b1 ̸= 0 as well

as b1 ̸= 0 and b2 ̸= 0, but with b1 = 0 and b2 ̸= 0, is in general impossible (it requires

|b2|2 = d13/ζ15).
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4.4 Numerical calculations

To check the analytical results obtained in the above sections, we have numerically

solved the governing Equation (4.1.1), with θ(x) given by (4.4.1). We discretise the

Laplacian operator using central differences and integrate the resulting system of dif-

ferential equations using a fourth-order Runge–Kutta method, with a spatial and tem-

poral discretizations of ∆x = 0.01 and ∆t = 0.002, respectively. The computational

domain is x ∈ (−L1, L1), with L1 = 50. At the boundaries, we use a periodic boundary

condition. To model an infinitely long junction, we apply an increasing damping at the

boundaries to reduce reflected continuous waves incoming from the boundaries. In all

the results presented herein, we use the damping coefficient

α =

{
(|x| − L1 + xα) /xα, |x| > (L1 − xα),

0, |x| < (L1 − xα);
(4.4.1)

that is, α increases linearly from α = 0 at x = ±(L1 − xα) to α = 1 at x = ±L1. We have

taken xα = 20. To ensure that the numerical results are not influenced by the choice of

the parameter values, we have taken different values ( ∆x, ∆t, L1 ) as well as different

boundary conditions and damping, and we obtained quantitatively similar results.

In this Section, for the 0 − π − 0 − π − 0 junction we fix the facet length a = 1 and

L = 2, which implies that we are in the case λ2 > λ1 > 1/3, since

λ1 ≈ 0.59941, K1 ≈ 0.39734, C1 ≈ −0.68655,

λ2 ≈ 0.64247, K2 ≈ 0.44002, C2 ≈ −0.64471.

For the choice of parameters above, we obtain the coefficients in the analytic approx-

imations (4.2.51)–(4.2.52) and (4.3.18)–(4.3.19) as

α1 = 0.15864, α2 = 0.32326, α3 = 0.16753,

α4 = 0.34044, µ1 = 0.55168, a4 = 0.29191,

a5 = −0.21275, a6 = 1.55308, c4 = 0.02164,

β1 = −0.00832 − 0.14102 i, β2 = −0.01272 − 0.08509 i,

β3 = −0.16295 + 7.78699 i, γ1 = −0.02967 − 0.10655 i,

γ2 = −0.06474 − 1.77612 i, γ3 = −0.02680 − 1.52120 i,

a1 = −0.00832 + 0.45010 i, a2 = −0.01272 − 0.08511 i,

a3 = −0.12295 − 3.23490 i, c1 = −0.02957 − 0.20650 i,

c2 = −0.07974 − 1.82500 i, c3 = −0.04680 + 2.14572 i.

To illustrate the case λ1 < 1/3 < λ2, we choose L = 0.5, a = 1.1, that is,
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Figure 4.1: Oscillation amplitude of the breathing coupled mode in a 0−π − 0−π − 0

junction. The case λ2 > λ1 > 1/3, with no driving (h = 0). (a):

A2(0) = 0.6, (b): A2(0) = 0.3, (c): A2(0) = 0, while in all cases A1(0) = 0.6.

The black oscillation curves are from the oscillation amplitude A1(t) and

red for A2(t) obtained from the original governing Equation (4.1.1), clearly

indicating the decay of the coupled mode oscillation. Analytical approx-

imations (4.2.51) and (4.2.52) are shown as A1(t) for blue curves and A2(t)

as green solid curves.

λ1 ≈ 0.27431, K1 ≈ 1.12709, C1 ≈ −0.92738,

λ2 ≈ 0.82148, K2 ≈ 2.01578, C2 ≈ −0.44062.

In this case, we obtain the coefficients in the analytically obtained approximations

(4.2.62)-(4.2.63) and (4.3.24)-(4.3.25) as
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Figure 4.2: The case λ2 > 1/3 > λ1 with no driving i.e. h = 0. The other details are

the same as in Figure 4.1. Analytical approximations (4.2.62) and (4.2.63)

for the three panels are shown as green and blue lines.

d11 = 0.53642, d12 = 0.76104, d13 = 0.92035,

d21 = 0.09243, d22 = 0.38662, e11 = −1.79763,

ζ11 = 0.10120, ζ14 = −1.2231, ζ15 = −2.02615,

ζ16 = 2.27324, ζ24 = −1.21283,

106



CHAPTER 4: LOCALISED DEFECT MODES OF SINE-GORDON EQUATION WITH DOUBLE

WELL POTENTIAL

e12 = −0.00162 + 0.33406 i, e13 = −0.15674 + 0.50224 i,

e21 = −0.00252 + 0.01212 i, e22 = −0.04699 − 0.92783 i,

e23 = −0.04619 − 0.05882 i, ζ12 = −0.035621 + 0.34056 i,

ζ13 = −0.36524 + 1.47270 i, ζ21 = −0.002519 − 0.0558 i,

ζ22 = −0.06229 + 0.43752 i, ζ23 = −0.03619 + 0.60335 i.

First, we consider the undriven case, h = 0. To calculate the oscillation amplitude of

the two modes from the full Equation (4.1.1), we assume the initial condition similar to

the expansion (4.2.1), (3.2.8)–(4.1.5) namely

ϕ(x, t) = A1(t)Φ1(x) + A2(t)Φ2(x), (4.4.2)

hence

Aj(t) = bje
iλit + bje

−iλit. (4.4.3)

Mathematically, Aj(t) is approximated by

Aj(t) =

∫ L
−L ϕ(x, t)Φj(x)dx
∫ L
−L Φ2

j (x)dx
. (4.4.4)

With the initial condition

A1(0) = 0.6, A2(0) = 0.6, 0.3, 0, (4.4.5)

we record the envelope for the coupled mode of the oscillation amplitudes Aj(t) from

the governing Equation (4.1.1). In Figures 4.1, and 4.2, we plot A1(t), A2(t) as red and

black curves respectively. From Figures 4.1 and 4.2, one can see that the coupled mode

oscillation amplitude decreases in time. The mode experiences damping. The damping

is intrinsically present because the breathing mode emits radiation due to higher har-

monic excited due to the nonlinearity which have frequency in the dispersion relation.

It is instructive to compare the numerical results with our analytical calculations. With

the initial condition

|bj(0)|2 =
A2

j (0)

4F2 , (4.4.6)

for the coupled Equations (4.2.51)-(4.2.52) and (4.2.62)-(4.2.63), that are solved numeric-

ally using a fourth-order Runge–Kutta method with a relatively fine time discretisation

parameter, as general analytical solutions are not available. The analytical approxima-

tions are then given by 2F|b1(t)| and 2F|b2(t)|. In general, the factor is simply F = 1.

Yet, by treating F as a fitting parameter we observed that the best fit is not given by the

aforementioned values. For the initial conditions (4.4.5), we found that optimum fits
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Figure 4.3: The same as in Figure 4.1, but for nonzero driving amplitude with λ1 ≈
0.59941 and λ2 ≈ 0.64247. The three panels corresponds to h = 0.006,

h = 0.008, h = 0.015. Analytical approximations (4.3.18)-(4.3.19) for the

three panels are shown as green and blue lines.

are, respectively, provided by F = 1.1, 1.05, 0.94 for Figure 4.1 and F = 1.03, 0.97, 1.02

for Figures 4.2 respectively. The differences can be explained by the fact that our

asymptotic approximations are only valid for long times, thus there is a short initial

transient, which can be accented by allowing F ̸= 1. In panels (a) and (b) of Fig. 4.1

and Fig. 4.2, we observe that exciting the two modes at the same time increases the

decay rate. This is due to higher harmonic excitation and coupling of the oscillation

amplitudes bj(t), that can be seen in the analytically obtained approximation. Simil-
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Figure 4.4: The same as in the figure 4.3 with λ1 ≈ 0.27431, λ2 ≈ 0.82148 and 3λ1 <

1 < 3λ2. The three panels corresponds to driven 0−π − 0−π − 0 junction

with h = 0.006, h = 0.008, h = 0.015. Analytical approximations (4.3.24)-

(4.3.25) for the three panels are shown as green and blue lines.

arly in the panels (c) of Fig. 4.1, and Fig. 4.2, by exciting one mode, we see that the

decay rate is very slow for a long time compared to top panels (Note different range

on the vertical axes). Our approximations are shown as green and blue solid lines in

Figure 4.1 and Figure 4.2 where one can see good agreement with the numerically ob-

tained oscillation.

Next, we consider the case of driven Josephson junctions, i.e. (4.1.1) with h ̸= 0. In
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this case, the initial condition to the governing Equation (4.1.1) is the same as before.

Taking Ω = λ1, we present the amplitude of the oscillatory coupled mode Aj(t) for

0 − π − 0 − π − 0 junctions with h = 0.006, h = 0.008, h = 0.015, in the three panels,

respectively, of Figures 4.3 and 4.4. The initial amplitudes are Aj(0) = 0.3, where for

all the cases the envelope of A1(t) oscillates and slowly tends to a constant amplitude

while the envelope of A2(t) vanishes. Hence, it is important to note that the drive acts

to damp the antisymmetric mode. In other words, we have a synchronized oscillation

between a localised mode in the two wells.

Considering the panels in Figures 4.3 and 4.4, we observe that the modes do not os-

cillate with an unbounded or growing amplitude. After a while, there is a balance

between the energy input into the breathing mode due to the external drive and the

radiative damping. The regular oscillation of the modes indicates that the junction

voltage vanishes, even when the driving frequency is the same as the system’s eigen-

frequency.

To assess the accuracy of the asymptotic analysis, we have solved the amplitude Equa-

tions (4.3.18)-(4.3.19) and (4.3.24)-(4.3.25) numerically. The analytical approximations

is again given by 2F|b(t)|, where F in this case is taken as F = 1.15, F = 1.15, F = 1.14

for Figure 4.3, while F = 1.05, F = 1.035, F = 1.05 for Figure 4.4 respectively.

In the three panels of Figures 4.3 and 4.4, green and blue lines shown the approximation

(4.3.18)-(4.3.19) and (4.3.24)-(4.3.25) respectively using ρ = 0, where one can see that

our approximation is in good agreement, as it is indistinguishable from the numerical

result.

4.5 Conclusions

We have considered a spatially inhomogeneous sine-Gordon equation with a time-

periodic drive and two regions of π phase shift, modelling 0 − π − 0 − π − 0 long

Josephson junctions. We discussed the internal phase shift formation acting as a double

well potential. Due to the type of the inhomogeneities, there is a pair of eigenmodes

of different symmetries, i.e. symmetric and antisymmetric. We constructed a perturba-

tion expansion for the coupled modes and obtained differential equations for the slow

time evolution of the oscillation amplitudes in the 0 − π − 0 − π − 0 long Josephson

junctions.

In the absence of an ac-drive, the coupled amplitude equations describe the gradual

decrease in the amplitude of the coupled mode oscillation which is due to the energy

emission in the form of radiation. Similar investigation of the effects of radiations, the
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resonance of breathing modes at its natural oscillating frequency and the same decay

rates for the single mode oscillation for sine-Gordon equation in the context of long

Josephson junctions and for ϕ4 models have been discussed and obtained in [99, 100,

101].

Using multiple scale expansions, we have shown that due to the energy transfer from

the discrete to continuous modes, two mode oscillation decays algebraically in time.

The flow of energy from resonant discrete modes to continuum modes due to the non-

linear coupling has been addressed in [149, 150]. The phenomenon obtained in this

study which is responsible for the time decay due to the energy transfer from the dis-

crete to continuous modes is analyzed by Soffer, Weinstien, Sigal, and others for non-

linear Klein-Gordon equations and nonlinear Schrödinger equations in [151, 152, 153,

154].

We also discussed the resonance condition when the antisymmetric mode is excited,

while the symmetric mode lies in the discrete spectrum. Interestingly the solutions

of obtained coupled amplitude equations still decay in time. This shows that the two

modes influence each other, when oscillating in the long time regime. We also showed

that, by exciting one mode, the decay rate is significantly reduced over the long time

compared to the two modes.

Next, we discussed the coupled mode oscillation in the presence of an ac-drive. We

observed that the modes do not oscillate with an unbounded or growing amplitude

but for a small drive amplitude, there is a balance between the energy input given by

the external drive and the energy output due to the radiative damping experienced by

the coupled modes.

Comparing the amplitudes of the two modes, we observed that the amplitude of the

symmetric mode oscillates and slowly tends to constant, while the envelope of the

antisymmetric mode vanishes. This shows that an ac-drive acts as a damping to an-

tisymmetric mode. In other words, we have a synchronized oscillations of localised

modes in the two wells. The regular oscillation of the modes indicates that the junction

voltage vanishes, even when the driving frequency is the same as one of the system’s

eigenfrequency.

111



CHAPTER 4: LOCALISED DEFECT MODES OF SINE-GORDON EQUATION WITH DOUBLE

WELL POTENTIAL

4.A Appendix: Explicit expressions

4.A.1 Functions in Section 4.2

G1 = 2 iλ1D4B1Φ1 + B1

(
2 iλ1

(
α1 |B1|2 i + α2|B2|2 i

)
− 3

2
|B1|2Φ

2
1 − |B2|2Φ2

2
)

ψ1

+B1
(
α1|B1|2 i + α2|B2|2 i

)2
Φ1 +

1
12

B1|B1|4Φ1
5 +

1
2

B1|B1|2|B2|2Φ
3
1Φ

2
2

+
1
4

B1|B2|4Φ1Φ
4
2 − 2 B1|B2|2Φ1Φ2ψ4 − B1|B1|2|B2|2Φ1Φ2ψ7 −

1
2

B1|B1|4Φ
2
1ψ13

−B1|B1|2|B2|2Φ1Φ2ψ10 −
1
2

B1|B2|4Φ2
2ψ19 −

1
2

B1|B2|4Φ2
2ψ22, (4.A.1)

G2 = 2 iλ1D4B1Φ1 + B1

(
2 iλ1

(
α1|B1|2 i + α2|B2|2 i

)
+

3
2
|B1|2Φ

2
1 + |B2|2Φ2

2
)

ψ2

+B1
(
α1|B1|2 i + α2|B2|2 i

)2
Φ1 −

1
12

B1|B1|4Φ1
5 − 1

2
B1|B1|2|B2|2Φ

3
1Φ

2
2

−1
4

B1|B2|4Φ1Φ
4
2 + 2 B1|B2|2Φ1Φ2ψ5 + B1|B1|2|B2|2Φ1Φ2ψ8 +

1
2

B1|B1|4Φ
2
1ψ14

+B1|B1|2|B2|2Φ1Φ2ψ11 +
1
2

B1|B2|4Φ2
2ψ20 +

1
2

B1|B2|4Φ2
2ψ23, (4.A.2)

G3 = 2 iλ1D4B1Φ1 + B1

(
2 iλ1

(
α1|B1|2 i + α2|B2|2 i

)
− 3

2
|B1|2Φ

2
1 − |B2|2Φ2

2
)

ψ3

+B1
(
α1|B1|2 i + α2|B2|2 i

)2
Φ1 +

1
12

B1|B1|4Φ1
5 +

1
2

B1|B1|2|B2|2Φ
3
1Φ

2
2

+
1
4

B1|B2|4Φ1Φ
4
2 − 2 B1|B2|2Φ1Φ2ψ6 − B1|B1|2|B2|2Φ1Φ2ψ9 −

1
2

B1|B1|4Φ
2
1ψ15

−B1|B1|2|B2|2Φ1Φ2ψ12 −
1
2

B1|B2|4Φ2
2ψ21 −

1
2

B1|B2|4Φ2
2ψ24, (4.A.3)

H1 = 2 iλ2D4B2Φ2 + B2

(
2 iλ2

(
α3|B2|2 i + α4|B1|2 i

)
− 3

2
|B2|2Φ2

2 − |B1|2Φ1
2
)

ψ4

+B2
(
α3|B2|2 i + α4|B1|2 i

)2
Φ2 +

1
12

B2|B2|4Φ
5
2 +

1
2

B2|B1|2|B2|2Φ
2
1Φ2

3

+
1
4

B2|B1|4Φ1
4
Φ2 − 2 B2|B1|2Φ1Φ2ψ1 −

1
2

B2|B1|4Φ1
2ψ7 −

1
2

B2|B1|4Φ1
2ψ10

−1
2

B2|B2|4Φ2
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(
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(
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)
+

3
2
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2
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2
1Φ2

3

−1
4

B2|B1|4Φ1
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1
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√
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√
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√
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√
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)
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√
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2
√
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1

, (4.A.7)

p2 =
3 LK1

4 − 6 C1
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a
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√
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√
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(√

1 + λ1
2a
)

16
√
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2
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√
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2

, (4.A.8)

p3 = −
√
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2 −

√
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2
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−
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∫ L+a

L A1(X0) dX0λ2
2

)

λ2
1 − λ2

2

+
K2

1 K2
2
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∫ L

0 A2(X0) dX0λ2
2

)

λ2
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, (4.A.9)
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√
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√
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√
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√
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2
√

1 − λ2
2

, (4.A.10)
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√

1 − λ1
2 −

√
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√
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√
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√
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√
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√
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√

1 + λ2
2a) + 4C2(C2

2 − 1) cos(
√
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√
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√
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√
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√
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√
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√
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√
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(√
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√
1 + λ1

2X0)

+
∫

G1(X0) dX0 cos(
√

1 + λ1
2X0)

]
, (4.A.14)
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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(√
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[ ∫
F0(X0)dX0 sin(

√
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√
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√
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√

1−(2 λ1−λ2)
2(X0−L−a)

+

(
λ1λ2 +

√
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ψ16 = z1e−
√
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1 − 9λ2

1 + 3
√

1 − λ2
1

)
sinh

(
(
√

1 − 9λ2
1 − 3

√
1 − λ2

1)X0

) ]
,(4.A.29)

ψ18 = z4 sinh
(√

1 − 9 λ2
2X0

)
+

K3
2 sinh

(
2
√

1 − 9 λ2
2X0

)

384 λ2
2
√

1 − 9 λ2
2

×
[
3
(√

1 − 9 λ2
2 +

√
1 − λ2

2
)

cosh
((√

1 − 9 λ2
2 −

√
1 − λ2

2

)
X0

)

−λ2
2
(√

1 − 9 λ2
2 + 3

√
1 − λ2

2
)

cosh
((√

1 − 9 λ2
2 − 3

√
1 − λ2

2
)

X0

)

+λ2
2
(√

1 − 9 λ2
2 − 3

√
1 − λ2

2
)

cosh
((√

1 − 9 λ2
2 + 3

√
1 − λ2

2
)

X0

)

−3
(√

1 − 9 λ2
2 −

√
1 − λ2

2
)

cosh
((√

1 − 9 λ2
2 +

√
1 − λ2

2
)

X0

) ]

−
K3

2 cosh
(

2
√

1 − 9 λ2
2X0

)

384 λ2
2
√

1 − 9 λ2
2

×
[
3
(√

1 − 9 λ2
2 +

√
1 − λ2

2
)

sinh
((√

1 − 9 λ2
2 −

√
1 − λ2

2
)

X0

)

+λ2
2
(√

1 − 9 λ2
2 − 3

√
1 − λ2

2
)

sinh
((√

1 − 9 λ2
2 + 3

√
1 − λ2

2
)

X0

)

−3
(√

1 − 9 λ2
2 −

√
1 − λ2

2
)

sinh
((√

1 − 9 λ2
2 +

√
1 − λ2

2
)

X0

)

−λ2
2

(√
1 − 9λ2

2 + 3
√

1 − λ2
2

)
sinh

(
(
√

1 − 9λ2
2 − 3

√
1 − λ2

2)X0

) ]
,(4.A.30)
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ψ19 = z1e−
√

1−(λ1+2λ2)
2(X0−L−a)

−

(
1 + λ1λ2 −

√
(1 − λ2

2)(1 − λ2
1)
)

e−
(

2
√

1−λ2
2+
√

1−λ2
1

)
(X0−L−a)

8 (λ1 + λ2)
2 , (4.A.31)

ψ20 = z2 cos
(√

1 + (λ1 + 2λ2)
2 (X0 − L − a)

)

+z3 sin
(√

1 + (λ1 + 2λ2)
2 (X0 − L − a)

)

+

∫
cos

(√
1 + (λ1 + 2λ2)

2X0

)
F2(X0) dX0 sin

(√
1 + (λ1 + 2λ2)

2X0

)

2
√

1 + (λ1 + 2λ2)
2

−
∫

sin
(√

1 + (λ1 + 2λ2)2X0

)
F2dX0 cos

(√
1 + (λ1 + 2λ2)2X0

)

2
√

1 + (λ1 + 2λ2)
2

, (4.A.32)

ψ21 = z4 cosh
(√

1 − (λ1 + 2λ2)
2X0

)
− K1K2

2

4 (λ1 + 2λ2)
2 ×

[ ∫
F3(X0) dX0e

√
1−(λ1+2λ2)

2X0 −
∫

G3(X0) dX0e−
√

1−(λ1+2λ2)
2X0
]
, (4.A.33)

ψ22 = z1e−
√

1−(λ1−2 λ2)
2(X0−L−a) +

(√
1 − λ1

2
√

1 − λ2
2 − 1 + λ1λ2

)
e−
(√

1−λ2
1+2

√
1−λ2

2

)
(X0−L−a)

8 (λ1 − λ2)
2 , (4.A.34)

ψ23 = z2 cos
(√

1 + (λ1 − 2 λ2)
2 (X0 − L − a)

)

+z3 sin
(√

1 + (λ1 − 2 λ2)
2 (X0 − L − a)

)

+

∫
cos

(√
1 + (λ1 − 2λ2)

2X0

)
F2(X0) dX0 sin

(√
1 + (λ1 − 2λ2)

2X0

)

2
√

1 + (λ1 − 2λ2)
2

−

∫
sin
(√

1 + (λ1 − 2λ2)2X0

)
F2(X0)dX0 cos

(√
1 + (λ1 − 2λ2)2X0

)

2
√

1 + (λ1 − 2λ2)
2

,(4.A.35)

ψ24 = z4 cosh
(√

1 − (λ1 − 2λ2)
2X0

)
− K1K2

2

4 (λ1 − 2λ2)
2 ×

[ ∫
F41(X0) dX0 e

√
1−(λ1−2λ2)

2X0 −
∫

G41(X0) dX0 e−
√

1−(λ1−2λ2)
2X0
]
,(4.A.36)
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with

F0(X0) = 2|B1|2
(

cos(
√

1 + λ2
2 (X0 − L − a)) + C2 sin(

√
1 + λ2

2 (X0 − L − a))

)

×
[
(C2

1 − 1) cos2(
√

1 + λ2
1 (X0 − L − a))− C1 sin(2

√
1 + λ2

1 (X0 − L − a))− C2
1

]

× cos
(√

1 + λ2
2X0

)
+ |B2|2

( (
3 C2

2 − 1
)

cos3
(√

1 + λ2
2 (X0 − L − a)

)

+C2
(
C2

2 − 3
)

sin
(√

1 + λ2
2 (X0 − L − a)

)
cos2

(√
1 + λ2

2 (X0 − L − a)

)

−3C2
2 cos

(√
1 + λ2

2 (X0 − L − a)

)
− C3

2 sin
(√

1 + λ2
2 + (X0 − L − a)

))

× cos
(√

1 + λ2
2X0

)
+ 4λ2

(
α3|B2|2 + α4|B1|2

) (
cos(

√
1 + λ2

2 (X0 − L − a))

+C2 sin(
√

1 + λ2
2 (X0 − L − a))

)
cos

(√
1 + λ2

2X0

)
,

G0(X0) = 2|B1|2
(

cos(
√

1 + λ2
2 (X0 − L − a)) + C2 sin(

√
1 + λ2

2 (X0 − L − a))

)

×
[
(C2

1 − 1) cos2(
√

1 + λ2
1 (X0 − L − a))− C1 sin(2

√
1 + λ2

1 (X0 − L − a))− C2
1

]

× sin
(√

1 + λ2
2X0

)
+ |B2|2

( (
3C2

2 − 1
)

cos3
(√

1 + λ2
2 (X0 − L − a)

)

+C2
(
C2

2 − 3
)

sin
(√

1 + λ2
2 (X0 − L − a)

)
cos2

(√
1 + λ2

2 (X0 − L − a)

)

−3 C2
2 cos

(√
1 + λ2

2 (X0 − L − a)

)
− C3

2 sin
(√

1 + λ2
2 + (X0 − L − a)

))

× sin
(√

1 + λ2
2X0

)
+ 4λ2

(
α3|B2|2 + α4|B1|2

) (
cos

(√
1 + λ2

2 (X0 − L − a)

)

+C2 sin
(√

1 + λ2
2 (X0 − L − a)

))
sin
(√

1 + λ2
2X0

)
,

F1(X0) = |B1|2 cos
(√

1 + λ2
1X0

) [
(3C1

2 − 1) cos3
(√

1 + λ1
2 (X0 − L − a)

)

+C1(C
2
1 − 3) sin

(√
1 + λ1

2 (X0 − L − a)

)
cos2

(√
1 + λ1

2 (X0 − L − a)

)

−3C2
1 cos

(√
1 + λ1

2 (X0 − L − a)

)
− C3

1 sin
(√

1 + λ1
2 (X0 − L − a)

) ]

−2|B2|2 cos
(√

1 + λ2
1X0

) [
cos

(√
1 + λ1

2 (X0 − L − a)

)

+C1 sin
(√

1 + λ2
1(X0 − L − a)

) ][
(C2

2 − 1) cos2
(√

1 + λ2
2(X0 − L − a)

)

−C2 sin(2
√

1 + λ2
2 (X0 − L − a))− C2

2

]

−4λ1
(
α1|B1|2 + α2B2|2

)
cos

(√
1 + λ1

2X0

) [
cos

(√
1 + λ1

2 (X0 − L − a)

)

+C1 sin
(√

1 + λ1
2 (X0 − L − a)

) ]
,
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G1(X0) = −|B1|2 sin
(√

1 + λ1
2X0

) [ (
3C1

2 − 1
)

cos3
(√

1 + λ1
2 (X0 − L − a)

)

+C1(C1
2 − 3) sin

(√
1 + λ1

2(X0 − L − a)

)
cos2

(√
1 + λ1

2(X0 − L − a)

)

−
(

3 C1
2 − 4 λ1α1

)
cos

(√
1 + λ1

2 (X0 − L − a)

)
− C1

(
C1

2 − 4 λ1α1

)

× sin
(√

1 + λ1
2 (X0 − L − a)

) ]
− 2|B2|2 sin

(√
1 + λ1

2X0

)

(
cos(

√
1 + λ1

2 (X0 − L − a)) + C1 sin(
√

1 + λ1
2 (X0 − L − a))

)
×
[

(C2
2 − 1) cos2

(√
1 + λ2

2(X0 − L − a)

)
− 2C2 sin

(√
1 + λ2

2(X0 − L − a)

)

× cos
(√

1 + λ2
2 (X0 − L − a)

)
− C2

2 + 2 λ1α2

]
,

A1(X0) =
[

cos(
√

1 + λ1
2(X0 − L − a)) + C1 sin(

√
1 + λ1

2 (X0 − L − a))
]2

×
[

cos(
√

1 + λ2
2 (X0 − L − a)) + C2 sin(

√
1 + λ2

2 (X0 − L − a))
]2

,

A2(X0) = cosh2
(√

1 − λ2
1X0

)
sinh2

(√
1 − λ2

2X0

)
,

F2(X0) =

[
cos

(√
1 + λ2

1 (X0 − L − a)

)
+ C1 sin

(√
1 + λ2

1 (X0 − L − a)

)]

×
[

cos
(√

1 + λ2
2 (X0 − L − a)

)
+ C2 sin

(√
1 + λ2

2
(X0 − L − a)

)]2

,

G2(X0) =

[
cos

(√
1 + λ2

1 (X0 − L − a)

)
+ C1 sin

(√
1 + λ2

1 (X0 − L − a)

)]2

×
[

cos
(√

1 + λ2
2 (X0 − L − a)

)
+ C2 sin

(√
1 + λ2

2 (X0 − L − a)

)]
,

F3(X0) = e−
√

1−(λ1+2λ2)
2X0 cosh(

√
1 − λ2

1 X0) sinh2(
√

1 − λ2
2 X0),

G3(X0) = e
√

1−(λ1+2λ2)
2X0 cosh(

√
1 − λ2

1 X0) sinh2(
√

1 − λ2
2 X0),

F4(X0) = e−
√

1−(λ1−2λ2)
2X0 cosh(

√
1 − λ2

1 X0) sinh2(
√

1 − λ2
2 X0),

G4(X0) = e
√

1−(λ1−2λ2)
2X0 cosh(

√
1 − λ2

1 X0) sinh2(
√

1 − λ2
2 X0).

F41(X0) = cos
(√

(2 λ1 + λ2)
2 − 1 X0

)
cosh2(

√
1 − λ2

1 X0) sinh(
√

1 − λ2
2 X0),

G41(X0) = sin
(√

(2 λ1 + λ2)
2 − 1 X0

)
cosh2(

√
1 − λ2

1 X0) sinh(
√

1 − λ2
2 X0),

F5(X0) = e−
√

1−(2 λ1−λ2)
2 X0 cosh2(

√
1 − λ2

1 X0) sinh(
√

1 − λ2
2 X0),

G5(X0) = e
√

1−(2 λ1−λ2)
2 X0 cosh2(

√
1 − λ2

1 X0) sinh(
√

1 − λ2
2 X0).
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4.A.2 Functions in Section 4.3

L1 = 2 iλ1D4B1Φ1 −
(
α1|B1|2 + α2|B2|2

) (
α1B1|B1|2 + α2B1|B2|2 + µ1H

)
Φ1

−2λ1
(
α1B1|B1|2 + α2B1|B2|2 + µ1H

)
Ψ1 +

1
12

B1|B1|4Φ
5
1 +

1
2

B1|B1|2|B2|2Φ
3
1Φ

2
2

+
1
4

B1|B2|4Φ1Φ
4
2 −

3
2

B1|B1|2Φ
2
1Ψ1 − |B2|2B1Φ

2
2Ψ1 − |B1|2HΦ

2
1Ψ2 − |B2|2HΦ

2
2Ψ2

−1
2

B1
2HΦ1

2
Ψ2 − 2 B1 |B2|2 Φ1Φ2ψ4 −

1
2

B1 |B1|4 Φ1
2ψ13 −

1
2

B1 |B2|4 Φ
2
2ψ22

−1
2

B1 |B2|4 Φ2
2ψ19 − B1 |B1|2 |B2|2 Φ1Φ2ψ7 − B1 |B1|2 |B2|2 Φ1Φ2ψ10, (4.A.37)

L2 = 2 iλ1D4B1Φ1 −
(
α1|B1|2 + α2|B2|2

) (
α1B1|B1|2 + α2B1|B2|2 + µ1H

)
Φ1

−2λ1
(
α1B1|B1|2 + α2B1|B2|2 + µ1H

)
Ψ3 −

1
12

B1|B1|4Φ
5
1 −

1
2

B1|B1|2|B2|2Φ
3
1Φ

2
2

−1
4

B1|B2|4Φ1Φ
4
2 +

3
2

B1|B1|2Φ
2
1Ψ3 + |B2|2B1Φ

2
2Ψ3 + |B1|2HΦ

2
1Ψ4 + |B2|2HΦ

2
2Ψ4

+
1
2

B1
2HΦ1

2
Ψ4 + 2 B1 |B2|2 Φ1Φ2ψ5 +

1
2

B1 |B1|4 Φ1
2ψ14 +

1
2

B1 |B2|4 Φ2
2ψ23

+
1
2

B1 |B2|4 Φ2
2ψ20 + B1 |B1|2 |B2|2 Φ1Φ2ψ8 + B1 |B1|2 |B2|2 Φ1Φ2ψ11, (4.A.38)

L3 = 2 iλ1D4B1Φ1 −
(
α1|B1|2 + α2|B2|2

) (
α1B1|B1|2 + α2B1|B2|2 + µ1H

)
Φ1

−2λ1
(
α1B1|B1|2 + α2B1|B2|2 + µ1H

)
Ψ5 +

1
12

B1|B1|4Φ
5
1 +

1
2

B1|B1|2|B2|2Φ
3
1Φ

2
2

+
1
4

B1|B2|4Φ1Φ
4
2 −

3
2

B1|B1|2Φ
2
1Ψ5 − |B2|2B1Φ

2
2Ψ5 − |B1|2HΦ

2
1Ψ6 − |B2|2HΦ

2
2Ψ6

−1
2

B1
2HΦ1

2
Ψ6 − 2 B1 |B2|2 Φ1Φ2ψ6 −

1
2

B1 |B1|4 Φ1
2ψ15 −

1
2

B1 |B2|4 Φ2
2ψ24

−1
2

B1 |B2|4 Φ2
2ψ21 − B1 |B1|2 |B2|2 Φ1Φ2ψ9 − B1 |B1|2 |B2|2 Φ1Φ2ψ12, (4.A.39)

M1 = 2 iλ2D4B2Φ2 − B2
(
α3 |B2|2 + α4 |B1|2

)2
Φ2 − 2λ2B2

(
α3 |B2|2 + α4 |B1|2

)
ψ4

+
1

12
B2|B2|4Φ

5
2 +

1
2

B2|B1|2|B2|2Φ
2
1Φ

3
2 +

1
4

B2|B1|4Φ
4
1Φ2

−2 B2 |B1|2 Φ1Φ2Ψ1 − B1B2HΦ1Φ2Ψ2 − B2B1Φ1Φ2HΨ2 −
3
2

B2 |B2|2 Φ2
2ψ4

−1
2

B2 |B2|4 Φ2
2ψ16 −

1
2

B2 |B1|4 Φ1
2ψ10 −

1
2

B2 |B1|4 Φ1
2ψ7 − B2 |B1|2 Φ1

2ψ4

−B2 |B1|2 |B2|2 Φ1Φ2ψ19 − B2 |B1|2 |B2|2 Φ1Φ2ψ22, (4.A.40)
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M2 = 2 iλ2D4B2Φ2 − B2
(
α3 |B2|2 + α4 |B1|2

)2
Φ2 − 2λ2B2

(
α3 |B2|2 + α4 |B1|2

)
ψ5

− 1
12

B2|B2|4Φ
5
2 −

1
2

B2|B1|2|B2|2Φ
2
1Φ

3
2 −

1
4

B2|B1|4Φ
4
1Φ2

+2 B2 |B1|2 Φ1Φ2Ψ3 + B1B2HΦ1Φ2Ψ4 + B2B1Φ1Φ2HΨ4 +
3
2

B2 |B2|2 Φ2
2ψ5

+
1
2

B2 |B2|4 Φ2
2ψ17 +

1
2

B2 |B1|4 Φ1
2ψ11 +

1
2

B2 |B1|4 Φ1
2ψ8 + B2 |B1|2 Φ1

2ψ5

+B2 |B1|2 |B2|2 Φ1Φ2ψ20 + B2 |B1|2 |B2|2 Φ1Φ2ψ23, (4.A.41)

M3 = 2 iλ2D4B2Φ2 − B2
(
α3 |B2|2 + α4 |B1|2

)2
Φ2 − 2λ2B2

(
α3 |B2|2 + α4 |B1|2

)
ψ6

+
1

12
B2|B2|4Φ

5
2 +

1
2

B2|B1|2|B2|2Φ
2
1Φ

3
2 +

1
4

B2|B1|4Φ
4
1Φ2

−2 B2 |B1|2 Φ1Φ2Ψ5 − B1B2HΦ1Φ2Ψ6 − B2B1Φ1Φ2HΨ6 −
3
2

B2 |B2|2 Φ2
2ψ6

−1
2

B2 |B2|4 Φ2
2ψ18 −

1
2

B2 |B1|4 Φ1
2ψ12 −

1
2

B2 |B1|4 Φ1
2ψ9 − B2 |B1|2 Φ1

2ψ6

−B2 |B1|2 |B2|2 Φ1Φ2ψ21 − B2 |B1|2 |B2|2 Φ1Φ2ψ24. (4.A.42)

Ψ1 = |B1|2
[λ1α1

(
−2 X0λ2

2 +
√

1 − λ2
2 + 2 X0

)
e
√

1−λ1
2(L+a−X0)

2
√

1 − λ1
2
√

1 − λ2
2
(√

1 − λ1
2 +

√
1 − λ2

2
)

−e3
√

1−λ1
2(L+a−X0)

16(1 − λ1
2)

−
λ1α1

(
2 X0λ1

2 − 2 X0 −
√

1 − λ2
2
)

e
√

1−λ1
2(L+a−X0)

2
(

1 − λ1
2
) (√

1 − λ1
2 +

√
1 − λ2

2
)

]

+|B2|2
[λ1α2

(
−2 X0λ2

2 +
√

1 − λ2
2 + 2 X0

)
e
√

1−λ1
2(L+a−X0)

2
√

1 − λ1
2
√

1 − λ2
2
(√

1 − λ1
2 +

√
1 − λ2

2
)

−
λ1α2

(
2 X0λ1

2 − 2 X0 −
√

1 − λ2
2
)

e
√

1−λ1
2(L+a−X0)

2
(

1 − λ1
2
) (√

1 − λ1
2 +

√
1 − λ2

2
)

− e
(√

1−λ1
2+2

√
1−λ2

2
)
(L−X0+a)

4(
√

1 − λ2
2
√

1 − λ1
2 + 1 − λ2

2)

]
, (4.A.43)

Ψ2 =
λ1µ1

((
xλ1

2 − x
)√

1 − λ2
2 − 1

2 +
1
2 λ2

2
)

e
√

1−λ1
2(−x+a+L)

(
1 − λ1

2
) (

−
√

1 − λ2
2
√

1 − λ1
2 − 1 + λ2

2
)

+
µ1λ1

(
xλ2

2 − 1/2
√

1 − λ2
2 − x

)
e
√

1−λ1
2(−x+a+L)

√
1 − λ1

2
(
−
√

1 − λ2
2
√

1 − λ1
2 − 1 + λ2

2
) − 1

2(1 − λ2
1)

, (4.A.44)

Ψ3 =

∫
F6(X0) cos

(√
1 + λ2

1X0

)
dX0 sin

(√
1 + λ2

1X0

)

√
1 + λ2

1

−
∫

F6(X0) sin
(√

1 + λ2
1X0

)
dX0 cos

(√
1 + λ2

1X0

)

√
1 + λ2

1

, (4.A.45)
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Ψ4 =

∫
G6(X0) cos

(√
1 + λ2

1X0

)
dX0 sin

(√
1 + λ2

1X0

)

√
1 + λ2

1

−
∫

G6(X0) sin
(√

1 + λ2
1X0

)
dX0 cos

(√
1 + λ2

1X0

)

√
1 + λ2

1

, (4.A.46)

Ψ5 =

∫
e−

√
1−λ2

1X0 F7(X0)d X0e
√

1−λ2
1X0

4
√

1 − λ2
1

∫
e
√

1−λ2
1X0 F7(X0)dX0e−

√
1−λ2

1X0

4
√

1 − λ2
1

, (4.A.47)

Ψ6 =

∫
e−

√
1−λ2

1X0 G7(X0)dX0e
√

1−λ2
1X0

4
√

1 − λ2
1

−
∫

e
√

1−λ2
1X0 G7(X0)dX0e−

√
1−λ2

1X0

4
√

1 − λ2
1

, (4.A.48)

F6(X0) = 8|B1|2
(
1 − 3C2

1
)

cos3
(√

1 + λ1
2 (X0 − L − a)

)

−1
2
|B1|2C1

(
C2

1 − 3
)

sin
(√

1 + λ2
1 (X0 − L − a)

)
cos2

(√
1 + λ2

1 (X0 − L − a)

)

+
1
2
|B1|2C2

1

(
3 cos

(√
1 + λ2

1 (X0 − L − a)

)
+ C1 sin

(√
1 + λ2

1 (X0 − L − a)

))

−
[
|B2|2

(
C2

2 − 1
)

cos2
(√

1 + λ2
2 (X0 − L − a)

)

−C2|B2|2 sin
(

2
√

1 + λ2
2 (X0 − L − a)

)
− |B2|2C2

2 + 2λ1
(
α1|B1|2 + α2|B2|2

) ]

×
[

cos
(√

1 + λ2
1 (X0 − L − a)

)
+ C1 sin

(√
1 + λ2

1 (X0 − L − a)

)]
,

G6(X0) =
1
2
− λ1µ1

[
2 cos

(√
1 + λ2

1 (X0 − L − a)

)
+ C1 sin

(√
1 + λ2

1 (X0 − L − a)

)]
,

F7(X0) = 2K1
(
|B2|2K2

2 − 2λ1
(
α1|B1|2 + α2|B2|2

))
cosh

(√
1 − λ1

2X0

)

−2|B2|2K1 cosh
(√

1 − λ1
2X0

)
K2

2 cosh2
(√

1 − λ2
2X0

)

−|B1|2K3
1 cosh3

(√
1 − λ2

1X0

)
,

G7(X0) = 1 − 4 λ1µ3K1 cosh
(√

1 − λ1
2X0

)
.
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CHAPTER 5

Wave radiation in stacked long

Josephson junctions with

phase-shifts

5.1 Introduction

Over recent decades of systematic investigation into static and dynamic properties of

single Josephson junctions, there have been many theoretical, numerical and experi-

mental studies on the dynamics of stacked long Josephson junctions [157, 158, 159, 160].

Stacked Josephson junctions can provide larger power output from a smaller width

than a single Josephson junction [161]. In a stacked system, one junction is placed

directly above another with a separating layer that is thin compared to the London

penetration depth.

The coupled Josephson junctions lead to nontrivial dynamic effects like current locking

and Cherenkov radiation by Josephson fluxons in low-Tc (e.g. Nb/AlOx/Nb) as well

as in high-Tc (e.g. Bi2Sr2CaCu2O8) stacked junctions [142, 162]. Multi-stack Josephson

junctions are being seriously considered to multiply the physical effect of one layer.

The Josephson voltage standard, the Josephson computer, and the microwave gener-

ators based on many junctions are a few examples of coupled Josephson junctions.

The coupling of two junctions is symmetric in the sense that each junction has one

outermost electrode and one electrode shared with the second junction, however this

symmetry is broken in larger stack [163].

The fluxon dynamics in coupled long Josephson junctions have been studied over the

last few decades. Fluxons are nonlinear electromagnetic excitations, which can be per-

turbed by many external factors [155]. One possible application for the long Josephson
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junction stack is generation of radiation in the hundreds of GHz range. The single flux

flow oscillators are known as radiation sources [164, 165], which are based on the uni-

directional viscous flow of Josephson vortices along the junction [166, 167]. The fluxons

can be made to shuttle back and forth in the stack and radiate when near the edges of

the stack [168]. The fluxon dynamics in the inductively stacked long Josephson junction

were first considered theoretically by Mineev et al. [169].

Recently, great attention has been given to coupled long Josephson junction systems

described by coupled sine-Gordon equations [89, 158, 170]. The coupled sine-Gordon

equation describes complex behaviour of interchanging systems, such as atoms in peri-

odic potential [171] magnetic multilayers [172] and stacked Josephson junctions [170,

173, 174].

The coupling of the junctions is the basis for many applications, such as voltage stand-

ards and high frequency oscillators. The coupled sine-Gordon equation has been used

to model the phase locking of fluxons in systems of two parallel long Josephson junc-

tions. The stack Josephson junctions when interact with each other displaying many

characteristics, such as voltage locking [175, 176] and current locking [177, 178, 179].

When the junctions are closely spaced under the appropriate bias conditions the crit-

ical currents of the junctions are pulled together. This effect is called current locking,

which was proposed by Jillie et al. [177]. The study of voltage locked junctions can

help us understand the internal dynamics of the junction. Other explanation such as

inductive interaction between two junctions [178] and modulation of critical current

of one junction by radiation from the other junction [179] have been given for current

locking [180].

Sakai et al. [170] derived a coupled sine-Gordon equation for arbitrary strong coupling

between junctions. The perturbation approach for small coupling has been investigated

in [181, 182].

Here we introduce the dynamics of two stacked long Josephson junctions with phase-

shifts, governed by the coupled sine-Gordon equation

ϕ1
xx − ϕ1

tt = sin
(

ϕ1 + θ(x)
)
+ S ϕ2

xx + h cos(Ωt), (5.1.1)

ϕ2
xx − ϕ2

tt = sin
(
ϕ2 + θ(x)

)
+ S ϕ1

xx + h cos(Ωt), (5.1.2)

for the one-dimensional phase difference ϕ(x, t) between the order parameters of su-

perconductors layers of the junctions, driven by a microwave field h cos(Ωt), x ∈ R

and t > 0. The strength of magnetic induction coupling between two long Josephson
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junctions is denoted by S. The phase-shift considered is

θ(x) =





0, x < −a,

π, |x| ≤ a,

0, x > a,

(5.1.3)

with the boundary conditions

ϕ(±a−) = ϕ(±a+), ϕx(±a−) = ϕx(±a+). (5.1.4)

Using a multiple scales expansion we show that in the absence of the external drive and

with different magnetic inductance the system in the stacked Josephson junction has a

bounded time periodic solution. We also show that the periodic solutions of coupled

sine-Gordon equations, decay in time with the same rate.

The organization of this chapter is as follows. In Sections 5.2 and 5.3, we construct

the analytical approximation of two stacked long Josephson junction as coupled sine-

Gordon equations with different magnetic inductances. In Section 5.4, the method of

multiple scales is applied to obtain the amplitude of oscillations in the presence of

driving.

5.2 Coupled long Josephson junctions for S ∼ O(ϵ2)

In this section, we construct the dynamics of two stacked long Josephson junction

governed by coupled sine-Gordon Equations (5.1.1)–(5.1.2) with no driving, that is,

h = 0, θ(x) given by (5.1.3), which represents the phase shift for coupled 0 − π − 0

sine-Gordon equations. To describe the dynamics of the breathing modes of stacked

long Josephson junctions, we first consider the case of weak coupling where, S = ϵ2,

and derive an asymptotic expansion by writing

ϕ1 = ϕ1
0 + ϵ ϕ1

1 + ϵ2ϕ1
2 + ϵ3ϕ1

3 + . . . , (5.2.1)

ϕ2 = ϕ2
0 + ϵ ϕ2

1 + ϵ2ϕ2
2 + ϵ3ϕ3

3 + . . . . (5.2.2)

We use multiple scale expansions by introducing the slow time and space variables

[101]

Xn = ϵnx, Tn = ϵnt, n = 0, 1, 2, . . . , (5.2.3)

for simplicity we also use the notation

∂n =
∂

∂Xn
, Dn =

∂

∂Tn
. (5.2.4)

Putting relations (5.2.1)–(5.2.2) in (5.1.1)–(5.1.2) and using multiscale expansions as

noted above, we obtain a hierarchy of equations.
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5.2.1 Equations at O(1)

At leading order the O(1)-equations give

∂2
0ϕ1

0 − D2
0ϕ1

0 = sin
(

ϕ1
0 + θ

)
, (5.2.5)

∂2
0ϕ2

0 − D2
0ϕ2

0 = sin
(
ϕ2

0 + θ
)
. (5.2.6)

We consider a stable solution representing a uniform background solution

ϕ1
0 = ϕ2

0 = 0. (5.2.7)

5.2.2 Equations at O(ϵ)

The terms at O(ϵ) give

∂2
0ϕ1

1 − D2
0ϕ1

1 = cos(θ + ϕ1
0)ϕ

1
1, (5.2.8)

∂2
0ϕ2

1 − D2
0ϕ2

1 = cos(θ + ϕ2
0)ϕ

2
1. (5.2.9)

By using the spectral ansatz

ϕ
(1,2)
1 (X0, T0) = µ(X0)eiωT0 + c.c., (5.2.10)

together with the boundary conditions (5.1.4), we obtain the ground state for a breath-

ing mode for stacked long Josephson junctions

ϕ1
1(X0, T0) = B1eiω T0





cos(a
√

1 + ω2)e
√

1−ω2(a+X0) + c.c., X0 < −a,

cos(X0
√

1 + ω2) + c.c., |X0| < a,

cos(a
√

1 + ω2)e
√

1−ω2(a−X0) + c.c., X0 > a,

(5.2.11)

ϕ2
1(X0, T0) = B2eiω T0





cos(a
√

1 + ω2)e
√

1−ω2(a+X0) + c.c., X0 < −a,

cos(X0
√

1 + ω2) + c.c., |X0| < a,

cos(a
√

1 + ω2)e
√

1−ω2(a−X0) + c.c., X0 > a,

(5.2.12)

where Bi = Bi (T1, T2, ..) for i = 1, 2, are the amplitudes of oscillation, and depend on

the slow time scales. Throughout the chapter c.c. stands for the complex conjugate of

the immediately preceding terms. The oscillation frequency of the system, ω, is given

by the implicit relation

a =

√
1

1 + ω2 tan−1



√

1 − ω2

1 + ω2


 , ω2

< 1, (5.2.13)

where a is the facet length of the junction, which has a unique solution for each 0 6 a 6

π/4. As a → 0+, ω → 1−1, and as a → π/4, ω → 0.
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5.2.3 Equations at O(ϵ2)

Equating terms in (5.1.1)–(5.1.2) at O(ϵ2) we obtain

∂2
0ϕ1

2 − D2
0ϕ1

2 − cos(θ + ϕ1
0)ϕ

1
2 = 2D0D1ϕ1

1 − 2∂0∂1ϕ1
1 + ∂2

0ϕ2
0, (5.2.14)

∂2
0ϕ2

2 − D2
0ϕ2

2 − cos(θ + ϕ2
0)ϕ

2
2 = 2D0D1ϕ2

1 − 2∂0∂1ϕ2
1 + ∂2

0ϕ1
0. (5.2.15)

To find a bounded solution for ϕ1
2, ϕ2

2, Equations (5.2.14)–(5.2.15) generate constraints

on the right hand sides that are solvability conditions which lead to an important equa-

tion for the amplitudes B1, B2 as well as to equations at higher order when the expan-

sion is continued further [155, 156].

We write Equations (5.2.14)–(5.2.15) in the form

Lψ (x) = f (x) , (5.2.16)

where L is a linear self-adjoint operator (L = L†) given by the left hand side of the

above system, and ζ : T → R is a smooth periodic function. Let L2(R) be the Hilbert

space with complex inner product

⟨g, h⟩ =
∫

∞

−∞

g(ξ)h(ξ)dξ. (5.2.17)

Here g(ξ) is the complex conjugate of g(ξ). The Fredholm theorem states that the ne-

cessary and sufficient condition for the inhomogeneous equation Lψ = f (x) to have a

bounded solution is that f (x) be orthogonal to the null-space of the operator L. Hence,

the solvability condition provided by the Fredholm theorem is
∫

∞

−∞

L f (x) dx = 0. (5.2.18)

Calculating the right hand sides of (5.2.14)-(5.2.15) by using the known functions ϕ1
0,

ϕ2
0, ϕ1

1, ϕ2
1 and using the Fredholm theorem, the solvability conditions for Equations

(5.2.14)–(5.2.15) are

D1B1 = 0, D1B2 = 0. (5.2.19)

The Bj are independent of T1 and are only functions of T2, T3, . . . . By using the solvab-

ility conditions (5.2.19), we see that the Equations (5.2.14)–(5.2.15) becomes the same as

O(ϵ). For the uniformity in the perturbation expansion, we conclude that

ϕ1
2 = ϕ2

2 = 0. (5.2.20)
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5.2.4 Equations at O(ϵ3)

The terms at O(ϵ3) give

∂2
0ϕ1

3 − D2
0ϕ1

3 − cos(θ + ϕ1
0)ϕ

1
3 = 2(D0D2 − ∂0∂2)ϕ

1
1 + (D2

1 − ∂2
1)ϕ

1
1

−1
6

ϕ1
1

3
cos(θ) + ∂2

0ϕ2
1, (5.2.21)

∂2
0ϕ2

3 − D2
0ϕ2

3 − cos(θ + ϕ2
0)ϕ

2
3 = 2(D0D2 − ∂0∂2)ϕ

2
1 + (D2

1 − ∂2
1)ϕ

2
1

−1
6

ϕ2
1

3
cos(θ) + ∂2

0ϕ1
1. (5.2.22)

Having evaluated the right hand side using the functions ϕ1
1 and ϕ2

1 and splitting the

solutions into components proportional to simple harmonics, we obtain

∂2
0ϕ1

3 − D2
0ϕ1

3 − cos(θ)ϕ1
3 =





F1, X0 < −a,

F2, |X0| < a,

F3, X0 > a,

(5.2.23)

∂2
0ϕ2

3 − D2
0ϕ2

3 − cos(θ)ϕ2
3 =





G1, X0 < −a,

G2, |X0| < a,

G3, X0 > a,

(5.2.24)

with Fi, Gi given in Appendix 5.A.1.

The terms in Equations (5.A.1)–(5.A.6) contain forcing at frequencies ω and 3ω. The

former frequency is resonant with the discrete eigenmode and the latter is assumed to

lie in the continuous spectrum (phonon band), that is,

(3ω)2
> 1. (5.2.25)

As the Equations (5.2.23)–(5.2.24) are linear in ϕ1
3, ϕ2

3 the solution can be written as a

combination of solutions with frequencies present in the forcing, that is,

ϕ1
3 = ϕ1

3 (0) + ϕ1
3 (1)e

iωT0 + c.c. + ϕ1
3 (2)e

2iωT0 + c.c. + ϕ1
3 (3)e

3iωT0 + c.c., (5.2.26)

ϕ2
3 = ϕ2

3 (0) + ϕ2
3 (1)e

iωT0 + c.c. + ϕ2
3 (2)e

2iωT0 + c.c. + ϕ2
3 (3)e

3iωT0 + c.c.. (5.2.27)

This implies that ϕ1
3 (1), ϕ2

3 (1) satisfy the following inhomogeneous equations in the

three regions below

∂2
0ϕ1

3 (1) −
(
cos(θ)− ω2) ϕ1

3 (1) =





L1, X0 < −a,

L2, |X0| < a,

L3, X0 > a.

(5.2.28)

∂2
0ϕ2

3 (1) −
(
cos(θ)− ω2) ϕ2

3 (1) =





M1, X0 < −a,

M2, |X0| < a,

M3, X0 > a,

(5.2.29)
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with Li, Mi being subsets of the terms in Fi, Gi given by

L1 =
(
2 iω D2B1 + B2

(
1 − ω2)) cos

(
a
√

1 + ω2
)

e
√

1−ω2(a+X0)

−1
2

B1|B1|2 cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a+X0), (5.2.30)

L2 =
(
2iω D2B1 − B2

(
1 + ω2)) cos(

√
1 + ω2X0)

+
1
2

B1|B1|2 cos3(
√

1 + ω2X0), (5.2.31)

L3 =
(
2 iωD2B1 + B2

(
1 − ω2)) cos

(
a
√

1 + ω2
)

e
√

1−ω2(a−X0)

−1
2

B1|B1|2 cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a−X0), (5.2.32)

M1 =
(
2 iω D2B2 + B1

(
1 − ω2)) cos

(
a
√

1 + ω2
)

e
√

1−ω2(a+X0)

−1
2

B2|B2|2 cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a+X0), (5.2.33)

M2 =
(
2iω D2B2 − B1

(
1 + ω2)) cos(

√
1 + ω2X0)

+
1
2

B2|B2|2 cos3(
√

1 + ω2X0), (5.2.34)

M3 =
(
2 iωD2B2 + B1

(
1 − ω2)) cos

(
a
√

1 + ω2
)

e
√

1−ω2(a−X0)

−1
2

B2|B2|2 cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a−X0). (5.2.35)

Using the Fredholm theorem, the solvability conditions for Equations (5.2.28)–(5.2.29)

are

D2B1 = ζ1B1|B1|2 i − ζ2B2 i, (5.2.36)

D2B2 = ζ1B2|B2|2 i − ζ2B1 i. (5.2.37)

The quantities ζ1, ζ2 are given in Appendix in 5.A.1 as well as in Section 5.5, are real

and independent of X0, so solutions of (5.2.36)-(5.2.37) are oscillating in time. We have

not determined the stability of the oscillations, so we will have to go to higher order in

ϵ.

Substituting (5.2.36) and (5.2.37) back to Equations (5.2.28) and (5.2.29) respectively,

and using the boundary conditions (5.1.4) to prevent incoming radiation from X0 →
±∞, we obtain bounded solutions of the form

ϕ1
3 (1) =





B1|B1|2 Ψ1 (X0) + B2 Ψ2 (X0) , X0 < −a,

B1|B1|2 Ψ3 (X0) + B2 Ψ4 (X0) , |X0| < a,

B1|B1|2 Ψ5 (X0) + B2 Ψ6 (X0) , X0 > a,

(5.2.38)

ϕ2
3 (1) =





B2|B2|2 Ψ7 (X0) + B1 Ψ8 (X0) , X0 < −a,

B2|B2|2 Ψ9 (X0) + B1 Ψ10 (X0) , |X0| < a,

B2|B2|2 Ψ11 (X0) + B1 Ψ12 (X0) , X0 > a.

(5.2.39)
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Ψ1, .., Ψ12, are given at the end of the chapter in 5.A.1. Similarly, the solutions for the

third harmonics are

ϕ1
3 (3) (X0, T0) = B3

1





Ψ13(X0), X0 < −a,

Ψ14(X0), |X0| < a,

Ψ15(X0), X0 > a,

(5.2.40)

ϕ2
3 (3) (X0, T0) = B3

2





Ψ13(X0), X0 < −a,

Ψ14(X0), |X0| < a,

Ψ15(X0), X0 > a.

(5.2.41)

With the assumption (5.2.25), we see that Equations (5.2.40)–(5.2.41) show the left and

right moving radiation (oscillations) for X0 < a and X0 > a, respectively. The quantities

Ψ13, .., Ψ14, are given in Appendix 5.A.1.

5.2.5 Equations at O(ϵ4)

The terms from (5.1.1)-(5.1.2) at O(ϵ4) give

∂0
2ϕ1

4 − D0
2ϕ1

4 − cos
(

ϕ1
0 + θ

)
ϕ1

4 = 2 (D1D2 + D0D3 − ∂1∂2 − ∂0∂3) ϕ1
1

+2 (D0D1 − ∂0∂1) ϕ1
3 + ∂2

0 ϕ2
2

+

(
1

24
ϕ14

1 − ϕ1
3ϕ1

1

)
sin
(

ϕ1
0 + θ

)
, (5.2.42)

∂0
2ϕ2

4 − D0
2ϕ2

4 − cos
(
ϕ2

0 + θ
)

ϕ2
4 = 2 (D1D2 + D0D3 − ∂1∂2 − ∂0∂3) ϕ2

1

+2 (D0D1 − ∂0∂1) ϕ2
3 + ∂2

0 ϕ1
2

+

(
1

24
ϕ24

1 − ϕ2
3ϕ2

1

)
sin
(
ϕ2

0 + θ
)

. (5.2.43)

By the Fredholm theorem, the solvability conditions for Equations (5.2.42)–(5.2.43) are

D3B1 = 0, D3B2 = 0, (5.2.44)

that is, Bj are independent of T3, and Bj = Bj(T2, T4, . . . , ). Hence we conclude that

ϕ
(1,2)
4 = 0, as in case of ϕ

(1,2)
2 .

5.2.6 Equations at O(ϵ5)

Equating terms at O(ϵ5) gives the equations

∂0
2ϕ1

5 − D0
2ϕ1

5 − cos (θ) ϕ1
5 = 2 (D0D4 − ∂0∂4)ϕ

1
1 + 2(D3D1 − ∂3∂1)ϕ

1
1

+
(

D2
2 − ∂2

2
)

ϕ1
1 +

(
D2

1 − ∂2
1
)

ϕ1
3 + 2 (D2D0 − ∂2∂0) ϕ1

3

+

(
−1

2
ϕ1

1
2
ϕ1

3 +
1

120
ϕ1

1
5
)

cos (θ) + ∂2
0 ϕ2

3, (5.2.45)
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∂0
2ϕ2

5 − D0
2ϕ2

5 − cos (θ) ϕ2
5 = 2 (D0D4 − ∂0∂4)ϕ

2
1 + 2(D3D1 − ∂3∂1)ϕ

2
1

+
(

D2
2 − ∂2

2
)

ϕ2
1 +

(
D2

1 − ∂2
1
)

ϕ2
3 + 2 (D2D0 − ∂2∂0) ϕ2

3

+

(
−1

2
ϕ2

1
2
ϕ2

3 +
1

120
ϕ2

1
5
)

cos (θ) + ∂2
0 ϕ1

3. (5.2.46)

Again calculating the right hand sides using the known functions ϕ1
1, ϕ2

1, ϕ1
3 and ϕ2

3

we again split the solutions into components proportional to simple harmonics as in

(5.2.26)–(5.2.27) at O(ϵ3). The equations for the first harmonics are given by

∂2
0ϕ1

5 (1) −
(
cos (θ)− ω2) ϕ1

5 (1) =





P1, X0 < −a,

P2, |X0| < a,

P3, X0 > a,

(5.2.47)

∂2
0ϕ2

5 (1) −
(
cos (θ)− ω2) ϕ2

5 (1) =





Q1, X0 < −a,

Q2, |X0| < a,

Q3, X0 > a,

(5.2.48)

where P1, .., P3, Q1, .., Q3, can be seen in Appendix 5.A.1.

By using the Fredholm theorem, we obtain the solvability conditions for Equations

(5.2.47)–(5.2.48) by using the relation (5.A.24)–(5.A.29)

D4B1 = ζ3B1|B1|4 + ζ4B2|B2|2 i + ζ5 B2
1B2 i + ζ6B2|B1|2 i + ζ7B1 i, (5.2.49)

D4B2 = ζ3B2|B2|4 + ζ4B1|B1|2 i + ζ5 B2
2B1 i + ζ6B1|B2|2 i + ζ7B2 i, (5.2.50)

where ζ3, .., ζ7, are given in Section 5.5.

We do not calculate other harmonics at O(ϵ5), as we expect to have the desired amp-

litude equations at this stage. The fact that ζ3 ∈ C and is not purely imaginary implies

that oscillation will decay in amplitude. So there is no need to go to higher order in ϵ.

5.2.7 Amplitude equations

Combining the solvability conditions (5.2.19), (5.2.36)–(5.2.37), (5.2.44), (5.2.49)–(5.2.50)

and writing bi = ϵBi for i = 1, 2, we obtain

db1(t)

dt
= ζ3b1|b1|4 + ζ1b1|b1|2i − ζ7S4b1i

+S2
(

ζ4b2|b2|2 + ζ6b2|b1|2 + ζ5b2
1b2 − ζ2b2

)
i, (5.2.51)

db2(t)

dt
= ζ3b2|b2|4 + ζ1b2|b2|2i − ζ7S4b2i

+S2
(

ζ4b1|b1|2 + ζ6b1|b2|2 + ζ5b2
2b1 − ζ2b1

)
i, (5.2.52)
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by using the relation

∂|b|2
∂t

=
∂(bb∗)

∂t
= b

∂b∗

∂t
+ b∗

∂b

∂t
, (5.2.53)

we obtain
d

dt
|b1|2 = 2Re(ζ3)|b1|6 + S2 (ζ2 − ζ4|b2|2 + ζ5|b1|2 − ζ6|b1|2

) (
b1b2 − b2b1

)
i

+O(ϵ6), (5.2.54)
d

dt
|b2|2 = 2Re(ζ3)|b2|6 + S2 (ζ2 − ζ4|b1|2 + ζ5|b2|2 − ζ6|b2|2

) (
b2b1 − b1b2

)
i

+O(ϵ6). (5.2.55)

From Equations (5.2.54)–(5.2.55), we expect that it describes the gradual decrease with

the same amplitude of oscillation, as it emits energy in the form of radiation. It should

be noted that solutions of Equations (5.2.54)–(5.2.55) decay at the same rate. With the

above equation we observe especially that when b1 ∼ O(1), b2 ∼ O(1) they decay as

O(t−1/4).

5.3 Coupled long Josephson junctions with S ∼ O(1)

In this section we construct the dynamics of coupled sine-Gordon Equation (5.1.1)–

(5.1.2) without any driving, that is with h = 0, and when the magnetic induction coup-

ling between long Josephson junctions is strong, i.e. S ∼ O(1) with |S| < 1. By using

the boundary conditions (5.1.4) together with multiple scales expansion (5.2.3), we ob-

tain the following orders of equations.

5.3.1 Leading order corrections

The leading order terms are O(1) and give

∂2
0ϕ1

0 − D2
0ϕ1

0 = sin
(

ϕ1
0 + θ

)
+ S ∂2

0ϕ2
0, (5.3.1)

∂2
0ϕ2

0 − D2
0ϕ2

0 = sin
(
ϕ2

0 + θ
)
+ S ∂2

0ϕ1
0. (5.3.2)

A solution representing a uniform background is

ϕ1
0 = ϕ2

0 = 0. (5.3.3)

5.3.2 First order corrections

The terms in (5.1.1)-(5.1.2) at order O(ϵ) give

∂2
0ϕ1

1 − D2
0ϕ1

1 = cos (θ) ϕ1
1 + S ∂2

0ϕ2
1, (5.3.4)

∂2
0ϕ2

1 − D2
0ϕ2

1 = cos (θ) ϕ2
1 + S ∂2

0ϕ1
1. (5.3.5)
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Note that the equations are coupled. Here we assume that the solutions are either even

or odd namely

ϕ2
1 = ϕ1

1, or ϕ2
1 = −ϕ1

1. (5.3.6)

With the above assumption Equations (5.3.4)–(5.3.5) then become

(1 − S) ∂2
0ϕ

(1,2)
1 − D2

0ϕ
(1,2)
1 = cos(θ + ϕ1

0)ϕ
(1,2)
1 , (5.3.7)

or

(1 + S) ∂2
0ϕ

(1,2)
1 − D2

0ϕ
(1,2)
1 = cos(θ + ϕ1

0)ϕ
(1,2)
1 . (5.3.8)

By linearisation, we obtain the solution for the above equations in the form

ϕ1
1 = B1 Φ1(X0, T0)e

iω1 T0 + c.c. + B2 Φ2(X0, T0)e
iω2 T0 + c.c., (5.3.9)

ϕ2
1 = B1 Φ1(X0, T0)e

iω1 T0 + c.c. − B2 Φ2(X0, T0)e
iω2 T0 + c.c., (5.3.10)

where Bi = Bi (T0, T1, ..) for i = 1, 2 are the amplitudes of oscillation. The oscillation

frequencies ω1 and ω2 are given by the implicit relations

a =

√
1 ∓ S

1 + ω2
i

tan−1



√

1 − ωi
2

1 + ωi
2


 , |S| < 1, i = 1, 2, (5.3.11)

where a is the facet length of the junctions. There are two critical facet lengths, corres-

ponding to each of ωi → 0, namely

aci =
π

4

√
1 ∓ S. (5.3.12)

The quantities Φj are given by

Φ1(X0, T0) =





cos
(√

1+ω1
2

1−S a

)
e(a+X0)

√
(1−ω1

2)/(1−S), X0 < −a,

cos
(√

1+ω1
2

1−S X0

)
, |X0| < a,

cos
(√

1+ω1
2

1−S a

)
e(a−X0)

√
(1−ω1

2)/(1−S), X0 > a,

(5.3.13)

Φ2(X0, T0) =





cos
(√

1+ω22

1+S a

)
e(a+X0)

√
(1−ω22)/(1+S), X0 < −a,

cos
(√

1+ω22

1+S X0

)
, |X0| < a,

cos
(√

1+ω22

1+S a

)
e(a−X0)

√
(1−ω22)/(1+S), X0 > a.

(5.3.14)
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5.3.3 Second order corrections

From the terms in (5.1.1)–(5.1.2) at order O(ϵ2), we obtain a pair of equations

(1 − S) ∂2
0ϕ

j
2 − D2

0ϕ
j
2 − cos(θ + ϕ1

0)ϕ
j
2 = 2D0D1ϕ

j
1 − 2∂0∂1ϕ

j
1, (5.3.15)

(1 + S) ∂2
0ϕ

j
2 − D2

0ϕ
j
2 − cos(θ + ϕ1

0)ϕ
j
2 = 2D0D1ϕ

j
1 − 2∂0∂1ϕ

j
1, (5.3.16)

where j = 1, 2. Evaluating the right-hand sides for the different regions and substitut-

ing in the spectral ansätze

ϕ
j
1(X0, T0) = ϕ̃

j
1(X0)eiω1T0 , ϕ

j
2(X0, T0) = ϕ̃

j
2(X0)eiω2T0 ,

we obtain a set of two ordinary differential equations corresponding to the frequencies

ω1, ω2. To find bounded solutions for equations (5.3.15)–(5.3.16), we apply the Fred-

holm theorem, which implies that Bi are independent of the first slow time scale T1,

since

D1B1 = 0, D1B2 = 0. (5.3.17)

As ∂1B, as well as ∂nB, do not appear in the final amplitude equations, so we conclude

that

∂nB = 0, n = 1, 2, 3, . . . , (5.3.18)

which implies that there is no dependence on the longer space scales X1, X2, . . . .

By putting the solvability conditions (5.3.17) together with (5.3.18) in (5.3.15)–(5.3.16),

we obtain the equations similar to those O(ϵ). Due to the uniformity in perturbation

expansions, we impose

ϕ
j
2(X0, T0) = 0. (5.3.19)

5.3.4 Third correction terms

At O(ϵ3), Equations (5.1.1) and (5.1.2) imply

∂2
0ϕ

(1,2)
3 − D2

0ϕ
(1,2)
3 − cos(θ)ϕ(1,2)

3 = 2 (D0D2 − ∂0∂2)ϕ
(1,2)
1

−1
6

ϕ
(1,2)
1

3
cos(θ) + S ∂2

0ϕ
(2,1)
3 . (5.3.20)

Again assuming that ϕ
(1,2)
1 = ϕ

(2,1)
1 or ϕ

(1,2)
1 = −ϕ

(2,1)
1 , and calculating the right hand

side of the above equations using the previously calculated functions, we obtain

(1 − S) ∂2
0ϕ

(1,2)
3 − D2

0ϕ
(1,2)
3 − cos(θ + ϕ

(1,2)
0 )ϕ

(1,2)
3

= 2iω1D2B1Φ1eiω1T0 −
[1

2
B1

(
|B1|2 Φ

2
1 + 2 |B2|2 Φ

2
2

)
Φ1eiω1T0 +

1
6

B3
1Φ

3
1e3iω1T0

+
1
2

B1B2
2Φ1Φ

2
2ei(2 ω2+ω1)T0 +

1
2

B1B2
2Φ1Φ

2
2ei(2 ω2−ω1)T0

]
cos θ + c.c., (5.3.21)
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(1 + S) ∂2
0ϕ

(1,2)
3 − D2

0ϕ
(1,2)
3 − cos(θ + ϕ0)ϕ

(1,2)
3

= 2iω2D2B2Φ2eiω2T0 −
[1

2
B2

(
|B2|2 Φ

2
2 + 2 |B1|2 Φ

2
1

)
Φ2eiω2T0 +

1
6

B3
2Φ

3
2e3iω2T0

+
1
2

B2
1B2Φ

2
1Φ2ei(2 ω1+ω2)T0 +

1
2

B2
1B2Φ

2
1Φ2ei(2 ω1−ω2)T0

]
cos θ + c.c.. (5.3.22)

As the above equations are linear, their solutions can be written as a linear combination

of solutions with frequencies present in the forcing terms, i.e.

ϕ
(1,2)
3 = ϕ

(1,2)
3(0,0) + c.c. + ϕ

(1,2)
3 (1,1)e

iω1T0 + c.c. + ϕ
(1,2)
3 (1,2)e

iω2T0 + c.c. + ϕ
(1,2)
3 (22,1)e

i(2 ω2+ω1)T0

+c.c. + ϕ
(1,2)
3 (22,2)e

i(2 ω2−ω1)T0 + c.c. + ϕ
(1,2)
3 (21,1)e

i(2 ω1+ω2)T0 + c.c.

+ϕ
(1,2)
3(22,2)e

i(2ω1−ω2)T0 + c.c. + ϕ
(1,2)
3(3,1)e

3iω1T0 + c.c. + ϕ
(1,2)
3(3,2)e

3iω2T0 + c.c..(5.3.23)

Having evaluated the right hand side and splitting the solutions into components pro-

portional to simple harmonics, we obtain the solvability condition for the first harmon-

ics

D2B1 = ψ1B1 |B1|2 i + ψ2B1 |B2|2 i, (5.3.24)

D2B2 = ψ3B2 |B2|2 i + ψ4B2 |B1|2 i, (5.3.25)

where ψi, i = 1, 2, 3, 4 are given in 5.5, and the bounded solutions for the first harmonics

are

ϕ
(1,2)
3 (1,1) =





|B1|2R(1,1) + |B2|2R(1,2), X0 < −a,

|B1|2R(2,1) + |B2|2R(2,2), |X0| ≤ a,

|B1|2R(3,1) + |B2|2R(3,2), X0 > a,

(5.3.26)

ϕ
(1,2)
3 (1,2) =





|B2|2S(1,1) + |B1|2S(1,2), X0 < −a,

|B2|2S(2,1) + |B1|2S(2,2), |X0| ≤ a,

|B2|2S(3,1) + |B1|2S(3,2), X0 > a,

(5.3.27)

where R(j,k), S(j,k) will be given in Appendix 5.A.2.

At this stage, we assume that

(3ω1)
2
> 1, (3ω2)

2
> 1, (5.3.28)

that is, the third harmonics lie in the continuous spectrum. The solutions for the third

harmonics are

ϕ
(1,2)
3 (3,1) =





W1, X0 < −a,

W2, |X0| < a,

W3, X0 > a,

(5.3.29)
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ϕ
(1,2)
3 (3,2) =





W4, X0 < −a,

W5, |X0| < a,

W6, X0 > a,

(5.3.30)

where W1, .., W6 are also given in Appendix 5.A.2.

The assumptions (5.3.28) imply that ϕ
(1,2)
3 (22,1)+ c.c., ϕ

(1,2)
3 (21,1)+ c.c., ϕ

(1,2)
3 (3,1)+ c.c. and ϕ

(1,2)
3 (3,2)+

c.c. represent continuous wave radiation travelling to the left in X0 < −a and right in

X0 > a. Also with given assumptions (5.3.28) and ω2 > ω1 the harmonics 2ω2 + ω1,

2ω1 + ω2 also lie in the continuous spectrum, and are responsible for continuous wave

oscillations in coupled long Josephson junctions. The bounded solutions for the above

harmonics appearing in (5.3.23) are

ϕ
(1,2)
3 (22,1) =





U1, X0 < −a,

U2, |X0| < a,

U3, X0 > a.

(5.3.31)

ϕ
(1,2)
3 (22,2) =





U4, X0 < −a,

U5, |X0| ≤ a,

U6, X0 > a,

(5.3.32)

ϕ
(1,2)
3 (21,1) =





V1, X0 < −a,

V2, |X0| ≤ a,

V3, X0 > a,

(5.3.33)

ϕ
(1,2)
3 (21,2) =





V4, X0 < −a,

V5, |X0| ≤ a,

V6, X0 > a,

(5.3.34)

where Ui, Vi for i = 1, 2, ..6 are given in Appendix 5.A.2.

By combining Equations (5.3.26)–(5.3.34), we obtain solutions for ϕ1
3, ϕ2

3 in the form

ϕ1
3 = B1 ϕ

(1,2)
3 (1,1)e

iω1T0 + c.c. + B2 ϕ
(1,2)
3 (1,2)e

iω2T0 + c.c. + B1B2
2 ϕ

(1,2)
3 (22,1)e

i(2 ω2+ω1)T0

+c.c. + B1B2
2 ϕ

(1,2)
3 (22,2)e

i(2 ω2−ω1)T0 + c.c. + B2B2
1 ϕ

(1,2)
3 (21,1)e

i(2 ω1+ω2)T0 + c.c.

+B2B2
1 ϕ

(1,2)
3 (22,2)e

i(2 ω1−ω2)T0 + c.c. + B3
1ϕ

(1,2)
3 (3,1)e

3iω1T0 + c.c.

+B3
2 ϕ1

3 (3,2)e
3iω2T0 + c.c., (5.3.35)

ϕ2
3 = B1 ϕ

(1,2)
3 (1,1)e

iω1T0 + c.c. − B2 ϕ
(1,2)
3 (1,2)e

iω2T0 + c.c. + B1B2
2 ϕ

(1,2)
3 (22,1)e

i(2 ω2+ω1)T0

+c.c. + B1B2
2 ϕ

(1,2)
3 (22,2)e

i(2 ω2−ω1)T0 + c.c. − B2B2
1 ϕ

(1,2)
3 (21,1)e

i(2 ω1+ω2)T0 + c.c.

−B2B2
1 ϕ

(1,2)
3 (22,2)e

i(2 ω1−ω2)T0 + c.c. + B3
1ϕ

(1,2)
3 (3,1)e

3iω1T0 + c.c.

−B3
2 ϕ1

3 (3,2)e
3iω2T0 + c.c.. (5.3.36)
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Since the above solutions are still purely periodic in time, we continue to higher order

to determine whether amplitude of oscillations increases or decreases.

5.3.5 Fourth correction terms

The terms at order O(ϵ4) from (5.1.1), (5.1.2) give

∂0
2ϕ

(1,2)
4 − D0

2ϕ
(1,2)
4 − cos (θ) ϕ

(1,2)
4 = 2 (D1D2 + D0D3 − ∂1∂2 − ∂0∂3) ϕ

(1,2)
1

+

(
1

24
ϕ

4(1,2)
1 − ϕ

(1,2)
3 ϕ

(1,2)
1

)
sin
(

ϕ
(1,2)
0 + θ

)

+2 (D0D1 − ∂0∂1) ϕ
(1,2)
3 + S∂2

0ϕ
(2,1)
4 , (5.3.37)

The solvability conditions for the above equations are

D3B1 = 0, D3B2 = 0. (5.3.38)

From this we impose the condition that ϕ
(1,2)
4 = 0, as we did before for ϕ

(1,2)
2 , and note

that Bj are independent of T3, that is, Bj = Bj(T2, T4, . . . ).

5.3.6 Fifth order terms

Equating terms from (5.1.1), (5.1.2) at O(ϵ5) gives the equations

∂0
2ϕ

(1,2)
5 − D0

2ϕ
(1,2)
5 − cos(θ)ϕ(1,2)

5 = 2 (D0D4 − ∂0∂4) ϕ
(1,2)
1 + 2 (D3D1 − ∂3∂1) ϕ

(1,2)
1

+
(

D2
2 − ∂2

2
)

ϕ
(1,2)
1 +

(
D2

1 − ∂2
1
)

ϕ
(1,2)
3

+

(
−1

2
ϕ
(1,2)
1

2
ϕ
(1,2)
3 +

1
120

ϕ
(1,2)
1

5
)

cos (θ)

+2 (D2D0 − ∂2∂0) ϕ
(1,2)
3 + S ∂2

0ϕ
(2,1)
5 . (5.3.39)

Having evaluated the right hand side and splitting the solutions into components pro-

portional to simple harmonics, as in Equations (5.3.23), we obtain solutions for the first

harmonics as

(1 − S) ∂2
0ϕ

(1,2)
51 −

(
cos(θ)− ω2

1
)

ϕ
(1,2)
51 =





P11, X0 < −a,

P12, |X0| ≤ a,

P13, X0 > a,

(5.3.40)

(1 + S) ∂2
0ϕ

(1,2)
52 −

(
cos(θ)− ω2

2
)

ϕ
(1,2)
52 =





Q11, X0 < −a,

Q12, |X0| ≤ a,

Q13, X0 > a,

(5.3.41)

with Pi, Qi given in Appendix 5.A.2.
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The solvability conditions for Equations (5.3.40)–(5.3.41) are

D4B1 = φ1B1|B1|4 + φ2B1|B2|4 + φ3B1|B1|2|B2|2, (5.3.42)

D4B2 = φ4B2|B2|4 + φ5B2|B1|4 + φ6B2|B1|2|B2|2. (5.3.43)

where the values of φj are given in 5.5. Since the φj are not all purely imaginary, the

above equations give growth/decay in amplitude of oscillation, so there is no need to

go to higher order.

5.3.7 Amplitude equations

We do not calculate other harmonics for Equations (5.3.40) and (5.3.41), as we expect

the final amplitude equations at this stage. Combining all the solvability conditions,

we obtain the coupled amplitude equations

∂

∂t
|b1|2 = 2 Re(φ1)|b1|6 + 2 Re(φ3)|b1|4|b2|2 +

(
φ2b1b2 + φ2b1b2

)
|b2|4,(5.3.44)

∂

∂t
|b2|2 = 2 Re(φ4)|b2|6 + 2 Re(φ6)|b2|4|b1|2 +

(
φ5b2b1 + φ5b2b1

)
|b1|4.(5.3.45)

The Equations (5.3.44)–(5.3.45) are similar to (5.2.54)–(5.2.55) and describe the amp-

litude of oscillations for the stacked long Josephson junction, and both amplitudes de-

cay with the same algebraic rate, namely O(t−1/4).

5.4 Driven coupled long Josephson junctions with phase-shift

We now consider the coupled sine-Gordon equations describing a stacked pair of 0 −
π − 0 long Josephson junctions in the presence of external driving with frequency near

the natural frequency Ω with h ̸= 0, Ω = ω1(1 + ρ) and for some small value of ρ.

We assume strong coupling, that is, S ∼ O(1). By rescaling the time by Ωt = ω1τ,

(5.1.1)-(5.1.2), become

ϕ1
xx(x, τ)− (1 + ρ)2 ϕ1

ττ(x, τ) = sin
(

ϕ1 + θ
)
+ Sϕ2

xx +
1
2

h
(

eiω1τ + c.c.
)

,(5.4.1)

ϕ2
xx(x, τ)− (1 + ρ)2 ϕ2

ττ(x, τ) = sin
(
ϕ2 + θ

)
+ Sϕ1

xx +
1
2

h
(

eiω1τ + c.c.
)

. (5.4.2)

Here, we assume that the driving amplitude is small, that is,

h = ϵ3H, ρ = ϵ3R, (5.4.3)

with H, R ∼ O(1). Due to the time rescaling above, our slow temporal variables are

now defined as

Xn = ϵnx, Tn = ϵnτ, n = 0, 1, 2, ..., (5.4.4)
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with the boundary conditions given by (5.1.4) and the phase-shift given by (5.1.3).

Performing a perturbation expansion order by order, we obtain the same expansion up

to O(ϵ2), as in Sections 5.3.1–5.3.3.

5.4.1 Third correction terms

Our equations at O(ϵ3) are

∂2
0ϕ

(1,2)
3 − D2

0ϕ
(1,2)
3 − cos (θ) ϕ

(1,2)
3 = 2 (D0D2 − ∂0∂2)ϕ

(1,2)
1 − 1

6
ϕ
(1,2)
1

3
cos(θ)

+S ∂2
0ϕ

(2,1)
3 +

1
2

Heiω1τ + c.c.. (5.4.5)

The only difference from the undriven case is the presence of the harmonic drive. By

using the assumption (5.3.6), the first harmonic for the above equations is

(1 − S) ∂2
0ϕ

(1,2)
3 − D2

0ϕ
(1,2)
3 − cos(θ + ϕ0)ϕ

(1,2)
3 = 2 i ω1D2B1 Φ1eiω1T0

−1
2

B1

(
|B1|2 Φ

2
1 + 2 |B2|2 Φ

2
2

)
Φ1 cos (θ) eiω1 T0 +

1
2

Heiω1 T0 + c.c., (5.4.6)

the other harmonics are the same as in the undriven case 5.3. The solvability condition

for the above equation is

D2B1 = ψ1B1|B1|2 i + ψ2B1|B2|2 i + η1H i, (5.4.7)

where ψ1, ψ2, η1 are given in Section 5.5.

The solvability condition for harmonic having frequency ω2 ( i.e. D2B2 ) is the same

as in 5.3. It should be noted that the above solvability condition is for ϕ1
3 only. The

solvability condition for ϕ2
3 can be obtained by replacing B2 by −B2.

The bounded solution for the first harmonic is

ϕ̃
(1,2)
3 (1,1) =





B1|B1|2Y(1,1) + B1|B2|2Y(1,2) + HY(1,3), X0 < −a,

B1|B1|2Y(2,1) + B1|B2|2Y(2,2) + HY(2,3), |X0| ≤ a,

B1|B1|2Y(3,1) + B1|B2|2Y(3,2) + HY(3,3), X0 > a,

(5.4.8)

where Y(j,k) are given in Section 5.A.2.

With the above solution, ϕ1
3, ϕ2

3 are now given by

ϕ1
3 = B1 ϕ̃

(1,2)
3 (1,1)e

iω1T0 + c.c. + B2 ϕ
(1,2)
3 (1,2)e

iω2T0 + c.c. + B1B2
2 ϕ

(1,2)
3 (22,1)e

i(2 ω2+ω1)T0

+c.c. + B1B2
2 ϕ

(1,2)
3 (22,2)e

i(2 ω2−ω1)T0 + c.c. + B2B2
1 ϕ

(1,2)
3 (21,1)e

i(2 ω1+ω2)T0 + c.c.

+B2B2
1 ϕ

(1,2)
3 (22,2)e

i(2 ω1−ω2)T0 + c.c. + B3
1ϕ

(1,2)
3 (3,1)e

3iω1T0 + c.c.

+B3
2 ϕ1

3 (3,2)e
3iω2T0 + c.c., (5.4.9)
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ϕ2
3 = B1 ϕ̃

(1,2)
3 (1,1)e

iω1T0 + c.c. − B2 ϕ
(1,2)
3 (1,2)e

iω2T0 + c.c. + B1B2
2 ϕ

(1,2)
3 (22,1)e

i(2 ω2+ω1)T0

+c.c. + B1B2
2 ϕ

(1,2)
3 (22,2)e

i(2 ω2−ω1)T0 + c.c. − B2B2
1 ϕ

(1,2)
3 (21,1)e

i(2 ω1+ω2)T0 + c.c.

−B2B2
1 ϕ

(1,2)
3 (22,2)e

i(2 ω1−ω2)T0 + c.c. + B3
1ϕ

(1,2)
3 (3,1)e

3iω1T0 + c.c.

−B3
2 ϕ1

3 (3,2)e
3iω2T0 + c.c.. (5.4.10)

5.4.2 Fourth correction terms

The terms at order O(ϵ4) give

∂0
2ϕ

(1,2)
4 − D0

2ϕ
(1,2)
4 − cos (θ) ϕ

(1,2)
4 = 2 (D1D2 + D0D3 − ∂1∂2 − ∂0∂3) ϕ

(1,2)
1

+2 (D0D1 − ∂0∂1) ϕ
(1,2)
3 + 2 RD2

0ϕ
(1,2)
1

+

(
1
24

ϕ
4(1,2)
1 − ϕ

(1,2)
3 ϕ

(1,2)
1

)
sin (θ)

+S ∂2
0ϕ

(2,1)
4 . (5.4.11)

The solvability conditions for the above equations are

D3B1 = −ω1 B1 R i, D3B2 = −ω2 B2 R i, (5.4.12)

solving the remaining terms we obtain

ϕ
(1,2)
4 (X0, T0) = 0. (5.4.13)

5.4.3 Fifth correction terms

Equating terms at O(ϵ5) gives the equations

∂0
2ϕ

(1,2)
5 − D0

2ϕ
(1,2)
5 − cos(θ)ϕ(1,2)

5 = 2 (D0D4 − ∂0∂4) ϕ
(1,2)
1 + 2 (D3D1 − ∂3∂1) ϕ

(1,2)
1

+
(

D2
2 − ∂2

2
)

ϕ
(1,2)
1 +

(
D2

1 − ∂2
1
)

ϕ
(1,2)
3

+

(
−1

2
ϕ
(1,2)
1

2
ϕ
(1,2)
3 +

1
120

ϕ
(1,2)
1

5
)

cos (θ)

+2 (D2D0 − ∂2∂0) ϕ
(1,2)
3 + S ∂2

0ϕ
(2,1)
5 . (5.4.14)

By using the assumption (5.3.6) and evaluating the right-side, we again split the solu-

tions into components proportional to simple harmonics as in Equation (5.3.23). For

the first harmonic, we obtain that

(1 − S) ∂2
0ϕ̃

(1,2)
51 −

(
cos(θ)− ω2

1
)

ϕ̃
(1,2)
51 =





Z1, X0 < −a,

Z2, |X0| ≤ a,

Z3, X0 > a,

(5.4.15)

where Zi are given in Appendix 5.A.3.
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The solvability condition for Equation (5.4.15) is

D4B1 = ξ1B1 |B1|4 + ξ2B1 |B2|4 + ξ3B1 |B1|2 |B2|2

+
(

ξ4 |B1|2 + ξ5 |B2|2 + ξ6B2
1

)
Hi, (5.4.16)

It should be noted that D4B2 is the same as Equation (5.3.43). The quantities ξi are given

in Section 5.5. Since ξi is not purely imaginary the above equations determine the rate

of increase in amplitude.

5.4.4 Amplitude equations

Combining all the solvability conditions, we obtain the dynamics of the oscillation

amplitude equations in the presence of external drive

ω1

Ω

∂b1

∂t
= ψ1b1|b1|2 i + ψ2b1|b2|2 i + η1h i +−ω1 b1 ρ i + ξ1b1|b1|4

+ξ2b1|b2|4 + ξ3b1|b1|2|b2|2 +
(
ξ4|b1|2 + ξ5|b2|2 + ξ6b2

1
)

h i, (5.4.17)
ω1

Ω

∂b2

∂t
= ψ3b2|b2|2 i + ψ4b2|b1|2 i − ω1 b2 ρ i + φ4b2|b2|4 + φ5b2|b1|4

+φ6b2|b1|2|b2|2. (5.4.18)

In this case, the two solutions do not decay to zero as t → ∞. Due to the driving terms,

there is a steady state solution. From (5.4.17)–(5.4.18), we expect that a nonzero external

drive induces a breathing mode oscillation in the stacked long Josephson junctions.

5.5 Approximate values

If we fix the facet length as, a(ω) = 0.4, and the strength of magnetic induction S = 0.5

and consider the systems natural frequencies, which we find by solving (5.2.13) and

(5.3.11), we obtain

ω = 0.53342, ω1 = 0.53342, ω2 = 0.81565.

For the other parameters, we obtain the coefficients in the analytical approximations

(5.2.54)-(5.2.55), (5.3.44)-(5.3.45) and (5.4.17)-(5.4.18) as

ζ1 = 0.04333, ζ2 = 0.22234, ζ4 = 0.08625, ζ5 = 0.06905,

ζ6 = 0.00003, ζ7 = 0.16418, ψ1 = 0.16984, ψ2 = 0.26012,

ψ3 = -0.00251, ψ4 = 0.08354, ξ4 = -2.50794, ξ5 = 4.95644,

ξ6 = -0.00948, η1 = 0.79108, η2 = 0.56503, ρ4= -1.14557,

ρ5 = -2.97325, ρ6 = 0.01483,
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φ1 = -0.00643-0.18433 i, φ2 = -0.05359+0.40965 i, φ3 = -0.01879-2.38812 i,

φ4 = -0.00221-0.03199 i, φ5 = -0.00302-0.12495 i, φ6 = -0.03442-1.49371 i,

ξ1 = -0.00643+0.91037 i, ξ2 = -0.05359+0.40965 i, ξ3 = -0.01879-1.91557 i,

ρ1 = -0.00168+0.52454 i, ρ2 = -0.00302-0.12495 i, ρ3 = -0.03442-1.51295 i,

ζ3 = -0.00325- 0.07216 i.

We will use the above calculations to compare the approximate solutions obtained in

Sections 5.2, 5.3 and 5.4 with numerics, which is left for future work.

5.6 Conclusions

We have considered a spatially inhomogeneous coupled sine-Gordon equations with

a time periodic drive, modelling stacked long Josephson junctions with a phase shift.

Using multiscale expansion, we derived coupled amplitude differential equations con-

sidering magnetic coupling S ∼ O(1) and S ∼ O(ϵ2) in the absence of an ac-drive.

The coupling term between the stack Josephson junctions depends on the physical and

geometrical parameters of the system. The multiscale expansion is asymptotic, i.e. only

valid for small initial amplitudes of the breathing modes. In the small amplitude limit

the expansion is expected to provide an accurate description of the breather.

The dynamics of the considered coupled sine-Gordon equations has been extensively

studied before for weak and strong coupling [170, 181, 182] to investigate different

phenomenon in stacked Josephson junctions, such as voltage locking [175, 176] and

current locking [177, 178, 179]. However, the coupled sine-Gordon equations in the

context of stacked Josephson junctions with phase shift is considered here for the first

time.

We have calculated analytical approximations of breathing modes in stacked Josephson

junctions in the limit of small initial amplitudes. We obtained coupled amplitude equa-

tions, which describe the gradual decrease of the oscillation amplitude, as the modes

emit energy in the form of radiation. The emission of radiation has the effect of damp-

ing the breathing. The damping is due to the frequency tripling effect of the nonlin-

earity that have caused breathing mode to become a source of radiation. The radiation

emission in long Josephson junction has been investigated before by many others. The

radiation caused by motion of solitons in long Josephson junctions was reported by

Dueholm et al. [183]. More recently, Krasnov [184] has discussed the radiative anni-

hilation in coupled sine-Gordon equations occurring in a time decay of breather. This

phenomenon may be useful to achieve superradiant emission from coupled oscillators.

The obtained amplitude equations decay at the same rate, which cause synchronized
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oscillation in Josephson junctions. Here, we showed that, the oscillation amplitudes

of breathing mode oscillation decay with the same algebraic rate, namely O(t−1/4) for

stacked long Josephson junctions with uniform ground state.

We also investigated strong coupling for S ∼ O(1) with time periodic drive in the

coupled sine-Gordon equations for stacked long Josephson junctions. In this case, the

obtained amplitude equations do not decay to zero as t → ∞. Due to the driving

term, there is a steady state solution. We expect that a nonzero external drive induces

a breathing mode oscillation in the stacked long Josephson junctions, similar to the

investigation discussed in Chapter 2 for single long Josephson junctions with phase

shifts.

145



CHAPTER 5: WAVE RADIATION IN STACKED LONG JOSEPHSON JUNCTIONS WITH

PHASE-SHIFTS

5.A Appendix: Explicit expressions

5.A.1 Functions in Section 5.2

F1 = 2
(

iωD2B1 −
√

1 − ω2∂2B1

)
cos

(
a
√

1 + ω2
)

e
√

1−ω2(a+X0)+iωT0

+
(
1 − ω2) B2 cos

(
a
√

1 + ω2
)

e
√

1−ω2(a+X0)+iωT0

−1
2

B1|B1|2 cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a+X0)+iωT0

−1
6

B3
1 cos3(a

√
1 + ω2)e3

√
1−ω2(a+X0)+3iω T0 , (5.A.1)

F2 =
[
2 iωD2B1 cos

(√
1 + ω2X0

)
+ 2∂2B1

√
1 + ω2 sin

(√
1 + ω2X0

)

−B2
(
1 + ω2) cos

(√
1 + ω2X0

)
+

1
2

B1|B1|2 cos3
(√

1 + ω2X0

) ]
eiωT0

+
1
6

B3
1 cos3

(√
1 + ω2X0

)
e3 iωT0 , (5.A.2)

F3 = 2
(

iωD2B1 −
√

1 − ω2∂2B1

)
cos

(
a
√

1 + ω2
)

e
√

1−ω2(a−X0)+iωT0

+
(
1 − ω2) B2 cos

(
a
√

1 + ω2
)

e
√

1−ω2(a−X0)+iωT0

−1
2

B1|B1|2 cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a−X0)+iωT0

−1
6

B3
1 cos3(a

√
1 + ω2)e3

√
1−ω2(a−X0)+3iω T0 . (5.A.3)

G1 = 2
(

iωD2B2 −
√

1 − ω2∂2B2

)
cos

(
a
√

1 + ω2
)

e
√

1−ω2(a+X0)+iωT0

+
(
1 − ω2) B1 cos

(
a
√

1 + ω2
)

e
√

1−ω2(a+X0)+iωT0

−1
2

B2|B2|2 cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a+X0)+iωT0

−1
6

B3
2 cos3(a

√
1 + ω2)e3

√
1−ω2(a+X0)+3iω T0 , (5.A.4)

G2 =
[
2 iωD2B2 cos

(√
1 + ω2X0

)
+ 2∂2B2

√
1 + ω2 sin

(√
1 + ω2X0

)

−B1
(
1 + ω2) cos

(√
1 + ω2X0

)
+

1
2

B2|B2|2 cos3
(√

1 + ω2X0

) ]
eiωT0

+
1
6

B3
2 cos3

(√
1 + ω2X0

)
e3 iωT0 , (5.A.5)

G3 = 2
(

iωD2B2 −
√

1 − ω2∂2B2

)
cos

(
a
√

1 + ω2
)

e
√

1−ω2(a−X0)+iωT0

+
(
1 − ω2) B1 cos

(
a
√

1 + ω2
)

e
√

1−ω2(a−X0)+iωT0

−1
2

B2|B2|2 cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a−X0)+iωT0

−1
6

B3
2 cos3(a

√
1 + ω2)e3

√
1−ω2(a−X0)+3iω T0 . (5.A.6)
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ζ1 =

(
3 − 2ω2 − 2ω6 + 6

√
1 − ω2

(
1 + ω2) a − 7ω4

)

32 ω
(

1 + ω2 +
√

1 − ω2 (1 + ω2) a
) , (5.A.7)

ζ2 =

(
1 + ω2)√1 − ω2 a

2 ω
(

1 +
√

1 − ω2a
) , (5.A.8)

Ψ1 = C1e
√

1−ω2X0 +

√
2

16 u2

[(1 + ω2) e4
√

1−ω2X0+3 u1u2

4
√

1 − ω2
+

4ω ζ1e2
√

1−ω2X0+u1u2

√
1 − ω2

−

((
1 + ω2) e2(u1+

√
1+ω2X0)u2 + 16ωζ1X0

√
1 − ω2

)
e(2

√
1+ω2X0+u1)u2

2
√

1 − ω2
]
e−

√
1−ω2X0 , (5.A.9)

Ψ2 = C2e
√

1−ω2X0 −
√

1 + ω2

4
√

2

(2
(
ω2X0 − 2 ω X0ζ2 − X0

)
e(2

√
1+ω2X0+u1) u2

√
1 − ω2

+

(
2 ω ζ2 − ω2 + 1

)
e2

√
1−ω2X0+u1 u2

1 − ω2

)
e−

√
1−ω2X0 , (5.A.10)

Ψ3 = C1 cos
(√

1 + ω2X0

)
+

(9 − 64ωζ1) cos(
√

1 + ω2X0)− cos(3
√

1 + ω2X0)

64(1 + ω2)

+
X0 (3 − 16ωζ1) sin(

√
1 + ω2X0)

16
(√

1 + ω2
) , (5.A.11)

Ψ4 = C2 cos
(√

1 + ω2X0

)
−

(
ω2 − 2ωζ2 + 1

) (
X0

√
1 + ω2 sin(

√
1 + ω2X0) + cos(

√
1 + ω2X0)

)

2 (1 + ω2)
,(5.A.12)

Ψ5 = C1e−
√

1−ω2X0 +
e−

√
1−ω2X0

8
√

2u2

[
8 ω ζ1X0eu1u2 −

(
1 + ω2) e3 u1u2−2

√
1−ω2X0

2
√

1 − ω2

+

(
4ωζ1eu1u2+4

√
1−ω2X0

√
1 − ω2

+

(
1 + ω2) e3u1u2+2

√
1−ω2X0

4
√

1 − ω2

)
e−4

√
1−ω2X0

]
, (5.A.13)

Ψ6 = C2e−
√

1−ω2X0 +
(ω2 − 2ωζ2 − 1)

(
1 + 2

√
1 − ω2X0

)
eu1u2−

√
1−ω2X0

4
√

2
√

1 − ω2u2
, (5.A.14)

Ψ7 = C1e
√

1−ω2X0 +

√
2

16u2

[ (1 + ω2)e3u1u2+4
√

1−ω2X0

4
√

1 − ω2
+

4ω ζ1e2
√

1−ω2X0+u1u2

√
1 − ω2

−
(

8ωX0ζ1 +

(
1 + ω2) e2(u1+

√
1+ω2X0)u2

2
√

1 − ω2

)
e(2

√
1+ω2X0+u1)u2

]
e−

√
1−ω2X0 , (5.A.15)

Ψ8 = C2e
√

1−ω2X0 −
√

2
16 u2

( (
4 ω2X0 − 8 ω X0ζ2 − 4 X0

)
e(2

√
1+ω2X0+u1)u2

−2
(
ω2 − 2 ω ζ2 − 1

)
eu1u2+2

√
1−ω2X0

√
1 − ω2

)
e−

√
1−ω2X0 , (5.A.16)
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Ψ9 = C1 cos
(√

1 + ω2X0

)
− cos(3

√
1 + ω2X0) + (64ω ζ1 − 9) cos(

√
1 + ω2X0)

64 (1 + ω2)

−
X0 (16 ω ζ1 − 3) sin

(√
1 + ω2X0

)

16
(√

1 + ω2
) , (5.A.17)

Ψ10 = C2 cos
(√

1 + ω2X0

)

−
(
ω2 − 2 ω ζ2 + 1

)
(

X0 sin(
√

1 + ω2X0)

2
√

1 + ω2
+

cos(
√

1 + ω2X0)

2 (1 + ω2)

)
, (5.A.18)

Ψ11 = C1e−
√

1−ω2X0 +

√
2

16 u2

(
8 eu1u2 ω ζ1X0 −

(
1 + ω2) e3 u1u2−2

√
1−ω2X0

2
√

1 − ω2

+
4 eu1u2 ω ζ1√

1 − ω2
+

(
1 + ω2) e3 u1u2−2

√
1−ω2X0

4
√

1 − ω2

)
e−

√
1−ω2X0 , (5.A.19)

Ψ12 = C2e−
√

1−ω2X0 +

(
ω2 − 2ωζ2 − 1

) (
1 + 2

√
1 − ω2X0

)
eu1u2−

√
1−ω2X0

4
√

2u2
√

1 − ω2
, (5.A.20)

Ψ13 = e
√

1−9 ω2X0 C̃31 −
1

48
cos3

(
a
√

1 + ω2
)

e3
√

1−ω2(a+X0), (5.A.21)

Ψ14 = cos(
√

1 + 9 ω2X0)C̃32 −
1

192 ω2

(
ω2 − 3

)
cos

(
X0

√
1 + ω2

)
, (5.A.22)

Ψ15 = e−
√

1−9 ω2X0 C̃33 −
1
48

cos3
(

a
√

1 + ω2
)

e3
√

1−ω2(a−X0), (5.A.23)

with

u1 = arctan (u2) , u2 =

√
1 − ω2

1 + ω2 .

P1 = 2 iω D4B1 cos
(

a
√

1 + ω2
)

e
√

1−ω2(a+X0)

−
(

ζ2
1 B1|B1|4 − ζ1ζ2 B2|B1|2 − ζ1ζ2B2|B2|2 + ζ2

2B1

)
cos

(
a
√

1 + ω2
)

e
√

1−ω2(a+X0)

−2 ω
((

ζ1B1|B1|4 − ζ2B2|B1|2
)

Ψ1 +
(
ζ1B2|B2|2 − ζ2B1

)
Ψ2

)

−1
2

(
3 B1|B1|4Ψ1 +

(
B2|B1|2 + B2

1 B̄2
)

Ψ2 + B1|B1|4Ψ13

)

× cos2
(

a
√

1 + ω2
)

e2
√

1−ω2(a+X0) +
1

12
B1|B1|4 cos5

(
a
√

1 + ω2
)

e5
√

1−ω2(a+X0)

+B2|B2|2 ∂2
0Ψ7 (X0) + B1 ∂2

0Ψ8 (X0) , (5.A.24)

P2 = 2 iω D4B1 cos
(

X0

√
1 + ω2

)

−
(

ζ2
1 B1|B1|4 − ζ1ζ2 B2|B1|2 − ζ1ζ2B2|B2|2 + ζ2

2B1

)
cos

(
X0

√
1 + ω2

)

−2 ω
((

ζ1B1|B1|4 − ζ2B2|B1|2
)

Ψ3 +
(
ζ1B2|B2|2 − ζ2B1

)
Ψ4

)

+
1
2

(
3 B1|B1|4Ψ3 +

(
B2|B1|2 + B2

1 B̄2
)

Ψ4 + B1|B1|4Ψ14

)
cos2

(
X0

√
1 + ω2

)

− 1
12

B1|B1|4 cos5
(

X0

√
1 + ω2

)
+ B2|B2|2 ∂2

0Ψ9 (X0) + B1 ∂2
0Ψ10 (X0) ,(5.A.25)
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P3 = 2 iω D4B1 cos
(

a
√

1 + ω2
)

e
√

1−ω2(a−X0)

−
(

ζ2
1 B1|B1|4 − ζ1ζ2 B2|B1|2 − ζ1ζ2B2|B2|2 + ζ2

2B1

)
cos

(
a
√

1 + ω2
)

e
√

1−ω2(a−X0)

−2 ω
((

ζ1B1|B1|4 − ζ2B2|B1|2
)

Ψ5 +
(
ζ1B2|B2|2 − ζ2B1

)
Ψ6

)

−1
2

(
3 B1|B1|4Ψ5 +

(
B2|B1|2 + B2

1 B̄2
)

Ψ6 + B1|B1|4Ψ15

)

× cos2
(

a
√

1 + ω2
)

e2
√

1−ω2(a−X0) +
1

12
B1|B1|4 cos5

(
a
√

1 + ω2
)

e5
√

1−ω2(a−X0)

+B2|B2|2 ∂2
0Ψ11 (X0) + B1 ∂2

0Ψ12 (X0) , (5.A.26)

Q1 = 2 iω D4B2 cos
(

a
√

1 + ω2
)

e
√

1−ω2(a+X0)

−
(

ζ2
1 B2|B2|4 − ζ1ζ2 B1|B2|2 − ζ1ζ2B1|B1|2 + ζ2

2B2

)
cos

(
a
√

1 + ω2
)

e
√

1−ω2(a+X0)

−2 ω
((

ζ1B2|B2|4 − ζ2B1|B2|2
)

Ψ7 +
(
ζ1B1|B1|2 − ζ2B2

)
Ψ8

)

−1
2

(
3 B2|B2|4Ψ7 +

(
B1|B2|2 + B2

2 B̄1
)

Ψ8 + B2|B2|4Ψ13

)

× cos2
(

a
√

1 + ω2
)

e2
√

1−ω2(a+X0) +
1
12

B2|B2|4 cos5
(

a
√

1 + ω2
)

e5
√

1−ω2(a+X0)

+B1|B1|2 ∂2
0Ψ1 (X0) + B2 ∂2

0Ψ2 (X0) , (5.A.27)

Q2 = 2 iω D4B2 cos
(

X0

√
1 + ω2

)

−
(

ζ2
1 B2|B2|4 − ζ1ζ2 B1|B2|2 − ζ1ζ2B1|B1|2 + ζ2

2B2

)
cos

(
X0

√
1 + ω2

)

−2 ω
((

ζ1B2|B2|4 − ζ2B1|B2|2
)

Ψ9 +
(
ζ1B1|B1|2 − ζ2B2

)
Ψ10

)

+
1
2

(
3 B2|B2|4Ψ9 +

(
B1|B2|2 + B2

2 B̄1
)

Ψ10 + B2|B2|4Ψ14

)
cos2

(
X0

√
1 + ω2

)

− 1
12

B2|B2|4 cos5
(

X0

√
1 + ω2

)
+ B1|B1|2 ∂2

0Ψ3 (X0) + B2 ∂2
0Ψ4 (X0) , (5.A.28)

Q3 = 2 iω D4B2 cos
(

a
√

1 + ω2
)

e
√

1−ω2(a−X0)

−
(

ζ2
1 B2|B2|4 − ζ1ζ2 B1|B2|2 − ζ1ζ2B1|B1|2 + ζ2

2B2

)
cos

(
a
√

1 + ω2
)

e
√

1−ω2(a−X0)

−2 ω
((

ζ1B2|B2|4 − ζ2B1|B2|2
)

Ψ11 +
(
ζ1B1|B1|2 − ζ2B2

)
Ψ12

)

−1
2

(
3 B2|B2|4Ψ11 +

(
B1|B2|2 + B2

2 B̄1
)

Ψ12 + B2|B2|4Ψ15

)

× cos2
(

a
√

1 + ω2
)

e2
√

1−ω2(a−X0) +
1
12

B2|B2|4 cos5
(

a
√

1 + ω2
)

e5
√

1−ω2(a−X0)

+B1|B1|2 ∂2
0Ψ5 (X0) + B2 ∂2

0Ψ6 (X0) . (5.A.29)
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5.A.2 Functions in Section 5.3

W1 = C1e
√

(1−9 ω2
1)/(1−S)X0 −

(
1 + ω2

1

)3/2

96
√

2
e

(
3 v2

(√
(1−S)v1+

√
1+ω2

1 X0

))

√
(1−S) , (5.A.30)

W2 = C2 cos
(√

(1 + 9 ω2
1)/(1 − S)X0

)
+

1
48ω2

1
cos

(√
(1 + ω2

1)(1 − S)X0

)

− 1
192

cos
(

3
√
(1 + 9ω2

1)(1 − S)X0

)
, (5.A.31)

W3 = C1e−
√

(1−9 ω2
1)/(1−S)X0 −

(
1 + ω1

2
)3/2

96
√

2
e

(
3 v2

(√
(1−S)v1−

√
1+ω2

1 X0

))

√
(1−S) , (5.A.32)

W4 = C1e
√

(1−9 ω2
2)/(1+S)X0 −

(
1 + ω2

2
)3/2

96
√

2
e

(
3 v22

(√
(1+S)v11+

√
1+ω2

2 X0

))

√
(1+S) , (5.A.33)

W5 = C2 cos
(√

(1 + 9 ω2
2)/(1 + S)X0

)
+

1
48ω2

2
cos

(√
(1 + ω2

2)(1 + S)X0

)

− 1
192

cos
(

3
√
(1 + 9ω2

2)(1 + S)X0

)
, (5.A.34)

W6 = C1e−
√

(1−9 ω2
2)/(1+S)X0 −

(
1 + ω2

2
)3/2

96
√

2
e

(
3 v22

(√
(1+S)v11−

√
1+ω2

2 X0

))

√
(1+S) , (5.A.35)

with

v1 = arctan (v2) , v2 =

√
1 − ω2

1√
1 + ω2

1

, v11 = arctan (v22) , v22 =

√
1 − ω2

2√
1 + ω2

2

.

P11 = 2iω1D4B1Φ1 − B1

(
ψ1 |B1|2 + ψ2 |B2|2

)2
Φ1 +

1
12

B1 |B1|4 Φ
5
1 +

1
4

B1 |B2|4 Φ1Φ
4
2

−2ω1
(

B1|B1|2ψ1 + B1|B2|2ψ2
) (

|B1|2 R(1,1) + |B2|2 R(1,2)

)

+
1
2

B1 |B1|2 |B2|2 Φ
3
1Φ

2
2 −

1
2

B1|B1|4
(

Φ1
2W1 + 3Φ

2
1R(1,1)

)
− 1

2
B1 |B1|2 |B2|2

×
(

2 Φ
2
2R(1,1) + 4 Φ1Φ2S(1,2) + 2 Φ1Φ2V4 + 2 Φ1Φ2V1 + 3 Φ

2
1R(1,2)

)

−1
2

B1|B2|4
(

Φ
2
2U4 + Φ

2
2U1 + 4Φ1Φ2S(1,1) + 2Φ

2
2R(1,2)

)
, (5.A.36)

P12 = 2 iω1D4B1Φ1 − B1

(
ψ1 |B1|2 + ψ2 |B2|2

)2
Φ1 −

1
12

B1 |B1|4 Φ
5
1 −

1
4

B1 |B2|4 Φ1Φ
4
2

−2 ω1

(
B1 |B1|2 ψ1 + B1 |B2|2 ψ2

) (
|B1|2 R(2,1) + |B2|2 R(2,2)

)

−1
2

B1 |B1|2 |B2|2 Φ
3
1Φ

2
2 +

1
2

B1|B1|4
(

Φ
2
1W2 + 3Φ

2
1R(2,1)

)
+

1
2

B1 |B1|2 |B2|2

×
(

2 Φ
2
2R(2,1) + 4 Φ1Φ2S(2,2) + 2 Φ1Φ2V5 + 2 Φ1Φ2V2 + 3 Φ

2
1R(2,2)

)

+
1
2

B1|B2|4
(

Φ
2
2U5 + Φ

2
2U2 + 4 Φ1Φ2S(2,1) + 2 Φ

2
2R(2,2)

)
, (5.A.37)
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P13 = 2 iω1D4B1Φ1 − B1

(
ψ1 |B1|2 + ψ2 |B2|2

)2
Φ1 +

1
12

B1 |B1|4 Φ
5
1 +

1
4

B1 |B2|4 Φ1Φ
4
2

−2 ω1

(
B1 |B1|2 ψ1 + B1 |B2|2 ψ2

) (
|B1|2 R(3,1) + |B2|2 R(3,2)

)

+
1
2

B1 |B1|2 |B2|2 Φ1
3
Φ

2
2 −

1
2

B1|B1|4
(

Φ
2
1W3 + 3Φ

2
1R(3,1)

)
− 1

2
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×
(

2Φ2
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)

−1
2

B1|B2|4
(

Φ
2
2U6 + Φ

2
2U3 + 4Φ1Φ2S(3,1) + 2Φ

2
2R(3,2)

)
, (5.A.38)

Q11 = 2 iω2D4B2Φ2 − B2

(
ψ3 |B2|2 + ψ4 |B1|2

)2
Φ2 +

1
12

B2 |B2|4 Φ
5
2 +

1
4

B2 |B1|4 Φ
4
1Φ2

−2ω2

(
B2 |B2|2 ψ3 + B2 |B1|2 ψ4

) (
|B2|2 S(1,1) + |B1|2 S(1,2)

)

+
1
2

B2 |B2|2 |B1|2 Φ
2
1Φ

3
2 −

1
2

B2 |B2|4
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Φ
2
2W4 + 3 Φ

2
2S(1,1)

)
− 1

2
B2 |B1|2 |B2|2

×
(

2 Φ
2
1S(1,1) + 4 Φ1Φ2R(1,2) + 2 Φ1Φ2U4 + 2 Φ1Φ2U1 + 3 Φ

2
2S(1,2)

)

−1
2

B2 |B1|4
(

Φ
2
1V4 + Φ

2
1V1 + 4 Φ1Φ2R(1,1) + 2 Φ

2
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)
, (5.A.39)

Q12 = 2 iω2D4B2Φ2 − B2

(
ψ3 |B2|2 + ψ4 |B1|2
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2 −
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(
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) (
|B2|2 S(2,1) + |B1|2 S(2,2)

)

−1
2
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2
1Φ

3
2 +

1
2

B2 |B2|4
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+

1
2
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×
(
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2
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2
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+
1
2
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(

Φ
2
1V5 + Φ

2
1V2 + 4 Φ1Φ2R(2,1) + 2 Φ
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)
, (5.A.40)

Q13 = 2 iω2D4B2Φ2 − B2
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ψ3 |B2|2 + ψ4 |B1|2
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4
1Φ2

−2 ω2

(
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Φ
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×
(

2 Φ
2
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2
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. (5.A.41)
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5.A.3 Functions in Section 5.4

Z1 = 2 iω1D4B1Φ1 −
(

ψ1 |B1|2 + ψ2 |B2|2
) (

ψ1B1 |B1|2 + ψ2B1 |B2|2 + η1H
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)
H Y(1,3), (5.A.42)

Z2 = 2 iω1D4B1Φ1 −
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) (
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2 + 2 Φ1Φ2V5 + 4 Φ1Φ2S(2,2) + 2 Φ1Φ2V2

)

×B1 |B1|2 |B2|2 +
1
2

(
B1

2
Φ

2
1 + 2 |B1|2 Φ

2
1 + 2 |B2|2 Φ

2
2

)
H Y(2,3), (5.A.43)
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CHAPTER 6

Conclusions and future work

In this study, we have investigated defect modes of long Josephson junctions with

phase shifts. In order to study long Josephson junctions, we have considered a vari-

ety of ac-driven, inhomogeneous sine-Gordon equations modelling an infinitely long

Josephson junctions with phase shifts, driven by a microwave field. Here, we briefly

summarize the main results of the work done throughout this project.

6.1 Summary

To begin with, Chapter 1 presented a brief review of superconductivity, its history,

extraordinary features and some recent progress in the topic, followed by description

of static and dynamic properties of Josephson junctions. The sine-Gordon equation

was derived as a model for long Josephson junctions. Some important applications of

Josephson junctions were explained and discussed, namely Josephson junctions with

phase shifts, particularly 0 − π − 0 and 0 − κ long Josephson junctions.

Furthermore, the general theory of solitons and their applications were also explained.

We discussed special solutions of the sine-Gordon equation, in particular kinks and

breathers, and briefly described various properties and applications of the equation.

We also introduced the historical and physical background of asymptotic techniques,

and discussed multiple scales expansions and the method of averaging. The chapter

was concluded by a brief overview of the thesis.

In Chapter 2, a spatially inhomogeneous sine-Gordon equation with a time-periodic

drive was investigated. This modelled a microwave–driven long Josephson junctions

with phase-shifts. We constructed a perturbation expansion for small-amplitude oscil-

lations of the breathing mode, and derived differential equations for the slowly varying

amplitude of the oscillation for the 0−π − 0 and 0− κ Josephson junctions respectively,
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by eliminating secular terms from the expansions.

Our obtained amplitude equations do not predict unbounded or growing amplitude.

This shows that the emission of radiation has the effect of damping the wobbling. The

damping is present because the breathing mode emits radiation due to frequency trip-

ling effect of the nonlinearity, which causes the breathing mode to become a source of

radiation. The predictions of these amplitude equations were found to agree well with

numerical simulations of the original sine-Gordon equation.

The solitons in the sine-Gordon equation do not excite radiation waves, when the fre-

quency lies in the discrete spectrum. However, higher harmonics generated by the

nonlinearity will certainly be resonant with linear modes, and therefore can be excited

and generate a radiative tail which will gradually drain energy from the oscillating

hump. The oscillation in the sine-Gordon equation was observed by Peyrard et al.

[185], but has been shown to be the consequence of the discretization of the equation

for numerical simulation rather than a property of the governing equation itself.

In this study, in the absence of an ac-drive, we obtained a breathing mode oscillation

which decays with rates of at most O(t−1/4) and O(t−1/2) for junctions with a uniform

and nonuniform ground states, respectively. The problem and results presented herein

are novel and important from several points of view. Our fractional wobbling kink is

in principle different from the “normal” wobbler discussed in [99, 100, 107, 108, 109].

Usually, a wobbler is a periodically expanding and contracting kink, due to the inter-

action of the kink and its odd eigenmode. Because our system is not translationally

invariant, our wobbler is composed of a fractional kink and an even eigenmode, repres-

enting a topological excitation oscillating about the discontinuity point. The coupling

of a spatially localized breathing mode to radiation modes via a nonlinearity with the

same decay rates has been discussed and obtained before for ϕ4 wobblers [99, 100] and

for sine-Gordon wobblers [107, 108, 109].

Next, we applied the method of multiple scales to detect a resonance in the presence

of external driving in the case when the natural frequency of the system is close to the

driving frequency for 0 − π − 0 and 0 − κ junctions. The internal mode excitation by

direct or parametric driving has been discussed and obtained before in several context

e.g., in [99, 100, 186, 187].

Here, we consider the same form of direct driving and the similar resonant frequencies

as discussed by Quintero, Sánchez and Mertens in [186, 187, 188]. The authors used

a variational approach which neglects the radiation, by assuming a specific functional

dependence of the kink on the collective coordinates. Using asymptotic expansion, we

detect a resonance when the kink is directly driven at its natural frequency. Unlike the
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variational approach reported by Quintero, Sánchez and Mertens [186, 188] perturba-

tion theory does not neglect radiation, an effect which is confirmed by our results. This

suggests that radiation can play a role in the transfer of energy to the internal mode.

In the presence of an external drive, the amplitude equations obtained show that there

is a balance of energy input into the breathing mode due to the external drive and the

radiative damping. We have discussed whether the breathing mode of a junction with a

phase shift can be excited to switch the junction into a resistive state. It was conjectured

before by Buckenmaier et al. [38] that the driving frequency at which switching from

the superconducting to the resistive state occurs is the same as the eigenfrequency of

the ground state.

Using multiple scales expansions, it was shown that in an infinitely long Josephson

junction, an external drive cannot excite the defect mode of a junction, i.e., a breathing

mode, to switch the junction into a resistive state. For a small amplitude drive, there

is an energy balance between the input given by the external drive and the energy

output due to so-called radiative damping experienced by the mode. We discussed

that when the external drive amplitude is large enough, the junction can indeed switch

to a resistive state. This is caused by a modulational instability of the continuous wave

emitted by the oscillating mode.

In Chapter 3, the dynamics of long Josephson junctions with phase-shifts in the pres-

ence of a rapidly varying driving force modelled by a periodically driven sine-Gordon

equation were studied. The experimentally relevant case of large driving frequency

compared to the system’s plasma frequency was considered. The case of small driving

frequency has been considered theoretically in [38, 39] and in Chapter 2. An aver-

age equation for the slowly-varying dynamics was derived analytically, using multiple

scales analysis. The equations obtained take the form of a damped, forced double sine-

Gordon equation.

A double sine-Gordon equation describing the slow-time dynamics of a rapidly driven

sine-Gordon equation without phase shift was obtained previously through approx-

imating the phase ϕ(x, t) by a Fourier series expansion [134, 135] and using a normal

form technique [122]. In the normal form technique, several canonical transformations

are applied to the Hamiltonian system to move terms with mean-zero to higher or-

der [136, 137]. Kivshar et al. [134, 135] decomposed the phase ϕ(x, t) into the sum of

slowly- and rapidly- varying parts. Their method solely uses asymptotic expansions

rather than averaging over the fast oscillation. In both methods, the coefficients of the

double sine-Gordon equation are given in terms of Bessel functions.

With the method proposed herein, one has more control over the scales of the driving
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parameters and the coefficients of the ’average’ equation are given by simple explicit

functions. The critical value of the applied constant bias current γc for the 0 − κ junc-

tions and the critical facet length in the absence of external constant bias current for the

0 − π − 0 junctions were obtained analytically from the averaged double sine-Gordon

equation.

In the absence of an ac drive, studying the stability of the constant solution in 0 −
π − 0 junction, one finds that there is a critical facet length ac = π/4 above which the

solution is unstable and the ground state is spatially nonuniform [32], which represents

a pair of fractional fluxons of opposite polarities. Here, it was shown analytically and

numerically that in the presence of an ac drive the threshold length ac in 0 − π − 0

junction increases. We compared our approximation as well as that obtained in [134,

135] with numerics. It was observed that the numerics slightly deviates at a particular

driving amplitude. Using our method, it seems that we require a different scaling of

an external drive amplitude mentioned in this work. The applicability of the method

presented in this work in that case is suggested as future work.

Next, the effect of ac-drive on the critical bias current of a 0 − κ junction was studied.

Here, we only considered the case of κ = π, which is representative for this type of

junctions as the other values of κ can be calculated similarly.

It is known that in the presence of an applied dc bias current (γ ̸= 0), the fractional

fluxon will be deformed. When the current is large enough, the static ground state

ceases to exist and the junction switches to a resistive state by alternately releasing

travelling fluxons and antifluxons in opposite directions. In the absence of an external

ac-drive the minimum current at which the junction switches to such a state is called

the critical current γc = 2 sin(κ/2)/κ as obtained in [132, 133]. Hence, 0 − π junctions

are in a resistive state when γ > 2/π with fluxons and antifluxons being periodically

released from the discontinuity.

Using numerical simulations as well as asymptotic approximations, the critical bias

current in the presence of an external ac-drive in 0 − κ junctions was determined. This

study showed numerically that in the presence of an ac drive the value of the critical

bias current γc decreased which confirmed our approximation.

In Chapter 4, a spatially inhomogeneous sine-Gordon equation with time-periodic drive

and two regions of π phase shift, modelling 0 − π − 0 − π − 0 long Josephson junc-

tions was investigated. The internal phase shift formation acts as a double well poten-

tial. Due to the type of the inhomogeneities, there is a pair of eigenmodes of different

symmetries, i.e. symmetric and antisymmetric ( or, even and odd ). We constructed

the perturbation expansion for the coupled modes and obtained differential equations
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for the slow time evolution of the oscillation amplitude in the 0 − π − 0 − π − 0 long

Josephson junctions.

In the absence of an ac-drive, the coupled amplitude equations describe a gradual de-

crease in the amplitude of the coupled mode oscillations which is due to the energy

emission in the form of radiation. Similar investigations of the effects of radiation, the

resonance of breathing modes at its natural oscillating frequency, and the decay rates of

the single mode oscillation for sine-Gordon equation in the context of long Josephson

junctions and for the wobbling kinks in ϕ4 models have been discussed and obtained

in [99, 100, 101].

Using multiple scale expansions, we have shown that due to the energy transfer from

the discrete to continuous modes, the two mode oscillation decays algebraically in

the long time regime. The flow of energy from resonant discrete modes to continu-

ous modes due to the nonlinear coupling has been addressed in [149, 150]. The phe-

nomenon which is responsible for the time decay in the coupled modes due to the en-

ergy transfer from the discrete to continuous modes in nonlinear Klein-Gordon equa-

tions and for nonlinear Schrödinger equations is analyzed by Soffer, Weinstein, Sigal,

and others, in [151, 152, 153, 154].

In this thesis, the resonance conditions were discussed when the antisymmetric mode is

excited, while the symmetric mode lies in the discrete spectrum. Interestingly solutions

of the coupled amplitude equations still decay in time. This shows that the two modes

influence each other in the long time regime. It was also shown that, by exciting one

mode only, the decay rate is significantly reduced over the long time compared to the

two modes.

Next, we investigated the coupled mode oscillations in the presence of an ac-drive. The

modes do not oscillate with an unbounded or growing amplitude. We observed that,

for a small drive amplitude, there is a balance between the energy input given by the

external drive and the energy output due to the radiative damping experienced by the

coupled modes.

Comparing the amplitudes of the two modes, we obtained that the amplitude of the

symmetric mode oscillates and slowly tends to a steady state when t → ∞, while the

envelope of the antisymmetric mode vanishes. This shows that an ac-drive acts as a

damping to antisymmetric mode. In other words, we have a synchronized oscillations

of localised modes in the two wells. In a double well potential, it has been found by

Jackson et al. [189] that asymmetric state localised in one of the wells bifurcates from

symmetric one. This bifurcation results in the instability of the symmetric state, leading

to the asymmetric wave form becoming the ground state of the system [189, 190].

157



CHAPTER 6: CONCLUSIONS AND FUTURE WORK

In this thesis, it was concluded from asymptotic calculations as well as from numer-

ical computations that the regular oscillation of the modes indicates that the junction

voltage vanishes, even when the driving frequency is the same as one of the system’s

eigenfrequency as in the case discussed in Chapter 2, as well as obtained in [38, 39] in

the single well of long Josephson junctions.

Lastly, in Chapter 5, we have considered a spatially inhomogeneous coupled sine-

Gordon equations with a time periodic drive, modelling stacked long Josephson junc-

tions with a phase shift. Using multiscale expansions, we derived coupled amplitude

equations considering strong and weak magnetic coupling, S ∼ O(1) and S ∼ O(ϵ2),

in the absence of an ac-drive. The coupling term between the stacked Josephson junc-

tions depends on the physical and geometrical parameters of the system. The multiscale

expansions are asymptotic, i.e. only valid for small amplitudes of the breathing modes.

In the small initial amplitude limit the expansion is expected to provide an accurate

description of the breather.

The dynamics of the coupled sine-Gordon equation has been extensively studied before

for weak and strong coupling [170, 181, 182] to investigate different phenomenon in

stacked Josephson junctions, such as voltage locking [175, 176] and current locking

[177, 178, 179] in Josephson junctions. However, the coupled sine-Gordon equation in

the context of stacked Josephson junctions with phase shifts is considered here for the

first time.

The analytical approximations of breathing modes in stacked Josephson junctions in

the limit of small initial amplitudes were calculated. The coupled amplitude equations

were obtained, these describe the gradual decrease of the oscillation amplitude, as the

modes emits energy in the form of radiation. It was shown that the emission of ra-

diation has the effect of damping the breathing. The damping is present because the

breathing mode emits radiation due to the frequency tripling effect of the nonlinear-

ity which caused breather to become a source of radiation. Solutions of the amplitude

equations decay at the same rate, which causes the Josephson junctions to synchron-

ize. We showed that, a breathing mode decays with a rate of at most O
(
t−1/4) for the

stacked Josephson junctions with a uniform ground state.

The observation of electromagnetic radiation from a Josephson junction has been dis-

cussed by many authors. The radiation at Fiske steps was detected by Yanson et al.

[191], Langenberg et al. [192] and Dayem et al. [193]. The radiation caused by motion

of solitons was reported before by Dueholm et al. [183]. The radiative annihilation in

coupled sine-Gordon equation which occurs during the decay of breather has been dis-

cussed by Krasnov [184]. This phenomena may be useful for achieving superradiant
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emission from coupled oscillators.

We also considered strong coupling, S ∼ O(1) with a time periodic drive. In this case,

the solutions of the amplitude equations do not decay to zero as t → ∞. Due to the

driving terms, there is a steady state solution. We expect that a nonzero external drive

induces a breathing mode oscillation in the stacked long Josephson junctions, as in our

investigation for single Josephson junctions with phase shift in Chapter 2.

6.2 Future work

In the course of this study, we have left several problems which require further invest-

igation. Despite the agreement with the experiments obtained herein, our analysis in

Chapter 2 is based on a simplified model. It is of interest to extend the study to the case

of dc, driven long but finite Josephson junctions with phase-shifts, as used experiment-

ally in [38, 39]. These papers report that a microwave drive can be used to measure

experimentally the eigenfrequency of a junction’s ground state. Such microwave spec-

troscopy is based on the observation that when the frequency of the applied microwave

is in the vicinity of the natural frequency of the ground state, the junction can switch to

a resistive state, characterized by a non-zero junction voltage.

It was conjectured that the process is analogous to the resonance phenomenon of a

simple pendulum driven by a time periodic external force. In the case of long junc-

tions with phase-shifts, it would be resonance between the internal breathing mode of

the ground state and the microwave field. Nonetheless, it was also reported that the

microwave power needed to switch the junction into a resistive state depends on the

magnitude of the eigenfrequency to be measured.

In microwave driven finite junctions, the boundaries can be a major external drive (see,

e.g., [114, 115]), an effect which is not present in this study. A constant dc bias current,

which plays an important role in the measurements reported in [38], is not included

in our work, even though the results presented herein should still hold for small con-

stant drive. Another open problem is the interaction of multiple defect modes [116] in

Josephson junctions with phase-shifts, which is addressed in Chapter 4. This is exper-

imentally relevant, as so-called zigzag junctions have been successfully fabricated by

Hilgenkamp et al. [23].

Other future work is to investigate the question of oscillations as discussed in Chapter

4. The resulting dynamical systems become more challenging and interesting as the

number of wells is increased. The dynamics of solitary waves in nonlinear optics

made of photorefractive media and in Bose-Einstein condensates in the presence of
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three wells has been considered by Koyama et al. [194] and Kapitula in et al. [195]. In

particular, we will investigate the problem when one increases the number of wells to

infinity.

For, the system of coupled sine-Gordon equations considered in Chapter 5 for long

Josephson junctions with phase shifts, the obtained approximate solutions will be ana-

lyzed with numerics for synchronized oscillation modes. The synchronized oscillation

has been demonstrated experimentally before by Barbara et al. [196] for Josephson

junctions.

The mechanism for synchronization of a Josephson junction array has been studied,

based on the generalized Kuramoto models in many contexts, e.g., in [197, 198, 199,

200]. The model explains how mutually interacting oscillators, each of which has a dif-

ferent natural frequency, can undergo a sharp macroscopic transition from a disordered

to a coherent dynamical state when the coupling constant exceeds a critical threshold.

The analysis obtained in Chapter 5 will be extended to multi-stacked long Josephson

junctions with phase shift. The development of large stacks is a promising way to integ-

rate radiation sources and perhaps to address the issue of the mechanism of THz emis-

sion. Recently, a significant THz emission has been reported for intrinsic Josephson

junctions [201, 202]. The method for the synchronization for coherent THz emission in

Josephson junctions have been discussed before by Machida and Tachiki in [203, 204].

Numerical simulations by several authors [205, 206, 207] showed that the formation of

the dynamical phase variation yields electromagnetic THz radiation.

The effect of external drives in the stacked Josephson junctions will be investigated

using the result obtained in Chapter 5. The study will be extended to multi-stacked

long Josephson junctions with phase shift. This problem has been previously reported

in [38, 39] for single Josephson junctions.

We will also investigate switching from superconducting to a resistive state in stacked

Josephson junction, when the driving frequency is the same as the eigenfrequency of

the ground state. This problem has been studied numerically in Chapter 2 and experi-

mentally by Buckenmaier et al. [38] for single long Josephson junctions.
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