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Abstract. This paper presents a novel parallel algorithm for solving the
Single-Source Shortest Path (SSSP) problem on GPUs. The proposed al-
gorithm is based on the idea of locality-based relaxation, where instead of
updating just the distance of a single vertex v, we update the distances
of v’s neighboring vertices up to k steps. The proposed algorithm also
implements a communication-efficient method (in the CUDA program-
ming model) that minimizes the number of kernel launches, the number
of atomic operations and the frequency of CPU-GPU communication
without any need for thread synchronization. This is a significant con-
tribution as most existing methods often minimize one at the expense of
another. Our experimental results demonstrate that our approach out-
performs most existing methods on real-world road networks of up to 6.3
million vertices and 15 million arcs (on weaker GPUs).

1 Introduction

Graph processing algorithms have a significant impact on several domains of
applications as graphs are used to model conceptual networks, systems and nat-
ural phenomena. One of the most important problems in graph processing is the
Single-Source Shortest Path (SSSP) problem that has applications in a variety of
contexts (e.g., traffic routing [27], circuit design [22], formal analysis of comput-
ing systems [23]). Due to the significance of the time/space efficiency of solving
SSSP on large graphs, researchers have proposed [7] parallel/distributed algo-
rithms. Amongst these, the algorithms that harness the computational power of
Graphical Processing Units (GPUs) using NVIDIA’s Compute Unified Device
Architecture (CUDA) have attracted noticeable attention in research commu-
nity [10]. However, efficient utilization of the computational power of GPUs is a
challenging (and problem-dependent) task. This paper presents a highly efficient
method that solves SSSP on GPUs for road networks with large dimensions.
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A CUDA program is parameterized in terms of thread IDs and its efficiency
mostly depends on all threads performing useful work on the GPU. GPUs in-
clude a multi-threaded architecture containing several Multi-Processors (MPs),
where each MP has some Streaming Processors (SPs). A CUDA program has a
CPU part and a GPU part. The CPU part is called the host and the GPU part
is called the kernel, capturing an array of threads. The threads are grouped in
blocks and each block will run in one MP. A few threads (e.g., 32) can logically
be grouped as a warp. The sequence of execution starts by copying data from
host to device (GPU), and then invoking the kernel. Each thread executes the
kernel code in parallel with all other threads. The results of kernel computations
can be copied back from device to host. CUDA’s memory model is hierarchical,
starting from the fastest: registers, in-block shared memory and global mem-
ory. The communication between GPU and CPU can be done through shared
variables allocated in the global memory. CUDA also supports atomic opera-
tions, where some operations (e.g., addition of a value to a memory location)
are performed in a non-interruptible fashion. To optimize the utilization of com-
putational resources of GPUs, a kernel must (i) ensure that all threads perform
useful work and ideally no thread remains idle (i.e., work efficiency); (ii) have
fewer atomic commands; (iii) use thread synchronization rarely (preferably not
at all), and (iv) have little need for communication with the CPU. The divergence
of a computation occurs when the number of idle threads of a warp increases.

Most existing GPU-based algorithms [12, 13, 26, 25, 15, 5] for solving SSSP
rely on methods that associate a group of vertices/arcs to thread blocks, and
optimize a proper subset of the aforementioned factors, but not all. This is be-
cause in general it is hard to determine the workload of each kernel for optimum
efficiency a priori. In the context of SSSP, each thread updates the distance of
its associated vertex in a round-based fashion, called relaxation. For example,
Harish et al. [12, 13] present a GPU-based implementation of Dijkstra’s shortest
path algorithm [9] where they design two kernels; one for relaxing the recently
updated vertices, called the frontier, and the second one for updating the list
of frontier vertices. Singh et al. [26] improve Harish et al.’s algorithm by using
memory efficiently and using just one kernel. They also present a parallelization
of Bellman-Ford’s algorithm [3, 11], but use three atomic operations in the ker-
nel. Kumar et al. [15] also present a parallelization of Bellman-Ford’s algorithm
in a two-kernel CUDA program. Busato et al. [5] exploit the new features of
modern GPUs along with some algorithmic optimizations in order to enhance
work efficiency. Meyer and Sanders [18] present the delta-stepping method where
vertices are classified and relaxed in buckets based on their distance from the
source. Davidson et al. [8] extend the idea of delta-stepping in a queue-based
implementation of Bellman-Ford’s algorithm where the queue contains the ver-
tices whose outgoing arcs must be relaxed. There are several frameworks [29,
14, 28] for graph processing on GPUs whose main objective is to facilitate the
formulation of graph problems on GPUs; nonetheless, the time efficiency of these
approaches may not be competitive with hardcoded GPU programs.
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In order to efficiently solve SSSP in large directed graphs, we present a GPU-
based algorithm that minimizes the number of atomic operations, the number of
kernel launches and CPU-GPU communication while increasing work efficiency.
The proposed algorithm is based on the novel idea of locality-based relaxation,
where we relax the distance of a vertex up to a few steps in its vicinity. Figure
1 illustrates the proposed concept of locality-based relaxation where the thread
associated with v and w not only updates the distance of v’s (respectively, w’s)
immediate neighbors, but propagates the impact of this relaxation on the neigh-
boring vertices that can be reached from v (respectively, w) in k steps. Moreover,
we provide a mechanism for systematic (and dynamic) scheduling of threads us-
ing flag arrays where each bit represents whether a thread should execute in each
kernel launch. The proposed scheduling approach significantly decreases the fre-
quency of communication between CPU and GPU. We experimentally show that
locality-based relaxation increases time efficiency up to 30% for k < 5. Further-
more, our locality-based relaxation method mitigates the divergence problem by
increasing the workload of each thread systematically, thereby decreasing the
number of kernel launches and the probability of divergence.

Fig. 1. Locality-Based Relaxation.

Our experimental results demonstrate that the proposed approach outper-
forms most existing methods (using a GeForce GT 630 with 96 cores). We
conduct our experiments on the road network graphs of New York, Colorado,
Pennsylvania, Northwest USA, California-Nevada and California with up to 1.9
million vertices and 5.5 million arcs, and Western USA with up to 6.3 million
vertices and 15.3 million arcs. Our implementation and data sets are available at
http://gpugraphprocessing.github.io/SSSP/. The proposed algorithm en-
ables a computation and communication-efficient method by using (i) a single
kernel launch per iteration of the host; (ii) only one atomic operation per kernel,
and (iii) no thread synchronization.

Organization. Section 2 defines directed graphs, the shortest path problem and
a classic GPU-based solution thereof. Section 3 introduces the idea of locality-
based relaxation and presents our algorithm (implemented in CUDA) along with
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its associated experimental results. Section 4 discusses some important factors
that could impact GPU-based solutions of SSSP. Finally, Section 5 makes con-
cluding remarks and discusses future extensions of this work.

2 Preliminaries

In this section, we present some basic concepts about GPUs and CUDA’s pro-
gramming model. Moreover, we formulate the problem statement.

2.1 Synchronization Mechanisms in CUDA

In CUDA’s programming model, programmers can define thread blocks in one,
two or three dimensions; however, the GPU scheduler decides how to assign
thread blocks to MPs; i.e., programmers have no control over the scheduling
policy. Moreover, inter-block communications must be performed via the global
memory. CUDA supports atomic operations to prevent data races, where a data
race occurs when multiple threads access some shared data simultaneously and
at least one of them performs a write. CUDA also provides a mechanism for
barrier synchronization amongst the threads within a block, but there is no
programming primitive for inter-block synchronization.

2.2 Directed Graphs and SSSP

Let G = (V,A,w) be a weighted directed graph, where V denotes the set of
vertices, A represents the set of arcs and the weight function w : A→ Z assigns
a non-negative weight to each arc. A simple path from some vertex s ∈ V to
another vertex t ∈ V is a sequence of vertices v0, · · · , vk, where s = v0 and
t = vk, each arc (vi, vi+1) ∈ A and no vertex is repeated. A shortest path from
s to t is a simple path whose summation of weights is minimum amongst all
simple paths from s to t. The Single-Source Shortest Path (SSSP) problem is
stated as follows:

– INPUT: A directed graph G = (V,A,w) and a source vertex s ∈ V .
– OUTPUT: The weight of the shortest path from s to any vertex v ∈ V ,

where v 6= s.

2.3 Basic Functions

Two of the most famous algorithms for solving SSSP include Dijkstra’s [9] and
Bellman-Ford’s [3, 11] algorithms. These algorithms use a Distance array, de-
noted d[]. Initially, the distance of the source vertex is zero and that of other
vertices is set to infinity. After termination, d[v] includes the shortest distance
of each vertex v from the source s. Relaxation is a core function in both algo-
rithms where for each arc (u, v), if d[v] > d[u] + w(u, v) then d[v] is updated to
d[u] + w(u, v). We use the functions notRelaxed and Relax to respectively rep-
resent when an arc should be relaxed and performing the actual relaxation (see
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Algorithms 1 and 2). atomicMin is a built-in function in CUDA that assigns the
minimum of its two parameters to its first parameter in an atomic step.

Algorithm 1 notRelaxed(u,v)

1: if d[v] > d[u] + w(u, v) then
2: return true;
3: else
4: return false;

Algorithm 2 Relax(u,v)

1: atomicMin(d[v], d[u] + w(u, v));

2.4 Harish et al.’s Algorithm

In this subsection, we represent Harish et al.’s [12, 13] GPU-based algorithm
for solving SSSP in CUDA. While their work belongs to almost 10 years ago,
some researchers [26, 29] have recently used Harish et al.’s method as a base for
comparison due to its simplicity and efficiency. Moreover, our algorithm in this
paper significantly extends their work. Harish et al. use the Compressed Sparse
Row (CSR) representation of a graph where they store vertices in an array startV
and the end vertices of arcs in an array endV (see Figure 2). Each entry in startV
points to the starting index of its adjacency list in array endV. Harish et al. use
the following arrays: fa as a boolean array of size |V |, the weight array w of size
|A|, the distance array d of size |V | and the update array up of size |V |. They
assign a thread to each vertex. Their algorithm in [13] invokes two kernels in
each iteration of the host (see Algorithm 3). The first kernel (see Algorithm 4)
relaxes each vertex u whose corresponding bit fa[u] is equal to true indicating
that u needs to be relaxed. Initially, only fa[s] is set to true, where s denotes the
source vertex. The distance of any neighbor of a vertex u that is updated is kept
in the array up, and fa[u] is set to false. After the execution of the first kernel,
the second kernel (see Algorithm 5) assigns the minimum of d[v] and up[v] to
d[v] for each vertex v, and sets fa[v] to true. Harish et al. [12] use two kernels in
order to avoid read-write inconsistencies. Their algorithm terminates if there are
no more distance value changes (indicated by flag variable f remaining false).

3 Locality-Based Relaxation

In this section, we present an efficient GPU-based algorithm centered on the
idea of locality-based relaxation. Subsection 3.1 discusses the idea behind our
algorithm and Subsection 3.2 presents our algorithm. Subsection 3.3 explains
the data set we use in our experiments. Subsection 3.4 demonstrates our experi-
mental results and shows how our algorithm outperforms most existing methods
on large graphs representing road networks. Finally, Subsection 3.5 analyzes the
impact of locality-based relaxation on time efficiency.
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Fig. 2. Compressed Sparse Row (CSR) graph representation.

3.1 Basic Idea

Harish et al.’s [12] algorithm can potentially be improved in three directions.
First, the for-loop in Lines 2-5 of the host Algorithm 3 requires a data exchange
between the GPU and CPU in each iteration of the host through flag f . Second,
their algorithm launches two kernels in each iteration of the host. Third, the
kernels in Algorithms 4 and 5 contribute to propagating the wave of relaxation
for just one step. We pose the hypothesis that allocating more load to threads
by (1) relaxing a few steps instead of just one, and/or (2) associating a few
vertices to each thread can increase work/time efficiency. Moreover, we claim
that a repetitive launch of kernels for some fixed number of times without any
communication with the CPU can decrease the communication costs.

Algorithm 3 Harish’s algorithm: Host

1: d[s] := 0, d[V − {s}] := ∞,up[s] := 0, up[V − {s}] := ∞, fa[s] := true, fa[V −
{s}] := false, f := true

2: while f = true do
3: f := false
4: CUDA Kernel1
5: CUDA Kernel2

Data structure. We use the CSR data structure (see Figure 2) to store a
directed graph in the global memory of GPUs, where vertices of the graph get
unique IDs in {0, 1, · · · , |V | − 1}.
Thread-Vertex affinity. In contrast to Harish et al. [12], we assign two vertices
to each thread. (Our experiments show that assigning more than 2 vertices to
each thread does not improve time efficiency significantly.) That is, thread t is
responsible for the vertices whose IDs are stored in startV [2t] and startV [2t+1],
where 0 ≤ t < d|V |/2e (see Figure 2), and |V | is even. If |V | is odd, then the last
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thread will have only one vertex. There are two important rationales behind this
idea. First, we plan to decrease the number of threads by half, but increase their
load and investigate its impact on time efficiency. Second, we wish to ensure
data locality for threads so that when a thread reads startV [2t] it can read its
neighboring memory cell too, hence potentially decreasing data access time.

Algorithm 4 Device: CUDA Kernel1

1: For each thread assigned to vertices u
2: if fa[u] = true then
3: fa[u] := false
4: for each neighbor vertex v of u do
5: Begin Atomic
6: if up[v] > d[u] + w(u, v) then
7: up[v] := d[u] + w(u, v)

8: End Atomic

Algorithm 5 Device: CUDA Kernel2

1: For each thread assigned to vertices v
2: if d[v] > up[v] then
3: d[v] := up[v]
4: fa[v] := true
5: f := true

6: up[v] := d[v]

3.2 Algorithm

The algorithm proposed in this section includes two kernels (illustrated in Algo-
rithms 8 and 9), but launches only one kernel per iteration. The host (Algorithm
6) initializes the distance array and an array of Boolean flags, called FlagArray,
where FlagArray[v] = true indicates that the neighbors of vertex v can be re-
laxed (up to k steps). Then, the host launches Kernel 1(i) for a fixed number of
times, denoted N (see the for-loop), where i ∈ {0, 1}. We determine the value
of N experimentally in an offline fashion. That is, before running our algorithm,
we run existing algorithms on the graphs we use and compute the number of
iterations for several runs. For example, we run Harish et al.’s algorithm on
New York’s road network for 100 random source vertices and observe that the
minimum number of iterations in which this algorithm terminates is about 440.
Thus, we set the value of N to 440/k, where k is the distance up to which
each thread performs locality-based relaxation. The objective is to reduce the
frequency of CPU-GPU communications because no communication takes place
between CPU and GPU in the for-loop in Lines 4-6 of Algorithm 6. While the
the repeat-until loop in Algorithm 6 might have fewer number of iterations com-
pared with the total number of iterations of the for-loop, the device (i.e., GPU)
communicates with the host by updating the value of Flag in each iteration of
the repeat-until loop.

Algorithm 7 forms the core of the kernel Algorithms 8 and 9. Specifically, it
generates a wave of relaxation from a vertex u that can propagate up to k steps,
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where k is a predetermined value (often less than 5 in our experiments). Lines
4-10 of Algorithm 7 update the distance of each vertex v that is reachable from
u in at most k steps. The relaxation wave propagates in a Depth First Search
(DFS) fashion up to depth k (see Lines 8-10 of Algorithm 7). Upon visiting each
vertex v via its parent w in the DFS tree, we check if the arc (w, v) is already
relaxed. If so, we backtrack to w. Otherwise, we relax (w, v) and check if v is
at depth k. If so, then we set the flag array cell corresponding to v in order
to indicate that relaxation should be picked up from the frontier vertex v in
the next kernel iteration. The impact of a wave of relaxation that starts from
u is multiple waves of relaxation starting from current frontier vertices in the
next iteration of the for-loop (respectively, repeat-until loop) in Algorithm 6.
Thus, we conjecture that the total number of iterations of both loops in the host
Algorithm 6 should not go beyond the length of the graph diameter divided by
k, where the diameter is the longest shortest path between any pair of vertices.

Algorithm 6 Host

1: d[s] := 0, d[V − {s}] :=∞,
2: FlagArray[0][s] := true, FlagArray[0][V − {s}] := false, FlagArray[1][V ] :=

false, i ∈ {0, 1}, Flag := false
3: i := 0
4: for j := 1 to N do
5: Launch Kernel 1(i mod 2)
6: i := i + 1;

7: repeat {
8: Flag := false // GPU and CPU communicate through Flag variable.
9: Launch Kernel 2(i mod 2)

10: i := i + 1
11: } until (Flag = false)

Algorithm 7 uses a two-dimensional flag array in order to ensure Lines 2-3
and 9 of Algorithm 7 will not be executed simultaneously on the same array cell;
hence data race-freedom. Consider the case where Algorithm 7 used a single-
dimensional flag array. Let u be a frontier vertex of the previous kernel launch
(i.e., FlagArray[u] is true) and t1 be the thread associated with u. Moreover, let
t2 be another thread whose DFS search reaches u at depth k. As a result, there is
a possibility that thread t2 assigns true to FlagArray[u] in Line 9 of Algorithm
7 exactly at the same time that thread t1 is reading/writing FlagArray[u] at
Line 2 or 3; hence a data race. Since we would like to have no inter-thread
synchronization (for efficiency purposes) and yet ensure data race-freedom, we
propose a scheme with two flag arrays where in each kernel launch one of them
plays the role of the array from which threads read (i.e., FlagArray[i][u]) and the
other one is the array that holds the frontier vertices (i.e., FlagArray[i⊕ 1][u]).
Thus, in each iteration of the host where Algorithm 7 is invoked through one of
the kernels, FlagArray[i][u] and FlagArray[i ⊕ 1][v] cannot point to the same
memory cell because i and i⊕ 1 cannot be equal in modulo 2.
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To increase resource utilization, each thread t, where 0 ≤ t < d|V |/2e, in
the kernel Algorithms 8 and 9 simultaneously performs locality-based relaxation
on two vertices u := startV [2t] and u′ := startV [2t + 1]. If vertex u is flagged
for relaxation (Line 2 in Algorithm 7), then thread t resets its flag and starts
relaxing the neighbors of u that are reachable from u by up to k steps. We invoke
Kernel 1(i) repeatedly (in the for-loop in Algorithm 6) in order to propagate the
wave of relaxation in the graph for N times without communicating the results
with the CPU. After exiting from the for-loop in the host (Algorithm 6), we
expect to have updated the distances of majority of vertices. To finalize the
relaxation, the repeat-until loop in the host repeatedly invokes Kernel 2(i) until
no more updates take place. Kernel 2(i) (Algorithm 9) is similar to Kernel 1(i)
(Algorithm 8) except that it communicates the result of locality-based relaxation
with the CPU in each iteration via the Flag variable.

Algorithm 7 RelaxLocalityAndSetFrontier(u, k, i)

1: localFlag := false
2: if FlagArray[i][u] = true then
3: FlagArray[i][u] := false
4: Launch an iterative DFS traversal starting at u
5: Upon visiting any vertex v via another vertex w, do the following:
6: if (w, v) is already relaxed then backtrack to w.
7: else Relax(w, v)
8: if (v is at depth k from u) then
9: FlagArray[i⊕ 1][v] := true // ⊕ denotes addition modulo 2

10: localFlag := true

11: return localFlag;

Algorithm 8 Device: Kernel 1(i)

1: For each thread t assigned to vertices u := startV [2t] and u′ := startV [2t + 1]
2: RelaxLocalityAndSetFrontier(u, k, i)
3: RelaxLocalityAndSetFrontier(u′, k, i)

Algorithm 9 Device: Kernel 2(i)

1: For each thread t assigned to vertices u := startV [2t] and u′ := startV [2t + 1]
2: Flag := Flag∨ RelaxLocalityAndSetFrontier(u, k, i)
3: Flag := Flag∨ RelaxLocalityAndSetFrontier(u′, k, i)

Theorem 1. The proposed algorithm terminates and correctly calculates the dis-
tance of each vertex from the source. (Proof omitted due to space cnstraints.)

3.3 Data Set

In our experiments, we use real-world road network graphs. Table 1 summarizes
these graphs along with the names we use to refer to them throughout the paper.
These graphs represent real-world road networks taken from [1] and [2], and they
are practical examples of sparse graphs with a low max outdegree, low median
outdegree and low standard deviation of outdegrees.
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3.4 Experimental Results

In this section, we present our experimental results in addition to comparing
them with related work (see Table 2). We conduct our experiments with 100
random sources in each graph and take an average of the time cost over these
100 experiments.
Platform. We use a workstation with 16 GB RAM, Intel Core i7 3.50 GHz
processor running Linux Ubuntu and a single NVIDIA GeForce GT 630 GPU
with 96 cores. The graphics card has a total of 4095 MB RAM, but 2048 MB is
dedicated to video. We implement our algorithm in CUDA version 7.5.

Table 1. Graphs used in our experiments (All graphs have an average outdegree of 2).

Graphs Name ] of
Vertices

] of Arcs Maximum
Outdegree

Standard
Deviation

of
Outdegree

Median of
Outdegree

New York City [1] New York 264,346 733,846 8 1.24 3
Colorado [1] Colorado 435,666 1,057,066 8 1.02 2

roadNet-PA [2] Pennsylvania 1,090,903 3,083,796 20 1.31 3
Northwest USA [1] Northwest 1,207,945 2,840,208 9 1.00 2

California and Nevada [1] CalNev 1,890,815 4,657,742 8 1.05 3
roadNet-CA [2] California 1,971,278 5,533,214 12 1.28 3

Western USA [1] Western 6,262,104 15,248,146 9 1.02 3

Results. Table 2 compares our algorithm with some related work in terms of
space complexity, number of kernel launches, frequency of CPU-GPU commu-
nication, the number of atomic statements and speed up over Harish et al.’s
algorithm. Notice that our approach provides the best speed up while minimiz-
ing other factors. The most recent approaches that outperform Harish et al.’s
algorithm belong to [16, 25, 26] with a speed up of at most 2.6 (see Table 2).
Figure 3 illustrates our experimental results in comparison with Harish et al.’s.
We have run both algorithms on the same platform and same graphs. Observe
that in all graphs our algorithm outperforms Harish et al.’s algorithm signifi-
cantly. Specifically, we get a speed up from 3.36 for CalNev to 5.77 for California.
Notice that Western (see Figure 3) is the largest sparse graph in our experiments
with 6.2 million vertices and more than 15 million arcs. Our algorithm solved
SSSP for Western in about 4.9 seconds, whereas Harish et al.’s algorithm took
24.7 seconds! Moreover, for the road networks of California and Nevada, our
implementation solves SSSP in almost 3.5 seconds on an NVIDIA GeForce GT
630 GPU, whereas (1) Davidson et al.’s [8] method takes almost 4 seconds on an
NVIDAI GTX 680 GPU; (2) Boost library [24] takes 588 milliseconds; (3) Lone-
Satr [4] takes 3.9 seconds, and (4) H-BF [5] takes 720 milliseconds on an NVIDIA
(Kepler) GeForce GTX 780. Observe that given the weak GPU available to us,
our implementation performs well and outperforms some of the aforementioned
approaches.
Number of kernel launches. The number of kernel launches in each iteration
of the host algorithm has a direct impact on time efficiency; the lower the number
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Table 2. Comparison with related work

Summarizing All Related Works

Methods/Criteria Space
Com-

plexity

] of
Kernel

Launches

CPU-
GPU

Commu-
nication
(# per
host it-
eration)

] of Atomic
Stmts

Speed Up
over

Harish

Harish et al. [12, 13] 4V+2A 2 ≥ 1 1 -
Chaibou et al. [6] V2+3V 2 ≥ 1 1 -
Singh et al. [26] 3V+2A 1 ≥ 1 1 2.5x
Singh et al. [25] 4V+2A 2 ≥ 1 2 1.9x-2.6x
Busato et al. [5] 4V+2A 2 ≥ 1 2 -

Ortega et al. [20, 21] 5V+2A 3 ≥ 1 1 -
Proposed Algorithm 4V+2A 1 < 1 1 3.36x-

5.77x

of kernel launches, the better. Observe that our algorithm and that of Singh et
al. [26] outperform the rest.

New York ColoradoPennsylvaniaNorthwest CalNev California Western
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Fig. 3. Time efficiency of the proposed approach vs. Harish et al.’s [12, 13].

Number of atomic statements. While the use of atomic statements helps
in data race-freedom, they are considered heavy-weight instructions. As such,
we would like to minimize the number of atomic statements. In addition to our
algorithm and Harish et al.’s [12, 13], Singh et al. [26], Chaibou et al. [6] and
Ortega et al. [20, 21] present algorithms with just one atomic statement. Chaibou
et al. [6] evaluate the cost of memory copy between CPU and GPU. Ortega et al.
[20, 21] propose an algorithm based on Dijkstra’s algorithm to find SSSP. Their
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method extends Martin et al.’s [17] and Crauser et al.’s [7]. To increase the degree
of parallelism in Dijkstra’s algorithm, Martin et al. [17] consider all vertices from
frontier with minimum distances to do the relaxation simultaneously. Crauser
et al. [7] improve this method by proposing a threshold. Their idea is based
on maximizing the number of relaxations in each iteration while preserving the
correctness of Dijkstra’s algorithm. Ortega et al. [20, 21] implement these two
ideas on GPUs. Nasre et al. [19] claim that atomic-free algorithms perform more
efficiently than the algorithms that use atomic statements. Their results show a
small time improvement for SSSP.

Speed up over Harish’s. We include a column in Table 2 to illustrate how
much speed up our algorithms provide compared with Harish et al.’s work. Notice
that our algorithm improves time efficiency in comparison to other methods.

3.5 Locality-Based Relaxation

This section analyzes the impact of locality-based relaxation on time efficiency.
To validate the proposed hypotheses in Section 3.1, we have conducted a few
comparative experiments on graphs NY, CN and WUS in Table 3. We consider
two criteria: one is the value of k that determines how far relaxations would go
when updating d[v] for some vertex v, and the other one is the impact of thread-
vertex affinity. As such, we replace the original weights in the road network
graphs of New York City, California-Nevada and Western USA with random values
in the interval [1..10]; the actual weights are irrelevant for this experiment. This
change enables faster runs of our algorithm on the aforementioned graphs.

Figure 4 illustrates the results of our experiments. Observe that as the value
of k is increased from k = 1 the time costs decrease until we reach k = 4. From
k = 4 to k = 5 we do not observe a significant decrease in time costs since
the threads get saturated in terms of their workload. Moreover, determining the
best value of k seems to be dependent on a few factors such as (i) the graph
being processed; (ii) the algorithm, and (iii) the platform. In the context of our
setting, k = 4 seems to be the best value. Moreover, we notice that assigning
two vertices to one thread increases the workload of each thread and decreases
the execution time (see Figure 4), but assigning more than 2 vertices does not
result in a significant performance improvement.

Table 3. Revised graphs used in our experiments.

Graphs Acronym Description

New York City [1] NY Replaced the original arc weights with some
random value between 1 and 10 (inclusive).

California and Nevada
[1]

CN Same as above.

Western USA [1] WUS Same as above.
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Fig. 4. Impact of locality-based relaxation and association of threads to vertices on
execution time.

4 Discussion

In this section, we discuss some ideas that can potentially result in a more
efficient GPU implementation that solves SSSP and its variants. In our experi-
ence, there are a few factors that have a direct impact on the time/space/work
efficiency of a GPU implementation for SSSP. First, minimizing CPU-GPU
communication can have a significant impact on time efficiency of CUDA pro-
grams. For this reason, we design our algorithm in a way that for N iterations
of the host there is no communication between the GPU and the CPU. We ex-
perimentally observe that this design decision made a significant difference in
decreasing the overall execution time. Second, the data structure that keeps
the frontier vertices, has a noticeable impact on both space and time efficiency.
Most existing methods use a queue. The operations performed on queues include
enqueue, dequeue and extractMin, which may become costly depending on the
graph being processed. A flag array keeps track of the frontier by a bit pattern,
where each vertex v has a corresponding bit indicating whether v’s distance got
updated in the last round. The use of queues may cause another problem where
two different threads update the same vertex v at different times and enqueue v,
called vertex duplication (addressed by Davidson et al. [8]). Moreover, using flag
arrays allows programmers to devise a well-thought schedule for threads towards
avoiding data races; hence decreasing the number of required atomic statements.
Third, the number of kernel launches and the way we launch them is influ-
ential. We observe that having fewer number of kernel launches in each iteration
of the host is useful, but on-demand kernel launches do not help; rather it is bet-
ter to have a fixed number of threads that are loaded with useful work in each
launch. Thus, it is important to design algorithms in which all threads perform
useful work in each launch (see Section 3.5). We also note that, in the context of
our work, replacing atomic operations with busy waiting (as suggested by Nasre
et al. [19]) does not improve the efficiency of our implementation. Finally, the
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scalability of the proposed algorithm is a challenge in that the GPU memory
is limited but there is a constant need for solving SSSP in larger graphs.

5 Conclusions and Future Work

This paper presented an efficient GPU-based algorithm for solving the SSSP
problem based on a novel idea of locality-based relaxation, where we allow a
thread to relax all vertices up to k steps away from the current vertex. We
also devised a mechanism for systematic scheduling of threads using flag arrays
where each bit represents whether a thread should execute in a kernel launch.
The proposed scheduling approach enables a communication-efficient method (in
the CUDA programming model) that minimizes the number of kernel launches,
the number of atomic operations and the frequency of CPU-GPU communica-
tion without any need for thread synchronization. The proposed algorithm solves
the SSSP problem on large graphs (representing road networks) with up to 6.2
million vertices and 15 million arcs in a few seconds, outperforming existing
methods. As for the extensions of this work, we would like to leverage our pro-
posed technique in solving search problems (e.g., DFS, BFS) on large graphs.
We also plan to investigate the application of our GPU-based implementation in
devising efficient model checking algorithms. Finally, we will study a multi-GPU
implementation of our algorithm towards processing even larger graphs.
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