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This paper points out the importance of the assumption of locality of physical interactions, and the

concomitant necessity of propagation of an entity (in this case, off-shell quanta—virtual gravitons) between two

nonrelativistic test masses in unveiling the quantum nature of linearized gravity through a laboratory experiment.

At the outset, we will argue that observing the quantum nature of a system is not limited to evidencing O(h̄)

corrections to a classical theory: it instead hinges upon verifying tasks that a classical system cannot accomplish.

We explain the background concepts needed from quantum field theory and quantum information theory to

fully appreciate the previously proposed table-top experiments, namely forces arising through the exchange of

virtual (off-shell) quanta, as well as local operations and classical communication (LOCC) and entanglement

witnesses. We clarify the key assumption inherent in our evidencing experiment, namely the locality of physical

interactions, which is a generic feature of interacting systems of quantum fields around us, and naturally

incorporate microcausality in the description of our experiment. We also present the types of states the matter

field must inhabit, putting the experiment on firm relativistic quantum-field-theoretic grounds. At the end, we

use a nonlocal theory of gravity to illustrate how our mechanism may still be used to detect the qualitatively

quantum nature of a force when the scale of nonlocality is finite. We find that the scale of nonlocality, including

the entanglement entropy production in local and nonlocal gravity, may be revealed from the results of our

experiment.

DOI: 10.1103/PhysRevA.101.052110

I. INTRODUCTION

Recently, two papers [1,2] have discussed the possibility

of detecting quantum behavior of a linearized gravitational

field in a table-top experiment. The proposal crucially relies

on local quantum interactions between matter and the gravita-

tional field leading to the generation of entanglement between

the two nonrelativistic test masses, each initially prepared in

a superposition of distinct spatial states. This entanglement

is a proof of the quantumness of the mediating gravitational

field and can be witnessed by measuring the correlations

between individual spins which have been embedded in the

test masses [1]. The witness can be measured in a few runs

of the experiment if the entanglement generating phase due

to this gravitational potential between the two superposed

quantum systems is roughly of order 1. While the proposed

experiment had been couched in terms of Stern-Gerlach in-

terferometry [3,4], which enabled its formulation in terms of

a spin entanglement witness, it is possible that other settings

in which macroscopic superpositions are generated will work

just as well [5–12].

For the conclusion about the quantum nature of gravity

to follow from the aforementioned entanglement, it is very

important that “something” is exchanged between the test

masses when they interact mutually through their Newtonian

interaction. This point is often unclear when the proposed

entanglement generation experiment is presented in terms

of a direct Newtonian interaction between the test masses,

resulting in appropriate phase evolutions in their states which

entangle the masses. In fact, that approach is adopted purely

for convenience and we highlight here that there is a very

well-defined quantum mechanism for the Newtonian inter-

action where the entity which acts as a mediator of the

interaction is an off-shell (virtual) graviton. This is exchanged

between the test masses, and through a tree-level diagram

leads to the Newtonian interaction. Fundamentally, according

to quantum field theory, forces between two sources (say

two static charges) can be understood from the exchange of

virtual particles between them—photons, W ±, Z bosons, and

gluons—which are uncontroversially (by definition) quantum

mechanical [13]. Similarly, in the low-curvature regime, grav-

ity can be regarded as perturbations on a background, and

these perturbations can be regarded as a field. Within this

setting, the Newtonian interaction between two masses can

be considered as originating from the exchange of virtual

gravitons [14], which puts gravity, at least in this regime,

in exactly the same quantum footing as the other known

fundamental forces of nature.
However, the mere theoretical existence of a quantum

mechanism for the origin of the Newtonian force does not
prove that it is indeed that quantum mechanism that nature
has decided to adopt; only experiments can do that. As far as
current experimental evidences are concerned, it could equally
well be a classical field generated by a source mass which
affects a probe mass placed in that field—indeed there are
several proposed classical and semiclassical mechanisms to
generate a force with the same features as the Newtonian
force [15–23]. How do we know whether any of these other
mechanisms are adopted by nature or whether it is indeed the
exchange of quantum off-shell gravitons?
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Detecting the quantum nature of an entity has historically

been through radical “qualitative” departures (such as the

photoelectric effect detecting energy quantization) or through

“quantitative” O(h̄) quantum corrections to energies and inter-

action potentials. However, the above strategies hardly seem

to be adaptable readily to the case of a laboratory test for

the quantum nature of gravity. Its on-shell quantum wave

packets, the gravitons (say, of a gravitational wave), carry

too little energy, while any O(h̄) quantum modifications of

the Newtonian potential are too small to witness for currently

available systems. Thus, the question arises: Could one clev-

erly design a laboratory experiment to reveal an underlying

quantum mechanism of the Newtonian gravitational force

itself? Unfortunately, this underlying quantum character is

completely hidden in the subset of experiments done so far;

these look solely at the classical effects of the force field.

Examples of this include the displacement of an object in

a Newtonian potential or the phase development of a wave

function of a quantum object in that classical field [24].

Furthermore, previous suggestions regarding observation of

gravitational effects cannot unambiguously falsify quantum

gravity [25].

Thus, the recent papers have had to propose an indirect

strategy [1,2]. If an agent entangles two quantum entities, the

agent must be performing quantum communication between

them; i.e., it must itself be a quantum entity. Through this idea,

the generation of entanglement between two masses is used to

witness the quantum nature of the agent acting between them.

Note that here we are testing a quantum feature of gravity in

a similar spirit to a Bell-inequality test on quantum systems

[26], which is an effect that does not go away when h̄ → 0,

as was shown a long time ago using two entangled large

spins [27,28], although it might become more challenging to

detect. Other similar quantum effects that survive as h̄ → 0

have recently been proposed in the context of the violation of

macrorealism by large spins and large masses [29,30]. Simi-

larly, the effect we suggest is a quantum effect that remains in

the h̄ → 0 limit, and while it is difficult to detect, we have

suggested, in Ref. [1], a domain in which it is feasible to

be observed. Several viewpoints have been presented regard-

ing the interpretation and applications of this idea: Ref. [1]

(supplementary material) and Refs. [2,20,31–37]. There have

also been noise analysis [38], as well as related independent

suggestions [39,40] and paradox resolutions [41,42] which

point toward the necessity of gravity to be quantum in nature.

In this paper, we seek to clarify the crucial assumptions

underlying the claim that the witnessing of entanglement in

the laboratory demonstrates the quantum nature of gravity.

Moreover, we will show that it all works consistently within

a quantum field theory context using a fully relativistically

covariant formalism for the propagator. This also naturally

clarifies how relativistic causality can be respected in the

treatment of the above experiments. We start by laying down

all our assumptions, the most important being the locality of

physical interactions, in the above evidencing of quantum-

ness. We clarify the manner in which the gravitational field

would entangle the spins via the energy momentum tensor of

the nonrelativistic mesoscopic superpositions. We will further

clarify the necessity of the interaction to be through a quantum

entity to allow such entanglement to form, by clarifying

why local operations and classical communications (LOCC)

cannot entangle the masses in our scenario. Specifically, as

the term “communication” may sound somewhat cryptic to

the physicist who thinks about interactions between fields,

we show the impossibility of a classical gravitational field

to create entanglement. The notion of classical field here is

kept very general and automatically includes situations such

as semiclassical gravity (quantum matter sourcing a classi-

cal gravitational field) and where the matter is not strictly

quantum mechanical in the usual sense—i.e., it has stochastic

evolutions beyond standard quantum mechanics (e.g., when

they are subject to fundamental collapse models) so that the

gravitational field generated is also stochastic. As far as the

experimental aspects are concerned, we emphasize why we

seek the simplest statistical procedure to witness the entangle-

ment rather than trying to estimate an entanglement measure.

Given the fundamentally quantum field theoretic nature of all

systems, one should also treat the test masses as described

by quantum fields. In this context, we present the type of

states the matter field must be assumed to inhabit for a simple

“bipartite” witnessing of the entanglement. Finally, adopting

the example of a nonlocal theory of gravity, where there is a

valid quantum propagator, we provide an example where our

method can still be used to witness the underlying quantum

nature of the field even though the theory is fundamentally

nonlocal at some scale. In fact, this example illustrates that as

long as the length scale of nonlocality is finite, our mechanism

is a valid approach as there is the need for entities to propagate

from point to point to convey an interaction. Interestingly

enough, our experiment can also be used to reveal the length

scale of nonlocality, if present.

II. UNDERLYING ASSUMPTIONS

To begin with, it is worth highlighting the key assumptions

underlying the inference of the quantum nature of gravity

from our tabletop experiment on gravitationally mediated

entanglement.

(1) Locality of physical interactions: One of the pillars of

quantum field theory is the assumption of locality. All the

interactions are assumed to be local at both classical and

quantum levels. Locality also ensures microcausality.1 In the

context of gravity, the local interaction is given by

κ2hμν (�r, t )T μν (�r, t ), (1)

where κ2 = (8πG)−1, G = h̄/M2
p is Newton’s constant, Mp ∼

1019 GeV, μ, ν = 0, 1, 2, 3, and we are working with signa-

ture (−,+,+,+). The energy momentum tensor of matter

is given by Tμν . The metric perturbation around Minkowski

background is

gμν = ημν + κhμν , (2)

1Specifically, the field operators for two masses φ̂1(xa ) and φ̂2(xb),

where xi are the four vectors for masses, minimally coupled through

the gravitational field, can be considered. When the two masses

are spacelike separated �s2(xa − xb) > 0 and [φ̂1(xa), φ̂2(xb)] = 0

and as such we have no faster than light signaling. Now, of course,

when �s2(xa − xb) < 0 and [φ̂1(xa), φ̂2(xb)] �= 0 and so all causal

relationships will behave as expected.
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where ημν is the Minkowski metric, and |κhμν | ≪ 1, in order

to maintain the linearity. A priori hμν need not be quantum

at all, though the matter part of the energy momentum tensor

could be a quantum entity.

The concept of locality is also an important criteria from

the perspective of quantum information and quantum entan-

glement. In particular, under LOCC, two particles exchanging

only classical energy momentum will not lead to enhancement

in entanglement. Note that while LOCC is used as a principle

to define mixed-state entanglement [43,44], it can be easily

proved when we start from an unentangled state of two objects

as in the case of the experiments described in Refs. [1,2]. In

fact, in these experiments, the two applications of locality,

i.e., in defining local quantum field theories and in prohibiting

entanglement generation at a distance without quantum com-

munication, are brought together. It is very important to note

that the locality is not proven through our experiment—that

is not its purpose—locality is assumed from our knowledge

of physical interactions in the observed regimes. It is the

quantum aspect which we prove after assuming the locality.

Of course, as opposed to a local quantum theory, nonlocal

field theories have also been developed since the days of

Yukawa [45], and Pais and Uhlenbeck [46]. There has been a

recent resurgent in understanding them as well in the context

of field theory [47–50] and in quantum mechanics [51–53].

Note these are, however, not “action at a distance” theories.

One of the features of a nonlocal theory is that it does not

have a point support [49,54,55]; therefore it is very helpful for

ameliorating some of the singularities in nature, such as point

singularity, due to gravitational 1/r potential.2

In this paper, as an alternative to local gravitational interac-

tion, we will also study a nonlocal theory of gravity [50], and

show that, although nonlocal, its quantum nature can still be

evidenced. This means that the type of locality assumption we

2Infinite derivatives acting on δ Dirac source do not have point

support. Let us consider a one-dimensional problem,

eα∇2
x δ(x) = 1√

2π

∫

dke−αk2

eikẋ = 1√
2α

e−x2/4α , (3)

Note that the left-hand side is a nonlocal operator acting on a δ Dirac

source, with a scale of nonlocality given by α−1. The result is a

Gaussian distribution. In a very similar fashion one, can also resolve

the singularity present in a rotating metric in general relativity [56]

and the singularity due to a charged electron [57]. The nonlocal

theories arise in many contexts in quantum gravity; in string theory,

the notion of point objects are replaced by strings and branes [58],

dynamical triangulation [59], and loop quantum gravity [60], and

a casual set approach [61] exploits Wilson operators which are

inherently nonlocal. The string field theory introduces nonlocality

at the string scale, for a review see Ref. [62], and infinite derivative

ghost-free theory of gravity (IDG) [50], which does not introduce any

instability around a given background, is motivated by string field

theory [63–65]. In particular, in string field theory and in IDG the

nonlocality appears only at the level of interactions. Note that loss of

locality will also give rise to violation of microcausality. However, it

has been shown that for the specific class of nonlocal theories we are

interested in here, the violation of causality is limited to the scale of

nonlocality [47,48,66,67].

require in our experiment is not prohibitively restrictive and

depends on the scale of nonlocality of the theory.

(2) Linearized gravity: Note that we are always working

in a regime of weak field gravity, linearized around the

Minkowski background. In this way, we avoid highly nontriv-

ial space-times as the background (the experiment is to be car-

ried out on Earth or a satellite in space). This also means that

the gravitational potential is always bounded below unity. In

fact, below the millimeter scale, we have no direct constraint

on Newtonian 1/r potential [68].3 We are working in a regime

of roughly >100 μm, and for the masses under consideration,

the gravitational interaction is indeed weak and justifies the

treatment of linearized gravity. At distances >100 μm, the

Casimir interaction is weaker than that of the gravitational

interaction; see Ref. [1]. We have also outlined in Ref. [1]

how to get rid of all the competing electromagnetic forces; so

that the only force is gravitational, we have to also ensure that

no as yet unknown “fifth force” acts here which essentially

can also entangle the masses as a Newtonian force would do.

This again is easy to ensure for separations >100 μm for

which Newtonian gravity has been very well tested. Similarly,

the velocities of the masses are firmly in the nonrelativistic

regime so that the physics is well described by the Newtonian

regime.

(3) Definition of a classical field: Note that here we are

not defining what makes something quantum, but rather we

clarify at the outset what we mean by a “classical” field. We

simply take a classical field to be an entity which with general

probabilities Pj has fixed (unique) values h
j
μν at each point of

space-time (here we have used a tensor field in the definition,

but it could be scalar, spinor, etc.). Of course, a special case

of that is when there are no probabilities at all—the field

just has a value hμν . There is a reason that we are using a

much broader definition than simply a unique value—namely

we are allowing also the probability of the field statistically

having different values with different probabilities. This is just

to carefully emphasize that the statistical nature of something

does not make it quantum (think of a classical die)—quantum

comes with the possibility of going beyond statistical mixtures

of field configurations to coherent superpositions of field

configurations. Additionally, we demand that a classical field

means that we are not even allowed to think of a Hilbert

space for the field, i.e., even joint quantum states of fields

with other (say, matter) systems is disallowed; i.e., states of

the form
∑

j

√

Pj | j〉|h j
μν〉 are not allowed. The only allowed

joint states of quantized matter and classical field are the

probability distributions Pj of configurations {| j〉〈 j|, h
j
μν},

where h
j
μν is a tensor for each point in space time but not

an operator-valued quantity. Our definition of classical field,

and the consequences which follow from it (cf. Sec. IV) are

very standard (if one expands significantly the definition of

what is meant by classical, one will, of course, get other

consequences [32]). Here we are defining a classical field

3Recently, the bound on short-distance gravitational potential has

been improved but the constraints are for the Yukawa-type gravita-

tional potential, which depends also on the strength of the Yukawa

interaction [68–70].
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as, for example, used by Feynman during his 1957 debate

with other researchers on the quantum nature of gravity [71]:

“... if I have an amplitude for a field, that’s what I would

define as a quantized field.” So a classical field is one which

has probabilities for various field configurations rather than

amplitudes for various field configurations.

III. A QUANTUM ORIGIN OF THE NEWTONIAN

POTENTIAL IN LINEARIZED QUANTUM GRAVITY

The Einstein-Hilbert equation around the Minkowski back-

ground is given by

SEH = 1

4

∫

d4x hμν O
μνρσ hρσ + O(κh3), (4)

where O(κh3) takes into account of higher order terms in the

perturbation, while the four-rank operator Oμνρσ is totally

symmetric in all its indices and defined as

O
μνρσ := 1

4
(ημρηνσ + ημσηνρ )� − 1

2
ημνηρσ

�

+ 1
2
(ημν∂ρ∂σ + ηρσ ∂μ∂ν − ημρ∂ν∂σ − ημσ ∂ν∂ρ ),

(5)

for � = ημν∇μ∇ν . By inverting the kinetic operator, we

obtain the graviton propagator around the Minkowski back-

ground. It is saturated between two conserved currents [in our

case these are energy momentum tensors; see Eq. (8)] and the

gauge-independent part is given by [72,73]4


μνρσ (k) =
(

P2
μνρσ

k2
−

P0
s, μνρσ

2k2

)

, (6)

where P2 and P0
s are two spin projection operators projecting

along the spin-2 and spin-0 components, respectively; see

Refs. [72–74] for further details. The Newtonian potential

between the two masses, T
μν

1 ∼ mδ
μ

0 δν
0δ(3)(�r) and the unit

mass T
μν

2 ∼ δ
μ

0 δν
0δ(3)(0) can be computed via a scattering

diagram in quantum field theory. This can be envisaged by

a transition amplitude in quantum mechanics, which we will

discuss briefly. In fact, this part of the discussion is common

to any quantum field theory, which has well defined initial and

final states. Various examples will be Coulomb interaction via

an exchange of a photon, or Yukawa potential via an exchange

of a meson field; see Ref. [75].

4By definition, off-shell graviton does not obey the classi-

cal equations of motion; see this discussion below. The gravi-

ton propagator in general relativity can be recast as 
μνρσ (�k) =
1

2�k2
(ημρηνσ + ηνρημσ − ημνηρσ ). This propagator can be obtained

either in a particular gauge known as harmonic gauge, or it can

be obtained by using the projection operator technique defined

in Appendix A. For the details of the projection operator, see

Refs. [72–74].

Note that in quantum mechanics the transition matrix ele-

ment is given by the perturbation expansion:5

Tfi = 〈 f |V |i〉 +
∑

j �=i

〈 f |V | j〉〈 j|V |i〉
Ei − E j

+ · · · . (7)

The transition matrix element determines the transition rate

of any process going from initial state i to final f . The first

term in the perturbation series, 〈 f |V |i〉, can be imagined as

scattering in a fixed potential. Such a scattering is considered

unsatisfactory because the transfer of momenta happens with-

out any mediating field. Also, the force obtained from such a

potential will lead to violation of special theory of relativity,

immediate action at a distance. Nevertheless, this is purely

a classical scattering in a fixed potential. The potential here

could be Coulomb or gravitational or Yukawa potential. In

this sense, the potential here is purely a classical concept.

The transition matrix is Tfi = 〈ψ f |V (r)|ψi〉, where V (r) is the

static potential for Coulomb, Yukawa, or gravitational.

The second term in the series can be viewed as scattering

via an intermediate state j. In quantum field theory, inter-

actions between particles always happen via an exchange of

a mediator, which can be understood in time-ordered pertur-

bation theory. For a process a + b → c + d via an exchange

of quanta, X will have two time ordered diagrams. Summing

the matrix element for both the time-ordered diagrams yields

a Feynman propagator; see Ref. [75]. An off-shell/virtual

exchange of the mediator X satisfies the conserved energy

momentum tensor at the two vertices, but does not satisfy

the classical on-shell equations of motion. By this, we mean

that the propagator does not satisfy the Einstein energy-

momentum relationship and it is termed as off mass-shell,

off-shell, or virtual. By definition, a graviton propagator, see

Eq. (6), is a nonclassical entity, precisely because k2 �= 0,

and in order to find the potential, we are integrating over all

possible values of k; see the derivation below in Eq. (8). The

forces between particles now result from the transfer of the

momentum carried by the exchanged spin-2 graviton, which

has two off-shell propagating degrees of freedom as shown in

Eq. (6).

For a nonrelativistic setup, we are only interested in

00 components. The two conserved vertices will be the

two masses, T
μν

1 ∼ mδ
μ

0 δν
0δ(3)(�r), and the unit mass T

μν

2 ∼
δ

μ

0 δν
0δ(3)(0). The nonrelativistic potential will be given

by integrating all the momenta of the off-shell graviton

propagator 
0000:

�(r) = − κ2

∫

d3|�k|
(2π )3

T 00
1 (k)
0000(k)T 00

2 (−k)ei�k·�r

= − κ2m

2

∫

d3|�k|
(2π )3

1

�k2
ei�k·(�r) = −Gm

r
, (8)

which recovers the Newtonian potential. The above potential

has been obtained in a scattering theory.6 Note that we are

5There are many textbooks on quantum field theory to which the

readers can refer. Here we have provided a lucid discussion in

Ref. [75]; see Secs. 5.1 and 5.2.
6The above potential result could have been obtained following

real-time formalism, or Schwinger-Keldysh formalism [76,77]. This
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FIG. 1. T-channel scattering Feynman diagram which is read

with time in the vertical direction and space in the horizontal di-

rection with zero momentum transfer. The dashed rectangle shows

the local operation (LO) region during the interaction, where the

particles A and B interact locally with the off-shell graviton. The

curved line represents the exchange of off-shell gravitons, which acts

as a mediating quantum channel (QC).

integrating over the off-shell or virtual massless graviton as

depicted in Fig. 1. A virtual or off-shell particle is a mathe-

matical construction, which represents the effect of summing

over all possible time-ordered diagrams. By definition, such a

process [summing over intermediate states | j〉 as in Eq. (7)]

involves quantum superposition of different off-shell graviton

states, making it a entirely quantum process. An off-shell

particle does not satisfy the classical equations of motion, and

therefore it is considered to be nonclassical.

For different modifications of the graviton propagator the

potential will be different; for instance, if there is an extra

scalar degree of freedom propagating, then potential will be of

Yukawa type.7 We will consider one such modification in the

nonlocal setup. The analysis of this section, however, provides

the quantum mechanism necessary to make sense of the result

that the observation of entanglement generation mediated by

gravity implies the quantum nature of linearized gravity. In

other words, if and only if gravity is quantum, then this would

inevitably lead to entanglement between two or more, generic,

matter states.

IV. IMPOSSIBILITY OF ENTANGLEMENT THROUGH

A CLASSICAL FIELD

The aim here is to test whether 1/r potential is being

mediated by a classical or a quantum channel. One can also

obtain 1/r potential without a mediator, where there is no

need to invoke a graviton as a propagator or a mediator. In

this case, the particles act as sources for field which gives rise

a potential in which other particles scatter. This is precisely

the classical scenario. This classical mediator could be a

potential V as presented by the first term in note 7. We will

here show that with such a setup it is impossible to develop

entanglement as this may not be immediately clear to all

readers. Those familiar with the topic will recognize this as

the well-established entanglement nonincreasing property of

method is more powerful for doing out-of-equilibrium, or one- (and

higher-) loop computations as well, but here we are interested in the

tree-level, nonrelativistic, scattering diagram, for which the answer

would be exactly the same as that of Schwinger-Keldysh formalism;

see Ref. [78].
7Original Yukawa potential was also obtained by the scattering

amplitude of an exchange of a meson field between the two fermions.

local operations and classical communication (LOCC) [79].

Consider the two quantum bodies A and B to be initially in the

separable state |ψ〉A ⊗ |φ〉B. These are acted on by the set of

local operators {Âi, j} and {B̂ j,k} respectively. These could be

enacted by experimentalists Alice and Bob, and can occur due

to natural evolution of the systems in isolation or as a direct

result of interacting with the shared classical channel (field).

Here the labels i and k allow for multiple operators acting on

each body, while we allow for a classical channel to transmit

arbitrary classical information, here encoded in the parameter

j.8 In the case of a classical gravitational field, this could be

some function of the average over the position distributions of

|ψ〉A and |φ〉B as used in the Schroedinger-Newton equation,

or it could encode the result of the stochastic collapse of the

wave functions |ψ〉A and |φ〉B or something else entirely. To

account for this generality, it is necessary to use the density

matrix formalism to describe the evolution of the masses.

Furthermore, we can write the evolution of each quantum state

by some total evolution operator Âi, j (t ) ⊗ B̂ j,k (t ). In this way,

we can write the arbitrary evolution of the local operations

acting on the two quantum masses with arbitrary classical

information shared between them as

ρ(t ) =
∑

i

∑

j

∑

k

p(i)p( j)p(k)

× Âi, j (t )|ψ〉A〈ψ |AÂ
†
i, j (t ) ⊗ B̂ j,k (t )|φ〉B〈φ|BB̂

†
j,k

(t ),

(9)

where p(i) and p(k) encode probabilities for various operators

acting on the matter states and p( j) can encode the classical

probabilities corresponding to different classical field con-

figurations h
j
μν present (multiple field configurations leading

to different values of the parameter j can occur if there are

any stochastic collapses of the gravitational field due to any

stochastic collapses of the matter states). Equation (9) can

reproduce arbitrary local evolution of both quantum masses

and arbitrary classical correlations between the two masses.

It is, however, trivial to see that regardless of this the total

state remains separable, that is, unentangled. The use of the

total evolution operators hides much of the details of how the

quantum states evolve; for example, for physically realistic

evolutions one should expect them to include the necessary

provisions to maintain causality. This hidden detail, however,

cannot change the final conclusion that the exchange of clas-

sical information, be it via a gravitational field or telephone

wire, coupled with arbitrary local operations, will not entangle

two quantum systems.

Because of the generality of the above treatment, it follows

that starting from a separable state of two systems A and

B, quantum entanglement cannot be generated by any model

8The parameter j can encode any classical information, for ex-

ample, a classical metric perturbation hμν as created by the mass

distributions of A and B acting as sources. In the case of semiclassical

gravity, this hμν could be a function of the expectation value of the

source stress energy tensor, i.e., 〈Tμν〉, such as in the Schroedinger-

Newton equation, or due to the source mass after its been localized by

stochastic, spontaneous collapse as is predicted by collapse models

[21] or something else entirely.

052110-5



MARSHMAN, MAZUMDAR, AND BOSE PHYSICAL REVIEW A 101, 052110 (2020)

(a) (b)

FIG. 2. Experiment setup showing the two interferometers, the

two particles (A and B), their trajectories (dotted blue path), and their

corresponding position and equivalently spin state, and the quantum

channel (QC) mediating the interactions between the four position

states. The dashed rectangle encompasses the local operations (LO)

regions for particles A and B. The solid gray lines show the gravita-

tional interactions which lead to entanglement, while the dashed red

lines are examples of some of the unwanted interactions which could

occur for non-Fock mass states.

in which gravity is a classical field (classical according to

the standard definition given in Sec. II). This automatically

encompasses all specific models such as the Moller-Rosenfeld

semiclassical gravity model and models where the matter

field undergoes collapses and sources a stochastic classical

gravitational field [80,81].

V. ENTANGLEMENT IN GRAVITATIONALLY

INTERACTING INTERFEROMETER

For completeness, in this section we will provide an

overview of the experiment being discussed throughout this

paper. The setup, shown in Fig. 2, consists of two meso-

scopic mass (≈10−14 kg) microspheres with embedded spins

traversing two Stern-Gerlach interferometers in close prox-

imity to one another. The two masses become entangled

due to the varying gravitational interaction between them

due to the differing separations of the interferometer arms.

The interferometric process is completed by bringing to-

gether the two spatial wave packets, which leads to the path

phase differences being imprinted into the particles spin state,

with any entanglement measured by their spin correlations

(cf. Sec. VI).

Each mass will initially be in a spatial superposition of

being both “left” and “right” with the two particle joint state

as a function of the form |ab〉 where a ∈ {l, r}, b ∈ {L, R}, as

shown in Fig. 2. The two masses are treated as nonrelativistic

(stationary) point particles, both with mass m such that the

only nonzero component of the stress energy tensor will be

T 00 = mδ3(�x − �xa) + mδ3(�x − �xb). (10)

To model the results of interactions between two particles,

both in superposition states, we employ the Feynman style

logic treating the resulting total state as the sum of four

individual amplitudes, each belonging to the separate field

configurations created by each possible joint state for the

matter, with each component evolving as9

|ab〉 → e
−i Gm2τ

h̄rab |ab〉, (11)

where this evolution is derived from Eq. (8) and τ is the

interaction time, implicitly assuming each mass is within the

light cone of the other situated with its origin at the point in

which the superposition is created (t = 0). Using Eq. (11) and

considering the four interactions shown as solid gray lines in

Fig. 2 give

|ψ (0 � t < δt )〉 = 1√
2

(|l〉 + |r〉) ⊗ 1√
2

(|L〉 + |R〉), (12)

|ψ (t = τ + δt )〉 = 1

2

(

e
−i Gm2τ

h̄rlL |lL〉 + e
−i Gm2τ

h̄rlR |lR〉

+ e
−i Gm2τ

h̄rrL |rL〉 + e
−i Gm2τ

h̄rrR |rR〉), (13)

giving the entanglement between the two masses as found

as in Ref. [1], where rab = |�xa − �xb| is the distance between

the two masses. As such, we have the standard Newtonian

potential appearing to mediate the interaction between the two

masses.

NOON states

In quantum field theory, the masses should be considered

as excitations of a quantum field [82], such as a Fock state of

fields φ̂1 and φ̂2 where

|ab〉 = (φ̂†
1 (a)φ̂†

2 (b))|0〉. (14)

Here φ̂
†
i (x) is the creation operator which creates a mass cen-

tered at x and where each object is in a spatial superposition

1√
2

[φ̂†
1 (l ) + φ̂

†
1 (r)]|0〉 (15)

such that there cannot be any interaction between the two

arms within an interferometer of the form shown in Fig. 2

by Ulr . For each mass, the mass field must be in a state

qualitatively similar to Eq. (15). In the proposals, the mass

states are taken to be in this exact state. One can also identify

each mass as fundamental or composite. Rather than a single

object, a collection of fundamental particles is a NOON state

(|n, 0〉 + |0, n〉 in the Fock basis), which corresponds to a

superposition of n fundamental particles (nucleons, electrons,

etc.) in the first arm of the interferometer and 0 in the second

and vice versa. Furthermore, it is sufficient to consider a single

excitation of a large (10−14 kg) mass field as there is (a)

not enough energy to create a second 10−14 kg excitation

9It is perhaps worth clarifying that when the mass exists in a

spatial superposition of being in two locations (i.e., superposition

of �xa = �xl and �xa = �xr and similar for �xb), we do not have T 00 =
1

2
[mδ3(�x − �xl ) + mδ3(�x − �xr )] + 1

2
[mδ3(�x − �xL ) + mδ3(�x − �xR )].
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of the mass, and (b) not enough energy to disassociate the

mass into its individual components. As such, the internal

dynamics of the mass is unimportant here. Also, if a co-

herent state in each arm of the interferometer of the form

e
|αl |2

2 e
|αr |2

2 eαl φ̂
†
1 (l )eαr φ̂

†
1 (r)|0〉 was used, as one would expect in

a noninteracting or weakly interacting Bose-Einstein conden-

sate (BEC), this would create interactions of the form Ulr

which will not result in entanglement of the form necessary

to demonstrate the quantum nature of gravity.

If a continuous stream of particles were used, such inter-

actions (Uaa′/bb′ and Ulr/LR) could dominate any signal from

the interarm interactions (UaB), effectively overwhelming the

entangling signal in the noise of these other interactions. For

this reason, NOON states of BECs would have to be used

[83]. For example, consider that if the mass state employed

was |ψ (0 � t < δt )〉 = φ̂
†
1 (l )φ̂†

1 (r)φ̂†
2 (L)φ̂†

2 (R)|0〉 then inter-

actions of the form Ulr would be allowed, and Eq. (13) would

become

|ψ (t = τ + δt )〉 = e
−i Gm2τ

h̄
( 1

rlL
+ 1

rlR
+ 1

rrL
+ 1

rrR
+ 1

rlr
+ 1

rLR
)

×φ̂
†
1 (l )φ̂†

1 (r)φ̂†
2 (L)φ̂†

2 (R)|0〉, (16)

which is not an entangled state. Thus, is it necessary to prepare

the matter states in NOON states of a quantum field during the

initialization of the experiment.

VI. WITNESSING ENTANGLEMENT THROUGH

MEASUREMENT STATISTICS

The experimental proposal [1] will result in an output state

consisting of two entangled spin qubits (that is, of course,

assuming gravity is quantum). To understand how such en-

tanglement is verified, it is worth discussing what quantum

entanglement is. For a bipartite state to be entangled means

the state cannot be written as the tensor product of the states of

each particles, that is, a state is not entangled (it is separable)

if it can be written

ρ =
∑

j

p( j)ρA, j ⊗ ρB, j, (17)

where |φ〉A and |χ〉B are arbitrary states belonging to the

Hilbert space of particles A and B respectively and
∑

j p( j) =
1. If we restrict ourselves to bipartite, pure qubit states, then

we can understand and quantify entanglement by the von

Neumann entropy of the reduced density matrix, defined as

S (ρ̂A) = −Tr[ρ̂A log2 (ρ̂A)]. (18)

Take, for example, the maximally entangled, product state

|ψ〉 = 1√
2

(|00〉 + |11〉); (19)

then we have a corresponding density matrix ρ̂ = |ψ〉〈ψ |.
Tracing out one of the particles leaves a reduced density

matrix

ρ̂A = TrB(ρ̂ ) ∝ IA, (20)

which corresponds to a maximal entropy state, where S (ρ̂A) =
1. This can be understood as the idea that fully entangled

particles will contain information about the other particle too,

and by throwing away the information held by only one of

the particles (tracing it out), the result contains no useful

information. If the initial state was instead separable, then

the reduced density matrix would correspond to that for a

completely ordered state. In view of the above, one might

expect witnessing the masses initially in pure states (low

entropy) evolving into mixed states (high entropy) would

prove entanglement; however, this is not the case. In a realistic

experiment, decoherence (such as entanglement with the envi-

ronment) which creates a mixed state, and so also maximizes

entropy, cannot be ruled out. As such, no conclusion could be

drawn from actual measurements of the entropy.

Alternatively, entanglement measures which are compati-

ble with mixed states can be used; for example, concurrence

or an entanglement witness can be used. The concurrence can

be calculated for a general (pure or mixed) two qubit state,

which the two spin states can be thought of as, using

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (21)

where λi is the square root of the eigenvalues of the matrix ρρ̃

arranged in decreasing order, for ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).

Again, this is maximized by maximally entangled states

such as Eq. (19), which gives C(ρ) = 1. However, to cal-

culate the concurrence, the entire state’s density operator is

needed, which requires full state tomography, a measurement-

intensive process that requires six expectation and nine corre-

lation measurements. To avoid this, entanglement witnesses

can be used, which look at correlations between the two parti-

cles, and in this way any measured entanglement is confirmed

to be between the two particles and not between one particle

and its environment. Such an entanglement witness W (ρ̂) is

defined such that it has the property that it evaluates to greater

than 1 only if ρ̂ is entangled. It is important to note that the

converse is not true; that is, if it is not greater than 1, it does

not imply anything about ρ̂. Furthermore, such witnesses need

to be created to detect the specific entangled state, which can

be difficult in general, and will necessarily detect a different

state as entangled, even if it is maximally entangled. However,

due to the simple nature of the final state, a suitable witness

was found to be

W =
∣

∣

〈

σ (1)
x ⊗ σ (2)

z

〉

−
〈

σ (1)
y ⊗ σ (2)

y

〉∣

∣ , (22)

which is sufficient for discriminating the entanglement as it

is expected to develop in the tabletop experiment. It also only

requires two sets of measurements for each particle.

VII. NONLOCAL GRAVITY

The entanglement experiment protocol is also not limited

to probing the quantum nature of local gravitational models;

it could also be used to probe the quantum nature of gravity

which is nonlocal over a microscopic scale as well as mod-

ifications to the gravitational potential at short distances, for

instance, modifications of gravity in the ultraviolet. The most

general quadratic action in four dimensions, which is invariant

under parity and also torsion-free, is given by [50]

S = 1

16πG

∫

d4x
√−g{R + β(RF1(�s)R

+RμνF2(�s)Rμν + RμνρσF3(�s)Rμνρσ )}, (23)
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where �s = �/M2
s and Ms is considered as the fundamental

scale of nonlocality, which in the context of string theory

corresponds to the string scale. Within M−1
s the microcausality

is violated [47,48,66,67]. For � ≪ M2
s , the theory becomes

that of a local theory with a low-energy limit given purely by

the Einstein-Hilbert action [50]. Furthermore, by considering

such a modified gravity, we are also demonstrating that our

local gravity assumption is not as strict as it might appear

provided the locality is violated at a microscopic level and the

time and length scales of our experimental setup are larger

than M−1
s . The three gravitational form factors Fi(�s) are

covariant functions of the d’Alembertian and can be uniquely

determined around the Minkowski background [50,84]. We

can set F3(�s) = 0, without loss of generality up to quadratic

order in the metric perturbation around the flat background,

and we can keep the massless spin-2 graviton as the only dy-

namical degree of freedom by imposing the following condi-

tion:10 2F1(�s) = −F2(�s) as shown in Ref. [50] around the

Minkowski background. By expanding around Minkowski,

gμν = ημν + κhμν, we obtain

S = 1

4

∫

d4x hμν (1 − F1(�s)�s)Oμνρσ hρσ + O(κh3), (24)

and the saturated and gauge-independent part of the propaga-

tor is given by [50,73]


μνρσ (k) = 1

1 + F1(k)k2/M2
s

(

P2
μνρσ

k2
−

P0
s, μνρσ

2k2

)

, (25)

where P2/k2 − P0
s /2k2 is the graviton propagator of Ein-

stein’s general relativity (GR); see Eq. (6). Note that in order

to not introduce any extra dynamical degrees of freedom other

than the massless spin-2 graviton, we need to require that the

function 1 + F1(k)k2/M2
s does not have any zeros, i.e., that it

is an exponential of an entire function [50]:

1 + F1(k)
k2

M2
s

= eγ (k2/M2
s ), (26)

where the γ (k2/M2
s ) is an entire function. We will mainly

work with the simplest choice γ (k2) = k2/M2
s ; see also

Refs. [88,89] for other examples of entire functions. In all

these examples, the short-distance behavior becomes soft and

in the IR the gravitational potential matches that of Newtonian

prediction. Now we can compute the scattering diagram. The

key difference from a local gravitational theory is now the

existence of a new scale, Ms, which determines the interaction

at short distances. For k2 ≪ M2
s , the nonlocal contribution

becomes exponentially small, or in length scale r > M−1
s , the

theory predicts the results of local Einstein-Hilbert action.

We can now compute the gravitational potential by inte-

grating all the momenta of the off-shell graviton, assuming

the two vertices are nonrelativistic. Essentially, taking the T 00

components only, and with modified graviton propagator, we

10In this paper, we will only consider analytic form factors. How-

ever, it is worth mentioning that nonlocal models with nonanalytic

differential operators have been investigated by many authors; see,

for example, Refs. [85–87].

FIG. 3. Potential energy per unit test mass as generated by a

m = 10−14 kg source mass for both the standard newtonian potential

(�N ) and the modified infinite derivative gravity potential (�IDG).

The nonlocal parameter for �IDG was set to Ms = 0.004 which

corresponds to a nonlocal range λ = 5×10−5 m; see Ref. [89].

obtain

�IDG(r) = −κ2

∫

d3|�k|
(2π )3

T 00
1 (k)
0000(k)T 00

2 (−k)ei�k·(�r)

= −κ2m

2

∫

d3|�k|
(2π )3

e−�k2/M2
s

�k2
ei�k·(�r),

= −Gm

r
Erf

(

Msr

2

)

. (27)

Note that the gravitational potential is now modified.

In particular when r < 2/Ms, the error function increases

linearly with r, which cancels the denominator. Therefore,

at short distances, for r < 2/Ms, the gravitational potential

becomes constant and is given by

�IDG(r) ∼ GmMs√
π

, (28)

while for r > 2/Ms, the error function approaches ±1, and

therefore the potential recovers the standard Newtonian po-

tential, −Gm/r, as seen in Fig. 3.

One can compute various gravitational invariances, includ-

ing the Kretschmann invariance, which remains constant as

r → 0; see Ref. [90]. Indeed, note that this computation has

been performed in the linear theory. To be consistent here, the

gravitational singularity is ameliorated when the gravitational

potential is still within the linear regime:

2|�IDG(r)| < 1, mMs < M2
p . (29)

Since the entanglement phase depends on the potential,

at short distances (r < 2/Ms) the gravitational potential ap-

proaches constant as long as the interseparation distance is

well within the nonlocal region. It has also been shown

that nonlocality never exceeds beyond the nonlocal scale

of Ms; see, for instance, Refs. [46,47,66,67]. Therefore, if

all superposition components of the two masses are well

inside the radius of r = 2/Ms, the entanglement phase, which

is dependent on the potential varying for different spin

components, will linearly go to zero. This has indeed very
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intriguing repercussions for the entanglement phase, despite

the fact that the treatment of the linearized graviton remains

quantum. The nonlocal interaction weakens the gravitational

potential by smoothing out the spacetime. This serves as an

interesting example of how nonlocal interactions can alter

the quantum behavior of the many-body system. However,

for r > 2/Ms, the entanglement phase is the same as that of

general relativity, which is similar to our previous local case.

The entanglement witness experiment results can be quan-

tified by the two parameters �φLR and �φRL, which we

can compare for the two gravitational potentials considered

here. For an experimental setup involving 10−14 kg masses,

2.5×10−4 m superpositions, and a minimum separation of

2×10−4 m, assuming standard Newtonian gravity, �φLR =
−0.125 rad and �φRL = 0.439 rad, whereas for IDG, �φLR =
−0.125 rad and �φRL = 0.435 rad, for Ms = 0.004 eV, which

corresponds to 5×10−6m. This translates to an expected en-

tanglement witness value W = 1.223 with IDG compared to

W = 1.224 for standard Newtonian gravity.

Given the power of entanglement entropy in fully quan-

tifying the amount of entanglement in pure states, and its

current importance in quantifying entanglement in quantum

field theories [91], it can also be insightful to consider it.

Furthermore, although incredibly difficult, if we could ensure

that the two-mass state, and eventually the two-spin state to

which the entanglement is mapped, remains pure, we can

measure the full density matrix for one of the qubits with only

three spin measurement settings and from that calculate the

entanglement entropy given by Eq. (18). The entanglement

entropy for the experiment, given by

S (ρ̂A) = −[λ− log2 (λ−) + λ+ log2 (λ+)], (30)

where

λ± = 1

2
± 1

2

{

1

2

[

1 + cos

(

mτ

h̄
[�(r0 − �x)

+ �(r0 + �x) − 2�(r0)]

)]}1/2

, (31)

and r0 and �x are the distance between the center of the

interferometers and superposition size respectively, is shown

in Fig. 4 for both gravitational potentials. See Appendix B

for more detail. In the experimental proposal, using time

τ ≈ 2.5 s, we can see, although it is small, that there is

a quantitative difference between the two gravitational po-

tentials with S (ρ̂A) = 0.054 for a Newtonian potential and

S (ρ̂A) = 0.053 for IDG. The figure also shows that there is

very little entanglement in the output state, which tends to

zero for increasing separations, and which is a result of the

weakness and spatial dependence of gravity. As such, there

would be slight changes (revealing the scale Ms) in the result;

however, as the experiment is conducted outside the nonlocal

region, all conclusions still hold, even in presence of nonlocal

gravitational interaction.

The above discussion provides also a way to probe short

distance nature of gravity. Just from the current constraints on

Newtonian 1/r potential, the direct experiments reveal that be-

low millimeter distances 1/r potential is not constrained at all

[69,92]. Even the Yukawa-type potential between two neutral

masses are constrained up to micrometers. These experiments

FIG. 4. Entropy growth with minimum interferometer separation

r0 − �x for both the standard Newtonian potential (�N ) and the

modified infinite derivative gravity potential (�IDG). The nonlocal

parameter for �IDG was set to Ms = 0.004 eV, which corresponds

to a nonlocal range λ = 5×10−5 m; see [89]. All other parameters

match those provided in the original experimental proposal [1].

can directly place a constraint on the scale of nonlocality to

be of the order of 0.004 eV [89]. Our experimental protocol

can in principle probe the nature of short-distance gravity and

the above example of nonlocal gravity illustrates an example

of that. Besides the experimental query, nonlocal gravity also

illustrates how entanglement entropy behaves in two distinct

classes of theories, one where the 1/r singularity is present

and the other where it is absent.

VIII. CONCLUSION

In this paper, we have highlighted the key assumptions

made in Ref. [1], in order to clarify what is meant by

the statement that witnessing entanglement in the proposed

experiment verifies the quantum nature of the gravitational

field. First, we have presented the manner in which general

relativity lends itself to be quantized in a linearized limit.

Doing so predicts the existence of gravitons and their mini-

mal coupling to matter, including the off-shell gravitons, the

exchange of which leads to the Newtonian gravitational force.

Moreover, to generate entanglement through the quantum

mediator, one also requires the linearity of superpositions as

highlighted in Eq. (13). It is only with the off-shell graviton

(quantum) source for the Newtonian potential interaction and

the matter itself in a superposition that entanglement can be

generated. Furthermore, through the premise of LOCC (as

clarified in Sec. IV, for quantum masses sourcing a classical

mediating field), we know that the mediating channel, i.e.,

the gravitational field, cannot be classical for the formation

of entanglement. Further, the fact that the matter states can

be described as a quantized field has been clarified, including

that in this case these are in superpositions of Fock states

and, more appropriately, when one considers the microscopic

constituents, in NOON states. As microcausality (cf. note 1

in Sec. II) is built into the standard relativistic quantization,

within which the virtual graviton exchange process acts, here

the question of whether the Newtonian force is fundamentally

052110-9



MARSHMAN, MAZUMDAR, AND BOSE PHYSICAL REVIEW A 101, 052110 (2020)

action at a distance does not arise. As long as the masses are

within each other’s light cone, the potential is given by Eq. (8)

and vanishes outside it.

We have also provided an example of nonlocal ghost-free

theory of gravity, where the gravitational potential is modified

drastically to resolve the 1/r singularity. In this scenario, the

gravitational interaction with matter becomes nonlocal and

provides a different prediction for the entanglement phase

inside the nonlocal regime. Since the experiment is always

conducted outside the nonlocal region, no significant change

would be expected and this highlights that all our conclusions

can still hold, even after breaking the local gravity assumption.

Also of interest is the fact that the entanglement entropy,

arising from local and nonlocal gravity, can be determined

by the proposed experiment through measurements of the

final spin states. A key observation of this paper is that if

gravity is quantized, the quantum matter degrees of freedom

are generically in entangled states. This fundamental and

universal entanglement is owed to the bare quantum nature

of gravity, which remains finite in spite of any other standard-

model-like interactions we can imagine.

ACKNOWLEDGMENTS

A.M.’s research is funded by the Netherlands Organisation

for Scientific Research (NWO) Grant No. 680-91-119. S.B.

would like to acknowledge EPSRC Grants No. EP/N031105/1

and No. EP/S000267/1.

APPENDIX A: GRAVITON PROPAGATOR FROM SPIN

PROJECTION OPERATORS

We can expand Riemann tensor, Ricci tensor, and Ricci

scalar in up to order O(h):

Rμνλσ = 1
2
(∂[λ∂νhμσ ] − ∂[λ∂μhνσ ]),

Rμν = 1
2
(∂σ ∂(ν∂

σ
μ) − ∂μ∂νh − �hμν )

R = ∂μ∂νhμν − �h. (A1)

Here we will study the full action Eq. (23), which can be

reduced to pure Einstein Hilbert action as a low-energy limit,

when we take Ms → ∞. In this regard, our treatment will be

very generic and can be used to finite derivative gravity as

well. Now expanding the action Eq. (23) around Minkowski

space up to terms containing O(h2) contributions will help us

to find the graviton propagator:

Sq = −
∫

d4x

[

1

2
hμν�a(�)hμν + hσ

μb(�)∂σ ∂νhμν

+ hc(�)∂μ∂νhμν + 1

2
h�d (�)h

+ hλσ f (�)

2�
∂σ ∂λ∂μ∂νhμν

]

. (A2)

The above equation and the form factors a(�), b(�), c(�),

d (�), and f (�) are the same as first derived in Refs. [50,73].

All the contractions are due to ημνη
μν , and the expressions for

a(�), b(�), c(�), d (�), and f (�) will now read as

a(�) = 1 − 1

2
F2(�)

�

M2
s

− 2F3(�)
�

M2
s

, (A3)

b(�) = −1 + 1

2
F2(�)

�

M2
s

+ 2F3(�)
�

M2
s

, (A4)

c(�) = 1 + 2F1(�)
�

M2
s

+ 1

2
F2(�)

�

M2
s

, (A5)

d (�) = −1 − 2F1(�)
�

M2
s

− 1

2
F2(�)

�

M2
s

, (A6)

f (�) = −2F1(�)
�

M2
s

− F2(�)
�

M2
s

− 2F3(�)
�

M2
s

. (A7)

From the above expression, we can easily see that when we

take Ms → ∞, it reduces to the local limit, which in our case

is pure GR, for which a(�) = c(�) = 1, b(�) = d (�) =
−1, f (�) = 0 in the linearized action Eq. (A2). From the

above we note that

a(�) + b(�) = 0 , (A8)

c(�) + d (�) = 0 , (A9)

b(�) + c(�) + f (�) = 0 , (A10)

which is a consequence of Bianchi identity as shown in

Refs. [50,73]:

∇μτμ
ν = 0 =(c + d )�∂νh + (a + b)�hμ

ν,μ

+ (b + c + f )h
αβ

,αβν , (A11)

which verifies the constraints (A8)–(A10). Without loss of

generality, we can assume f (�) = 0, and then we obtain

a(�) = c(�), which we will show to be consistent with

the expectations of GR propagator. This condition further

constraints the original form factor,

2F1(�) + F2(�) + 2F3(�) = 0.

Now the spin projection operators for tensor of rank 2 can

be analyzed in arbitrary D dimensions. We can take the limit

D = 4 for the relevant case we are interested in here. Around

the Minkowski spacetime, we can write them as follows; see

Refs. [72–74]:

P
2 = 1

2
(θμρθνσ + θμσ θνρ ) − 1

D − 1
θμνθρσ , (A12)

corresponding to the spin-2 component. The vector compo-

nent of the projection operator is given by

P
1 = 1

2
(θμρωνσ + θμσωνρ + θνρωμσ + θνσ ωμρ ). (A13)
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There are two spin-0 operators,

P
0
s = 1

D − 1
θμνθρσ , (A14)

P
0
w

= ωμνωρσ , (A15)

and the mixing between the two spin-0 operators,

P
0
sw = 1√

D − 1
θμνωρσ , (A16)

P
0
ws = 1√

D − 1
ωμνθρσ , (A17)

where

θμν = ημν − kμkν

k2
(A18)

and

ωμν = kμkν

k2
. (A19)

We can show that

a(�)hμν → a(−k2)
[

P
2 + P

1 + P
0
s + P

0
w

]

h, (A20)

b(�)∂σ ∂(νhσ
μ) → −b(−k2)k2

[

P
1 + 2P0

w

]

h, (A21)

c(�)(ημν∂ρ∂σ hρσ + ∂μ∂νh)

→ −c(−k2)k2
[

2P0
w

+
√

D − 1
(

P
0
sw + P

0
ws

)]

h, (A22)

ημνd (�)h

→ d (−k2)
[

(D − 1)P0
s + P

0
w

+
√

D − 1
(

P
0
sw + P

0
ws

)]

h,

(A23)

f (�)∂σ ∂ρ∂μ∂νhρσ → f (−k2)k4
P

0
w

h. (A24)

Hence,

ak2
P

2h = κP2τ ⇒ P
2h = κ

(

P2

ak2

)

τ, (A25)

(a + b)k2
P

1h = κP1τ ⇒ P
1τ = 0, (A26)

[a + (D − 1)d]k2
P

0
s h + (c + d )k2

√
D − 1P0

swh = κP0
s τ,

(A27)

(c + d )k2
√

D − 1P0
wsh + (a + 2b + 2c + d + f )k2

P
0
w

h

= κP0
w
τ. (A28)

So,

[a + (D − 1)d]k2
P

0
s h = κP0

s τ

⇒ P
0
s h = κ

P0
s

[a + (D − 1)d]k2
τ, (A29)

(a + 2b + 2c + d + f )k2
P

0
w

h = κP0
w
τ

⇒ P
0
w

h = κ
P0

w

(a + 2b + 2c + d + f )k2
τ, (A30)

where we have used the constraints given by (A10)–(A12).

Note that the denominator corresponding to the P0
w

spin

projector vanishes so that there is no w multiplet. The D-

dimensional graviton propagator is given by


(−k2) = P2

k2a(−k2)
+ P0

s

k2(a(−k2) − (D − 1)c(−k2))
.

(A31)

This is also known as the saturated or sandwiched propagator

between two conserved currents, i.e., J1
J2, where Ji (i =
1, 2) are conserved currents, corresponding to the two ver-

tices. Note that propagator always contains a gauge-dependent

part, which is unphysical, and a gauge-independent part,

which is physical, namely the part of the propagator which

contributes to the scattering amplitude, which is physical. By

assuming f (�) = 0 ⇒ a(�) = c(�), which corresponds to

no scalar propagating degree of freedom in the propagator,

and the graviton propagator in any D dimensions is given by

[50,73]


 = 1

k2a(−k2)

(

P
2 − 1

D − 2
P

0
s

)

. (A32)

In D = 4 dimensions, we obtain the standard graviton prop-

agator for GR, when we take a(−k2) = 1, since a(�) = 1,

and we obtain the standard gauge-independent part of the

propagator, which is physical [72]:


 = 1

k2

(

P
2 − 1

2
P

0
s

)

. (A33)

The saturated graviton propagator is massless and carries

massless spin-0 and massless spin-2 components. Further note

that for IDG we will have to keep a(−k2), such that it does

not have any poles, which means it has to be exponential of an

entire function, which has no poles in the complex plane, i.e.,

eγ (k2 ), where γ (k2) is an entire function, and has no dynamical

degrees of freedom. Therefore, the IDG propagator has no

new dynamical degrees of freedom other than that of GR; see

for details Ref. [50].

APPENDIX B: ENTROPY CALCULATIONS

To calculate the entropy, we begin by considering the

entangled state

|ψ〉 = 1
2
(|↓↓〉 + ei�θ |↓↑〉 + ei�φ|↑↓〉 + |↑↑〉), (B1)

where �θ = mG
h̄

[�(r0 − �x) − �(r0)] and �φ =
mG
h̄

[�(r0 + �x) − �(r0)] for an average distance between

the interferometer arms r0 and superposition size �x.

The density matrix is defined as

ρ̂ = |ψ〉〈ψ | (B2)

and the reduced density matrix is then

ρ̂A = TrB[ρ̂]

= 1

4

[

2 ei�θ + e−i�φ

e−i�θ + ei�φ 2

]

. (B3)
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Now the eigenvalues of ρ̂A can be used to calculate

the entropy, and using the standard eigenvalue equation we

have

0 =|ρ̂A − λI|, (B4)

0 =
(

1

2
− λ

)2

− 1

4
(ei�θ + e−i�φ )

1

4
(e−i�θ + ei�φ ) (B5)

⇒ λ± = 1

2
± 1

2

{

1

2

[

1 + cos

(

mτ

h̄
[�(r0 − �x)

+ �(r0 + �x) − 2�(r0)]

)]}1/2

, (B6)

and so finally we have the entropy as

S (ρ̂A) = −[λ− log2 (λ−) + λ+ log2 (λ+)]. (B7)
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