
Locality-Based Abstractions

Javier Esparza1, Pierre Ganty2,�, and Stefan Schwoon1

1 Institut für Formale Methoden der Informatik, Universität Stuttgart
{esparza, schwoosn}@informatik.uni-stuttgart.de

2 Département d’Informatique, Université Libre de Bruxelles
pganty@ulb.ac.be

Abstract. We present locality-based abstractions, in which a set of
states of a distributed system is abstracted to the collection of views that
some observers have of the states. Special cases of locality-abstractions
have been used in different contexts (planning, analysis of concurrent pro-
grams, concurrency theory). In this paper we give a general definition in
the context of abstract interpretation, show that arbitrary locality-based
abstractions are hard to compute in general, and provide two solutions
to this problem. The solutions are evaluated in several case studies.

1 Introduction

Consider a system acting on a set X of program variables over some value set
V . An abstraction of the system, in the abstract-interpretation sense [1], delib-
erately loses information about the current values of the variables. Many ab-
stractions can be intuitively visualized by imagining an observer who has access
to the program code but is only allowed to retain limited knowledge about the
values of the variables. For instance, the observer may only be allowed to retain
the sign of a variable, its value modulo a number, or whether one value is larger
than another one. In this paper we consider locality-based abstractions, which
are best visualized by imagining a set of observers, each of which has a partial
view of the system. Each observer has access to all the information ‘within his
window’, but no information outside of it. For instance, in a system with three
variables there could be three observers, each of them with perfect information
about two of the variables, but no knowledge about the third. Given the set
{〈1, 1, 0〉, 〈1, 0, 1〉, 〈0, 1, 1〉} of valuations of the variables, the observer with ac-
cess to, say, the first two variables ‘sees’ {〈1, 1,u〉, 〈1, 0,u〉, 〈0, 1,u〉}, where u
stands for absence of information. Notice that information is lost: Even if the
three observers exchange their informations, they cannot conclude that 〈1, 1, 1〉
does not belong to the set of valuations.

The idea of local observers is particularly appropriate for distributed systems
in which the value of a variable corresponds to the local state of a component
of the system. In this case, a partial view corresponds to having no information
from a number of components of the system. This is also the reason for the term
“locality-based” abstraction.
� The author wishes to thank the University of Stuttgart, where most of the work was

done, for hospitality and both FRIA and FNRS for financial support.

C. Hankin and I. Silveroni (Eds.): SAS 2005, LNCS 3672, pp. 118–134, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Locality-Based Abstractions 119

Plan of the paper. In Sect. 3 we present a very general definition of locality-based
abstraction, and study, in Sect. 4, the problem of computing the abstract post#

operator (i.e., the abstract operator corresponding to the usual post operator
that computes the set of immediate successors on the concrete space). We observe
that, in general, computing post# involves solving an NP-complete problem, and
present two orthogonal solutions to this problem in Sect. 5 and 6, respectively.
Each of them leads to a polynomial-time algorithm. The first solution works
for a restricted class of systems and arbitrary abstractions, while the second
restricts the class of abstractions that are used but can be applied to arbitrary
systems. In Sect. 7 we present an abstraction-refinement scheme which allows to
progressively refine the precision of the abstractions while keeping good control
of the time required to compute the (post#)∗ operator, i.e., the operator yielding
the set of reachable abstract states. Section 8 reports on experimental results
obtained from an implementation of the approaches of Sect. 5 and 6.

Related work. Locality-based abstractions have been used before in the litera-
ture, but to the best of our knowledge not with the generality presented here.
A particular case of locality-based abstraction are the Cartesian abstractions of
[2], in which a set of tuples is approximated by the smallest Cartesian product
containing this set. It corresponds to the case in which we have an observer for
each variable (i.e., the observer can only see this variable, and nothing else). An-
other particular case that has been independently rediscovered several times is
the pairs abstraction, in which we have an observer for each (unordered) pair of
variables. In [3,4,5], this abstraction is used to overapproximate the pairs {l, l′}
of program points of a concurrent program such that during execution the con-
trol can simultaneously be at l, l′. In [6], it is used to overapproximate the pairs
of places of a Petri net that can be simultaneously marked, and the abstraction
is proved to be exact for the subclass of T-nets, also called marked graphs. In
Graphplan, an approach to the solution of propositional planning problems [7,8],
it is used to overapproximate the set of states reachable after at most n steps.

Prerequisites. The reader is expected to be familiar with the abstract interpre-
tation framework and with the manipulation of symbolic data structures based
on deterministic automata such as binary decision diagrams [9].

Full version. A version of the paper containing all proofs is available at
http://www.ulb.ac.be/di/ssd/cfv/publications.html.

2 Preliminaries

System model. We fix a finite set V of values (in our examples we use V = {0, 1}).
A state is a function s : X → V , where X = {x1, . . . , xn} is a set of state
variables. We also represent a state s by the tuple (s[1], . . . , s[n]), where s[i] is
an abbreviation for s(xi). The set of all states over the set X of variables is
denoted by S .

Let X ′ be a disjoint copy of X . A transition t is a subset of S × S , which
we represent as a predicate t(X, X ′), i.e., (s, s′) ∈ t if and only if t(s, s′) is true.

http://www.ulb.ac.be/di/ssd/cfv/publications.html

120 J. Esparza, P. Ganty, and S. Schwoon

A system is a pair Sys = (X, T) where X is a finite set of variables and T is
a finite set of transitions. We define the transition relation R ⊆ S × S as the
union of all the transitions of T .

Given a set of states S, we define the successors of S, denoted by post [Sys](S),
as the set of states s′ such that R(s, s′) for some s ∈ S, and the predecessors of S,
denoted by pre[Sys](S), as the set of states s′ such that R(s′, s) for some s ∈ S.
We also write post(S) or pre(S) if the system Sys is clear from the context. We
use the following notations: post0(S) = S, post i+1(S) = post(post i(S)) for every
i ≥ 0, and post∗(S) =

⋃
n∈N

postn(S). We use analogous notations for pre. A
state s is reachable from S if s ∈ post∗(S).

Partial states. Let V + = V ∪ {u} where u, disjoint from V , is the undefined
value. It is convenient to define a partial order � on V +, given by

v � v′ def⇐⇒ (v′ = u ∨ v = v′) .

A partial state is a function p : X → V +. The set of all partial states is
denoted by P. The support of a partial state p is the set of indices i ∈ {1, . . . , n}
such that p[i] �= u. We extend the partial order � to partial states:

p � p′ def⇐⇒
∧

x∈X

(
p(x) � p′(x)

)

and to sets of partial states:

P � P ′ def⇐⇒ ∀p ∈ P ∃p′ ∈ P ′ : p � p′ .

Given a partial state p, we define its upward and downward closure as p↑=
{p′ ∈ P | p′ � p} and p↓= {p′ ∈ P | p � p′}, respectively. We extend these
two notions to sets of partial states in the natural way. We say that P is upward
or downward closed if P↑= P or P↓= P , respectively. We also say that P is a
uc-set or a dc-set.

Finally, we also define p⇑= p↑ ∩S , and extend the notation to sets of states.

3 Locality-Based Abstractions

Fix a system Sys and a set I of initial states of Sys . We say that a partial state
p is reachable from I if some state s � p is reachable from I. Observe that with
this definition p is reachable if and only if all partial states in the downward
closure p↓ are reachable. So the pieces of information we have about reachability
of partial states can be identified with downward closed subsets of P.

Assume now that the only dc-sets we have access to are those included in
some dc-set D ⊆ P, called in the rest of the paper a domain. If a state s is
reachable, then all the elements of s↓ ∩D are reachable by definition. However,
the contrary does not necessarily hold, since we may have s /∈ D. In our abstrac-
tions we overapproximate by declaring s reachable if all the elements of s↓ ∩D

Locality-Based Abstractions 121

are reachable, i.e., if all the information we have access to is compatible with s
being reachable.

Intuitively, we can look at D as the union of sets D1, . . . , Dn, where all the
partial states in Di have the same support, i.e., a partial state p ∈ Di satisfies
p[i] = u only if all partial states p′ ∈ Di satisfy p′[i] = u. The sets Di correspond
to the pieces of information that the different observers have access to. Notice
that we can have a domain Di like, say Di = {〈0, 0,u〉, 〈1, 0,u〉}↓ in which the
observer is only allowed to see some local states of the first two components, but
not others, like 〈1, 1,u〉.

Recall that the powerset lattice PL(A) associated to a set A is the com-
plete lattice having the powerset of A as carrier, and union and intersection
as least upper bound and greatest lower bound operations, respectively. In our
abstractions the concrete lattice is the powerset lattice PL(S) of the set of
states S .

We fix a domain D ⊆ P, and define the downward powerset lattice DPL(D)
associated to D as the restriction of PL(D) to the dc-sets included in D. That is,
the carrier of DPL(D) is the set of dc-subsets of D (which, since D is downward
closed, contains D itself), and the least upper bound and greatest lower bound
operations are union and intersection. Notice that DPL(D) is well-defined be-
cause the union and intersection of a family of dc-sets is a dc-set. The abstract
lattice of a locality-based abstraction is DPL(D), and the concretization and
abstraction mappings are defined as follows:

α(S) def= S↓ ∩D for any S ∈ PL(S)

γ(P) def= {s ∈ S | s↓ ∩D ⊆ P} for any P ∈ DPL(D)
= S \ (D \ P)⇑ .

Example 1. Consider the set of values V and the state variables X defined by
V = {0, 1} and X = {x1, x2, x3}, respectively. The domain of pairs over X is
given by

D2 = {(n, m,u), (n,u, m), (u, n, m) | n, m ∈ {0, 1}}↓ .

For the set S = {〈1, 1, 0〉, 〈1, 0, 0〉, 〈0, 1, 0〉} we get

α(S) = {〈1, 1,u〉, 〈1, 0,u〉, 〈0, 1,u〉, 〈1,u, 0〉, 〈0,u, 0〉, 〈u, 1, 0〉, 〈u, 0, 0〉}↓

and (γ ◦ α)(S) = S, i.e., in this case no information is lost.
Consider now the domain

D1 = {(n,u,u), (u, n,u), (u,u, n), (u,u,u) | n ∈ {0, 1}} .

In this case we get

(γ ◦ α)(S) = γ({〈1,u,u〉, 〈0,u,u〉, 〈u, 1,u〉, 〈u, 0,u〉, 〈u,u, 0〉, 〈u,u,u〉})
= {0, 1} × {0, 1} × {0}

122 J. Esparza, P. Ganty, and S. Schwoon

and in general (γ ◦ α)(S) is the smallest cartesian product of subsets of V con-
taining S, matching the cartesian abstractions of [2] 1.

Observe that for D = P we obtain

α(S) = S↓ for any S ∈ PL(S)
γ(P) = P ∩ S for any P ∈ DPL(D)

and so (γ ◦ α)(S) = S, i.e., no information is lost.
The concrete PL(S) and abstract DPL(D) domains and the abstraction

α : PL(S) �→ DPL(D) and concretization γ : DPL(D) �→ PL(S) maps form a
Galois connection, denoted by PL(S)

α�
γ

DPL(D), for every domain D.

Proposition 1. For every domain D, PL(S)
α�
γ

DPL(D).

3.1 The post# Operator

We define the function post#[Sys, D] : DPL(D) → DPL(D):

post#[Sys , D] def= λP.(α ◦ post [Sys] ◦ γ)(P) .

We shorten post#[Sys , D] to post# if the system and the domain are clear from
the context. We have the following characterization of post#[Sys , D].

Proposition 2. Let Sys and D be a system and a domain, respectively. For
every P ∈ DPL(D) and for every p ∈ P

p ∈ post#(P) ⇐⇒ p ∈ D ∧ ¬(pre(p⇑) ⊆ (D \ P)⇑) .

Proof (of Proposition 2).

p ∈ post#(P) ⇔ p ∈ (α ◦ post ◦ γ)(P)
⇔ p ∈ D ∧ p ∈ (↓ ◦post ◦ γ)(P) (Def. of α)
⇔ p ∈ D ∧ (p⇑ ∩(post ◦ γ)(P) �= ∅)
⇔ p ∈ D ∧ (pre(p⇑) ∩ γ(P) �= ∅)
⇔ p ∈ D ∧ (pre(p⇑) ∩ (

S \ (D \ P)⇑) �= ∅) (Def. of γ)
⇔ p ∈ D ∧ ¬(pre(p⇑) ⊆ (D \ P)⇑) �

Using standard results of abstract interpretation we get for every set of states
S that (post#)∗ is a sound abstraction of post∗, i.e.:

post∗(S) ⊆ (γ ◦ (post#)∗ ◦ α)(S) for every S ∈ PL(S).

1 Actually, the functions α and γ of [2] are slightly different, but their composition is
the same as here.

Locality-Based Abstractions 123

4 The Complexity of Computing post#

In the rest of the paper we assume that sets of (partial) states are symbolically
represented as multi-valued decision diagrams (MDD) (see [10] for more details)
over the set of variables X with a fixed variable order. The cardinality of X will
be denoted |X |. Given a set P of partial states we denote the MDD representing
P by PM and the size of PM by |PM|. We also assume that each transition t of
a system Sys = (X, T) is symbolically represented as a MDD tM over variables
X, X ′ with a fixed variable order whose projection onto X coincides with the
fixed order on X . The size of Sys is defined as

∑
t∈T |tM| + |X | and denoted

by |Sys |.
We consider the following decision problem.

Definition 1. The problem POST# is defined as follows:
Instance: a system Sys = (X, T), an element p ∈ D and two MDDs DM, PM,
where D is a non-empty domain and P ∈ DPL(D).
Question: p ∈ post#[Sys, D](P) ?

We say that a class of systems C is polynomial if the restriction POST#
C of

POST# to instances in which the system Sys belongs to C can be solved in
polynomial time. Unfortunately, as we are going to show, unless P=NP holds,
even very simple classes of systems are not polynomial. Before proceeding, we
need a time complexity bound for some operation on MDD.

Proposition 3. Let p ∈ P and SM be a MDD for S ⊆ P. We can decide in
O(|X | + |SM|) time if there exists s ∈ S such that p � s.

Proof (of Proposition 3). We use a simple marking algorithm. Initially we mark
the root node of SM. If a node m labelled by xi is marked, we mark all successors
n of m such that the edge e = (n, m) is labelled with a vi ∈ V + satisfying
p(xi) � vi. The state s exists iff at the end of the algorithm the accepting node
is marked. ��

The following proposition is proved by means of a simple reduction from the
3-colorability problem on graphs.

Proposition 4. The following problem is NP-complete:
Instance: a set X of variables, and two MDDs DM, PM, where D is a non-
empty domain on X and P ∈ DPL(D).
Question: γ(P) �= ∅ ?
In particular, if P�=NP then there is no polynomial time algorithm to compute
γ(P)M.

We are now able to present the main result of this section. Fix V = {0, 1}
and let {Sysn}n≥1 be the family of systems given by Sysn = (Xn, {tn}), Xn =
{x1, . . . xn} and tn = S ×S . Intuitively Sysn is a system with n state variables
and a unique transition tn such that for any pairs of states s, s′ we find that
(s, s′) ∈ tn.

124 J. Esparza, P. Ganty, and S. Schwoon

Proposition 5. If the class C = {Sysn}n≥1 of systems is polynomial, then
P=NP.

Proof. We reduce the problem of Prop. 4 to POST#
C . This shows that POST#

C
is NP-complete and so if C is polynomial, then P=NP.

Given an instance X , DM, PM of the problem of Prop. 4, we build in poly-
nomial time the partial state u|X| (u|X| ∈ D for any D �= ∅) and the MDD tM|X|
such that t|X| = S × S . The operator post# is given by (α ◦ post ◦ γ) and so
we have γ(P) �= ∅ iff u|X| ∈ post#[Sys |X|, D](P). ��

This result shows that we do not have much hope of finding a broad, inter-
esting class of polynomial systems. In the next sections we present two possible
ways of dealing with this problem.

5 Partial Reachability

In this section we show that, if we change the concrete lattice in our abstrac-
tions by extending reachability also to partial states, then an interesting class
of systems becomes polynomial. From now on, we assume the following ordering
on X = {x1, . . . , xn} and its disjoint copy X ′: x1 < x′

1 < · · · < xn < x′
n.

We define the notion of kernel of a transition. Intuitively, the kernel of a
transition is the set of variables that are “involved” in it.

Definition 2. Let t(X, X ′) be a transition and let Y ⊆ X be the smallest subset
of X such that

t(X, X ′) ≡ t̂(Y, Y ′) ∧
∧

x∈X\Y

(x = x′)

for some relation t̂. We call t̂ the kernel of t, Y the kernel variables and |Y |
the kernel width. Given a partial state p ∈ P, we denote by p̂ the partial state
given by

p̂[i] =

{
p[i] if xi belongs to the kernel variables of t,
u otherwise,

and p̃ the partial state given by

p̃[i] =

{
p[i] if xi does not belong to the kernel variables of t,
u otherwise.

We identify a partial state p and the pair (p̂, p̃).

We need to extend the transitions to partial states.

Definition 3. Let Sys = (X, T) be a system and let t ∈ T . The extended tran-
sition t ⊆ P × P is defined as follows:

t(p1, p2)
def⇐⇒ ∃p ∈ P : t̂(p̂1, p) ∧ p � p̂2 ∧ p̃1 = p̃2 .

Given a system Sys = (X, T), we define the extended transition relation R of
Sys as the union of all its extended transitions.

Locality-Based Abstractions 125

The intuition behind this definition is as follows: If we know that p1 is reach-
able (i.e., that some state s � p1 is reachable) and that t(p1, p2) holds, then
we already have enough information to infer that p2 is reachable. Let us see
why. We know the values of all the variables involved in t (this is p̂1), and we
know that we can reach (p, p̃1) from (p̂1, p̃1) (because t̂(p̂1, p)). Now, since we
can reach (p, p̃1) and we know that p � p̂2 and p̃1 = p̃2, we can infer that p2 is
also reachable.

It is easy to show that the restriction of the extended reachability relation
to states coincides with the reachability relation.

Lemma 1. For any t ∈ T and any s1, s2 ∈ S , we have t(s1, s2) iff t(s1, s2).

Proof (of Lemma 1). Since s2 is a state, p � ŝ2 holds if and only if p = ŝ2, and
so

t(s1, s2) ⇔ (t̂(ŝ1, ŝ2)∧ s̃1 = s̃2) ⇔ t(s1, s2) . ��
In order to obtain a Galois connection, we extend the functions α, γ to

α : DPL(P) → DPL(D) and γ : DPL(D) → DPL(P) in the obvious way:

∀P ∈ DPL(P) : α(P) def= P↓ ∩D = P ∩ D (P is a dc-set)
∀P ∈ DPL(D) : γ(P) def= {p | p↓ ∩D ⊆ P}

= P \ (D \ P)↑ .

Proposition 6. For every domain D, DPL(P)
α
�
γ

DPL(D).

5.1 The post# Operator

We extend post and pre to post and pre on partial states by declaring p′ ∈ post(p)
and p ∈ pre(p′) iff R(p, p′). We have the following useful property:

Lemma 2. Fix an arbitrary system, for every p ∈ P, pre(p↑) = pre(p)↑ and
post(p↑) = post(p)↑.

The set post#[Sys , D](P) is given by

{p2 ∈ D | ∃p1 : R(p1, p2) ∧ ¬(∃p3 : p3 ∈ (D \ P) ∧ (p1 � p3)
)} .

Notice that, given MDDs DM, PM, RM and �M, the set post#[Sys, D](P)
can be computed symbolically using classical operations provided by any MDD
package.

The following result, which makes use of Lemmata 1 and 2, shows that the
post# operator is a better approximation to post than post#, i.e., replacing post#

by post# leads to a loss of precision.

Proposition 7. Fix a system and a domain D. For every P ∈ DPL(D),
post#(P) ⊆ post#(P), but the converse does not hold.

126 J. Esparza, P. Ganty, and S. Schwoon

Proof. The first part is an easy consequence of the definitions, and can be found
in the full version of the paper. Here we provide a detailed example proving the
non inclusion of post#(P) in post#(P).

Fix V = {0, 1, 2} and Sys = (X, T) with X = {x1, x2, x3, x4}, T = {t1, t2, t3,
t4} and such that

t1(X, X ′) ≡ t̂1(Y, Y ′) ∧ x3 = x′
3 t̂1 = {(〈0, 0, 0〉, 〈1, 1, 1〉)} Y = X \ {x3}

t2(X, X ′) ≡ t̂2(Y, Y ′) ∧ x2 = x′
2 t̂2 = {(〈0, 0, 0〉, 〈1, 1, 2〉)} Y = X \ {x2}

t3(X, X ′) ≡ t̂3(Y, Y ′) ∧
(

x1 = x′
1

x4 = x′
4

)

t̂3 = {(〈0, 0〉, 〈1, 1〉)} Y = {x2, x3}

t4(X, X ′) ≡ t̂4(Y, Y ′) ∧ x4 = x′
4 t̂4 = {(〈1, 1, 1〉, 〈2, 2, 2〉)} Y = X \ {x4}

The domain D is the set of partial states p ∈ {0, 1, 2,u}4 such that for at
most 2 indices i, j of {1, 2, 3, 4} : p[i] �= u and p[j] �= u. The set of initial state I
is given by {〈0, 0, 0, 0〉}. The set (post# ◦ α)(I↓), denoted F , is given by

F = {〈1, 1,u,u〉, 〈1,u,u, 1〉, 〈u, 1,u, 1〉, 〈1,u, 0,u〉, 〈u, 1, 0,u〉, 〈u,u, 0, 1〉
〈1,u, 1,u〉, 〈1,u,u, 2〉, 〈u,u, 1, 2〉, 〈1, 0,u,u〉, 〈u, 0, 1,u〉, 〈u, 0,u, 2〉,
〈u, 1, 1,u〉, 〈0, 1,u,u〉, 〈u, 1,u, 0〉, 〈0,u, 1,u〉, 〈u,u, 1, 0〉, 〈0,u,u, 0〉}↓ .

It is routine to check that (post# ◦ α)(I) and (post# ◦ α)(I↓) coincide. Observe
that 〈1, 1, 1,u〉 ∈ γ(F) but

{〈1, 1, 1, 0〉, 〈1, 1, 1, 1〉, 〈1, 1, 1, 2〉}∩ γ(F) = ∅ .

Now consider the second iteration. In this case we find that 〈2, 2,u,u〉 ∈
post#(F) but 〈2, 2,u,u〉 /∈ post#(F) which proves our claim. ��

The loss of precision of post# is compensated by its better properties. We
have the following characterization of post#[Sys , D](P).

Proposition 8. Let Sys and D be a system and a domain, respectively. For
every P ∈ DPL(D), for every p ∈ P

p ∈ post#(P) ⇐⇒ p ∈ D ∧ ¬(pre(p) � (D \ P)) .

Proof (of Proposition 8).

p ∈ post#(P) ⇔ p ∈ (α ◦ post ◦ γ)(P)

⇔ p ∈ D ∧ p ∈ (post ◦ γ)(P) (Def. of α)

⇔ p ∈ D ∧ (pre(p) ∩ γ(P) �= ∅)
⇔ p ∈ D ∧ (pre(p) ∩ (P \ (D \ P)↑) �= ∅) (Def. of γ)

⇔ p ∈ D ∧ ¬(pre(p) ⊆ (D \ P)↑)
⇔ p ∈ D ∧ ¬(pre(p) � (D \ P)) �

Locality-Based Abstractions 127

This proposition shows the difference between computing post# and post#:
In the first case we have to deal with (D \ P)⇑, which can have a much more
complex symbolic representation than (D\P). In the case of post# we only need
to deal with the set (D \ P) itself.

5.2 The Complexity of Computing post#

Given a system Sys , we define the problem POST# as POST#, just replacing
post# by post#. As seen in Prop. 8, we can decide POST# by checking whether
pre(p) � (D \ P) holds. Consider the class of systems satisfying the following
two conditions for every partial state p,

(a) |pre(p)| is bounded by a polynomial in |X |, and
(b) pre(p)M can be computed in polynomial time in |X |.

By Prop. 3, for p′ ∈ pre(p), we can decide {p′} � (D\P) in time O(|DM|·|PM|+
|X |) and thus, given pre(p)M, DM, and PM, we can decide pre(p) � (D \ P)
in polynomial time. Since |pre(p)M| is polynomial in |X | and |X | is O(|Sys |),
we can decide POST# in polynomial time. It follows that these systems are
polynomial for POST#.

We now show that an interesting class of systems satisfies (a) and (b). Intu-
itively, we look at a system on a set X as a set having |X | components. Each
variable describes the local state of the corresponding component.

Definition 4. A system Sys = (X, T) is k-bounded if the width of the kernel
of all transitions of T is bounded by k.

Loosely speaking, a system is k-bounded if its transitions involve at most
k components. Many systems are k-bounded. For instance, consider systems
communicating by point to point channels. If we describe the local state of a
component/channel by one variable, then usually we have k = 2, because a
transition depends on the current state of the receiving/sending component and
on the state of the channel. Another example are token ring protocols, where
each component communicates only with its left and right neighbours. These
systems are at most 3-bounded.

Observe that each k-bounded system is equivalent to another one satisfying
|T | ≤ |X |k: if there is t̂i(Yi, Y

′
i), t̂j(Yj , Y

′
j) such that i �= j but Yi = Yj , then we

can replace t̂i and t̂j by (t̂i ∨ t̂j)(Yi, Y
′
i).

Proposition 9. Let p be a partial state of a k-bounded system. The set pre(p)
contains at most |X |k · |V +|k elements, and pre(p)M can be computed in time
polynomial in |X |.

Corollary 1. For a fixed k ≥ 0, the class of k-bounded systems is polynomial.

128 J. Esparza, P. Ganty, and S. Schwoon

6 Neighbourhood Domains

The polynomiality result of the last section is obtained at a price: we had to
consider less precise abstractions, and we had to restrict ourselves to k-bounded
systems. In this section we define an approach, applicable to arbitrary systems,
that uses a class of domains called neighbourhood domains. Intuitively, in a neigh-
bourhood domain the variables an observer has access to must be neighbours with
respect to the order used to construct the MDDs. E.g., an observer may observe
variables x3, x4, x5, but not x1, x8.

We say that a class D of domains is polynomial if the restriction POST#
D

of POST# to instances in which the domain D belongs to D can be solved in
polynomial time.

By Prop. 4 we know that, unless P=NP, there is no polynomial algorithm
to compute γ(·). We define hereafter a class of domains which avoids this prob-
lem, i.e., for every set P in the domain, the γ(P)M can be computed in time
polynomial in |X |, |PM| and |DM|.
Definition 5. Let x1 < · · · < xn be a variable ordering for X and let 1 ≤ k ≤
|X |. The k-neighbourhood domain D is defined as follows

D(X) ≡
∨

Vi∈V

(∧

x∈X\Vi

(x = u)
)

where V is the set of all the sets of k consecutive variables, e.g., for n ≥ k + 2
we find that {x2, . . . , x2+k} ∈ V.

In what follows, we sometimes abbreviate
∧

x∈X\Vi
(x = u) to Di(X).

The following two propositions introduce the two key properties of neigh-
bourhood domains:
Proposition 10. Let D be a k-neighbourhood domain D, and let P ∈ DPL(D).
The MDD for the set (D \ P)↑M can be be computed in polynomial time in
|(D \P)M| (and so, in particular, it is only polynomially larger than (D \P)M).

We prove a similar result for the computation of the downward closure.

Proposition 11. Given a k-neighbourhood domain D and a set S ⊆ S , the
MDD for (S ↓ ∩Di) with Vi ∈ V can be computed in polynomial time in
|DM

i | · |SM|.
It follows that, for neighbourhood domains, both α and γ can be computed

in polynomial time in their input size.

Proposition 12. For a fixed k ≥ 0, the class of k-neighbourhood domains is
polynomial.

Proof. Consider an instance of POST# in which D is a k-neighbourhood do-
main. We give a polynomial algorithm to decide if p ∈ post#[Sys, D](P). By the
definition of post# and α, we have p ∈ post#[Sys, D](P) iff there is a transition

Locality-Based Abstractions 129

t and states s, s′ such that s ∈ γ(P) ∧ t(s, s′) ∧ s′ ∈ p⇑. By Prop. 10, γ(P)M

over variables X can be computed in polynomial time in |DM| and |PM|, and
an MDD p ⇑M, over variables X ′ can be computed in polynomial time in |X |.
The algorithm constructs, for each transition t of the system, an MDD for the
formula γ(P)M ∧ t(X, X ′) ∧ p⇑M (X ′) and checks if it encodes the empty set.
Since the construction and the check can be carried out in polynomial time, we
are done. ��

Moreover, while in the concrete system the number of image computations
may also be exponential, here we get a much better bound. Given a k-neighbour-
hood domain, each of the (|X | − (k − 1)) formulæ Di(X) has exactly |V |k satis-
fying partial states. This leads us to the following fact: for any k-neighbourhood
domain, for any system and for any set I of initial states, the number of iter-
ations required to reach the fixed point in the computation of (post#)∗(I) is
bounded by (|X | − (k − 1)) × |V |k. Choosing the domain adequately, we thus
have a way to control the complexity of computing (post#)∗(I). In practice this
suggests the following strategy: if the post image computation is costly we can
reduce the number of iterations needed to reach the fixed point by choosing a k-
neighbourhood domain with k << |X |, of course at the prize of losing precision.

7 Abstraction Refinement

In this section, we describe an abstraction-refinement loop for testing reachability
using the partial-reachability method. Given a system Sys = (X, T), a set of
initial states I, and a partial state u. Our goal is to check whether u is reachable,
i.e. whether u⇑ ∩post∗(I) �= ∅.

Our method starts from a (given) initial domain D and computes the reach-
able states in the abstraction, i.e. (post#)∗(I↓). If the latter includes u, we check
if the imprecision caused by choosing the domain D might be responsible for the
positive result. If so, we refine D accordingly.

More precisely, our scheme consists of the following two steps:

Search. Compute the sequence F0 = α(I↓), In0 = Out0 = ∅, and then for i ≥ 0:

Ti+1 = { (p, p′) | p ∈ γ(Fi), p′ ∈ (α ◦ post)(p) }
Fi+1 = Fi ∪ { p′ | ∃p : (p, p′) ∈ Ti+1 }
Ini+1 = Ini ∪ { (p, p′) ∈ Ti+1 | p ∈ D }

Outi+1 = Outi ∪ { (p, p′) ∈ Ti+1 | p ∈ P \ D }.

Stop when the sequence of Fis reaches a fixed point. We denote the values of
the sets in the fixed point as Ff , Inf , Outf , respectively.

Notice that Ti records a reachability relation between partial states, where the
left components can be either previously computed partial states in D or partial
states whose reachability was (potentially wrongly) ‘inferred’ by the concretiza-
tion. We then have Fi+1 = Fi ∪ post#(Fi). The sequence of In sets records the

130 J. Esparza, P. Ganty, and S. Schwoon

reachability relation between states for which no inference was used, whereas Out
records the relations for which inference was used, i.e. the places where potential
imprecision was introduced.

By Prop. 8, the Ti sets can be computed efficiently.

Refine. If u /∈ γ(Ff), then by Prop. 7 u is unreachable, and we stop with a
negative result.

Otherwise, if u /∈ D, then we inferred reachability of u from the reachability of
several partial states. We then refine D to D∪u↓, which forces the next iteration
to ‘watch’ the partial state u explicitly. (Notice that we could have done this
before the first iteration, but then again we might be able to refute reachability
of u in the first iteration without doing this.)

Failing both tests, we check whether there is a real trace from an initial state
to u. For this, we compute backwards reachability using the relation Inf . We
conclude that u is reachable in the concrete system if ∃i ∈ α(I↓) : (i, u) ∈ In∗

f .
Executing this check step for step also gives us the ability to output a witness
path for u’s reachability.

Otherwise, u was reachable in the abstraction because of a step contained
in Outf . To prove concrete reachability of u, we must prove that the partial
source states of these steps were indeed reachable. Thus, we compute the set
A = { p | In∗

f (p, u) } and then refine D to D ∪ { p | ∃p′ ∈ A : (p, p′) ∈ Outf}.

Our approach is different from the usual CEGAR approach (see [11] for
more details), where one tests whether an abstract counterexample found in the
search phase is spurious. If it is, one refines the abstraction to prevent that coun-
terexample from being found again. In our approach, we cannot tell whether a
counterexample is spurious or not; we can merely test whether potentially impre-
cise information was used. If the counterexample was spurious, our refinement
prevents it from being found again. If the counterexample was real, then our
refinement gathers additional information to prove the counterexample correct.

Extensive work (see [12,13,14]) investigates the connection between abstract
model checking, and in particular the CEGAR approach, and the domain refine-
ment used in abstract interpretation. As a future work we plan to investigate
the connection but relatively to the refinement technique we proposed in this
section.

8 Experiments

We have produced a prototype implementation of the approaches of Sect. 5 (with
abstraction refinement) and 6 (without abstraction refinement), and applied it
to two well-known examples. The examples only use boolean variables, and so
we use BDDs instead of MDDs. Since our implementation is preliminary and our
main motivation is to provide a space-efficient method, we only report on the
sizes of the BDDs used to decide a property. We compare them with the BDD
size of the full set of reachable states, which is computed using NuSMV [15].

Locality-Based Abstractions 131

8.1 Dining Philosophers Example

Our first example is a deterministic non-symmetric solution to the dining philoso-
phers problem taken from [16]. The model uses two arrays, one for the forks and
the other for the philosophers, both of size N , the number of philosophers. Each
fork is represented by two bits, and each philosopher by three. For our experi-
ments, we use two different ‘natural’ variable orders.

(A) The first order puts the bits for the forks at the top and the philosophers
at the bottom, while each array element is stored with its most significant
bit at the top.

(B) The second order interleaves forks and philosophers, i.e. we put the first fork
at the top, then the first philosopher, then the second fork etc.

The sizes of the BDDs encoding the full set of reachable states are listed (for
orders A and B and various values of N) in the left half of Table 1. As can be
seen, they strongly depend on the variable ordering, with order B working far
better.

We consider the following three properties:

1. Is it possible that two neighbouring philosophers eat at the same time? (This
property is false in the model.)

2. Is it possible for all forks to be taken at the same time? (This property is
true in the model.)

3. Is it possible for philosophers 1 and 3 to eat at the same time? (This property
is true for all N > 3.)

Notice that, without a refinement loop, an abstraction can only prove that a set
of states is not reachable, and so it can only be used to decide property 1. Since
we have not implemented the refinement loop for the neighbourhood approach
(see Sect. 6), we only apply it to this property. The partial-reachability approach
is applied to all three properties.

In the neighbourhood approach, we can decide property 1 by taking N + 1
and k = 3 for ordering A and B, respectively. The BDD sizes for (post#)∗(I)
are shown in the right half of Table 1. We observe that, as for full reachability,
the BDDs grow exponentially for ordering A and only linearly for ordering B.

Table 1. BDD sizes in Dining Philosophers example, part 1

full reachability neighb. approach
N ord. A ord. B ord. A ord. B

2 26 25 13 18
3 64 41 40 36
4 140 57 82 54
7 1,204 105 304 108

10 9,716 153 670 162
15 311,284 273 1,600 252

132 J. Esparza, P. Ganty, and S. Schwoon

Table 2. Results for Dining Philosophers, partial-reachability approach

starting with 1 component starting with 2 components
prop. 1 prop. 2 prop. 3 prop. 1 prop. 2 prop. 3

N |post∗| #ref |post∗| #ref |post∗| #ref |post∗| #ref |post∗| #ref |post∗| #ref
2 52 5 34 3 n/a n/a 38 0 46 2 n/a n/a
3 128 4 112 4 109 7 73 0 144 4 73 0
4 217 4 321 5 89 5 112 0 426 5 152 4
7 523 4 6,781 8 167 5 259 0 6,300 8 335 4

10 919 4 ?? ? 245 5 451 0 ?? ? 563 4
15 1,807 4 ?? ? 375 5 871 0 ?? ? 1,043 4

However, the constant of the growth for ordering A is much smaller, i.e., the
approach is far less sensitive to the variable order.

The results for the partial reachability approach are detailed in Table 2.
We considered two different initial abstractions for the refinement loop. In the
first one, we take one observer for each component (philosopher or fork); in the
second, one observer for each pair of components (left and right part of Table 2,
resp.). The #ref columns denote the number of refinements that were necessary
to prove or disprove the properties. The column marked |post∗| gives the number
of BDD nodes used to represent (post#)∗(I↓) in the last refinement, where this
number was highest. The representation of D was either nearly of the same size
or significantly lower. The data for the orderings A and B are almost identical,
and so only those for ordering A are shown. For properties 1 and 3, we observe
the same pattern as in the neighbourhood case: the approach works well and
is far less sensitive to the variable ordering. Looking closely, we observe that
the 2-component initialization works better for property 1, presumably because
the property is a conjunction of sub-properties concerning pairs of philosophers.
For property 3, the 1-component initialization works better, probably because it
concerns only 2 specific components. Property 2 is a case in which the locality-
based approach works far worse than full reachability: The property is universally
quantified, forcing the abstraction refinement to consider tuples ranging over all
components.

8.2 Production Cell Example

Our second example is a model of the well-known production cell case study
taken from [17]. Our encoding of the model has 15 variables with 39 bits alto-
gether. We tested all fifteen safety properties mentioned in [17], but present the
results for a few representative ones (the rest yielded similar results). The results
are shown in Table 3.

Table 3 lists results for instantiations of the model with one and five plates.
The number |reach| is the BDD size of the reachable state space as computed
by NuSMV, while |post∗| and #ref have the same meanings as in Table 2.

The results show that while the reachable state space grows (linearly) with
the number of plates, the partial-reachability approach is largely unaffected by
their number. Moreover, while the number of refinement iterations varies (the

Locality-Based Abstractions 133

Table 3. Results for production cell example

One plate Five plates
|reach | = 230 |reach | = 632

Prop |post∗| #ref |post∗| #ref

1 83 2 83 2
2 88 4 92 6
4 76 1 76 1
6 105 5 120 8
11 146 3 146 3

largest number of refinements was 13), the BDD sizes vary only by about 50%
between the smallest and the largest example. As the number of plates increases,
the space savings of the locality-based approach become significant.

In the neighbourhood approach, 4 out of the 15 properties could be proved
with a neighbourhood domain of size k = 2. Independently of the number of
plates, the number of BDD nodes representing the reachable state space was 129.
A domain of size k = 3 was sufficient to verify another 7 properties; the number
of BDD nodes increased to 208. The remaining properties could only be veri-
fied using full reachability, i.e. the neighbourhood approach did not have any
advantage in this case.

9 Conclusions

We have presented locality-based abstractions, in which a state of the system is
abstracted to the collection of views that some observers have of the state. Each
observer has only access to some variables of the system. As pointed out in the
introduction, special cases of locality-abstractions have been used in different
contexts (planning, analysis of concurrent programs, concurrency theory). In
this paper we have (1) generalized the abstractions used in other papers, (2)
put them in the framework of abstract interpretation, (3) pointed out the bad
complexity of the computation of the abstract successor operator for arbitrary
locality-based abstractions, (4) provided two efficient solutions to this problem,
and (5) evaluated these solutions on a number of examples. Our conclusion is
that locality-based abstractions are a useful tool for the analysis of concurrent
systems.

In our approach we have assumed that variables have a finite domain, and
that if an observer has access to a variable, then it gets full information about its
value. Both assumptions can be relaxed. For instance, locality-based abstractions
can be easily combined with any of the usual abstractions on integer variables. It
must only be required that clustered variables must be observable by the same
observer.

134 J. Esparza, P. Ganty, and S. Schwoon

References

1. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc.
POPL, ACM Press (1977) 238–252

2. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. In: Proc. TACAS. (2001) 268–283

3. Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting
all pairs of statements that may happen in parallel. In: Proc. FSE. Volume 23, 6
of Software Engineering Notes., ACM Press (1998) 24–34

4. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An efficient algorithm for computing
mhp information for concurrent Java programs. In: Proc. FSE. Volume 1687 of
LNCS. (1999) 338–354

5. Naumovich, G., Avrunin, G.S., Clarke, L.A.: Data flow analysis for checking prop-
erties of concurrent Java programs. In: Proc. ICSE, ACM Press (1999) 399–410

6. Kovalyov, A.: Concurrency relations and the safety problem for petri nets. In:
Proc. ATPN. Volume 616 of LNCS. (1992) 299–309

7. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial
Intelligence 90 (1997) 279–298

8. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. In: Proc.
IJCAI. (1995) 1636–1642

9. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35 (1986) 677–691

10. Srinivasan, A., Kam, T., Malik, S., Brayton, R.K.: Algorithms for discrete function
manipulation. In: IEEE/ACM ICCAD. (1990) 92–95

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50 (2003) 752–794

12. Ranzato, F., Tapparo, F.: Making abstract model checking strongly preserving.
In: Proc. SAS. Volume 2477 of LNCS. (2002) 411–427

13. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements
in abstract model-checking. In: Proc. SAS. Volume 2126 of LNCS. (2001) 356–373

14. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47 (2000) 361–416

15. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV version 2: An opensource tool for symbolic
model checking. In: Proc. CAV. Volume 2404 of LNCS. (2002)

16. Zuck, L.D., Pnueli, A., Kesten, Y.: Automatic verification of probabilistic free
choice. In: Proc. VMCAI. Volume 2294 of LNCS. (2002) 208–224

17. Heiner, M., Deussen, P.: Petri net based qualitative analysis - a case study. Tech-
nical Report I-08/1995, Brandenburg Tech. Univ., Cottbus (1995)

	Introduction
	Preliminaries
	Locality-Based Abstractions
	The post# Operator

	The Complexity of Computing post#
	Partial Reachability
	The post# Operator
	The Complexity of Computing post#

	Neighbourhood Domains
	Abstraction Refinement
	Experiments
	Dining Philosophers Example
	Production Cell Example

	Conclusions

