
Locality�Aware Request Distribution in Cluster�based Network Servers

Vivek S� Paiz� Mohit Arony� Gaurav Bangay�

Michael Svendseny� Peter Druschely� Willy Zwaenepoely� Erich Nahum�

z Department of Electrical and Computer Engineering� Rice University
y Department of Computer Science� Rice University

� IBM T�J� Watson Research Center

Abstract

We consider cluster�based network servers in which a
front�end directs incoming requests to one of a num�
ber of back�ends� Speci�cally� we consider content�based
request distribution� the front�end uses the content re�
quested� in addition to information about the load on
the back�end nodes� to choose which back�end will han�
dle this request� Content�based request distribution can
improve locality in the back�ends� main memory caches�
increase secondary storage scalability by partitioning
the server�s database� and provide the ability to employ
back�end nodes that are specialized for certain types of
requests�

As a speci�c policy for content�based request dis�
tribution� we introduce a simple� practical strategy
for locality�aware request distribution �LARD�� With
LARD� the front�end distributes incoming requests in
a manner that achieves high locality in the back�ends�
main memory caches as well as load balancing� Local�
ity is increased by dynamically subdividing the server�s
working set over the back�ends� Trace�based simulation
results and measurements on a prototype implemen�
tation demonstrate substantial performance improve�
ments over state�of�the�art approaches that use only
load information to distribute requests� On workloads
with working sets that do not �t in a single server node�s
main memory cache� the achieved throughput exceeds
that of the state�of�the�art approach by a factor of two
to four�

With content�based distribution� incoming requests
must be handed o� to a back�end in a manner trans�
parent to the client� after the front�end has inspected
the content of the request� To this end� we introduce an
e	cient TCP hando� protocol that can hand o� an es�
tablished TCP connection in a client�transparent man�
ner�

To appear in the Proceedings of the Eighth International
Conference on Architectural Support for Programming Lan�
guages and Operating Systems �ASPLOS�VIII�� San Jose�
CA� Oct
����

� Introduction

Network servers based on clusters of commodity work�
stations or PCs connected by high�speed LANs combine
cutting�edge performance and low cost� A cluster�based
network server consists of a front�end� responsible for re�
quest distribution� and a number of back�end nodes� re�
sponsible for request processing� The use of a front�end
makes the distributed nature of the server transparent
to the clients� In most current cluster servers the front�
end distributes requests to back�end nodes without re�
gard to the type of service or the content requested�
That is� all back�end nodes are considered equally capa�
ble of serving a given request and the only factor guiding
the request distribution is the current load of the back�
end nodes�

With content�based request distribution� the front�
end takes into account both the service
content re�
quested and the current load on the back�end nodes
when deciding which back�end node should serve a given
request� The potential advantages of content�based re�
quest distribution are� �
� increased performance due
to improved hit rates in the back�end�s main memory
caches� ��� increased secondary storage scalability due
to the ability to partition the server�s database over the
di�erent back�end nodes� and ��� the ability to employ
back�end nodes that are specialized for certain types of
requests �e�g�� audio and video��

The locality�aware request distribution �LARD� strat�
egy presented in this paper is a form of content�based
request distribution� focusing on obtaining the �rst of
the advantages cited above� namely improved cache hit
rates in the back�ends� Secondary storage scalability
and special�purpose back�end nodes are not discussed
any further in this paper�

Figure
 illustrates the principle of LARD in a simple
server with two back�ends and three targets� �A�B�C� in
the incoming request stream� The front�end directs all
requests for A to back�end
� and all requests for B and
C to back�end �� By doing so� there is an increased like�
lihood that the request �nds the requested target in the
cache at the back�end� In contrast� with a round�robin
distribution of incoming requests� requests of all three

�In the following discussion� the term target is being used
to refer to a speci�c object requested from a server� For an
HTTP server� for instance� a target is speci�ed by a URL and
any applicable arguments to the HTTP GET command�

Figure
� Locality�Aware Request Distribution

targets will arrive at both back�ends� This increases the
likelihood of a cache miss� if the sum of the sizes of the
three targets� or� more generally� if the size of the work�
ing set exceeds the size of the main memory cache at an
individual back�end node�

Of course� by naively distributing incoming requests
in a content�based manner as suggested in Figure
� the
load between di�erent back�ends might become unbal�
anced� resulting in worse performance� The �rst ma�
jor challenge in building a LARD cluster is therefore to
design a practical and e	cient strategy that simultane�
ously achieves load balancing and high cache hit rates
on the back�ends� The second challenge stems from the
need for a protocol that allows the front�end to hand o�
an established client connection to a back�end node� in
a manner that is transparent to clients and is e	cient
enough not to render the front�end a bottleneck� This
requirement results from the front�end�s need to inspect
the target content of a request prior to assigning the
request to a back�end node� This paper demonstrates
that these challenges can be met� and that LARD pro�
duces substantially higher throughput than the state�of�
the�art approaches where request distribution is solely
based on load balancing� for workloads whose working
set exceeds the size of the individual node caches�

Increasing a server�s cache e�ectiveness is an impor�
tant step towards meeting the demands placed on cur�
rent and future network servers� Being able to cache the
working set is critical to achieving high throughput� as
a state�of�the�art disk device can deliver no more than

�� block requests
sec� while high�end network servers
will be expected to serve thousands of document re�
quests per second� Moreover� typical working set sizes
of web servers can be expected to grow over time� for
two reasons� First� the amount of content made avail�
able by a single organization is typically growing over
time� Second� there is a trend towards centralization
of web servers within organizations� Issues such as cost
and ease of administration� availability� security� and
high�capacity backbone network access cause organiza�
tions to move towards large� centralized network servers
that handle all of the organization�s web presence� Such
servers have to handle the combined working sets of all
the servers they supersede�

With round�robin distribution� a cluster does not
scale well to larger working sets� as each node�s main
memory cache has to �t the entire working set� With
LARD� the e�ective cache size approaches the sum of
the node cache sizes� Thus� adding nodes to a cluster
can accommodate both increased tra	c �due to addi�
tional CPU power� and larger working sets �due to the
increased e�ective cache size��

This paper presents the following contributions�

� a practical and e	cient LARD strategy that achieves
high cache hit rates and good load balancing�

�� a trace�driven simulation that demonstrates the per�
formance potential of locality�aware request distribu�
tion�

�� an e	cient TCP hando� protocol� that enables
content�based request distribution by providing client�
transparent connection hando� for TCP�based network
services� and

�� a performance evaluation of a prototype LARD
server cluster� incorporating the TCP hando� protocol
and the LARD strategy�

The outline of the rest of this paper is as follows�
In Section � we develop our strategy for locality�aware
request distribution� In Section � we describe the model
used to simulate the performance of LARD in compari�
son to other request distribution strategies� In Section �
we present the results of the simulation� In Section �
we move on to the practical implementation of LARD�
particularly the TCP hando� protocol� We describe the
experimental environment in which our LARD server
is implemented and its measured performance in Sec�
tion �� We describe related work in Section � and we
conclude in Section ��

� Strategies for Request Distribution

��� Assumptions

The following assumptions hold for all request distribu�
tion strategies considered in this paper�

� The front�end is responsible for handing o� new con�
nections and passing incoming data from the client to
the back�end nodes� As a result� it must keep track of
open and closed connections� and it can use this infor�
mation in making load balancing decisions� The front�
end is not involved in handling outgoing data� which is
sent directly from the back�ends to the clients�

� The front�end limits the number of outstanding re�
quests at the back�ends� This approach allows the front�
end more �exibility in responding to changing load on
the back�ends� since waiting requests can be directed to
back�ends as capacity becomes available� In contrast�
if we queued requests only on the back�end nodes� a
slow node could cause many requests to be delayed even
though other nodes might have free capacity�

� Any back�end node is capable of serving any target�
although in certain request distribution strategies� the
front�end may direct a request only to a subset of the
back�ends�

��� Aiming for Balanced Load

In state�of�the�art cluster servers� the front�end uses
weighted round�robin request distribution ���
��� The

�

incoming requests are distributed in round�robin fash�
ion� weighted by some measure of the load on the di�er�
ent back�ends� For instance� the CPU and disk utiliza�
tion� or the number of open connections in each back�
end may be used as an estimate of the load�

This strategy produces good load balancing among
the back�ends� However� since it does not consider the
type of service or requested document in choosing a
back�end node� each back�end node is equally likely to
receive a given type of request� Therefore� each back�
end node receives an approximately identical working
set of requests� and caches an approximately identical
set of documents� If this working set exceeds the size of
main memory available for caching documents� frequent
cache misses will occur�

��� Aiming for Locality

In order to improve locality in the back�end�s cache�
a simple front�end strategy consists of partitioning the
name space of the database in some way� and assign�
ing request for all targets in a particular partition to a
particular back�end� For instance� a hash function can
be used to perform the partitioning� We will call this
strategy locality�based �LB��

A good hashing function partitions both the name
space and the working set more or less evenly among the
back�ends� If this is the case� the cache in each back�end
should achieve a much higher hit rate� since it is only
trying to cache its subset of the working set� rather than
the entire working set� as with load balancing based
approaches� What is a good partitioning for locality
may� however� easily prove a poor choice of partitioning
for load balancing� For example� if a small set of targets
in the working set account for a large fraction of the
incoming requests� the back�ends serving those targets
will be far more loaded than others�

��� Basic Locality�Aware Request Distribution

The goal of LARD is to combine good load balancing
and high locality� We develop our strategy in two steps�
The basic strategy� described in this subsection� always
assigns a single back�end node to serve a given target�
thus making the idealized assumption that a single tar�
get cannot by itself exceed the capacity of one node�
This restriction is removed in the next subsection� where
we present the complete strategy�

Figure � presents pseudo�code for the basic LARD�
The front�end maintains a one�to�one mapping of tar�
gets to back�end nodes in the server array� When the
�rst request arrives for a given target� it is assigned a
back�end node by choosing a lightly loaded back�end
node� Subsequent requests are directed to a target�s as�
signed back�end node� unless that node is overloaded�
In the latter case� the target is assigned a new back�end
node from the current set of lightly loaded nodes�

A node�s load is measured as the number of active
connections� i�e�� connections that have been handed o�
to the node� have not yet completed� and are show�
ing request activity� Observe that an overloaded node
will fall behind and the resulting queuing of requests
will cause its number of active connections to increase�
while the number of active connections at an under�
loaded node will tend to zero� Monitoring the relative

while �true�
fetch next request r�
if server�r�target� � null then
n� server�r�target� � fleast loaded nodeg�

else
n � server�r�target��
if �n�load � Thigh �� � node with load � Tlow� jj

n�load � � � Thigh then
n� server�r�target� � fleast loaded nodeg�

send r to n�

Figure �� The Basic LARD Strategy

number of active connections allows the front�end to es�
timate the amount of �outstanding work� and thus the
relative load on a back�end without requiring explicit
communication with the back�end node�

The intuition for the basic LARD strategy is as fol�
lows� The distribution of targets when they are �rst re�
quested leads to a partitioning of the name space of the
database� and indirectly to a partitioning of the working
set� much in the same way as with the strategy purely
aiming for locality� It also derives similar locality gains
from doing so� Only when there is a signi�cant load im�
balance do we diverge from this strategy and re�assign
targets� The de�nition of a �signi�cant load imbalance�
tries to reconcile two competing goals� On one hand� we
do not want greatly diverging load values on di�erent
back�ends� On the other hand� given the cache misses
and disk activity resulting from re�assignment� we do
not want to re�assign targets to smooth out only minor
or temporary load imbalances� It su	ces to make sure
that no node has idle resources while another back�end
is dropping behind�

We de�ne Tlow as the load �in number of active con�
nections� below which a back�end is likely to have idle
resources� We de�ne Thigh as the load above which a
node is likely to cause substantial delay in serving re�
quests� If a situation is detected where a node has a
load larger than Thigh while another node has a load
less than Tlow � a target is moved from the high�load to
the low�load back�end� In addition� to limit the delay
variance among di�erent nodes� once a node reaches a
load of �Thigh� a target is moved to a less loaded node�
even if no node has a load of less than Tlow �

If the front�end did not limit the total number of ac�
tive connections admitted into the cluster� the load on
all nodes could rise to �Thigh� and LARD would then
behave like WRR� To prevent this� the front�end lim�
its the sum total of connections handed to all back�end
nodes to the value S � �n�
� �Thigh� Tlow �
� where
n is the number of back�end nodes� Setting S to this
value ensures that at most n� � nodes can have a load
� Thigh while no node has load � Tlow� At the same
time� enough connections are admitted to ensure all n
nodes can have a load above Tlow �i�e�� be fully utilized�
and still leave room for a limited amount of load imbal�
ance between the nodes �to prevent unnecessary target
reassignments in the interest of locality��

The two conditions for deciding when to move a tar�
get attempt to ensure that the cost of moving is incurred
only when the load di�erence is substantial enough to
warrant doing so� Whenever a target gets reassigned�
our two tests combined with the de�nition of S ensure
that the load di�erence between the old and new tar�

�

gets is at least Thigh � Tlow � To see this� note that the
de�nition of S implies that there must always exist a
node with a load � Thigh� The maximal load imbalance
that can arise is �Thigh � Tlow �

The appropriate setting for Tlow depends on the
speed of the back�end nodes� In practice� Tlow should be
chosen high enough to avoid idle resources on back�end
nodes� which could cause throughput loss� Given Tlow �
choosing Thigh involves a tradeo�� Thigh � Tlow should
be low enough to limit the delay variance among the
back�ends to acceptable levels� but high enough to tol�
erate limited load imbalance and short�term load �uc�
tuations without destroying locality�

Simulations to test the sensitivity of our strategy to
these parameter settings show that the maximal delay
di�erence increases approximately linearly with Thigh�
Tlow � The throughput increases mildly and eventually
�attens as Thigh�Tlow increases� Therefore� Thigh should
be set to the largest possible value that still satis�es the
desired bound on the delay di�erence between back�end
nodes� Given a desired maximal delay di�erence of D
secs and an average request service time of R secs� Thigh
should be set to �Tlow � D�R���� subject to the obvi�
ous constraint that Thigh � Tlow� The setting of Tlow
can be conservatively high with no adverse impact on
throughput and only a mild increase in the average de�
lay� Furthermore� if desired� the setting of Tlow can be
easily automated by requesting explicit load information
from the back�end nodes during a �training phase�� In
our simulations and in the prototype� we have found set�
tings of Tlow � �� and Thigh � �� active connections to
give good performance across all workloads we tested�

��� LARD with Replication

A potential problem with the basic LARD strategy is
that a given target is served by only a single node at any
given time� However� if a single target causes a back�end
to go into an overload situation� the desirable action is
to assign several back�end nodes to serve that document�
and to distribute requests for that target among the
serving nodes� This leads us to the second version of
our strategy� which allows replication�

Pseudo�code for this strategy is shown in Figure ��
It di�ers from the original one as follows� The front�end
maintains a mapping from targets to a set of nodes that
serve the target� Requests for a target are assigned to
the least loaded node in the target�s server set� If a load
imbalance occurs� the front�end checks if the requested
document�s server set has changed recently �within K
seconds�� If so� it picks a lightly loaded node and adds
that node to the server set for the target� On the other
hand� if a request target has multiple servers and has
not moved or had a server node added for some time
�K seconds�� the front�end removes one node from the
target�s server set� This ensures that the degree of repli�
cation for a target does not remain unnecessarily high
once it is requested less often� In our experiments� we
used values of K � �� secs�

��� Discussion

As will be seen in Sections � and �� the LARD strate�
gies result in a good combination of load balancing and
locality� In addition� the strategies outlined above have

while �true�
fetch next request r�
if serverSet�r�target� � � then
n� serverSet�r�target� � fleast loaded nodeg�

else
n � fleast loaded node in serverSet�r�target�g�
m � fmost loaded node in serverSet�r�target�g�
if �n�load � Thigh �� � node with load � Tlow� jj

n�load � �Thigh then
p � fleast loaded nodeg�
add p to serverSet�r�target��
n � p�

if jserverSet�r�target�j �
 ��
time�� � serverSet�r�target��lastMod � K then

remove m from serverSet�r�target��
send r to n
if serverSet�r�target� changed in this iteration then
serverSet�r�target��lastMod � time���

Figure �� LARD with Replication

several desirable features� First� they do not require
any extra communication between the front�end and the
back�ends� Second� the front�end need not keep track
of any frequency of access information or try to model
the contents of the caches of the back�ends� In particu�
lar� the strategy is independent of the local replacement
policy used by the back�ends� Third� the absence of
elaborate state in the front�end makes it rather straight�
forward to recover from a back�end node failure� The
front�end simply re�assigns targets assigned to the failed
back�end as if they had not been assigned before� For
all these reasons� we argue that the proposed strategy
can be implemented without undue complexity�

In a simple implementation of the two strategies� the
size of the server or serverSet arrays� respectively� can
grow to the number of targets in the server�s database�
Despite the low storage overhead per target� this can
be of concern in servers with very large databases� In
this case� the mappings can be maintained in an LRU
cache� where assignments for targets that have not been
accessed recently are discarded� Discarding mappings
for such targets is of little consequence� as these targets
have most likely been evicted from the back�end nodes�
caches anyway�

� Simulation

To study various request distribution policies for a range
of cluster sizes under di�erent assumptions for CPU
speed� amount of memory� number of disks and other
parameters� we developed a con�gurable web server clus�
ter simulator� We also implemented a prototype of a
LARD�based cluster� which is described in Section ��

��� Simulation Model

The simulation model is depicted in Figure �� Each
back�end node consists of a CPU and locally�attached
disk�s�� with separate queues for each� In addition� each
node maintains its own main memory cache of con�
�gurable size and replacement policy� For simplicity�
caching is performed on a whole��le basis�

Processing a request requires the following steps�

�

Figure �� Cluster Simulation Model

connection establishment� disk reads �if needed�� target
data transmission� and connection teardown� The as�
sumption is that front�end and networks are fast enough
not to limit the cluster�s performance� thus fully expos�
ing the throughput limits of the back�ends� Therefore�
the front�end is assumed to have no overhead and all
networks have in�nite capacity in the simulations�

The individual processing steps for a given request
must be performed in sequence� but the CPU and disk
times for di�ering requests can be overlapped� Also�
large �le reads are blocked� such that the data transmis�
sion immediately follows the disk read for each block�
Multiple requests waiting on the same �le from disk
can be satis�ed with only one disk read� since all the re�
quests can access the data once it is cached in memory�

The costs for the basic request processing steps
used in our simulations were derived by performing
measurements on a ��� Mhz Pentium II machine run�
ning FreeBSD ����� and an aggressive experimental web
server� Connection establishment and teardown costs
are set at
���s of CPU time each� while transmit pro�
cessing incurs ���s per �
� bytes� Using these num�
bers� an � KByte document can be served from the
main memory cache at a rate of approximately
���
requests
sec�

If disk access is required� reading a �le from disk has
a latency of �� ms �� seeks � rotational latency�� The
disk transfer time is �
��s per � KByte �resulting in
approximately
� MBytes
sec peak transfer rate�� For
�les larger than �� KBytes� an additional
� ms �seek
plus rotational latency� is charged for every �� KBytes
of �le length in excess of �� KBytes� �� KBytes was
measured as the average disk transfer size between seeks
in our experimental server� Unless otherwise stated�
each back�end node has one disk�

The cache replacement policy we chose for all sim�
ulations is Greedy�Dual�Size �GDS�� as it appears to
be the best known policy for Web workloads ���� We
have also performed simulations with LRU� where �les
with a size of more than ���KB are never cached� The
relative performance of the various distribution strate�
gies remained largely una�ected� However� the absolute
throughput results were up to ��� lower with LRU than
with GDS�

��� Simulation Inputs

The input to the simulator is a stream of tokenized tar�
get requests� where each token represents a unique tar�

get being served� Associated with each token is a target
size in bytes� This tokenized stream can be syntheti�
cally created� or it can be generated by processing logs
from existing web servers�

One of the traces we use was generated by combin�
ing logs from multiple departmental web servers at Rice
University� This trace spans a two�month period� An�
other trace comes from IBM Corporation�s main web
server �www�ibm�com� and represents server logs for a
period of ��� days starting at midnight� June
�
����

Figures � and � show the cumulative distributions of
request frequency and size for the Rice University trace
and the IBM trace� respectively� Shown on the x�axis
is the set of target �les in the trace� sorted in decreas�
ing order of request frequency� The y�axis shows the
cumulative fraction of requests and target sizes� nor�
malized to the total number of requests and total data
set size� respectively� The data set for the Rice Univer�
sity trace consist of ����� targets covering
�
� MB of
space� whereas the IBM trace consists of ����� targets
and
��� MB of space� While the data sets in both
traces are of a comparable size� it is evident from the
graphs that the Rice trace has much less locality than
the IBM trace� In the Rice trace� ���
���
��� MB of
memory is needed to cover ��
��
��� of all requests�
respectively� while only �

��

�� MB are needed to
cover the same fractions of requests in the IBM trace�

This di�erence is likely to be caused in part by the
di�erent time spans that each trace covers� Also� the
IBM trace is from a single high�tra	c server� where the
content designers have likely spent e�ort to minimize
the sizes of high frequency documents in the interest of
performance� The Rice trace� on the other hand� was
merged from the logs of several departmental servers�

As with all caching studies� interesting e�ects can
only be observed if the size of the working set exceeds
that of the cache� Since even our larger trace has a rel�
atively small data set �and thus a small working set��
and also to anticipate future trends in working set sizes�
we chose to set the default node cache size in our simu�
lations to �� MB� Since in reality� the cache has to share
main memory with OS kernel and server applications�
this typically requires at least �� MB of memory in an
actual server node�

��� Simulation Outputs

The simulator calculates overall throughput� hit rate�
and underutilization time� Throughput is the number

�

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

2.3 million reqs
37703 files
1418 MB total

requests file size
C

um
ul

. r
eq

s,
 f

il
e

si
ze

 (
no

rm
.)

Files by request frequency (normalized)

Figure �� Rice University Trace

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

15.6 million reqs
38527 files
1029 MB total

requests file size

C
um

ul
. r

eq
s,

 f
il

e
si

ze
 (

no
rm

.)

Files by request frequency (normalized)

Figure �� IBM Trace

of requests in the trace that were served per second by
the entire cluster� calculated as the number of requests
in the trace divided by the simulated time it took to
�nish serving all the requests in the trace� The request
arrival rate was matched to the aggregate throughput
of the server�

The cache hit ratio is the number of requests that
hit in a back�end node�s main memory cache divided
by the number of requests in the trace� The idle time
was measured as the fraction of simulated time during
which a back�end node was underutilized� averaged over
all back�end nodes�

Node underutilization is de�ned as the time that a
node�s load is less than ��� of Tlow � This value was
determined by inspection of the simulator�s disk and
CPU activity statistics as a point below which a node�s
disk and CPU both had some idle time in virtually all
cases� The overall throughput is the best summary met�
ric� since it is a�ected by all factors� The cache hit
rate gives an indication of how well locality is being
maintained� and the node underutilization times indi�
cate how well load balancing is maintained�

� Simulation Results

We simulate the four di�erent request distribution strate�
gies presented in Section ��

� weighted round�robin �WRR��

�� locality�based �LB��

�� basic LARD �LARD�� and

�� LARD with replication �LARD
R��

In addition� observing the large amount of interest gen�
erated by global memory systems �GMS� and coopera�
tive caching to improve hit rates in cluster main mem�
ory caches ���

�
��� we simulate a weighted round�
robin strategy in the presence of a global memory sys�
tem on the back�end nodes� We refer to this system as
WRR
GMS� The GMS in WRR
GMS is loosely based
on the GMS described in Feeley et al� �

��

We also simulate an idealized locality�based strategy�
termed LB
GC� where the front�end keeps track of each
back�end�s cache state to achieve the e�ect of a global
cache� On a cache hit� the front�end sends the requests
to the back�end that caches the target� On a miss� the
front�end sends the request to the back�end that caches
the globally �oldest� target� thus causing eviction of
that target�

��� Rice University Trace

0 5 10 15
0

2000

4000

6000

8000

10000
LARD/R
LARD
WRR/GMS
LB
LB/GC
WRR

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

nodes in cluster

Figure �� Throughput

0 5 10 15
0

5

10

15

20

25 WRR
WRR/GMS

LARD
LARD/R

LB
LB/GC

%
 r

eq
ue

st
s

m
is

se
d

nodes in cluster

Figure �� Cache Miss Ratio

Figures �� �� and � show the aggregate throughput�
cache miss ratio� and idle time as a function of the num�
ber of back�end nodes for the combined Rice University
trace� WRR achieves the lowest throughput� the highest
cache miss ratio� but also the lowest idle time �i�e�� the
highest back�end node utilization� of all strategies� This
con�rms our reasoning that the weighted round�robin
scheme achieves good load balancing �thus minimizing
idle time�� However� since it ignores locality� it su�ers
many cache misses� This latter e�ect dominates� and
the net e�ect is that the server�s throughput is limited
by disk accesses� With WRR� the e�ective size of the
server cache remains at the size of the individual node

�

0 5 10 15
0

20

40

60

80

100
LB/GC
LB
LARD/R
LARD
WRR/GMS
WRR

%
 ti

m
e

no
de

 u
nd

er
ut

ili
ze

d

nodes in cluster

Figure �� Idle Time

cache� independent of the number of nodes� This can be
clearly seen in the �at cache miss ratio curve for WRR�

As expected� both LB schemes achieve a decrease in
cache miss ratio as the number of nodes increases� This
re�ects the aggregation of e�ective cache size� However�
this advantage is largely o�set by a loss in load balancing
�as evidenced by the increased idle time�� resulting in
only a modest throughput advantage over WRR�

An interesting result is that LB
GC� despite its
greater complexity and sophistication� does not yield
a signi�cant advantage over the much simpler LB� This
suggests that the hashing scheme used in LB achieves a
fairly even partitioning of the server�s working set� and
that maintaining cache state in the front�end may not
be necessary to achieve good cache hit ratios across the
back�end nodes� This partly validates the approach we
took in the design of LARD� which does not attempt to
model the state of the back�end caches�

The throughput achieved with LARD
R exceeds that
of the state�of�the�art WRR on this trace by a factor of
��� for a cluster size of eight nodes� and by about ���
for sixteen nodes� The Rice trace requires the combined
cache size of eight to ten nodes to hold the working set�
Since WRR cannot aggregate the cache size� the server
remains disk bound for all cluster sizes� LARD and
LARD
R� on the other hand� cause the system to be�
come increasingly CPU bound for eight or more nodes�
resulting in superlinear speedup in the
�
� node re�
gion� with linear� but steeper speedup for more than
ten nodes� Another way to read this result is that with
WRR� it would take a ten times larger cache in each
node to match the performance of LARD on this par�
ticular trace� We have veri�ed this fact by simulating
WRR with a tenfold node cache size�

The reason for the increased throughput and speedup
can also be clearly seen in the graphs for idle time and
cache miss ratio� LARD and LARD
R achieve average
idle times around
�� while achieving cache miss ratios
that decrease with increasing cluster size and reach val�
ues below �� for eight and more nodes in the case of
LARD� going down to �� at sixteen nodes in the case
of LARD
R� Thus� LARD and LARD
R come close to
WRR in terms of load balancing while simultaneously
achieving cache miss ratios close to those obtained with
LB
GC� Thus� LARD and LARD
R are able to trans�
late most of the locality advantages of LB
GC into ad�
ditional server throughput�

The throughput achieved with LARD
R exceeds that

of LARD slightly for seven or more nodes� while achiev�
ing lower cache miss ratio and lower idle time� While
WRR
GMS achieves a substantial performance advan�
tage over WRR� its throughput remains below ��� of
LARD and LARD
R�s throughput for all cluster sizes�

��� Other Workloads

0 5 10 15
 0

 5000

10000

15000

20000

25000

30000
LARD/R
LARD
WRR/GMS
LB
LB/GC
WRR

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

nodes in cluster

Figure
�� Throughput on IBM Trace

Figure
� shows the throughput results obtained for the
various strategies on the IBM trace �www�ibm�com�� In
this trace� the average �le size is smaller than in the
Rice trace� resulting in much larger throughput num�
bers for all strategies� The higher locality of the IBM
trace demands a smaller e�ective cache size to cache the
working set� Thus� LARD and LARD
R achieve super�
linear speedup only up to � nodes in this trace� resulting
in a throughput that is slighly more than twice that of
WRR for � nodes and above�

WRR
GMS achieves much better relative perfor�
mance on this trace than on the Rice trace and comes
within
�� of LARD
R�s throughput at
� nodes� How�
ever� this result has to be seen in light of the very gen�
erous assumptions made in the simulations about the
performance of the WRR
GMS system� It was assumed
that maintaining the global cache directory and imple�
menting global cache replacement has no cost�

The performance of LARD
R only slightly exceeds
that of LARD on the Rice trace and matches that of
LARD on the IBM trace� The reason is that neither
trace contains high�frequency targets that can bene�t
from replication� The highest frequency �les in the Rice
and IBM traces account for only �� and ��� respec�
tively� of all requests in the traces� However� it is clear
that real workloads exist that contain targets with much
higher request frequency �e�g� www�netscape�com�� To
evaluate LARD and LARD
R on such workloads� we
modi�ed the Rice trace to include a small number of
arti�cal high�frequency targets and varied their request
rate between � and ��� of the total number of re�
quests in the trace� With this workload� the throughput
achieved with LARD
R exceeds that of LARD by ��

��� The most signi�cant increase occurs when the size
of the �hot� targets is larger than �� KBytes and the
combined access frequency of all hot targets accounts
for
����� of the total number of requests�

We also ran simulations on a trace from the IBM web
server hosting the Deep Blue
Kasparov Chess match in

�

0 5 10 15
 0

 5000

10000

15000

20000

25000

30000

35000
4x cpu, 3x mem
3x cpu, 2x mem
2x cpu, 1.5x mem
1x cpu

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

nodes in cluster

Figure

� WRR vs CPU

0 5 10 15
 0

 5000

10000

15000

20000

25000

30000

35000
4x cpu, 3x mem
3x cpu, 2x mem
2x cpu, 1.5x mem
1x cpu

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

nodes in cluster

4x cpu, 3x mem
3x cpu, 2x mem
2x cpu, 1.5x mem
1x cpu
LARD/R
LARD

Figure
�� LARD vs CPU

May
���� This trace is characterized by large numbers
of requests to a small set of targets� The working set
of this trace is very small and achieves a low miss ratio
with a main memory cache of a single node ��� MB��
This trace presents a best�case scenario for WRR and
a worst�case scenario for LARD� as there is nothing to
be gained from an aggregation of cache size� but there
is the potential to lose performance due to imperfect
load balancing� Our results show that both LARD and
LARD
R closely match the performance of WRR on
this trace� This is reassuring� as it demonstrates that
our strategy can match the performance of WRR even
under conditions that are favorable to WRR�

��� Sensitivity to CPU and Disk Speed

In our next set of simulations� we explore the impact of
CPU speed on the relative performance of LARD versus
the state�of�the�art WRR� We performed simulations on
the Rice trace with the default CPU speed setting ex�
plained in Section �� and with twice� three and four
times the default speed setting� The �
x� speed setting
represents a state�of�the�art inexpensive high�end PC
���� MHz Pentium II�� and the higher speed settings
project the speed of high�end PCs likely to be available
in the the next few years� As the CPU speed increases
while disk speed remains constant� higher cache hit rates
are necessary to remain CPU bound at a given cluster
size� requiring larger per�node caches� We made this
adjustment by setting the node memory size to
��� ��
and � times the base amount ��� MB� for the ��x�� ��x�
and ��x� CPU speed settings� respectively�

As CPU speeds are expected to improve at a much
faster rate than disk speeds� one would expect that the
importance of caching and locality increases� Indeed�
our simulations con�rm this� Figures

 and
�� re�
spectively� show the throughput results for WRR and
LARD
R on the combined Rice University trace with
di�erent CPU speed assumptions� It is clear that WRR
cannot bene�t from added CPU at all� since it is disk�
bound on this trace� LARD and LARD
R� on the other
hand� can capitalize on the added CPU power� because
their cache aggregation makes the system increasingly
CPU bound as nodes are added to the system� In ad�
dition� the results indicate the throughput advantage of
LARD
R over LARD increases with CPU speed� even
on a workload that presents little opportunity for repli�
cation�

In our �nal set of simulations� we explore the impact
of using multiple disks in each back�end node on the rel�
ative performance of LARD
R versus WRR� Figures
�
and
�� respectively� show the throughput results for
WRR and LARD
R on the combined Rice University
trace with di�erent numbers of disks per back�end node�
With LARD
R� a second disk per node yields a mild
throughput gain� but additional disks do not achieve
any further bene�t� This can be expected� as the in�
creased cache e�ectiveness of LARD
R causes a reduced
dependence on disk speed�

WRR� on the other hand� greatly bene�ts from mul�
tiple disks as its throughput is mainly bound by the
performance of the disk subsystem� In fact� with four
disks per node and
� nodes� WRR comes within
�� of
LARD
R�s throughput� However� the are several things
to note about this result� First� the assumptions made
in the simulations about the performance of multiple
disks are generous� It is assumed that both seek and
disk transfer operations can be fully overlapped among
all disks� In practice� this would require that each disk
is attached through a separate SCSI bus
controller�

Second� it is assumed that the database is striped
across the multiple disks in a manner that achieves good
load balancing among the disks with respect to the work�
load �trace�� In our simulations� the �les were dis�
tributed across the disks in round�robin fashion based
on decreasing order of request frequency in the trace��

Finally� WRR has the same scalability problems with
respect to disks as it has with memory� To upgrade a
cluster with WRR� it is not su	cient to add nodes as
with LARD
R� Additional disks �and memory� have to
be added to all nodes to achieve higher performance�

��� Delay

While most of our simulations focus on the server�s
throughput limits� we also monitored request delay in
our simulations for both the Rice University trace as
well as the IBM trace� On the Rice University trace�
the average request delay for LARD
R is less than ���
that of WRR� With the IBM trace� LARD
R�s average
delay is one half that of WRR�

�Note that replicating the entire database on each disk as an
approach to achieving disk load balancing would require special
OS support to avoid double bu�ering and caching of replicated
�les and to assign requests to disks dynamically based on load�

�

0 5 10 15
0

2000

4000

6000

8000 4 disks ea.
3 disks ea.
2 disks ea.
1 disk each

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

nodes in cluster

Figure
�� WRR vs disks

0 5 10 15
0

2000

4000

6000

8000 4 disks ea.
3 disks ea.
2 disks ea.
1 disk each

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

nodes in cluster

Figure
�� LARD
R vs disks

� TCP Connection Hando�

In this section� we brie�y discuss our TCP hando� pro�
tocol and present some performance results with a pro�
totype implementation� A full description of the proto�
col is beyond the scope of this paper� The TCP hando�
protocol is used to hand o� established client TCP ����
connections between the front�end and the back�end of
a cluster server that employs content�based request dis�
tribution�

A hando� protocol is necessary to enable content�
based request distribution in a client�transparent man�
ner� This is true for any service �like HTTP� that
relies on a connection�oriented transport protocol like
TCP� The front�end must establish a connection with
the client to inspect the target content of a request prior
to assigning the connection to a back�end node� The
established connection must then be handed to the cho�
sen back�end node� State�of�the�art commercial clus�
ter front�ends �e�g�� ���
��� assign requests without re�
gard to the requested content and can therefore forward
client requests to a back�end node prior to establishing
a connection with the client�

Our hando� protocol is transparent to clients and
also to the server applications running on the back�end
nodes� That is� no changes are needed on the client side�
and server applications can run unmodi�ed on the back�
end nodes� Figure
� depicts the protocol stacks on
the clients� front�end� and back�ends� respectively� The
hando� protocol is layered on top of TCP and runs on
the front�end and back�end nodes� Once a connection
is handed o� to a back�end node� incoming tra	c on
that connection �principally acknowledgment packets�
is forwarded by an e	cient forwarding module at the
bottom of the front�end�s protocol stack�

The TCP implementation running on the front�end
and back�ends needs a small amount of additional sup�
port for hando�� In particular� the protocol module
needs to support an operation that allows the TCP
hando� protocol to create a TCP connection at the
back�end without going through the TCP three�way
handshake� Likewise� an operation is required that re�
trieves the state of an established connection and de�
stroys the connection state without going through the
normal message handshake required to close a TCP con�
nection�

Figure
� depicts a typical scenario� �
� a client con�
nects to the front�end� ��� the dispatcher at the front�

TCP/IP

Handoff

TCP/IP

Dispatcher

Server

Handoff

TCP/IP

Forward

conn
req

Client

conn
req
ack

handoff
req

ackreply

Client host Front-End Back-End

User Level

Kernel(1)
(2)

(3)

(4) (5)

Figure
�� TCP connection hando�

end accepts the connection and hands it o� to a back�
end using the hando� protocol� ��� the back�end takes
over the established connection received by the hand�
o� protocols� ��� the server at the back�end accepts the
created connection� and ��� the server at the back�end
sends replies directly to the client� The dispatcher is a
software module that implements the distribution pol�
icy� e�g� LARD�

Once a connection is handed o� to a back�end node�
the front�end must forward packets from the client to
the appropriate back�end node� A single back�end node
that fully utilizes a
�� Mb
s network sending data to
clients will receive at least �
�� acknowledgments per
second �assuming an IP packet size of
��� and delayed
TCP ACKs�� Therefore� it is crucial that this packet
forwarding is fast�

The forwarding module is designed to allow very fast
forwarding of acknowledgment packets� The module op�
erates directly above the network interface and executes
in the context of the network interface interrupt han�
dler� A simple hash table lookup is required to deter�
mine whether a packet should be forwarded� If so� the
packet�s header is updated and it is directly transmit�
ted on the appropriate interface� Otherwise� the packet
traverses the normal protocol stack�

Results of performance measurements with an im�
plementation of the hando� protocol are presented in
Section ����

The design of our TCP hando� protocol includes
provisions for HTTP
�
 persistent connections� which
allow a client to issue multiple requests� The protocol
allows the front�end to either let one back�end serve all
of the requests on a persistent connection� or to hand o�
a connection multiple times� so that di�erent requests

�

on the same connection can be served by di�erent back�
ends� However� further research is needed to determine
the appropriate policy for handling persistent connec�
tions in a cluster with LARD� We have not yet experi�
mented with HTTP
�
 connections as part of this work�

� Prototype Cluster Performance

In this section� we present performance results obtained
with a prototype cluster that uses locality�aware request
distribution� We describe the experimental setup used
in the experiments� and then present the results�

��� Experimental Environment

Our testbed consists of � client machines connected to
a cluster server� The con�guration is shown in Fig�
ure
�� Tra	c from the clients �ows to the front�end
�
� and is forwarded to the back�ends ���� Data pack�
ets transmitted from the back�ends to the clients bypass
the front�end ����

The front�end of the server cluster is a ���MHz In�
tel Pentium II based PC with
��MB of memory� The
cluster back�end consists of six PCs of the same type
and con�guration as the front�end� All machines run
FreeBSD ������ A loadable kernel module was added to
the OS of the front�end and back�end nodes that im�
plements the TCP hando� protocol� and� in the case
of the front�end� the forwarding module� The clients
are
��MHz Intel Pentium Pro PCs� each with ��MB of
memory�

The clients and back�end nodes in the cluster are
connected using switched Fast Ethernet �
��Mbps�� The
front�end is equipped with two network interfaces� one
for communication with the clients� one for commu�
nication with the back�ends� Clients� front�end� and
back�end are connected through a single ���port switch�
All network interfaces are Intel EtherExpress Pro

��B
running in full�duplex mode�

The Apache�
���� ��� server was used on the back�end
nodes� Our client software is an event�driven program
that simulates multiple HTTP clients� Each simulated
HTTP client makes HTTP requests as fast as the server
cluster can handle them�

Figure
�� Experimental Testbed

��� Front�end Performance Results

Measurements were performed to evaluate the perfor�
mance and overhead of the TCP hando� protocol and
packet forwarding in the front�end� Hando� latency is
the added latency a client experiences as a result of
TCP hando�� Hando� throughput is the maximal rate
at which the front�end can accept� hando�� and close
connections� Forwarding throughput refers to the max�
imal aggregate rate of data transfers from all back�end
nodes to clients� Since this data bypasses the front�end�
this �gure is limited only by the front�end�s ability to
forward acknowledgments from the clients to the back�
ends�

The measured hando� latency is
�� �secs and the
maximal hando� throughput is approximately ���� con�
nections per second� Note that the added hando� la�
tency is insigni�cant� given the connection establish�
ment delay over a wide�area network� The measured
ACK forwarding overhead is � �secs� resulting in a
theoretical maximal forwarding throughput of over ���
Gbits
s� We have not been able to measure such high
throughput directly due to lack of network resources�
but the measured remaining CPU idle time in the front�
end at lower throughput is consistent with this �gure�
Further measurements indicate that with the Rice Uni�
versity trace as the workload� the hando� throughput
and forwarding throughput are su	cient to support
�
back�end nodes of the same CPU speed as the front�end�

Moreover� the front�end can be relatively easily scaled
to larger clusters either by upgrading to a faster CPU�
or by employing an SMP machine� Connection estab�
lishment� hando�� and forwarding are independent for
di�erent connections� and can be easily parallelized �����
The dispatcher� on the other hand� requires shared state
and thus synchronization among the CPUs� However�
with a simple policy such as LARD
R� the time spent
in the dispatcher amounts to only a small fraction of the
hando� overhead �
������� Therefore� we fully expect
that the front�end performance can be scaled to larger
clusters e�ectively using an inexpensive SMP platform
equipped with multiple network interfaces�

��� Cluster Performance Results

A segment of the Rice University trace was used to drive
the prototype cluster� A single back�end node running
Apache can deliver about
�� req
sec on this trace� On
cached� small �les �less than � KB�� an Apache back�end
can complete about ��� req
sec�

The Apache Web server relies on the �le caching
services of the underlying operating system� FreeBSD
uses a uni�ed bu�er cache� where cached �les are com�
peting with user processes for physical memory pages�
All page replacement is controlled by FreeBSD�s page�
out daemon� which implements a variant of the clock
algorithm ����� The cache size is variable and depends
on main memory pressure from user applications� In
our
�� MB back�ends� memory demands from kernel
and Apache server processes leave about
�� MB of free
memory� In practice� we observed �le cache sizes be�
tween �� and �� MB�

We measure the total HTTP throughput of the
server cluster with increasing numbers of back�end
nodes and with the front�end implementing either WRR

�

1 2 3 4 5 6
0

500

1000

1500

2000

2500

LARD/R

WRR

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

nodes in cluster

Figure
�� HTTP Throughput �Apache�

or LARD
R� The results are shown in Figure
� and
con�rm the predictions of the simulator� The through�
put achieved with LARD
R exceeds that of WRR by
a factor of ��� for six nodes� Running LARD
R on a
cluster with six nodes at maximal throughput and an
aggregate server bandwidth of over ��� Mb
s� the front�
end CPU was ��� utilized� This is consistent with our
earlier projection that a single CPU front�end can sup�
port
� back�ends of equal CPU speed�

	 Related Work

Much current research addresses the scalability prob�
lems posed by the Web� The work includes cooperative
caching proxies inside the network� push�based docu�
ment distribution� and other innovative techniques ���
��
��
��
�� ���� Our proposal addresses the com�
plementary issue of providing support for cost�e�ective�
scalable network servers�

Network servers based on clusters of workstations
are starting to be widely used �
��� Several products
are available or have been announced for use as front�
end nodes in such cluster servers ���
��� To the best of
our knowledge� the request distribution strategies used
in the cluster front�ends are all variations of weighted
round�robin� and do not take into account a request�s
target content� An exception is the Dispatch product
by Resonate� Inc�� which supports content�based request
distribution ��
�� The product does not appear to use
any dynamic distribution policies based on content and
no attempt is made to achieve cache aggregation via
content�based request distribution�

Hunt et al� proposed a TCP option designed to
enable content�based load distribution in a cluster
server �
��� The design has not been implemented and
the performance potential of content�based distribution
has not been evaluated as part of that work� Also� no
policies for content�based load distribution were pro�
posed� Our TCP hando� protocol design was informed
by Hunt et al��s design� but chooses the di�erent ap�
proach of layering a separate hando� protocol on top of
TCP�

Fox et al� �
�� report on the cluster server technology
used in the Inktomi search engine� The work focuses on
the reliability and scalability aspects of the system and
is complementary to our work� The request distribution
policy used in their systems is based on weighted round�

robin�
Loosely�coupled distributed servers are widely de�

ployed on the Internet� Such servers use various tech�
niques for load balancing including DNS round�robin ����
HTTP client re�direction �
�� Smart clients ����� source�
based forwarding ��� and hardware translation of net�
work addresses ���� Some of these schemes have prob�
lems related to the quality of the load balance achieved
and the increased request latency� A detailed discussion
of these issues can be found in Goldszmidt and Hunt �
��
and Damani et al� ���� None of these schemes support
content�based request distribution�

IBM�s Lava project �
�� uses the concept of a �hit
server�� The hit server is a specially con�gured server
node responsible for serving cached content� Its spe�
cialized OS and client�server protocols give it superior
performance for handling HTTP requests of cached doc�
uments� but limits it to private Intranets� Requests
for uncached documents and dynamic content are dele�
gated to a separate� conventional HTTP server node�
Our work shares some of the same goals� but main�
tains standard client�server protocols� maintains sup�
port for dynamic content generation� and focuses on
cluster servers�

 Conclusion

We present and evaluate a practical and e	cient
locality�aware request distribution �LARD� strategy
that achieves high cache hit rates and good load balanc�
ing in a cluster server� Trace�driven simulations show
that the performance of our strategy exceeds that of
the state�of�the�art weighted round�robin �WRR� strat�
egy substantially� On workloads with a working set that
does not �t in a single server node�s main memory cache�
the achieved throughput exceeds that of WRR by a fac�
tor of two to four�

Additional simulations show that the performance
advantages of LARD over WRR increase with the dis�
parity between CPU and disk speeds� Also� our results
indicate that the performance of a hypothetical cluster
with WRR distribution and a global memory system
�GMS� falls short of LARD under all workloads con�
sidered� despite generous assumptions about the perfor�
mance of a GMS system�

We also propose and evaluate an e	cient TCP hand�
o� protocol that enables LARD and other content�
based request distribution strategies by providing client�
transparent connection hando� for TCP�based network
services� like HTTP� Performance results indicate that
in our prototype cluster environment and on our work�
loads� a single CPU front�end can support
� back�end
nodes with equal CPU speed as the front�end� More�
over� the design of the hando� protocols is expected
to yield scalable performance on SMP�based front�ends�
thus supporting larger clusters�

Finally� we present performance results from a pro�
totype LARD server cluster that incorporates the TCP
hando� protocol and the LARD strategy� The measured
results con�rm the simulation results with respect to the
relative performance of LARD and WRR�

In this paper� we have focused on studying HTTP
servers that serve static content� However� caching can
also be e�ective for dynamically generated content �
���

Moreover� resources required for dynamic content gen�
eration like server processes� executables� and primary
data �les are also cacheable� While further research is
required� we expect that increased locality can bene�t
dynamic content serving� and that therefore the advan�
tages of LARD also apply to dynamic content�

� Acknowledgments

Thanks to Ed Costello� Cameron Ferstat� Alister Lewis�
Bowen and Chet Murthy� for their help in obtaining the
IBM server logs�

References

�
� D� Andresen et al� SWEB� Towards a Scalable
WWW Server on MultiComputers� In Proccedings
of the ��th International Parallel Processing Sym�
posium� Apr�
����

��� Apache� http�

www�apache�org
�

��� G� Banga� F� Douglis� and M� Rabinovich� Opti�
mistic Deltas for WWW Latency Reduction� In
Proceedings of the ���� Usenix Technical Confer�
ence� Jan�
����

��� T� Brisco� DNS Support for Load Balancing� RFC

���� Apr�
����

��� P� Cao and S� Irani� Cost�aware WWW proxy
caching algorithms� In Proceedings of the USENIX
Symposium on Internet Technologies and Systems
�USITS�� Monterey� CA� Dec�
����

��� A� Chankhunthod� P� B� Danzig� C� Neerdaels�
M� F� Schwartz� and K� J� Worrell� A Hierarchi�
cal Internet Object Cache� In Proceedings of the
���� Usenix Technical Conference� Jan�
����

��� Cisco Systems Inc� LocalDirector�
http�

www�cisco�com�

��� M� Dahlin� R� Yang� T� Anderson� and D� Pat�
terson� Cooperative caching� Using remote client
memory to improve �le system performance� In
Proc	 Symp	 on Operating Systems Design and Im�
plementation� Monterey� CA� Nov�
����

��� O� P� Damani� P��Y� E� Chung� Y� Huang� C� Kin�
tala� and Y��M� Wang� ONE�IP� Techniques for
hosting a service on a cluster of machines� Com�
puter Networks and ISDN Systems� ���
�
��
����

����

�
�� P� Danzig� R� Hall� and M� Schwartz� A case for
caching �le objects inside internetworks� In Pro�
ceedings of the SIGCOMM
�� Conference� Sept�

����

�

� M� J� Feeley� W� E� Morgan� F� H� Pighin� A� R�
Karlin� H� M� Levy� and C� A� Thekkath� Imple�
menting global memory management in a worksta�
tion cluster� In Proceedings of the Fifteenth ACM
Symposium on Operating System Principles� Cop�
per Mountain� CO� Dec�
����

�
�� A� Fox� S� D� Gribble� Y� Chawathe� E� A� Brewer�
and P� Gauthier� Cluster�based scalable network
services� In Proceedings of the Sixteenth ACM Sym�
posium on Operating System Principles� San Malo�
France� Oct�
����

�
�� G� Hunt� E� Nahum� and J� Tracey� Enabling
content�based load distribution for scalable ser�
vices� Technical report� IBM T�J� Watson Research
Center� May
����

�
�� IBM Corporation� IBM interactive network
dispatcher�
http�

www�ics�raleigh�ibm�com
ics
isslearn�htm�

�
�� A� Iyengar and J� Challenger� Improving web server
performance by caching dynamic data� In Proceed�
ings of the USENIX Symposium on Internet Tech�
nologies and Systems �USITS�� Monterey� CA� Dec�

����

�
�� T� M� Kroeger� D� D� Long� and J� C� Mogul�
Exploring the bounds of Web latency reduction
from caching and prefetching� In Proceedings of
the USENIX Symposium on Internet Technologies
and Systems �USITS�� Monterey� CA� Dec�
����

�
�� H� Levy� G� Voelker� A� Karlin� E� Anderson� and
T� Kimbrel� Implementing Cooperative Prefetch�
ing and Caching in a Globally�Managed Memory
System� In Proceedings of the ACM SIGMETRICS

�� Conference� Madison� WI� June
����

�
�� J� Liedtke� V� Panteleenko� T� Jaeger� and N� Islam�
High�performance caching with the Lava hit�server�
In Proceedings of the USENIX ���� Annual Tech�
nical Conference� New Orleans� LA� June
����

�
�� G� R� Malan� F� Jahanian� and S� Subramanian�
Salamander� A push�based distribution substrate
for Internet applications� In Proceedings of the
USENIX Symposium on Internet Technologies and
Systems �USITS�� Monterey� CA� Dec�
����

���� M� K� McKusick� K� Bostic� M� J� Karels� and
J� S� Quarterman� The Design and Implementation
of the
	
BSD Operating System� Addison�Wesley
Publishing Company�
����

��
� Resonate Inc� Resonate dispatch�
http�

www�resonateinc�com�

���� M� Seltzer and J� Gwertzman� The Case for Geo�
graphical Pushcaching� In Proceedings of the ����
Workshop on Hot Topics in Operating Systems�

����

���� G� Wright and W� Stevens� TCP�IP Illustrated
Volume �� Addison�Wesley� Reading� MA�
����

���� D� J� Yates� E� M� Nahum� J� F� Kurose� and
D� Towsley� Networking support for large scale mul�
tiprocessor servers� In Proceedings of the ACM Sig�
metrics Conference on Measurement and Modeling
of Computer Systems� Philadelphia� Pennsylvania�
May
����

���� B� Yoshikawa et al� Using Smart Clients to Build
Scalable Services� In Proceedings of the ���� Usenix
Technical Conference� Jan�
����

�

