

COMPUTING
SCIENCE

Localities in Systems with a/sync Communication

Jetty Kleijn and Maciej Koutny

TECHNICAL REPORT SERIES

No. CS-TR-1285 October 2011

TECHNICAL REPORT SERIES

No. CS-TR-1285 October, 2011

Localities in Systems with a/sync Communication

J. Kleijn, M. Koutny

Abstract

Localities and a/sync places are two recent extensions to the Petri net model.
Whereas localities have been introduced as a modelling tool for membrane systems
and more general GALS (globally asynchronous locally synchronous) systems, a/sync
places make it possible to model synchronous communication between transitions.
We investigate the interaction between locally synchronous execution and
synchronous communication. Our focus is in particular on the causalities in the
concurrent runs of a new Petri net model combining these features.

© 2011 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

KLEIJN, J,. KOUTNY, M.
Localities in Systems with a/sync Communication
[By] J. Kleijn, M. Koutny
Newcastle upon Tyne: Newcastle University: Computing Science, 2011.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1285)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1285

Abstract

Localities and a/sync places are two recent extensions to the Petri net model. Whereas localities have been
introduced as a modelling tool for membrane systems and more general GALS (globally asynchronous locally
synchronous) systems, a/sync places make it possible to model synchronous communication between transitions.
We investigate the interaction between locally synchronous execution and synchronous communication. Our focus
is in particular on the causalities in the concurrent runs of a new Petri net model combining these features.

About the authors

Jetty Kleijn is a visiting fellow within the School of Computing Science, Newcastle University.

Maciej Koutny obtained his MSc (1982) and PhD (1984) from the Warsaw University of Technology. In 1985 he
joined the then Computing Laboratory of the University of Newcastle upon Tyne to work as a Research Associate.
In 1986 he became a Lecturer in Computing Science at Newcastle, and in 1994 was promoted to an established
Readership at Newcastle. In 2000 he became a Professor of Computing Science.

Suggested keywords

CONCURRENCY
PLACE TRANSITION NET
LOCALITY
SYNCHRONOUS AND ASYNCHRONOUS COMMUNICATION
PROCESS SEMANTICS
OCCURRENCE NET
BARB-EVENT
A/SYNC PLACE

Localities in

Systems with a/sync Communication

Jetty Kleijn1 and Maciej Koutny2

1 LIACS, Leiden University
P.O.Box 9512, NL-2300 RA Leiden, The Netherlands

kleijn@liacs.nl

2 School of Computing Science, Newcastle University
Newcastle upon Tyne, NE1 7RU, United Kingdom

maciej.koutny@ncl.ac.uk

Abstract. Localities and a/sync places are two recent extensions to
the Petri net model. Whereas localities have been introduced as a mod-
elling tool for membrane systems and more general GALS (globally asyn-
chronous locally synchronous) systems, a/sync places make it possible to
model synchronous communication between transitions. We investigate
the interaction between locally synchronous execution and synchronous
communication. Our focus is in particular on the causalities in the con-
current runs of a new Petri net model combining these features.
Keywords: concurrency, place transition net, locality, synchronous and
asynchronous communication, process semantics, occurrence net, barb-
event, a/sync place.

1 Introduction

Petri nets are a well-established framework for the modelling of concurrency
in the behaviour of distributed systems. Introduced originally by C.A.Petri [13],
they were conceived as a foundational model to describe information flows based
on local states and local state changes. Over the years these basic insights have
led to a vast area of research with a wide range of theories and applications,
methodologies and tools. Nowadays, as reported in collected works [5, 15, 16]
edited by J.Desel, W.Reisig and G.Rozenberg, Petri nets provide a framework
of net-based models with many extensions and variations introduced for ease
of modelling and adapted to the modelling needs of different applications like
business process modelling, manufacturing systems, hardware circuits, and bio-
logical systems. This not only proves the flexibility of modelling with Petri nets,
but also the robustness of the approach.

A key feature of Petri nets are the local transformation rules that support
modelling of causality and concurrency in a direct way. The underlying structure
of a Petri net is essentially a bipartite directed graph consisting of two types of
nodes: places and transitions. Places are used to carry local information on a
system’s state whereas transitions represent actions that can occur if certain

2 Jetty Kleijn and Maciej Koutny

local conditions (represented in neighbouring places) are satisfied. When a thus
enabled transition occurs (‘fires’), it ‘consumes’ from its input places and ‘pro-
duces’ in its output places. Hence each transition has only a limited and local
effect on the (global) state of the system. This basic rule for the dynamics of a
Petri net allows one to consider also concurrent and simultaneous occurrences of
transitions and induces in a natural way a concept of (in)dependence. This then
leads to definitions of step semantics and firing policies describing the allowed
steps (simultaneously occurring transitions) at a given state which may depend
on features added to the basic structure. All these many possible extensions give
rise to different Petri net models each with their own operational semantics.

In [8, 9], J.Kleijn, M.Koutny and G.Rozenberg propose Petri nets as a model
to describe what is going on during an evolution of a membrane system. Mem-
brane systems, also known as P systems, are inspired by the compartmentisation
of living cells and the effect this has on their functioning ([11, 12]). Within each
compartment enclosed by a membrane, chemical reactions between molecules
take place (modelled as transformations of multisets of objects into new ob-
jects). With both models based on multiset calculus, there is a direct connec-
tion between membrane systems and Petri nets which is also already obvious
in the structure underlying Petri nets: a certain type of object in a specific
compartment can be represented as a place, while reaction rules have a natu-
ral interpretation as Petri net transitions. To model the compartmentisation of
membrane systems, transitions representing reaction rules are associated with
specific compartments and so in [8] the concept of locality of a transition is pro-
posed as a new extension to Petri nets. The resulting class of Place/Transition
nets with localities or ptl-nets, is suitable for the modelling of membrane sys-
tems and actually also for more general so-called GALS (globally asynchronous,
locally synchronous) systems [2, 3]. Such systems exhibit a mix of synchronous
and asynchronous behaviour rather than the strict global synchronicity of the
original membrane systems which assumes that as many reactions as possible
occur in one time unit (of a global clock). The concept of localities allows one
to discern subsystems on basis of actions. As a consequence, in ptl-nets locally
maximal steps (no transitions belonging to an active locality can be added to
the step) can be defined. With this step semantics, ptl-nets provide a faithful,
operational model for asynchronous systems consisting of subsystems that are
internally fully synchronised (according to a local clock).

To investigate the structure of the concurrent behaviour of ptl-nets, pro-
cesses based on unfoldings of such nets are considered in [8, 9]. Processes char-
acteristically belong to the classical Petri net approach aimed at obtaining a
causality semantics for Petri net models (see, e.g., [1, 6, 17]). Processes are la-
belled occurrence nets, i.e., acyclic Petri nets, providing insight in the explicit,
local causalities in a concurrent run of a Petri net. They can be derived from
step sequences as representatives of such runs by unfolding the Petri net in ac-
cordance with the execution of the step sequence. An important property of
such operationally defined process semantics is that it should be consistent [6]
with the operational causal relations in the original net by satisfying two prop-

Localities in Systems with a/sync Communication 3

erties: (cons-i) every step sequence executable in a process should correspond
to a step sequence of the original net; and (cons-ii) every step sequence of a
Petri net should be represented by a step sequence in each process it defines.
For ptl-nets operating under the locally maximal step semantics, the standard
unfolding strategy does not yield a consistent process semantics (in particular
(cons-i) is not satisfied). To overcome this problem caused by lack of informa-
tion on potential executability of (co-located) transitions, it is proposed in [8, 9]
to employ so-called barb-events in the unfolding procedure. Indeed this is then
proved to be sufficient for a consistent process semantics.

On basis of different types of dependencies between evolving and communi-
cating subsystems, occurrence nets can be combined into structured occurrence
nets [10, 14]. In [7] the causality in communication structured occurrence nets is
investigated and a corresponding Petri net model is defined. This model combines
Place/Transition nets with explicit communication and interaction structures
called a/sync places, to implement the specific causality expressed by commu-
nication in structured occurrence nets. These new places incorporate a possibil-
ity for both synchronous and asynchronous communication between transitions,
meaning that a message sent through such a channel is handed over directly or
may be left there to be picked up later. Thus, in particular, a/sync places affect
the concept of enabledness of transitions. Using a/sync places as building blocks
it is possible to force the synchronous occurrence of transitions. Consequently,
a/sync places imply a proper extension to the modelling power of Petri nets
which by themselves lack a structural possibility to express that a transition has
to wait in order to synchronise with the occurrence of another transition.

In this paper, we further elaborate the idea of structured communication
in concurrent systems by combining synchronous execution and synchronous
communication in one Petri net model. We do this by lifting the constraints on
a/sync communication. Rather than being channels between a pair of transitions
(from different subsystems), a/sync places are now shared communication places
for multisets of transitions. In addition, we use localities to model synchronously
evolving subsystems. All this yields the new class of Place/Transition nets with
localities and a/sync places or ptlas-nets.

The combination of synchronous execution and a/sync communication leads
to complex causal relationships. To shed light on the intricate interplay of these
two phenomena we investigate how to unfold concurrent runs of ptlas-nets. We
use techniques from [7] and [9] to arrive as before in a natural way at occurrence
nets with localities and a/sync places. In this case however, it is not sufficient to
introduce barb-events in the same way as in [9]. There each barb-event is given
a single location and is introduced to supply information about the existence
of co-located enabled transitions in order to exclude illegal executions. Here,
to cater for possible enforced synchronicity between (transitions from) different
localities due to synchronous communication, barb-events need to have multiple
localities.

4 Jetty Kleijn and Maciej Koutny

2 PTL-nets with a/sync places

In what follows, we use mostly standard mathematical notation. In addition, let
us fix some notation for multisets.

Recall that a multiset over a set X is a function U : X → N = {0, 1, 2, . . .}.
Sets may be treated as multisets and multisets may be represented by listing their
elements with repetitions, e.g., U = {y, y, z} is a multiset such that U(y) = 2,
U(z) = 1, and U(x) = 0 otherwise. The empty multiset 0 defined by 0(x) = 0, for
all x ∈ X , may be written simply as ∅. For a multiset U (over X), we denote by
supp(U) its supporting set consisting of all elements (of X) for which U(x) > 0.
If supp(U) is finite, then the cardinality of |U | is U =

∑
x∈supp(U) U(x). Applying

a function ℓ to a (multi)set Z = {z1, . . . , zk} of elements of X yields a multiset
ℓ(Z) = {ℓ(z1), . . . , ℓ(zk)}. Then, for a sequence of (multi)sets Z1 . . . Zn, we define
ℓ(Z1 . . . Zn) = ℓ(Z1) . . . ℓ(Zn).

For two multisets U and V over X , their sum U ⊕ V and difference U ⊖ V

are the multisets given respectively by U ⊕V (x) = U(x)+V (x) and U ⊖V (x) =
max{0, U(x) − V (x)}, for all x ∈ X . We write U ≥ V whenever U(x) ≥ V (x),
for all x ∈ X , and U > V if, in addition, U 6= V . The restriction of a multiset
U to Y ⊆ X is the multiset U |Y given by U |Y (x) = U(x), for all x ∈ Y , and
U |Y (x) = 0 otherwise. The multiplication of U by k ∈ N is the multiset V given
by V (x) = k · U(x), for all x ∈ X .

We now introduce the class of Petri nets with localities and a/sync places
extending the standard pt-net model [4].

A pt-net with localities and a/sync places (or ptlas-net) is a tuple:

PTLAS = (P̃ , P̂ , T,W, ℓ,M0) , (1)

where: P̃ is a set of places and P̂ is a set of a/sync places with their union
being denoted by P ; T is a set of transitions ; W : T × P ∪ P × T → N is the
arc weight function; ℓ : T → N is the locality mapping; and M0 is a multiset
over P called the initial marking (in general, any multiset over P is a marking).

It is assumed that the sets P̃ , P̂ , and T are finite and mutually disjoint. We
refer to the elements of P and T as nodes (of PTLAS). In diagrams, places are
represented by circles; a/sync places by thick circles; transitions by rectangles
with their locality displayed in the middle; the arc weight function by directed
arcs with the weight n annotated if n ≥ 2 and arcs with weight 0 are omitted;
and a marking by tokens (small black dots) drawn inside places.

Figure 1 depicts a ptlas-net representing a producer, an unbounded a/sync
buffer (the middle a/sync place p0), and two consumers. The producer can exe-
cute one of three transitions: m (making item(s)), a (adding two new items to
the buffer), and f (failing to add two items, but still adding one item to the
buffer). Each of the two consumers represented by the two tokens in place p3
can cyclically execute: g (getting an item), and u (using the item). Transitions
modelling the actions of the producer belong to locality 1, and those represent-
ing the actions of the two consumers to locality 2. Initially, the system is in the
marking M0 = {p0, p1, p3, p3}.

Localities in Systems with a/sync Communication 5

p1

p2

p3

p4

p0

1f1m 1a 2 g 2 u
2

Fig. 1. A ptlas-net modelling a one-producer/two-consumers system.

For any transition t ∈ T , we define its inputs in(t) and outputs out(t), as
multisets over P such that, for every p ∈ P : in(t)(p) =W (p, t) and out(t)(p) =
W (t, p). The notions of inputs and outputs are lifted to arbitrary multisets U of
transitions in the usual way, for example:

in(U) =
⊕

t∈T

U(t) · in(t) .

We also denote ĩn(α) = in(α)|
P̃
and în(α) = in(α)|

P̂
(and similarly for outputs),

for any transition or multiset of transitions α. It is then assumed that the place
inputs as well as place outputs of any transition t ∈ T are non-empty, i.e.,
ĩn(t) 6= ∅ 6= õut(t).

For the ptlas-net in Figure 1, we have ĩn(g) = {p3} and ôut(a) = {p0, p0},
as well as:

in({a, g, g}) = {p0, p0, p1, p3, p3}
out({a, g, g}) = {p0, p0, p2, p4, p4} .

(2)

The above notation is extended to (a/sync) places p ∈ P : in(p) and out(p) are
multisets of transitions such that respectively in(p)(t) =W (t, p) and out(p)(t) =
W (p, t), for every t ∈ T .

The operational behaviour of PTLAS is captured by its step sequences, where
a step U is a multiset of transitions. We begin by defining what it means for
such a step to be enabled, considering two such notions. The first (standard) one
— called token-enabledness — only checks whether its transitions’ input places
contain enough tokens (for a/sync input places also counting the tokens that
will be supplied synchronously by executing the step). The second one — called
lmax-enabledness (or locally maximal enabledness) — also takes into account
its transitions’ localities by requiring that no extra transitions can be executed
in the localities involved in the current step.

Given a marking M of PTLAS , a step U of transitions is:

– token-enabled at M if M ⊕ ôut(U) ≥ in(U).
– lmax-enabled atM if U is token-enabled atM , and no step V > U satisfying

supp(ℓ(V)) = supp(ℓ(U)) is token-enabled at M .

6 Jetty Kleijn and Maciej Koutny

Whenever U is lmax-enabled at M , we will use M [U〉M ′ to denote that M ′ is
the successor marking resulting from the execution of U at M , where:

M ′ =M ⊕ out(U)⊖ in(U) .

For the ptlas-net in Figure 1 and U = {a, g, g}, we have:

M0 ⊕ ôut(U) = {p0, p0, p0, p1, p3, p3} ≥ {p0, p0, p1, p3, p3} = in(U)

and so U is token-enabled atM0. In fact, U is lmax-enabled atM0 and we have,
by (2), M0[U〉{p0, p2, p4, p4}.

The condition for token-enabledness, M ⊕ ôut(U) ≥ in(U), and the sub-
sequent definition of the successor marking imply that tokens in a/sync places
produced by U can be consumed in the same executed step. However, the same
does not hold for the (ordinary) places in P̃ since we have that M ≥ ĩn(U) as

P̃ and P̂ are disjoint. We further observe that one can replace the condition for
token-enabledness by M ≥ res(U), where res(U) = in(U) ⊖ ôut(U) captures
precisely the tokens needed to make the execution of U possible. As we have
seen in the ptlas-net in Figure 1, the step U = {a, g, g} is token-enabled at M0

which shows that one of the customers will get a completely fresh item via the
buffer.

ptlas-nets extend the ptl-nets of [9] by including a/sync places in addition
to the standard ones. Moreover, their semantics is a conservative extension of
that given for ptl-nets. There is, however, an important difference in the actual
formulation of lmax-enabledness which, in the case of ptl-nets, takes V > U

such that |V | = |U |+1, i.e., assumes that V is extended by (a single copy of) one
transition. Due to the intended behaviour of a/sync places, such an assumption
would be too restrictive for ptlas-nets and |V | = |U | + 1 is no longer wanted.
Consider, for example, the ptlas-net in Figure 2(a). The step U = {t, z} is
not lmax-enabled at M0 as V = {t, z, u, v} is token-enabled and supp(ℓ(V)) =
supp(ℓ(U)) = {1, 2}. On the other hand, the steps {t, z, v}, {t, z, u}, {t, t, z} and
{t, z, z} are not token-enabled at the initial marking. Note that this marking
forces a synchronous execution of u and v.

As it was already the case for ptl-nets [9], due to conflicts between transitions
coming from different localities, an lmax-enabled step does not necessarily consist
of maximal steps w.r.t. the individual localities. In other words, restricting such
a step to transitions coming from a single locality may yield a step which fails
to be lmax-enabled. In the case of ptlas-nets this observation can be further
strengthened as the latter steps may even fail to be token-enabled. Consider
again the ptlas-net in Figure 2(a) and the step U = {t, z, u, v} which is lmax-
enabled in the initial marking. By projecting U onto the two localities, 1 and
2, we obtain steps U ′ = {t, u} and U ′′ = {v, z} which are not token-enabled at
M0. Furthermore, the same U can be used to demonstrate that an lmax-enabled
step does not have to consist of transitions which are individually token-enabled
as {u} and {v} are not token-enabled at the initial marking. This is in contrast
with the step semantics of ptl-nets whose lmax-enabled steps are composed out
of token-enabled transitions.

Localities in Systems with a/sync Communication 7

(a)

1

t

1

u

2

v

2

z

(b)

1

t

2

u

2

v

2

w

2

x

1

y

2

z

(c)

1

t

2

u

2

v

2

w

2

z

1, 2

(d)

1

t

2

u

2

v

2

w

2

z

Fig. 2. Two ptlas-nets (a, b); and two attempts to construct a process of the latter
net: with barb-events (c), and without barb-events (d).

Finally, a step sequence of PTLAS is a sequence σ = U1 . . . Un (n ≥ 0) of steps
such that there are markingsM1, . . . ,Mn satisfyingM0[U1〉M1, . . . ,Mn−1[Un〉Mn.
Moreover,M0U1M1 . . .Mn−1UnMn is amixed step sequence of PTLAS , and each
Mi is a reachable marking.

3 Processes of PTLAS-nets

We now show how to construct processes of ptlas-nets from their step se-
quences. Each process of the net PTLAS as in (1), will be formalised as an
occurrence net with localities and a/sync conditions (or olas-net):

OLAS = (B̃, B̂, E, F,L, ψ,E,F,L)

which employs suitably adapted notions from ptlas-nets, but also includes other
components, as described next:

– B̃ is a set of places (or conditions).

– B̂ is a set of a/sync places (or a/sync conditions).
– E is a set of transitions (or events).

8 Jetty Kleijn and Maciej Koutny

– F ⊆ B × E ∪ E × B, where B = B̃ ∪ B̂, is a flow relation (or arc weight
function which returns only 0 or 1).

– L : E → N is a locality mapping.
– ψ : B ∪ E → P ∪ T is a mapping preserving the types of various kinds of

nodes, i.e., ψ(B̃) ⊆ P̃ , ψ(B̂) ⊆ P̂ and ψ(E) ⊆ T .
– E is a set of barb-events (represented by shaded rectangles).

– F ⊆ B × E are arrows leading to barb events (defining in(e), for e ∈ E).
– L : E → 2N gives non-empty sets of localities (shown inside rectangles rep-

resenting barb-events).

The default initial marking of OLAS is the set MOLAS
0 comprising all (a/sync)

places without incoming arcs in F .
Markings and execution rules for an olas-net as above, are defined as before

for ptlas-nets under the following assumptions. A step U is a multiset of events
(and does not include any barb-events), and U is lmax-enabled whenever, in
addition to the previously stated requirements, we have that:

– there is no barb-event e ∈ E such that M ⊕ ôut(U) ≥ in(U) ⊕ in(e) and
L(e) ⊆ supp(L(U)).

The role of barb-events should now be clear. They are not ‘real’ events, but
rather indicators of the enabledness of some transitions. Hence, although they
are never executed, they can still influence lmax-enabledness of steps made-up
of the standard events.

We will now describe how to construct a process of a ptlas-net by following
the execution of one of its step sequences.

Let σ = U1 . . . Un be a step sequence of PTLAS as in (1). An olas-net

OLAS = (B̃, B̂, E, F,L, ψ,E,F,L)

=
(n⋃

j=0

B̃j ,
n⋃

j=0

B̂j,
n⋃

j=0

Ej ,
n⋃

j=0

Fj ,
n⋃

j=0

Lj ,
n⋃

j=0

ψj ,
n⋃

j=0

Ej ,
n⋃

j=0

Fj ,
n⋃

j=0

Lj

)
(3)

generated by σ is the last net in the sequence OLAS0, . . . ,OLASn where each

OLAS j = (B̃j , B̂j , Ej , Fj ,Lj , ψj ,Ej ,Fj,Lj)

is constructed as described below, where:

– each non-barb-event node of OLAS is of the form z = xi, where x is a node
of PTLAS and i ∈ N; we also set ψ(z) = x and, if z is an event, L(z) = ℓ(x).

– each barb-event is of the form e = eLC , where L ⊆ N is a non-empty set of
localities and C ⊆ B is a non-empty set of (a/sync) conditions; we also set
in(e) = C and L(e) = L.

Step 0 of the process construction. We set:

B0 = {pm | p ∈ P ∧ 1 ≤ m ≤M0(p)} and E0 = F0 = ∅ .

Localities in Systems with a/sync Communication 9

Moreover, E0 comprises all barb-events eLC (where C ⊆ B0) for which there
exists a multiset V of transitions of PTLAS satisfying res(V) = ψ(C) and
supp(ℓ(V)) = L.
Step j (1 ≤ j ≤ n) of the process construction. To construct OLAS j , we
extend the components of OLAS j−1, as follows (below △x denotes the number
of nodes of OLAS j−1 labelled by x ∈ P ∪ T):

Bj = Bj−1 ∪ {pm+△p | p ∈ P ∧ 1 ≤ m ≤ out(Uj)(p)}

Ej = Ej−1 ∪ {tm+△t | t ∈ T ∧ 1 ≤ m ≤ Uj(t)} .

Then, for every new event e = ti ∈ Ej\Ej−1, we arbitrarily choose1 four sets of

(a/sync) conditions: Ĩe ⊆ B̃j−1, Îe ⊆ B̂j , Õe ⊆ B̃j\B̃j−1 and Ôe ⊆ B̂j\B̂j−1 in
such a way that:

ψ(Ĩe ∪ Îe) = in(t) and ψ(Õe ∪ Ôe) = out(t) . (4)

and after setting:

Fj = Fj−1 ∪
⋃

e∈Ej\Ej−1

(Ie ∪ Îe)× {e} ∪
⋃

e∈Ej\Ej−1

{e} × (Õe ∪ Ôe)

it is the case that |in(b)| ≤ 1 ≥ |out(b)|, for every b ∈ Bj .
Finally, the set Ej extends Ej−1 by including barb-events eLC (C ⊆ Bj and

C 6⊆ Bj−1), for which there exists a multiset V of transitions of PTLAS satisfying
res(V) = ψ(C) and supp(ℓ(V)) = L.

We will provide an example of the above construction later on.

3.1 Properties of the construction

The above construction is a conservative extension of that developed for pt-nets
and occurrence nets [4], allowing us to import some useful properties to the cur-

rent framework. Let PT = (P̃ , T, W̃ , M̃0), where W̃ = W |
P̃×T∪T×P̃

and M̃0 =

M0|P̃ , be the pt-net underlying PTLAS in (1), and ON = (B̃, E, F̃ , ψ̃), where

F̃ = F |
B̃×E∪E×B̃

and ψ̃ = ψ|
B̃∪E

, be the occurrence net underlying OLAS in
(3). The step semantics of PT and ON is essentially that of token-enabled step
semantics of ptlas-nets and olas-nets with no a/sync places/conditions and
barb-events. It is clear that each step sequence of PTLAS is a step sequence of
PT , and the construction described above can be used to derive ON from PT
and (the same) σ. Moreover, as shown next, the semantics of OLAS is set-based
rather than multiset-based, similarly as that of ON .

Proposition 1. If G0H1G1 . . . Gm−1HmGm is a mixed step sequence of OLAS,
then G0, . . . , Gm are sets, and H1, . . . , Hm are mutually disjoint sets.

1 This means that, in general, more than one process can be constructed for σ. We
will later show that suitable sets Ĩe, Îe, Õe and Ôe can always be found.

10 Jetty Kleijn and Maciej Koutny

Proof It is easily seen that G0|B̃H1G1|B̃ . . .Gm−1|B̃HmGm|
B̃

is a mixed step
sequence of ON which, in particular, means that H1, . . . , Hm are mutually dis-
joint sets. Moreover, by construction, G0 = MOLAS

0 is a set, in(MOLAS
0) = ∅,

and |in(b)| ≤ 1 for all b ∈ B. Hence G1, . . . , Gm are sets. ⊓⊔
Our aim is to show that the process construction we presented is consistent,

i.e., it satisfies (cons-i) and (cons-ii). We first show (cons-i) which means
that every step sequence of the constructed olas-net corresponds to a legal step
sequence of the original ptlas-net.

Theorem 1. If ζ is a (mixed) step sequence of OLAS, then ψ(ζ) is a (mixed)
step sequence of PTLAS.

Proof We first observe that, by (4), for every event e ∈ E:

ψ(in(e)) = in(ψ(e)) and ψ(out(e)) = out(ψ(e)) . (5)

We only need to prove that the result is satisfied for a mixed step sequence
ζ = G0H1G1 . . . Gm−1HmGm. We proceed by induction on m. For m = 0 the
result follows from the definition of OLAS0.

In the induction step, we assume ζ′ = ζHG is a mixed step sequence of OLAS
and ψ(ζ) is a mixed step sequence of PTLAS . Let U = ψ(H), M = ψ(Gm) and
K = ψ(G). As H is token-enabled at Gm, Gm ≥ in(H)⊖ ôut(H). Hence:

M = ψ(Gm) ≥ ψ(in(H)⊖ ôut(H))
= ψ(in(H))⊖ ψ(ôut(H)) (by (5))
= in(ψ(H)) ⊖ ôut(ψ(H)) = in(U)⊖ ôut(U) .

Thus U is token-enabled at M . If U is not lmax-enabled at M , then there is a
step U ⊕ V > U which is token-enabled at M and supp(ℓ(V)) = supp(ℓ(U)).
From the fact that both U and U ⊕ V are token-enabled at M it follows that
M ⊕ ôut(U)⊖ în(U) ≥ res(V). Hence

ψ(Gm ⊕ ôut(H)⊖ în(H)) ≥ res(V) .

Consequently, as Gm is a set by Proposition 1, there is a set

C ⊆ Gm ⊕ ôut(H)⊖ în(H)

such that ψ(C) = res(V). Hence, by (5) and the construction, there is a barb-
event e = eLC such that L = supp(ℓ(V)) and C ⊕ ôut(H) ≥ in(H) ⊕ in(e).
This produces a contradiction with H being lmax-enabled at Gm. Hence U is
lmax-enabled at M .

We then observe that since G = Gm ⊕ out(H)⊖ in(H), we have:

K = ψ(G) = ψ(Gm ⊕ out(H)⊖ in(H))
= ψ(Gm)⊕ ψ(out(H))⊖ ψ(in(H)) (by (5))
= ψ(Gm)⊕ out(ψ(H))⊖ in(ψ(H))
=M ⊕ out(U)⊖ in(U) .

Hence M [U〉K, and so ψ(ζ′) is a mixed step sequence of PTLAS . ⊓⊔
We then show that (cons-ii) holds, i.e., that the successively constructed

sets of events form a legal step sequence of OLAS corresponding to σ.

Localities in Systems with a/sync Communication 11

Theorem 2. Let D1 = E1, D2 = E2\E1, . . . , Dn = En\En−1. Moreover, let

Cj = {b ∈ Bj | out(b) = ∅ in OLAS j} ,

for 0 ≤ j ≤ n. Then ζ = C0D1C1 . . . Cn−1DnCn is a mixed step sequence of
OLAS.

Proof Let M0U1M1 . . .Mn−1UnMn be the mixed step sequence of PTLAS
corresponding to the step sequence σ. We will prove, by induction on j, that
ζj = C0D1C1 . . . Cj−1DjCj is a mixed step sequence of OLAS such that we
have ψ(C0) =M0, . . . , ψ(Cj) =Mj .

In the base case (j = 0), we have C0 = B0 =MOLAS
0 (any (a/sync) condition

added after the initial step has an incoming arc) and ψ(C0) = M0 directly by
construction (note that in(b) = ∅, for all b ∈ B0).

In the induction step, we start by showing that Dj is lmax-enabled at Cj−1.
First, we observe that in PTLAS we have Mj−1 ⊕ ôut(Uj) ≥ in(Uj). Moreover,
by the induction hypothesis, ψ(Cj−1) =Mj−1.

Hence it is possible to find the sets Ĩe, Îe, Õe and Ôe, as required by the
process construction, which demonstrates its well-definedness.

Furthermore, the choice of the sets must be such that Cj−1 ∪ (B̂j \ B̂j−1) ≥
ĩn(Dj). It therefore follows that Dj is token-enabled at Cj−1. If Dj is not lmax-
enabled at Cj−1, then one of the following holds:

Case 1: There is a multisetD 6= ∅ overE such that supp(L(D)) ⊆ supp(L(Dj))
and H = Dj ⊕D is token-enabled at Cj−1.
ThenM⊕ôut(U) ≥ in(U)⊕in(e). Thus Cj−1⊕ôut(H) ≥ in(H). Hence, by (5),
ψ(Cj−1) ⊕ ôut(ψ(H)) ≥ in(ψ(H)). Thus Mj−1 ⊕ ôut(H) ≥ in(H). Moreover,
supp(ℓ(H)) = supp(ℓ(Dj)). Hence Uj is not lmax-enabled at Mj−1 in PTLAS ,
a contradiction.

Case 2: There is a barb-event e = eLC ∈ E such that Cj−1 ⊕ ôut(Dj) ≥
in(Dj)⊕ C and L ⊆ supp(L(U)).
Let V be a multiset over T from which eLC has been derived. By proceeding
similarly as in Case 1, we can show that Uj ⊕ V is token-enabled at Mj−1 and
supp(ℓ(Uj)) = supp(ℓ(Uj ⊕ V)), contradicting Uj being lmax-enabled at Mj−1.
Hence Dj is lmax-enabled at Cj−1, and one can see that Cj−1[Dj〉Cj−1 as well
as ψ(Cj) =Mj which follows from ψ(Cj−1) =Mj−1 and (5). ⊓⊔

3.2 Removing redundant barb-events

It is relatively straightforward to simplify the constructed process without inval-
idating the results we have just presented. A barb-event eLC is redundant if one
of the following holds:

– there is a barb-event eL
′

C′ 6= eLC such that C′ ⊆ C and L′ ⊆ L.
– there is a multiset H over E such that C = res(H) and L = supp(L(H)).
– there are b1, . . . , bm ∈ B (m ≥ 2) such that (bi, bi+1) ∈ F ◦ F (for i < m)

and b1, bm ∈ C and {b1, . . . , bm} ∩ B̃ 6= ∅.

12 Jetty Kleijn and Maciej Koutny

p11

p10

p13

p23

p30

p20

p12

p14

p24

p21

p33

1

a1

1

m1

2

g2

2

g1

2

u1
2

2

1

2

2

2

2

2

Fig. 3. Process OLAS generated for the ptlas-net in Figure 1 and its step sequence
σ = {a, g, g}{m,u} after removing redundant barb-events.

Intuitively, the first two cases exclude barb-events whose ‘enabledness’ implies
enabledness of a smaller barb-event or enabledness of a step of events which
would require exactly the same tokens and localities as the redundant barb-event.
The third case excludes barb-events which can never be enabled at a marking
reachable from the default initial marking of OLAS . It therefore follows that
Theorems 1 and 2 still hold if we remove all the redundant barb-events together
with the adjacent arcs.

Figure 3 shows a process generated for the ptlas-net in Figure 1 and its
step sequence σ = {a, g, g}{m,u} after removing all the redundant barb-events.

In particular, the redundant barb-events in E0 were: e
{2}

{p1

0
,p2

3
}
on account of g1;

e
{1}

{p1

1
}
on account of a1; and e

{1,2}

{p1

1
,p1

3
}
, e

{1,2}

{p1

1
,p2

3
}
and e

{1,2}

{p1

0
,p1

1
,p1

3
,p2

3
}
on account of

e
{1}

{p1

1
}
. Moreover, e

{2}

{p2

0
,p3

3
}
belonging to E2\E1 has been removed as p14 ∈ B̃ and

(p20, g
2), (g2, p14), (p

1
4, u

1), (u1, p33) ∈ F .
Omitting (all) barb-events from the process construction would invalidate

their consistency. Consider, for example the ptlas-net in Figure 2(b) and its step
sequence σ = {t, u, v}{w, z}. Figure 2(c) depicts its process OLAS after remov-
ing all redundant barb-events. We then note that deleting the only barb-event of
OLAS leads to the net in Figure 2(d) which can execute a step sequence σ such
that ψ(σ) = {u, v}{t, z}{w}. Thus Theorem 1 is violated since {u, v}{t, z}{w}
is not a legal step sequence of the ptlas-net in Figure 2(b) (as {t, z, x, y} is
token-enabled at the marking reached after executing {u, v}).

In the process construction developed for ptl-nets in [9], each barb-event has
a single locality associated with it. Such an approach would not work here. Con-
sider, for example, the ptlas-net in Figure 4(a) and its process corresponding
to step sequence σ = {t, u} shown in Figure 4(b). If, in the process construc-
tion, the two-localities barb-event was replaced by two ‘equivalent’ single-locality
barb-events, then the resulting net shown in Figure 4(c) would fail to satisfy The-

Localities in Systems with a/sync Communication 13

orem 2. In fact, this net does not allow the event labelled by t to be executed in
any reachable marking.

(a)

1

t

2

u

2

x

1

y

(b)1

t

2

u

1, 2

(c)1

t

2

u

2

1

Fig. 4. A ptlas-net (a); its (simplified) process constructed for σ = {t, u}; and an
attempt to derive a process with barb-events based on single localities (c).

4 Conclusions

We have presented a process construction for ptlas-nets which yields nets sat-
isfying the consistency criteria of [6]. In our future work we plan to extend this
construction to include also inhibitor and activator arcs which are of practical
relevance when modelling, e.g., biological systems.

Acknowledgement We would like to thank Grzegorz Rozenberg for introducing
us to the area of Natural Computing and his continuous encouragement and
support of our research over the years.

References

1. E.Best and R.Devillers: Sequential and Concurrent Behaviour in Petri Net Theory.
Theoretical Computer Science 55 (1988) 87–136

2. L.P.Carloni and A.L.Sangiovanni-Vincentelli: A Formal Modelling Framework for
Deploying Synchronous Designs on Distributed Architectures. In Proc. of the First
International Workshop on Formal Methods for Globally Asynchronous Locally
Synchronous Architectures (2003)

3. J.Cortadella, M.Kishinevsky, A.Kondratyev, L.Lavagno and A.Yakovlev: Logic

Synthesis of Asynchronous Controllers and Interfaces. Springer Series in Ad-
vanced Microelectronics, Springer-Verlag (2002)

14 Jetty Kleijn and Maciej Koutny

4. J.Desel and W.Reisig: Place/Transition Petri Nets. Lecture Notes in Computer
Science 1491 (1998) 122–173

5. J.Desel, W.Reisig and G.Rozenberg (eds.): Lectures on Concurrency and Petri
Nets. Lecture Notes in Computer Science 3098 (2004)

6. H.C.M.Kleijn and M.Koutny: Process Semantics of General Inhibitor Nets. Infor-
mation and Computation 190 (2004) 18-69

7. J.Kleijn and M.Koutny: Causality in Structured Occurrence Nets. Lecture Notes
in Computer Science 6875 (2011) 283-297

8. J.Kleijn, M.Koutny and G.Rozenberg: Towards a Petri Net Semantics for Mem-
brane Systems. Lecture Notes in Computer Science 3850 (2006) 292–309

9. J.Kleijn, M.Koutny and G.Rozenberg: Process Semantics for Membrane Systems.
J. of Automata, Languages and Combinatorics 11 (2006) 321-340

10. M.Koutny and B.Randell: Structured Occurrence Nets: A Formalism for Aiding
System Failure Prevention and Analysis Techniques. Fundamenta Informaticae
97 (2009) 41–91

11. Gh.Păun: Membrane Computing. An Introduction. Springer Verlag (2002)
12. Gh.Păun, G.Rozenberg and A.Salomaa (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press (2009)
13. C.A. Petri: Kommunikation mit Automaten. Ph.D. Thesis (1962)
14. B.Randell: Occurrence Nets Then and Now: The Path to Structured Occurrence

Nets. Lecture Notes in Computer Science 6709 (2011) 1–16
15. W.Reisig and G.Rozenberg (eds.): Lectures on Petri Nets I: Basic Models. Lecture

Notes in Computer Science 1491 (1998)
16. W.Reisig and G.Rozenberg (eds.): Lectures on Petri Nets II: Applications. Lecture

Notes in Computer Science 1492 (1998)
17. G.Rozenberg and J.Engelfriet: Elementary Net Systems. Lecture Notes in Com-

puter Science 1491 (1998) 12–121

	TRCover1285
	TRAbstract1285
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1285

