
Computing (2018) 100:557–595

https://doi.org/10.1007/s00607-017-0581-6

Locality-aware task scheduling for homogeneous

parallel computing systems

Muhammad Khurram Bhatti1 · Isil Oz2
·

Sarah Amin1
· Maria Mushtaq1

· Umer Farooq3
·

Konstantin Popov4
· Mats Brorsson5

Received: 10 March 2017 / Accepted: 24 October 2017 / Published online: 1 November 2017

© Springer-Verlag GmbH Austria 2017

Abstract In systems with complex many-core cache hierarchy, exploiting data local-

ity can significantly reduce execution time and energy consumption of parallel

applications. Locality can be exploited at various hardware and software layers. For

instance, by implementing private and shared caches in a multi-level fashion, recent

hardware designs are already optimised for locality. However, this would all be use-

less if the software scheduling does not cast the execution in a manner that promotes

locality available in the programs themselves. Since programs for parallel systems

consist of tasks executed simultaneously, task scheduling becomes crucial for the per-

formance in multi-level cache architectures. This paper presents a heuristic algorithm

for homogeneous multi-core systems called locality-aware task scheduling (LeTS).

The LeTS heuristic is a work-conserving algorithm that takes into account both local-

ity and load balancing in order to reduce the execution time of target applications.

The working principle of LeTS is based on two distinctive phases, namely; working

task group formation phase (WTG-FP) and working task group ordering phase (WTG-

OP). The WTG-FP forms groups of tasks in order to capture data reuse across tasks

while the WTG-OP determines an optimal order of execution for task groups that

minimizes the reuse distance of shared data between tasks. We have performed exper-

iments using randomly generated task graphs by varying three major performance

B Muhammad Khurram Bhatti

khurram.bhatti@itu.edu.pk

1 Embedded Computing Lab, Information Technology University (ITU), 346-B Ferozpur Road,

Lahore, Pakistan

2 Computer Engineering Department, Izmir Institute of Technology, Izmir, Turkey

3 Department of Electrical and Computer Engineering, Dhofar University, 211 Salalah, Oman

4 SICS, Isafjordsgatan 22, 164 29 Kista, Sweden

5 KTH Royal Institute of Technology, Isafjordsgatan 22, Box 1263, 164 29 Kista, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-017-0581-6&domain=pdf
http://orcid.org/0000-0002-1974-8268


558 M. K. Bhatti et al.

parameters, namely: (1) communication to computation ratio (CCR) between 0.1 and

1.0, (2) application size, i.e., task graphs comprising of 50-, 100-, and 300-tasks per

graph, and (3) number of cores with 2-, 4-, 8-, and 16-cores execution scenarios. We

have also performed experiments using selected real-world applications. The LeTS

heuristic reduces overall execution time of applications by exploiting inter-task data

locality. Results show that LeTS outperforms state-of-the-art algorithms in amortizing

inter-task communication cost.

Keywords Runtime resource management · Parallel computing · Multicore

scheduling · Homogeneous systems · Directed acyclic graph (DAG) · Embedded

systems

Mathematics Subject Classification 68U01

1 Introduction

Recent trend in architecture design is to integrate more cores onto a single chip in order

to meet the higher performance demand of computationally intensive applications

[1,2]. With the increasing number of cores on a single processor die, the on-chip

cache hierarchy that support these cores is also becoming more complex and larger.

Consequently, the effects of non-uniform memory access are prevalent even on a single

chip [3]. In such scenario, in order to reduce execution time and energy consumption

of complex parallel applications, data access locality should be exploited. This is

particularly important in task-based programming systems, where a computation is

broken down into small code segments (i.e., tasks) and a scheduler decides when and

where on the chip these tasks should execute. Specifically, a scheduler generates a task

schedule by grouping tasks to execute on the same thread, and by applying ordering

across the tasks. For load balancing among various cores, the runtime system may

employ stealing to redistribute tasks from loaded threads to idle threads. However,

to capture locality in a task-based system, the scheduling algorithm should be made

locality-aware.

Programming of parallel systems for executing single application is more chal-

lenging than programming a single processor for a single application due to multiple

reasons. One such reason is the larger degree of freedom in scheduling tasks over

multiple computing resources that increases algorithmic complexity. Having many

degrees of freedom implies many grouping and ordering choices for tasks. Another

reason is that various code segments of application have precedence constraints and

data dependencies among them and the complexity of many-core cache hierarchies

makes the process all the more complicated. Thus, task grouping and ordering deci-

sions taken by the scheduler must optimise locality across all cache levels, whether

the hierarchy being shared or private. Due to arbitrary sizes, precedence constraints,

and data dependencies among tasks, scheduling on multicore systems is considered as

an NP-hard problem, i.e., it is not possible to find an optimal schedule in polynomial

time (unless NP = P) [2,4–7]. Therefore, proposed scheduling algorithms are based

on heuristics that try to reduce execution time on bounded computing resources [5,6].

123



Locality-aware task scheduling for homogeneous parallel… 559

While the heuristics usually provide fair results, there is no guarantee that solutions

are always close to optimal [8,9].

With scheduling already an NP-hard problem in parallel systems, avoiding the

high latency to access remote caches and main memory is increasingly critical for

performance. The same holds for energy efficiency too: Moving data from a remote

cache or from an off-chip memory requires 10 and 20 times more energy than an

arithmetic operation [10], respectively. Thus, consensus exists [3,11,12] that memory

access locality should be exploited to reduce execution time and energy to improve

the performance of parallel systems.

In this paper, we propose a scheduling heuristic, called the LeTS (Locality-aware

Task Scheduling) heuristic, for structured parallel programming systems, i.e., systems

with explicit data and control dependencies across tasks. The contributions of this

paper are as follows: (1) We develop a locality analysis framework and an offline list

scheduler that takes the target application’s profile information as input in the form

of a directed acyclic graph (DAG) and generates schedules that are optimised for data

access locality. (2) We then evaluate the effectiveness of the proposed scheduler using

applications with 50-, 100-, and 300-tasks per graph benchmarks of Standard Task

Graph (STG) [2,13]. We have also evaluated LeTS heuristic using selected real world

application graphs. We analyze results for 2-, 4-, 8-, and 16-cores system execution

scenarios, with variable degree of parallelism (DoP), and variable number of edges in

the task graphs.

Rest of this paper is organized as follows: We discuss related work on task schedul-

ing in Sect. 2. In Sect. 3, we present our system model and related definitions. Section 4

presents our proposed locality-aware task scheduling heuristic in detail. Experimental

setup and results are discussed in Sect. 5. We conclude this paper in Sect. 6.

2 Background and related work

Task scheduling techniques are broadly classified into two main categories, i.e., List

scheduling and Clustering [5,14,15]. Most of the algorithms that have been proposed

for task scheduling fall into one of these two classes. Therefore, task scheduling

algorithms can only be compared within their respective class. Both list scheduling

and clustering can be considered as heuristic skeletons. An algorithm applying either

of these techniques has the freedom to define the two, so far unspecified, criteria:

the priority scheme for the nodes and the choice criterion for the processor [14].

Algorithms proposed under both list scheduling as well as clustering generate their

schedule before the execution of applications, i.e., at compile time.

The list scheduling structure comprises of two distinct parts; in the first part, certain

priority order/scheme is used to sort tasks while respecting their precedence con-

straints. Such sorting creates a topological order containing all ready tasks. In the

second part, tasks are successively scheduled onto a processing unit (a core) that

allows their earliest start time [2,14,16,17]. There are significantly large number of

algorithms proposed in this category, such as [5,16–22]. The heterogeneous earli-

est finish time (HEFT) [18] is one of the well-known scheduling algorithms that uses

recursive approach in the bottom-up direction in order to determine the order of nodes.

Such node ordering is based on computation costs. This node order is then used to

123



560 M. K. Bhatti et al.

process tasks. Critical path nodes are being preferred by HEFT, which leads it to

Depth-First Search (DFS) based node ordering and execution subsequently. In a sim-

ilar work proposed in [19], critical path nodes are scheduled first by the proposed

algorithm and non-critical path nodes, their bottom level is considered for ordering.

Critical path/most immediate successors first (CP/MISF) algorithm proposed in [16]

also uses the method of bottom level ordering. CP/MISF breaks ties in favour of the

task that has higher number of successors. The constrained earliest finish time (CEFT)

has been proposed in [17]. CEFT heuristic uses the constrained critical path (CCP)

notion that refers to a task window representing only ready nodes at any given time

instance. Critical paths are being calculated by CEFT at first and then the tasks in pre-

computed CCPs are scheduled using combined finish time of entire CCP, subsequently.

Authors in [5] analyze priority schemes in which the node orders are decided based

on the bottom level, which is the same as LeTS heuristic but at different granularity.

Other metrics such as; communication of nodes and critical path are also important in

determining such node ordering as discussed in [19,20]. Another heuristic proposed

in [21] is called the dynamic critical path (DCP). DCP is based on a critical pattern

traversal approach. Basic idea in this work is to minimize overall schedule length at

each execution step by using remaining critical path. DCP produces the final schedule

only after processing all nodes. The use of static graph analysis and parameters like

node levels (bottom level and top level) stretched back to work proposed in [22] where

authors have proposed the modified critical path (MCP) algorithm. The nodes under

MCP are ordered by their bottom level and ties are broken in favour of successor nodes

with larger bottom levels.

In rather recent work related to static task scheduling, authors in [23] have proposed

multi-objective list scheduling (MOLS), a general framework and heuristic algorithm

for multi-objective static scheduling of scientific workflows in heterogeneous com-

puting environments. Although the MOLS algorithm considers 04 different objectives

(makespan, economic cost, energy consumption, and reliability), their results show

that makespan has the largest impact on all other objectives as it is the only structure-

dependent objective that preserves the precedence constraints of target application in

the ordered list. This result supports LeTS heuristic’s focus on optimizing mainly the

makespan through static scheduling. MOLS uses similar workflow model of DAGs and

bottom-level (B-level) criteria for ranking nodes as LeTS, which we have elaborated in

Sect. 3. MOLS heuristic works in three distinctive phases namely; the constraint vector

partitioning, the task ordering, and the task mapping phases, compared to two phase

solution of LeTS. Authors in [24] present a list-based scheduling algorithm called pre-

dict earliest finish time (PEFT) for heterogeneous computing systems. PEFT claims

to offer makespan improvements by introducing a look-ahead feature. PEFT heuristic

relies on a so-called optimistic cost table for task prioritization and allocation, how-

ever, it does so without considering the availability of processors while computing cost

table. Similar to LeTS, PEFT heuristic also uses randomly generated graphs with var-

ious characteristics and selected graphs of real-world applications to analyze results

in terms of schedule length ratio, efficiency, and frequency of best results.

Clustering algorithms consider collections or sets of tasks to be mapped to appro-

priate processing resources [4–6,15,25–27]. Such a collection is termed as cluster.

The clusters are then processed further to adapt for a bounded number of processing

123



Locality-aware task scheduling for homogeneous parallel… 561

resources. Among the earlier works on clustering, Kim and Browne [27] proposed

a path clustering algorithm that select a longest path p that consists of previously

unvisited edges in each iteration of clustering and merge every nodes of p into a single

cluster and mark every edge in p as visited. Similarly, Sarkar [28] proposed a heuristic

based on single edge clustering that sorts the edges in descending order of their com-

munication cost. Then for each sorted edge, computes the schedule length considering

the value of selected edge as zero. If the schedule length improves, then it merges the

two nodes on which the selected edge is incident. The dominant sequence cluster-

ing (DSC) algorithm proposed in [15] takes an unbounded number of processors and

creates clusters of tasks to schedule. DSC algorithms is proposed for homogeneous

processing systems. The DSC algorithm merges the the clusters in order to adapt sched-

ule to available computing resources. Similarly, authors in [25] propose an algorithm

that perform level sorting, i.e., at any particular depth level in a task graph, the tasks

are arranged in an order such that they are independent of one another. The algorithm

then allocates processing resources using the earliest finish time of any given level.

At any given level, the tasks offering smaller execution times are merged together in

order to adhere to the number of available processors. The resource allocation is thus

based on minimising the total computation and communication costs.

In recently published work, authors in [29] propose a clustering-based task schedul-

ing algorithm called clustering for minimizing the worst schedule length (CMWSL) to

minimize the schedule length in a large number of heterogeneous processors. CMWSL

considers DAG-based application model and consists of four phases to statically sched-

ule a DAG. It first derives the lower bound of the total execution time for each processor

using the worst schedule length (WSL) and then the processor that minimizes the WSL

is chosen for the cluster assignment target. In the next two phases, task clustering and

scheduling is performed, respectively. CMWSL, compared to LeTS, takes more iter-

ations to effectively decide on the clustering and task ordering.

Most of the proposed scheduling techniques work with a fine granularity, i.e., by

computing priorities at node-level in the task graph. The LeTS heuristic assigns an

execution order between topologically arranged nodes at a coarse-grain level by group-

ing nodes into working task groups (WTGs), which favour intra-group data locality.

Moreover, earlier proposed techniques base their prioritization mechanisms on the

computation costs mainly and do not explicitly prioritise nodes in order to minimize

inter-task communication. LeTS heuristic gives equal weight-age to both computation

and communication costs while computing priorities. Section 4 gives details on the

priority mechanism used by the LeTS heuristic.

3 Definitions and system model

In this section, we provide our system model, definitions, and properties/assumptions

that are taken in this work.

3.1 Application model

A given program/application can be represented in the form of a DAG. In such repre-

sentation, code segments are represented via nodes and inter-node dependencies are

123



562 M. K. Bhatti et al.

represented via edges. A function G = (V, E, w, c) represents such task graphs, where

V is a set of nodes that represent a non-divisible sequential task of the program, i.e.,

n ǫ V . An edge ei, j ǫ E represents the precedence constraint between task ni and n j .

Both control-flow and data-flow dependency can be represented through edges. The

positive weight w(ni ) of task ni ǫ V represents its computation time cost. Explicit

communication cost between tasks ni and n j is represented by a non-negative weight

c(ei, j ) on the edge ei, j ǫ E as shown in [2,6,30]. In this system model, the architecture

and the application task graph is fully known (i.e., topology, computation cost, com-

munication costs, data and precedence constraints) at compile-time. We do not impose

any restrictions on the input–task graphs can have arbitrary structure, computation,

and communication costs. Please note that, like all other static scheduling techniques,

the LeTS heuristic works with pre-built/known task graphs only, i.e., it does not deal

with the dynamic data.

3.2 Architecture model

We consider a set of homogeneous multicores, with their associated caches, connected

by a communication network to run application DAGs. Considered system possesses

the following properties/assumptions.

1. The parallel system does not have any workload other than the scheduled appli-

cation task graph.

2. Execution is non-preemptive and allows one task at a time per core.

3. Local communication (i.e., between tasks executed on the same core) is negligible

and therefore considered as zero. This is because, for parallel systems, remote

communication is more expensive than local communication by one or more

orders of magnitude [14]. Therefore, we consider local communication cost as

negligible or zero.

4. Computing resources are not involved in communication, i.e., communication

subsystem is dedicated.

5. Inter-task communication is performed concurrently; there is no contention taken

into account for communication resources.

6. The communication network is fully connected. Every core can communicate

directly with every other core via a dedicated identical communication link.

Given the identical processing units and the fully connected network of identi-

cal communication links, the system is completely homogeneous. Note that earlier

research work has used such system model as well in order to analyze the perfor-

mance of scheduling algorithms such as [2,14,18,24,31]. We consider this model to

permit a fair comparison with state-of-the-art algorithms.

3.3 Definitions

In this section, we introduce some relevant definitions, which will be used throughout

this paper.

123



Locality-aware task scheduling for homogeneous parallel… 563

Task Graph Paths: Multiple paths of arbitrary length exist in an application’s task

graph G, starting from source node to sink node. The total length of a path in a graph

can be represented as cumulative weight of nodes and edges, starting from source

node to the sink node, as shown in Eq. 1.

pl(p) =
∑

n∈p,V

w(n) +
∑

eǫp,E

c(e) (1)

The computational length of a path in the graph, i.e., without including communi-

cation, is the cumulative weight of nodes only as shown in Eq. 2.

(plw(p)) =
∑

n∈p,V

w(n) (2)

Nodes that belong to a single path p possess an inherently sequential order due to

precedence among them, which prevents their concurrent execution. This precedence

helps in interpreting the total path length plw(p) to be the time a path takes for

sequential execution of all its nodes. Moreover, when the communication cost between

these nodes is also taken into account as inter-processor communication, the path

length can be referred as pl(p). Communication cost can no more be neglected when

each node of p is executed on a different processor than its predecessor.

Critical Path (cp): The longest path in task graph in terms of execution time, starting

from the source to the sink node, is referred as Critical Path (cp) as shown in Eq. 3.

(pl(cp)) = max
p∈G

{(pl(p))} (3)

Length of critical path, based on the computational cost only, serves as a yard-stick

or a lower bound on the minimum achievable execution time for the whole program,

i.e., any scheduler cannot achieve a schedule length shorter than critical path length

[2,5,14].

Node Levels: For any node nǫV , there exist paths in the graph for which node n serves

as the last node, whereas for some other paths it serves as the start node. All such paths

can have arbitrary lengths. A node level is defined as the length of the longest path

containing the concerned node. Two distinct levels can be defined for each node.

Top Level (tl(n)): It is the length of the longest path that ends at node n, while excluding

its own computation cost w(n). Top level can be expressed by Eq. 4. Here, ance(n)

refers to the set of ancestor nodes of n and source(G) represents the root node of the

graph. With no ancestor nodes, tl(n) = 0.

123



564 M. K. Bhatti et al.

tl(n) = max
ni ǫance(n)∩source(G)

{pl(p(ni → n))} − w(n) (4)

Bottom Level (bl(n)): It is the length of the longest path that starts at node n, while

including its own computation cost w(n). Bottom level can be expressed by Eq. 5.

Here, desc(n) refers to the set of descendent nodes of n whereas (sink(G) represents

the exit node of the graph. With no descendant nodes, bl(n) = w(n).

bl(n) = max
ni ǫdesc(n)∩sink(G)

{pl(p(n → ni ))} (5)

Schedule Length (SL): Let S be a schedule for task graph G = (V, E, w, c) on

system P . The schedule length (SL) of S is given by Eq. 6

SL(S) = max
nǫV

{t f (n)} − min
nǫV

{ts(n)} (6)

Here, ts(n) and t f (n) are the start and finish time for task node n, respectively.

All schedules considered in this paper start at time unit 0; thus, minnǫV {ts(n)} = 0

and expression in Eq. 7 suffices as the definition of the schedule length. Alternative

designations for schedule length that are commonly used in the literature are makespan

and execution time.

SL(S) = max
nǫV

{t f (n)} (7)

4 Locality-AwarE Task Scheduling (LeTS)

While mapping tasks to cores, a locality-aware scheduler should take into account

both locality and load balancing in order to reduce execution time. Two approaches

to construct such a scheduler are: (1) task grouping and (2) task ordering [3]. In the

former approach, executing a group of tasks on cores that share one or more levels

of cache captures data reuse across tasks. In the later approach, executing tasks in an

optimal order minimizes the reuse distance of shared data between tasks, which makes

it easier for caches to capture the temporal locality. Thus, constructing a locality-aware

scheduler depends on understanding how task groups should be formed, and when the

task ordering will matter.

The LeTS heuristic, being a work-conserving algorithm, combines these two

approaches in its two distinct phases: a working task group formation phase (WTG-FP)

and a working task group ordering phase (WTG-OP). Both phases take a DAG as input

with nodes (tasks) and edges with computation cost on nodes and communication cost

across nodes on edges, respectively. In WTG-FP, the former phase, multiple working

task groups (WTGs) are formed based on the parent-child relationship information

available through the input task graph. Once the WTGs are formed using appropriate

criterion to favour locality, in the later phase of WTG-OP, an inter-group ordering is

defined using criterion that optimises resource utilisation (load balance). Note that

WTG-OP follows the WTG-FP and intra-group ordering of tasks is not explicitly

defined. Intra-group task ordering is captured in WTG-FP. In the following, we elab-

orate both these phases of LeTS heuristic in detail.

123



Locality-aware task scheduling for homogeneous parallel… 565

4.1 Working task group formation phase (WTG-FP)

This phase of LeTS heuristic ensures that an arbitrary number of tasks should be

grouped together for execution such that the data reuse across those tasks is maximized,

hence the locality. In order to form such WTGs, we statically analyze the task graph

of target parallel application that is obtained using representative input data.

As stated in Sect. 3.3, intuitively, scheduling nodes from critical path first produces

an effective schedule. However, at runtime, critical path nodes may not be ready while

the resources are available to run them. A task with all its predecessor tasks completed

is referred as ready task [17]. Hence, precedence constraints play an important role is

creating a partial order of execution across tasks. In our static analysis of task graphs,

we use this inherently present partial ordering to form WTGs. In the following, we

explain how WTGs are formed.

The principle criterion to form WTGs within a task graph is: To identify tasks that

possess a partial order due to precedence and, as soon as they become ready, could be

executed in-line on the same core without getting blocked on data. That is, all data being

shared across tasks within a WTG must be available in the cache hierarchy for reuse,

thus reducing the communication cost to local or zero. Task graph is initially traversed

in order to identify tasks that can potentially form a WTG. All paths, including critical

paths, leading from start node to exit node are identified along with their lengths using

Eqs. 1 and 3. Moreover, during the same traversal, the parent-child relationship of

each node is learned in order to determine precedence. Nodes with single and multiple

(more than one) parent tasks (aka join nodes) are also identified. This information is

used by the WTG-FP in order to form working task groups.

Once all paths within a task graph are identified, each path is analyzed indepen-

dently. On each path, nodes between the start node and the first encountered join node

along the path forms a temporary WTG or t-WTG (excluding the join node itself). Such

t-WTGs are formed on each path in the same fashion. Note that these t-WTGs may

share start or fork node at this stage. All t-WTGs are compared for their respective

lengths (which includes computation and communication costs). The graph is then

pruned of the longest t-WTG that constitutes a final WTG. The process repeats itself

unless all nodes become part of a WTG. While nodes are being removed from the task

graph by becoming part of WTGs, some pseudo-edges are required to be added to the

graph so that the graph remains to be connected. For a node having turned into a free

node (not existing in any path from the start node to the exit node) after pruning, a

pseudo-edge to the start node is added if it has no predecessors left outside WTGs.

Note that a join node cannot become part of any WTG that has any of its parent tasks as

member. However, a join node can always become part of any WTG with its children

tasks, if any. This is due to the fact that join nodes share data across parent tasks that

belong to multiple paths, which leads to a situation where a WTG cannot complete its

execution on the same core without getting blocked on data. The idea behind LeTS

heuristic is to execute a WTG on the same core to reduce communication cost. For

a join node, however, its parent tasks might be executed apart from each other either

temporally (on the same core but at a different time) or spatially (on different cores),

which requires a join node to wait for the data ready. Hence, the WTG formation phase

is repeated between start node to join node in the first step and then between join node

123



566 M. K. Bhatti et al.

Fig. 1 Illustrative task graph to

demonstrate working task group

formation phase (WTG-FP) of

LeTS heuristic

to join node until the whole graph is traversed and all nodes belong to any WTG. A

WTG may contain any arbitrary number of nodes with a minimum of one member.

The task group formation criterion used by LeTS heuristic favours the execution

of those tasks on the same core that (1) already have a partial order due to prece-

dence and, in addition, (2) they either have longest communication cost across them

or largest computation time requirements. In either case, grouping such tasks together

improves data access locality in the cache hierarchy due to the fact that most recent

data produced by the formerly executed tasks is readily available for the later tasks

scheduled to execute on the same core in the order of precedence. Consider the graph

shown in Fig. 1 with WTG-FP applied. In the first step, following paths are identified:

p1 = {A, B, D, H, J, L}, p2 = {A, B, D, H, K , L}

p3 = {A, B, E, H, J, L}, p4 = {A, B, E, H, K , L}

p5 = {A, C, F, I, L}, p6 = {A, C, G, I, L}.

Lengths of paths are computed using Eq. 1: pl(p1) = 120, pl(p2) = 116, pl(p3) =

109, pl(p4) = 104, pl(p5) = 95, and pl(p6) = 94, respectively. In Fig. 1, nodes H,

I, and L could be easily identified as join nodes in the graph. While analysing each

path individually, following t-WTGs could be formed as shown in Fig. 2 (regions with

broken lines): t − W T G1 = {A, B, D} from p1 and p2 (Fig. 2-1), t − W T G2 =

{A, B, E} from p3 and p4 (Fig. 2-2), t − W T G3 = {A, C, F} from p5 (Fig. 2-3), and

t − W T G4 = {A, C, G} from p6 (Fig. 2-4). Note that the t-WTGs do not include any

123



Locality-aware task scheduling for homogeneous parallel… 567

join node as a member. Starting from the start node, the WTG-FP completes its first

iteration with all t-WTGs formed on each path up to the first join node encountered. At

this stage, the length of t-WTGs is compared among themselves in order to form final

WTGs. The longest t-WTGs as well as mutually exclusive t-WTGs form the final WTGs.

Any two WTGs are said to be mutually exclusive if they do not have any member node

in common. At this stage, however, t-WTGs may contain common nodes, such as node

A is shared between all t −W T Gs, node B is shared among t −W T G1 and t −W T G2

only, and node C is shared between t−W T G3 and t−W T G4 only. Mutually exclusive

t-WTGs, if any, can form final WTGs in the same iteration.

Since the longest t-WTG is the t − W T G1 (with a length of 58), therefore, it forms

the final WTG and all its nodes are pruned of the graph and replaced by a pseudo-edge

as shown in Fig. 3 (edges with broken lines). As there are no more mutually exclusive

t-WTGs, the WTG-FP performs next iteration to identify remaining t-WTGs. In the

second iteration, t − W T G5 = {E}, t − W T G6 = {C, F}, and t − W T G7 = {C, G}

are formed. Since t − W T G5 is mutually exclusive with t − W T G6 and t − W T G7,

it can directly form a final t-WTGs. Between t − W T G6 and t − W T G7, t − W T G7

happens to be the longest one, hence it forms another final WTG and both t − W T G5

and t − W T G7 are pruned of the graph as shown in Fig. 3-2. WTG-FP in its next

iteration prunes of t − W T G8 = {F}, which is a mutually exclusive t-WTG. As

shown in Fig. 2-5, 2-6, starting from the join node H, two mutually inclusive t-WTGs

are formed namely; t − W T G9 = {H, J } and t − W T G10 = {H, K }. Out of these

two, t −W T G9 forms the final WTG as compared to t −W T G10 as shown in Fig. 3-4.

Note that the join node H forms a t-WTG with one of its children nodes. In its final

iteration, WTG-FP forms two more final WTGs with node K and I as single members,

respectively, and prunes them of the graph as shown in Fig. 3-5. Sink node L forms

the final WTG directly.

Please note that the WTG-FP is independent from the available computing resources

(cores and their associated caches) and it entirely depends on the graph structure and

precedence among the graph nodes. It is pertinent to highlight here that the scope of

LeTS heuristic is limited to static tasking scheduling, therefore, the graph structure is

considered as known.

4.1.1 Algorithms used by LeTS heuristic

Figure 4 shows pseudocode of algorithm that is being used in identification of paths

in given task graph. The algorithm implements a function named, AddT oPathList

(v, p, P) for each node v that belongs to task graph G. In lines 6–14, the algorithm

initialises a path starting with its first node and subsequently, each of its children

nodes is analyzed. If a node is the last child of parent node v, then it becomes part of

the created path p, otherwise, each such node creates a new path. Once all paths are

created, LeTS heuristic can use these paths in WTG-FP and WTG-OP phases (Fig. 5).

The pseudocode for second algorithm is shown in Fig. 6, which creates working

task groups by traversing the task graph. The algorithm takes input the set of paths

created using algorithm shown in Fig. 4. After creating empty sets for temporary and

final WTGs and initialising variables, the algorithm analyzes each path individually

(lines 6–18). For each node belonging to each path, the algorithm verifies the number

123



568 M. K. Bhatti et al.

Fig. 2 Illustrative task graph to

demonstrate Working Task

Group Formation Phase

(WTG-FP) of LeTS

123



Locality-aware task scheduling for homogeneous parallel… 569

Fig. 3 Working Task Group (WTG) formation and graph pruning by LeTS

of its parent tasks. In case it has multiple parent tasks, a temporary working task group

(t-WTG) is created and next path is selected for exploration. Otherwise, the algorithm

continues to explore further nodes on the same path (lines 7–16). Once all paths are

traversed, the algorithm sorts all t-WTGs present in t-WTG-S in descending order of

their size and identifies mutually exclusive t-WTGs. All mutually exclusive t-WTGs

form the final WTGs and the algorithm replaces them with pseudo-edges in the graph

(lines 19–23). The process continues until all nodes in the graph become part of any

WTG (lines 24–28).

123



570 M. K. Bhatti et al.

Fig. 4 Pseudocode of algorithm

identifying paths in the task

graph

Fig. 5 Pseudocode of execution

time calculation algorithm used

in LeTS

The working task group formation phase is based on traversing task graph using a

sliding window with arbitrary window size. Since the size of window is caped between

any two consecutive join nodes (or source node and first encountered join node for

the start of graph), therefore, the window is very small and the iterations performed

by WTG-FP are very fast too. Figure 7 shows the pseudocode representation of the

algorithm used for scheduling WTGs obtained from WTG-FP. In order to amortize

the communication cost within a WTG, it is essential to execute a given WTG on a

single core. The present algorithm (lines 5–14) ensures that nodes within a WTG are

sequentially executed on the same core without getting blocked on data. It traverses

the set of ready nodes for each executed node to determine the next ready node in

the WTG that is currently being executed. If a ready and executed node belong to

the same WTG, then the core previously allocated to the executed node is assigned

to that particular ready node. The algorithm further reduces the communication cost

between a child node, that is also the first node of a ready WTG, and one of its parent

nodes by assigning them the same core on the condition that the core is free (lines 15–

33). Lastly, processors are assigned to remaining ready nodes. Pseudocode in Fig. 7

suggests that the complexity of LeTS heuristic is O(N 3).

123



Locality-aware task scheduling for homogeneous parallel… 571

Fig. 6 Pseudocode of algorithm

used to form WTGs in WTG-FP

c(n) = CCR · w(n) (8)

Figure 5 shows the pseudocode representation of the algorithm used to calculate

time required by a node for its completion. LeTS is communication aware heuristic

and works on the fact that communication cost between two nodes is minimal if both

of them are executed on the same core. The algorithm adds communication cost to

the execution time of the process only if both parent and child nodes get executed

on different cores. If the communication cost is not incorporated in the input graph,

it is systematically produced through Eq. 8. Here, CCR refers to Communication to

Computation Ratio and is the sum of all edge weights (communication costs) divided

by the sum of all node weights (computation costs) [5]. This is further elaborated in

the experimental section where we study the impact of CCR, when it is varied from

low to medium values, on scheduling length.

123



572 M. K. Bhatti et al.

Fig. 7 Pseudocode of algorithm

used for LeTS schedular

4.2 Working task group ordering phase (WTG-OP)

The order in which nodes of task graph are considered for scheduling has a significant

influence on the resulting schedule length. Gauging the importance of nodes with a

priority scheme is therefore a fundamental part of scheduling schemes. Many existing

scheduling techniques [5,8,18,32,33] evaluate the importance of nodes in different

ways. The earlier a node is considered for scheduling, the earlier it can acquire a

computing resource for its execution. The challenge, however, is to find priorities that

well reflect the importance of the node. The provision of relative importance to nodes

(rather than absolute importance w.r.t. each other) results in smaller schedule length

(SL) of the application.

The LeTS heuristic uses the concept of node levels introduced in Sect. 3.3 and

used in [6,14,30] to gauge the importance of nodes in an offline analysis. Although

the bottom level bl(n), as defined, is a node-specific parameter and gives its relative

distance from the sink node (or exit node), it is used for an inter-WTG ordering in

a post WTG formation phase. Note that WTG-FP forms WTGs on individual paths

by selecting nodes that can execute sequentially on the same core without getting

123



Locality-aware task scheduling for homogeneous parallel… 573

blocked on data. Therefore, intra-WTG node ordering is already captured in WTG-FP

phase. Hence, it is the inter-WTG ordering that matters in order to optimise resource

utilisation or load balance across cores and further reduce schedule length.

The LeTS heuristic allocates one WTG to one core at a time with no pre-emption

and migration allowed, i.e., a WTG runs to its completion on the same core. As soon

as the first node within a WTG gets ready, the whole WTG can be considered as

ready and non-blocking (on data). Thus, the WTG-OP compares the bottom levels of

the first nodes of all ready WTGs and prioritises the allocation of WTG(s) having

larger bottom levels. A larger value for bottom level indicates the WTG belongs to

a longer path (i.e., remaining critical path) in the graph. Such an inter-WTG priority

mechanism ensures that WTGs are always selected from remaining critical paths in

the graph and all paths advance in execution in a proportionate manner. Ties in WTG

ordering are broken in favour of larger WTGs in size.

5 Experimental evaluation

In this section, we provide simulation results of LeTS heuristic and analyze its perfor-

mance against the variation in application parameters. The simulations were performed

on workstation with an Intel Xeon E5-2643 processor, operating at a fixed clock of

3.40 GHz, and 256 GB of RAM. The operating system used was Ubuntu 16.04 LTS

with kernel Linux 4.2.0-42-generic. We have performed experiments and analysis of

results using two types of target applications. We have demonstrated performance

of LeTS heuristic using randomly generated benchmark task graphs from Standard

Task Graph Set (STG) [13] that allow parameter variations as well as with selected

real-world application task graphs.

STG is extensively used by [2,34,35] in their evaluations for scheduling algorithms.

It provides randomly generated task graphs with variable application sizes and crit-

ical path lengths, allowing to experiment with diverse application behaviours. STGs

also provide, along with their graphs, a pre-computed optimal computational sched-

ule length (i.e., without incorporating communication costs) using exhaustive search

method. We perform experiments for LeTS heuristic using application graphs that

consist of 50-, 100-, and 300-tasks per graph. To validate our results, we have used

315 task graphs in total: 150 task graphs from 50-tasks per graph category, 150 task

graphs from 100-tasks per graph category, and 15 task graphs from 300-tasks per

graph category. Please note that in Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and

19, we have shown results of only 40 randomly selected task graph instances out of

150 instances being tested in each case. This is for the sole purpose of improving

readability of results. Experiments have been performed for all 315 task graphs.

Table 1 shows characteristics of STG graphs. For instance, in the category of 50

tasks per graph, the number of edges are minimum 46, maximum 953, and on average

262.02 per graph. The results are being evaluated on homogeneous multicore systems

with hierarchical caches and connected by a contention-free communication network.

We have considered 2-, 4-, 8-, and 16-cores execution scenarios for the execution of

variable size application DAGs. Moreover, in each of these execution scenarios, we

induce systematic variation in CCR in each task graph from 0.1 (i.e., communica-

123



574 M. K. Bhatti et al.

Fig. 8 Comparison of schedule

length between LeTS and

existing heuristics:

50-tasks/graph, 2-cores. a 50

Task/graph with 0.1 CCR, b 50

task/graph with 0.3 CCR, c 50

task/graph with 0.5 CCR, d 50

task/graph with 0.7 CCR, e 50

task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 575

Fig. 9 Comparison of schedule

length between LeTS and

existing heuristics:

50-tasks/graph, 4-cores. a 50

Task/graph with 0.2 CCR, b 50

task/graph with 0.4 CCR, c 50

task/graph with 0.6 CCR, d 50

task/graph with 0.8 CCR, e 50

task/graph with 1.0 CCR

123



576 M. K. Bhatti et al.

Fig. 10 Comparison of

schedule length between LeTS

and existing heuristics:

50-tasks/graph, 8-cores. a 50

Task/graph with 0.1 CCR, b 50

task/graph with 0.3 CCR, c 50

task/graph with 0.5 CCR, d 50

task/graph with 0.7 CCR, e 50

task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 577

Fig. 11 Comparison of

schedule length between LeTS

and existing heuristics:

50-tasks/graph, 16-cores. a 50

Task/graph with 0.2 CCR, b 50

task/graph with 0.4 CCR, c 50

task/graph with 0.6 CCR, d 50

task/graph with 0.8 CCR, e 50

task/graph with 1.0 CCR

123



578 M. K. Bhatti et al.

Fig. 12 Comparison of

schedule length between LeTS

and existing heuristics:

100-tasks/graph, 2-cores. a 100

Task/graph with 0.1 CCR, b 100

task/graph with 0.3 CCR, c 100

task/graph with 0.5 CCR, d 100

task/graph with 0.7 CCR, e 100

task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 579

Fig. 13 Comparison of

schedule length between LeTS

and existing heuristics:

100-tasks/graph, 4-cores. a 100

Task/graph with 0.2 CCR, b 100

task/graph with 0.4 CCR, c 100

task/graph with 0.6 CCR, d 100

task/graph with 0.8 CCR, e 100

task/graph with 1.0 CCR

123



580 M. K. Bhatti et al.

Fig. 14 Comparison of

schedule length between LeTS

and existing heuristics:

100-tasks/graph, 8-cores. a 100

Task/graph with 0.1 CCR, b 100

task/graph with 0.3 CCR, c 100

task/graph with 0.5 CCR, d 100

task/graph with 0.7 CCR, e 100

task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 581

Fig. 15 Comparison of

schedule length between LeTS

and existing heuristics:

100-Tasks/graph, 16-cores. a

100 Task/graph with 0.2 CCR, b

100 task/graph with 0.4 CCR, c

100 task/graph with 0.6 CCR, d

100 task/graph with 0.8 CCR, e

100 task/graph with 1.0 CCR

123



582 M. K. Bhatti et al.

Fig. 16 Comparison of

schedule length between LeTS

and existing heuristics:

300-tasks/graph, 2-cores. a 300

Task/graph with 0.1 CCR, b 300

task/graph with 0.3 CCR, c 300

task/graph with 0.5 CCR, d 300

task/graph with 0.7 CCR, e 300

task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 583

Fig. 17 Comparison of

schedule length between LeTS

and existing heuristics:

300-tasks/graph, 4-cores. a 300

task/graph with 0.2 CCR, b 300

task/graph with 0.4 CCR, c 300

task/graph with 0.6 CCR, d 300

task/graph with 0.8 CCR, e 300

task/graph with 1.0 CCR

123



584 M. K. Bhatti et al.

Fig. 18 Comparison of

schedule length between LeTS

and existing heuristics:

300-tasks/graph, 8-cores. a 300

Task/graph with 0.1 CCR, b 300

task/graph with 0.3 CCR, c 300

task/graph with 0.5 CCR, d 300

task/graph with 0.7 CCR, e 300

task/graph with 0.9 CCR

123



Locality-aware task scheduling for homogeneous parallel… 585

Fig. 19 Comparison of

schedule length between LeTS

and existing heuristics:

300-tasks/graph, 16-cores. a 300

Task/graph with 0.2 CCR, b 300

task/graph with 0.4 CCR, c 300

task/graph with 0.6 CCR, d 300

task/graph with 0.8 CCR, e 300

task/graph with 1.0 CCR

123



586 M. K. Bhatti et al.

Table 1 Standard task graphs (STG) parameters

50-tasks per graph 100-tasks per graph 300-tasks per graph

Number of edges 46/262.02/953 93/629.81/1677 309/1835.69/2958

Maximum predecessors 3/14.23/42 4/18.05/40 6/19.06/32

Maximum proc. time 7/22.27/70 7/24.09/83 8/27.81/76

Degree of parallelism 1.66/5.62/11.92 2.85/7.06/19.55 7.16/13.55/27.27

tion cost being 10% of computation cost of parent task) to 1.0 (i.e., communication

cost being 100% of computation cost of parent task). Since STGs do not incorporate

communication cost on edges in their graphs, we have calculated the values of commu-

nication cost using the method described in Sect. 4 (Eq. 8). Using Eq. 8, we calculate

communication cost with the hypothesis that if a task is computing more then it has the

tendency to produce more data that is shared with child/children task(s). Communica-

tion cost, however, can also be calculated as random. The variation in CCR allows to

observe the impact of communication cost relative to computation cost while running

the same task graph over different number of cores. We have explained the effect of

each of these variations (i. e., number of cores, CCR, size of application task graphs

etc) on Schedule Length (SL) and have subsequently compared the SL obtained under

LeTS with all other heuristics described below.

We have performed experiments using three real-world applications to evaluate

performance consistency of LeTS heuristic. First application is Sparse Matrix Solver

with n tasks and m edges. Sparse matrices often appear in scientific or engineering

applications when solving partial differential equations. Second application is a Robot

Control application with n tasks and m edges, and our third application is SPEC95

subroutine fpppp with n tasks and m edges.

In order to quantify improvements offered by LeTS, we have performed comparative

analysis of results using the following heuristics [5,14,36]:

• Greedy (Random): There is no prioritization rule for Random Greedy and nodes

are executed as they get ready irrespective of any specific order.

• Noodle: Priority for nodes decreases exponentially at each depth level in a graph

on those paths for which ready nodes are being executed. That is, nodes on those

paths that have remaining length greater than other paths have higher priorities. In

case of ties, preference is given to nodes with larger task weights.

• BL-comm: Nodes that have the highest bottom level are prioritised over all other

ready nodes. Both communication and computation costs are considered while

calculating bottom level of a node.

• BL-comp: Nodes are prioritised on the basis of their decreasing computation

bottom-levels. Here, only computation is taken into account while calculating

bottom level of a node.

• CP-BL-TL: Under this heuristic, priority is given to the nodes belonging to critical

path compared to all other ready nodes. All remaining ready nodes are ordered

based on their bottom-level. In case of tie, it is broken in favor of node with the

smallest top-level.

123



Locality-aware task scheduling for homogeneous parallel… 587

Table 2 Difference between SL of LeTS and other heuristics (2-cores)

CCR Number of cores=2

50-tasks/graph 100-tasks/graph 300-tasks/graph

min./max./avg. min./max./avg. min./max./avg.

0.1 19/388/89.6 33/613/217.8 128/1146/572

0.3 40/867/202 82/1463/493 258/2701/1246

0.5 50/1334/308.3 111/2429/747 367/4102/1794.5

0.7 75/2144/443.6 155/3601/1071.3 560/5968/2624.6

0.9 108/2571/572 197/4408/1364.7 670/7667/3362.6

Table 3 Difference between SL of LeTS and other heuristics (4-cores)

CCR Number of cores=4

50-tasks/graph 100-tasks/graph 300-tasks/graph

min./max./avg. min./max./avg. min./max./avg.

0.2 2/314/1.5 6/261/88.8 36/511/234.7

0.4 4/546/80.1 22/557/163.8 72/894/415.1

0.6 4/629/114.3 36/789/235 114/1265/599.8

0.8 4/818/152.1 12/1009/313.1 118/1839/786

1.0 3/978/181.7 29/1206/365.7 172/2104/931

• CP-TL: Similar to CP-BL-TL, priority is given to the nodes belonging to critical

path compared to all other ready nodes, while all other ready nodes are ordered by

their top-level.

• LeTS: Each node is assigned to a working task group and the groups are ordered

by the methods described in Sect. 4.2. In case of tie, it is broken in favor of WTGs

that are larger in size.

In the Sect. 5.1, we provide our observations and comparative analysis based on

the impact of variation in CCR, size of application task graphs, and number of cores.

Note that we do not claim LeTS being the optimal algorithm. The results obtained

demonstrate relative gains in terms of SL. Moreover, STG [13] does not provide opti-

mal schedule lengths with communication cost being applied, therefore, the optimal

SL is unknown for the obtained results.

5.1 Comparative analysis

In this section, we have provided in details the impact of variations in applica-

tion parameters such as CCR ration, application size, and the number of computing

resources.

123



588 M. K. Bhatti et al.

Table 4 Difference between SL of LeTS and other heuristics (8-cores)

CCR Number of Cores = 8

50-tasks/graph 100-tasks/graph 300-tasks/graph

min./max./avg. min./max./avg. min./max./avg.

0.1 1/186/19.3 1/93/26.5 6/59/31.5

0.3 2/440/43.4 1/250/63.8 5/168/79.3

0.5 1/651/64.4 1/464/101.1 15/235/112.8

0.7 1/727/92 1/525/141.3 23/397/175.9

0.9 9/914/116.6 1/621/180.2 32/578/225.07

Table 5 Difference between SL of LeTS and other heuristics (16-cores)

CCR Number of cores=16

TGs with 50 tasks TGs with 100 tasks TGs with 300 tasks

min./max./avg. min./max./avg. min./max./avg.

0.2 2/314/27.7 1/161/43.3 3/92/52.3

0.4 5/546/51.2 1/318/81.1 3/189/99.2

0.6 4/629/73.3 1/448/115.1 6/323/143.8

0.8 2/818/97.1 11/658/155.9 14/396/177.9

1.0 6/978/114.47 3/906/183.3 15/474/213.36

5.1.1 Impact of variation in CCR

Since LeTS heuristic aims at amortizing mainly the communication cost, therefore,

the impact of variations in CCR values is the most important observation in our results.

We have varied CCR from 0.1 to 1.0 (i.e., 10–100% of computation cost of parent

task) with a step size of 0.1 and studied its impact on the final schedule length for

each algorithm. We have obtained results for CCR variation in 2-, 4-, 8-, and 16-cores

execution scenarios with applications of 50-, 100-, and 300-tasks per graph. In favour

of space, we have shown results with CCR values either 0.1, 0.3, 0.5, 0.7 and 0.9 in

some cases or 0.2, 0.4, 0.6, 0.8 and 1.0 in other cases. Our observations on experiments

performed for all other CCR values remain valid.

The collective results obtained for 2-core execution scenario for 50-, 100-, and 300-

tasks per graph are shown in Figs. 8, 12, and 16, respectively. These graphs clearly

show that LeTS outperforms other algorithms specifically when CCR is increased.

We observe in Figs. 8, 12, and 16 that, for the same number of cores, increasing the

number of tasks per graph did not effect the difference in obtained SL under LeTS and

other heuristics despite increased CCR. That is, the pattern in obtained SL remains the

same as long as the number of cores remain the same. The absolute value of SL is just

increased by almost the same proportion as CCR increases. This is due to the fact that

scheduler finds the same choices in terms of number of cores to run the application

task graph. The difference in obtained SL under LeTS and other heuristics is more

123



Locality-aware task scheduling for homogeneous parallel… 589

significant for smaller number of cores, thus more amortization of communication

cost is obtained in this case. This observation correlates with our other observations

in Sect. 5.1.3, where we have discussed the effect of running larger applications with

larger number of cores.

Table 2 shows the minimum, the maximum, and the average difference in SL

obtained under LeTS and other algorithms for 2 core execution scenario. The entries

in table clearly show that the difference between obtained SL also becomes signifi-

cantly large with increasing values of CCR. For instance, in case of 50 tasks per graph,

the average difference in SL for CCR=0.1 is 89.6 units, whereas for CCR=0.9, this

difference increases to 572 units. Similar kind of results have also been depicted in

case of applications with 100 and 300 tasks per graph as shown in Table 2 for 2-cores

execution scenario. The CCR has been varied is the same fashion for 4, 8, and 16 cores

scenarios as well and results are presented through Figs. 9, 10, 11, 13, 14, 15, 17, 18,

and 19. Precise difference is SL is quantified in Tables 3, 4, and 5. Our observations

on these results are similar in case of 2 cores scenario.

An important observation for the reader here is that, as the number of cores increases

for the same application size (i. e., task graph size) and the same pattern of variation in

CCR values, the difference in SL obtained under LeTS and other algorithms reduces.

For instance, when the same application graphs with 50 tasks per graph are run on

2-, 4-, 8-, and 16-cores, the obtained difference in average SL significantly reduces as

shown in Figs. 8, 9, 10, and 11 as well as in Tables 2, 3, 4, and 5. Similar observation

can be made in cases where the application task graphs have 100 and 300 tasks per

graph. LeTS, however, still outperforms other algorithms in these cases. Reasons for

this reduction in difference of SL with increasing number of cores have been discussed

in Sect. 5.1.2.

5.1.2 Impact of number of cores

Variation in the number of cores is another significant parameter that we have analyzed.

For application task graphs ranging from 50 to 300 tasks per graph, we have run them

on 2-, 4-, 8-, and 16-cores to observe if LeTS can still reduce the communication

cost between tasks. With larger number of cores to execute a given task graph, the

choice for the scheduler to run tasks on different cores naturally increases. With this

increased choice, a work-conserving scheduler would run tasks as soon as cores get

free and therefore, the impact of unavoidable communication cost between tasks will

also increase.

Figures 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19 show that when the number

of cores increase, there are two variations in obtained SL that can be observed: (1)

The overall SL decreases as there are more cores to execute any given application task

graph with same CCR value. (2) The difference in SL produced by the LeTS and other

heuristics decreases for any given application task graph with the same CCR. This is

due to the fact that, with increased number of cores, LeTS heuristic faces the similar

difficulty of maintaining its work-conserving nature while minimizing communication

cost. As a result, tasks are executed on different cores and thus the communication

cost between tasks cannot be amortized. Tables 2, 3, 4, and 5 show the minimum,

maximum, and average quantified difference in SL obtained under LeTS and other

123



590 M. K. Bhatti et al.

Fig. 20 Comparison of

schedule length between LeTS

and existing heuristics: sparse

matrix solver application with

CCR variation from 0.1 to 0.9 on

2, 4, 8, and 16 cores. a Sparse

matrix solver application with

CCR=0.2, b sparse matrix

solver application with

CCR=0.4, c sparse matrix

solver application with

CCR=0.6, d sparse matrix

solver application with

CCR=0.8, e sparse matrix

solver application with

CCR=1.0

16842

Number of Cores

0

200

400

600

800

1000

1200

1400

S
c

h
e

d
u

li
n

g
 L

e
n

g
th

 (
E

x
e

c
u

ti
o

n
 T

im
e

)

Sparse Matrix Solver- CCR = 0.2
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

200

400

600

800

1000

1200

1400

1600

S
c

h
e

d
u

li
n

g
 L

e
n

g
th

 (
E

x
e

c
u

ti
o

n
 T

im
e

)

Sparse Matrix Solver- CCR = 0.4
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

200

400

600

800

1000

1200

1400

1600

1800

S
c

h
e

d
u

li
n

g
 L

e
n

g
th

 (
E

x
e

c
u

ti
o

n
 T

im
e

)

Sparse Matrix Solver- CCR = 0.6
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

S
c

h
e

d
u

li
n

g
 L

e
n

g
th

 (
E

x
e

c
u

ti
o

n
 T

im
e

)

Sparse Matrix Solver- CCR = 0.8
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

S
c

h
e

d
u

li
n

g
 L

e
n

g
th

 (
E

x
e

c
u

ti
o

n
 T

im
e

)

Sparse Matrix Solver- CCR = 1.0
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

(a)

(b)

(c)

(d)

(e)

123



Locality-aware task scheduling for homogeneous parallel… 591

Fig. 21 Comparison of

schedule length between LeTS

and existing heuristics: robot

control application with CCR

variation from 0.1 to 0.9 on 2, 4,

8, and 16 cores. a Robot control

application with CCR=0.1, b

robot control application with

CCR=0.3, (c) robot control

application with CCR=0.5, (d)

robot control application with

CCR=0.7, (e) robot control

application with CCR=0.9

16842

Number of Cores

0

200

400

600

800

1000

1200

1400

1600

1800

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
E

x
e
c
u

ti
o

n
 T

im
e
)

Robot Control- CCR = 0.1
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
E

x
e
c
u

ti
o

n
 T

im
e
)

Robot Control- CCR = 0.3
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
E

x
e
c
u

ti
o

n
 T

im
e
)

Robot Control- CCR = 0.5
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

3000

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
E

x
e
c
u

ti
o

n
 T

im
e
)

Robot Control- CCR = 0.7
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

500

1000

1500

2000

2500

3000

3500

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
E

x
e
c
u

ti
o

n
 T

im
e
)

Robot Control- CCR = 0.9
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

(a)

(b)

(c)

(d)

(e)

123



592 M. K. Bhatti et al.

Fig. 22 Comparison of

schedule length between LeTS

and existing heuristics:

SPEC955 Subroutine fpppp

application with CCR variation

from 0.1 to 0.9 on 2, 4, 8, and 16

cores. a SPEC95 subroutine

application with CCR=0.1, b

SPEC95 subroutine application

with CCR=0.3, c SPEC95

subroutine application with

CCR=0.5, d SPEC95

subroutine application with

CCR=0.7, e SPEC95

subroutine application with

CCR=0.9

16842

Number of Cores

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
E

x
e
c
u

ti
o

n
 T

im
e
)

Subroutine FPPPP (SPEC95)- CCR = 0.1
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

0.5

1

1.5

2

2.5

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
E

x
e
c
u

ti
o

n
 T

im
e
)

Subroutine FPPPP (SPEC95)- CCR = 0.3
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

0.5

1

1.5

2

2.5

3

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
E

x
e
c
u

ti
o

n
 T

im
e
)

Subroutine FPPPP (SPEC95)- CCR = 0.5
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
E

x
e
c
u

ti
o

n
 T

im
e
)

Subroutine FPPPP (SPEC95)- CCR = 0.7
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

16842

Number of Cores

0

1

2

3

4

5

6

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
E

x
e
c
u

ti
o

n
 T

im
e
)

10
4

10
4

10
4

10
4

Subroutine FPPPP (SPEC95)- CCR = 0.9
Greedy (Random)
Noodle
BL-comm-random tb
BL-comp-random tb
CP-BL-TL
CP-TL
LeTS

(a)

(b)

(c)

(d)

(e)

123



Locality-aware task scheduling for homogeneous parallel… 593

heuristics when the number of cores vary. We observe that for all three cases of

different application sizes (50-, 100-, and 300-tasks per graph), when there are larger

number of cores available, the difference between SL obtained under LeTS and other

heuristics always reduces. Despite a decrease in the margin, LeTS still outperforms

other heuristics.

5.1.3 Impact of application size

Another important aspect that we have analyzed is the impact of variation in application

size, i.e., the task graph size. As stated above, we have analyzed a total of 315 task

graphs out of which, we have analyzed 150 graphs with size of 50-tasks/graphs, 150

graphs with 100-tasks/graph, and 15 graphs with 300-tasks/graph.

We have observed that when larger applications (for instance, applications with

100- and 300-tasks/graph) are run on larger number of cores (for instance, 8- and 16-

cores), the resultant SL produced by almost all algorithms is pretty much comparable

as shown in Figs. 10, 11, 14, 15, 18, and 19. This is due to the fact that applications

with larger number of tasks per graph offer sufficiently large degree of parallelism to

execute tasks from multiple paths within a graph onto the available cores and therefore,

makes it difficult to amortize communication cost between tasks. For smaller number

of cores, however, this is not the situation as the degree of parallelism in application

task graph is often larger than the cores available to run.

Primarily, we have performed experiments with randomly generated task graphs

from STG [13] with self-introduced variation is parameters. However, in order to

validate the performance consistency of LeTS heuristic, we have also performed exper-

iments with 03 real world applications. We have analyzed the impact of variation in

CCR and number of cores on these fixed sized applications. Figure 20, 21, and 22 show

our results for Sparse Matrix Solver, Robot Control, and SPEC95 fpppp applications,

respectively. The results obtained and discussed in Sect. 5.1.1, 5.1.2, and 5.1.3 were

found consistent with the real applications. As Figs. 20, 21, and 22 show, LeTS heuris-

tic performs better than other heuristics on real applications as well. As discussed in

Sect. 5.1.2, the most significant difference in SL of real applications is also observed

with smaller number of cores as larger number of cores to execute a given task graph

increases the choice for scheduler to run tasks on different cores, thus amortizing

communication cost becomes difficult, irrespective of CCR values. Variation in CCR

affects magnitude of SL mainly in this case. These observations are valid for all three

applications.

6 Conclusions and future work

The LeTS heuristic focuses on amortizing the communication cost between tasks by

exploiting inter-task data locality and minimizes the overall schedule length (SL) of

the target application. It takes into account both locality and load balancing in order to

reduce the execution time of target applications in multi-level cache hierarchy. Exten-

sive experimental evaluation, conducted using task graphs taken from Standard Task

Graph (STG) shows that LeTS outperforms best known state-of-the-art algorithms

123



594 M. K. Bhatti et al.

in amortizing the inter-task communication cost. We have performed experiments by

varying three major performance parameters, namely: (1) CCR between 0.1 and 1.0,

(2) Application size, i.e., task graphs that consist of 50-, 100-, and 300-tasks/graph, and

(3) Number of cores with 2-, 4-, 8-, and 16-cores execution scenarios. Results show

that conscious decision-making by the scheduler regarding data reuse across tasks and

optimal task ordering to minimize reuse distance of shared data between tasks can

play an important role in minimising inter-task communication cost. Our results show

in depth how variations in the application size and number of cores available to run

these applications impact the overall execution time. The LeTS heuristic achieves load

balancing through its work-conserving nature and the WTG-OP phase of its working

principle. The working principal of LeTS requires the application task graph to be

known a priori. The future extensions of LeTS heuristic will work for heterogeneous

computing systems and partially-known task graphs.

References

1. Wolf W, Jerraya AA, Martin G (2008) Multiprocessor system-on-chip (MPSoC) technology. IEEE

Trans CAD ICs Syst 27(10):1701–1713

2. Bhatti MK, Oz I, Popov K, Brorsson M, Farooq U (2016) Scheduling of parallel tasks with proportionate

priorities. Arab J Sci Eng 41(8):3279–3295. https://doi.org/10.1007/s13369-016-2180-9

3. Yoo RM, Hughes CJ, Kim C, Chen Y-K, Kozyrakis C (2013) Locality-aware task management for

unstructured parallelism: a quantitative limit study. In: Proceedings of the twenty-fifth annual ACM

symposium on parallelism in algorithms and architectures, ser. SPAA ’13. ACM, New York, NY, pp

315–325. https://doi.org/10.1145/2486159.2486175

4. Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to parallel computing, 2nd edn. Pearson

A. Wesley, Reading

5. Sinnen O, Sousa L (2004) List scheduling: extension for contention awareness and evaluation of node

priorities for heterogeneous cluster architectures. Parallel Comput 30(1):81–101

6. Sinnen O (2014) Reducing the solution space of optimal task scheduling. Comput OR 43:201–214

7. Bhatti MK, Belleudy C, Auguin M (2011) Hybrid power management in real time embedded systems:

an interplay of DVFs and DPM techniques. Real-Time Syst 47(2):143–162

8. Shahul AS, Sinnen O (2010) Scheduling task graphs optimally with a*. J Supercomput 51(3):310–332

9. Sinnen O, Sousa LA (2005) Communication contention in task scheduling. IEEE Trans Parallel Distrib

Syst 16(6):503–515

10. Dally W (2009) The future of GPU computing. In: The 22nd annual supercomputing conference

11. Hill M, Kozyrakis C (2012) Advancing computer systems without technology progress. In:

DARPA/ISAT workshop

12. Consortium CC (2012) 21st century computer architecture. A community white paper

13. Set STG http://www.kasahara.elec.waseda.ac.jp/schedule

14. Sinnen O (2007) Task scheduling for parallel systems. Wiley, New York. ISBN 978-0-471-73576-2

15. Yang T, Gerasoulis A (1994) Dsc: scheduling parallel tasks on an unbounded number of processors.

IEEE Trans Parallel Distrib Syst 5(9):951–967

16. Kasahara H, Narita S (1984) Practical multiprocessor scheduling algorithms for efficient parallel pro-

cessing. IEEE Trans Comput C–33(11):1023–1029

17. Khan MA (2012) Scheduling for heterogeneous systems using constrained critical paths. Parallel

Comput 38:175–193

18. Topcuouglu H, Hariri S, you Wu M (2002) Performance-effective and low-complexity task scheduling

for heterogeneous computing. IEEE Trans Parallel Distrib Syst 13(3):260–274

19. Kwok Y-K, Ahmad I (2000) Link contention-constrained scheduling and mapping of tasks and mes-

sages to a network of heterogeneous processors. Cluster Comput 3(2):113–124

20. Ahmad I, Kwok Y-K (1998) On exploiting task duplication in parallel program scheduling. IEEE Trans

Parallel Distrib Syst 9(9):872–892

123

https://doi.org/10.1007/s13369-016-2180-9
https://doi.org/10.1145/2486159.2486175
http://www.kasahara.elec.waseda.ac.jp/schedule


Locality-aware task scheduling for homogeneous parallel… 595

21. Kwok Y-K, Ahmad I (1996) Dynamic critical-path scheduling: an effective technique for allocating

task graphs to multiprocessors. IEEE Trans Parallel Distrib Syst 7(5):506–521

22. Wu M-Y, Gajski D (1990) Hypertool: a programming aid for message-passing systems. IEEE Trans

Parallel Distrib Syst 1(3):330–343

23. Fard HM, Prodan R, Barrionuevo JJD, Fahringer T (2012) A multi-objective approach for workflow

scheduling in heterogeneous environments. In: 2012 12th IEEE/ACM international symposium on

cluster, cloud and grid computing (ccgrid 2012), pp 300–309

24. Arabnejad H, Barbosa J (2014) List scheduling algorithm for heterogeneous systems by an optimistic

cost table. IEEE Trans Parallel Distrib Syst 25(3):682–694

25. Iverson MA, Ozguner F, Follen GJ (1995) Parallelizing existing applications in a distributed hetero-

geneous environment. In: HCW ’95, pp 93–100

26. Bertrand Cirou EJ (2001) Triplet: a clustering scheduling algorithm for heterogeneous systems. New

York. https://doi.org/10.1109/ICPPW.2001.951956

27. Kim S, Browne J (1988) General approach to mapping of parallel computations upon multiprocessor

architectures. Unknown J 3:1–8

28. Sarkar V (1989) Partitioning and scheduling parallel programs for multiprocessors. MIT Press, Cam-

bridge, MA

29. Kanemitsu H, Hanada M, Nakazato H (2016) Clustering-based task scheduling in a large number of

heterogeneous processors. IEEE Trans Parallel Distrib Syst 27(11):3144–3157

30. Shahul AZ, Sinnen O (2010) Scheduling task graphs optimally with a*. J Supercomput 51(3):310–332

31. Deelman E, Singh G, Su M-H, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman GB, Good J,

Laity A, Jacob JC, Katz DS (2005) Pegasus: a framework for mapping complex scientific workflows

onto distributed systems. Sci Program 13(3):219–237

32. Darte A, Robert Y, Vivien F (2002) Scheduling and automatic parallelization. BirkhŁuser, New York.

ISBN 0-8176-4149-1

33. Suter F, Desprez F, Casanova H (2004) From heterogeneous task scheduling to heterogeneous mixed

parallel scheduling. In: Euro-Par 2004 parallel processing, pp 230–237

34. Orsila H, Kangas T, Salminen E, Hamalainen TD, Hannikainen M (2007) Automated memory-aware

application distribution for multi-processor system-on-chips. JSA 53(11):795–815

35. de Langen P, Juurlink B (2009) Leakage-aware multiprocessor scheduling. J Signal Process Syst

57(1):73–88

36. Bhatti MK, Oz I, Popov K, Muddukrishna A, Brorsson M (2014) Noodle: a heuristic algorithm for

task scheduling in MPSoC architectures. In: 2014 17th Euromicro conference on digital system design

(DSD). IEEE, pp 667–670

123

https://doi.org/10.1109/ICPPW.2001.951956

	Locality-aware task scheduling for homogeneous parallel computing systems
	Abstract
	1 Introduction
	2 Background and related work
	3 Definitions and system model
	3.1 Application model
	3.2 Architecture model
	3.3 Definitions

	4 Locality-AwarE Task Scheduling (LeTS)
	4.1 Working task group formation phase (WTG-FP)
	4.1.1 Algorithms used by LeTS heuristic

	4.2 Working task group ordering phase (WTG-OP)

	5 Experimental evaluation
	5.1 Comparative analysis
	5.1.1 Impact of variation in CCR
	5.1.2 Impact of number of cores
	5.1.3 Impact of application size


	6 Conclusions and future work
	References


