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ABSTRACT
This paper presents novel cache optimizations for massively
parallel, throughput-oriented architectures like GPUs. L1
data caches (L1 D-caches) are critical resources for provid-
ing high-bandwidth and low-latency data accesses. How-
ever, the high number of simultaneous requests from single-
instruction multiple-thread (SIMT) cores makes the limited
capacity of L1 D-caches a performance and energy bottle-
neck, especially for memory-intensive applications. We ob-
serve that the memory access streams to L1 D-caches for
many applications contain a significant amount of requests
with low reuse, which greatly reduce the cache efficacy. Ex-
isting GPU cache management schemes are either based
on conditional/reactive solutions or hit-rate based designs
specifically developed for CPU last level caches, which can
limit overall performance.

To overcome these challenges, we propose an efficient lo-
cality monitoring mechanism to dynamically filter the access
stream on cache insertion such that only the data with high
reuse and short reuse distances are stored in the L1 D-cache.
Specifically, we present a design that integrates locality fil-
tering based on reuse characteristics of GPU workloads into
the decoupled tag store of the existing L1 D-cache through
simple and cost-effective hardware extensions. Results show
that our proposed design can dramatically reduce cache con-
tention and achieve up to 56.8% and an average of 30.3% per-
formance improvement over the baseline architecture, for a
range of highly-optimized cache-unfriendly applications with
minor area overhead and better energy efficiency. Our de-
sign also significantly outperforms the state-of-the-art CPU
and GPU bypassing schemes (especially for irregular appli-
cations), without generating extra L2 and DRAM level con-
tention.
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1. INTRODUCTION
Massively parallel, throughput-oriented processors such as

graphics processing units (GPUs) leverage high thread-level
parallelism to overlap long latency memory accesses with
computation. On-chip caches, especially L1 data caches (L1
D-caches) which were designed to improve the performance
of irregular workloads without programming scratchpads [2,
5, 4], remain critical to provide high-bandwidth low-latency
data accesses. However, the limited L1 D-cache capacity
becomes a performance bottleneck as the working set of
the massively threaded applications often exceeds the L1
D-cache capacity, causing severe thrashing [24, 15]. More
importantly, large number of the incoming memory requests
with no or low reuse may evict cache lines with high reuse,
resulting in cache pollution. In this case, even advanced
cache replacement policies (e.g. RRIP [14] and SHiP [29])
are ineffective to address such contention problems on GPUs
[24]. Furthermore, the massive multithreading on GPUs can
cause the unpredictability of cache locality and various re-
source congestion (e.g. MSHR allocation failures) [5, 16].

To alleviate contention and avoid early eviction, cache by-
passing schemes have been proposed for CPUs [19, 12, 13,
18] and GPUs [15, 30, 31, 27]. The CPU-based approaches
are usually designed for last level caches (LLCs), where data
locality is already filtered by previous level(s) of caches. But
the poor locality of GPU workloads and resource congestion
impose difficulty for them to make robust predictions and
they often increase L2 and DRAM level traffic [11] (Section
6.1(a)). GPU-based bypassing schemes are generally condi-
tional/reactive bypassing (e.g., bypass upon unavailable re-
sources [15] or coarse-grained bypassing on warps or thread-
blocks [30, 31, 27]) which can incorrectly bypass accesses
with good reuse and cause memory pipeline stalls (Section
6.1(a)). None of the above approaches is a preventive scheme
considering the uniqueness of the data locality of GPU ac-
cess streams, which often contain a non-trivial number of
requests with no/low reuse and/or distant re-reference in-
tervals caused by frequent bursts of references (Section 3.2).



Moreover, a fully-adaptive bypassing scheme is required to
maintain the efficiency of workloads with good caching be-
havior, which is often neglected by previous approaches [24,
15, 12, 11] (Section 6.1(b)).

In this paper, we propose a locality-driven dynamic by-
passing design that automatically filters the access stream
on cache insertions based on reuse frequency of accesses, so
that only the data with high reuse and short reuse distances
[12] are stored in the L1 D-cache. For area and energy effi-
ciency, we propose to decouple the tag and data stores of the
existing L1 D-cache and integrate the locality filtering ca-
pability into the tag store through simple and cost-effective
hardware extensions. Our design uses separate replacement
policies to manage the decoupled tag and data store, such
that the reuse information of the program and temporal lo-
cality of the data lines can be preserved. Overall, this paper
makes the following contributions:

(1) Through a detailed analysis on the reuse characteris-
tics of GPU workloads, we identify the key inefficiency of
the conventional thrashing and stall-prone GPU cache de-
sign: irregular cache-unfriendly memory accesses resulting
in contention at various cache levels.

(2) We propose a locality-driven dynamic bypassing solu-
tion that is cost-effective and requires no profiling or runtime
prediction. We demonstrate that our design can significantly
improve the performance and energy efficiency of irregular
cache-unfriendly workloads, while maintaining the efficiency
for regular workloads with favorable caching behavior.

(3) Our design achieves significant performance improve-
ments over the baseline caches and outperforms the state-of-
the-art CPU (PDP-best [12]) and GPU (MRPB [15]) cache
bypassing schemes, by dramatically reducing various types
of cache contention without generating extra L2 and DRAM
traffic.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses the background, the GPU memory hierar-
chy in particular. Section 3 dissects the effectiveness of L1
D-caches for various workloads. Section 4 details our new
design. Section 5 presents the experimental methodology.
The evaluation of our design is shown in Section 6. Section
7 discusses the related work and Section 8 concludes.

2. BACKGROUND
2.1 Baseline Architecture

This work proposes microarchitectural improvements to
a massively parallel processor such as GPU architectures.
Such processor consists of multiple SIMD cores, also known
as streaming multiprocessors1 (SMs) in NVIDIA GPUs or
Computing Units in AMD GPUs. As shown in Figure 1,
each SM follows the single instruction-multiple threads (SIMT)
execution model by fetching and decoding each instruction
for a group of threads called a warp. All threads in a warp
execute in lock-step in the SIMT backend. In the issue
stage, a warp scheduler will select one of the ready warps
to issue into the computing/memory pipeline stage. GPUs
provide multiple types of memory units to improve the mem-
ory bandwidth such as L1 D-caches and shared memory (or
scratchpads). Global memory and scratchpad accesses are
served through L1 D-cache and shared memory respectively.
Both L1 D-cache and shared memory utilize the same hard-
ware structure and the capacity can be configured through a
run-time API. While shared memory can be explicitly man-
aged by programmers, L1 D-cache is implicitly controlled by

1
Without specified mention, NVIDIA terminology will be used

throughout the paper to illustrate our work. However, the idea ap-
plies to a wide range of massively parallel architectures.
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Figure 1: Memory request handling in the baseline architecture.

hardware to exploit data locality. As GPU workloads with
irregular memory access patterns are becoming prevalent,
effective utilization of explicitly managed memory becomes
difficult. This in turn increases the importance of efficient
L1 D-cache designs. All the SMs are connected by an in-
terconnected network to the partitioned memory module,
each with its own L2 data cache and DRAM partition. To
save bandwidth [25], L1 is typically write through, with ei-
ther write-allocate [2] or write-no-allocate [5, 4], while L2 is
write back with write-allocate. Victim caches and hardware
prefetching are traditionally not enabled in GPUs [6].

2.2 Baseline Memory Request Handling
When a memory instruction is dispatched into the mem-

ory pipeline, the load store (LD ST) units will identify the
memory access type and dispatch it into different memory
units (shared memory, L1 D-cache, etc.). The requests for
global and local memory data from threads in the same warp
will go through the coalescing unit to generate as few L1
D-cache line-sized requests as possible. Then for these re-
quests, there are two possible paths depending on whether
an access is cacheable, as shown in Figure 1. For cacheable
accesses, the first path, which sends the memory requests
into L1 D-cache and is labeled as ‘L1 D-path’, is used.
On a cache hit, a request will be served by sending data
to the register file immediately. On a cache miss, the miss
handling logic will first check the miss status holding regis-
ter (MSHR) to see if the same request is currently pending
from prior ones. If so, this request will be merged into the
same entry and no new data request needs to be issued.
Otherwise, a new MSHR entry and cache line will be re-
served for this data request. A cache status handler may
fail on resource unavailability events such as when there are
no free MSHR entries, all cache blocks in that set have been
reserved but still haven’t been filled, the miss queue is full,
etc. If any of these events occurs, the memory pipeline will
stall and this request will retry every cycle until needed re-
sources are freed. Considering the small number of cache
lines and MSHR entries, these resources can be quickly oc-
cupied if all memory requests are diverted into L1 D-Path.

The second path is for un-cacheable accesses, such as
global memory accesses in NVIDIA’s Kepler architecture [4]
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Figure 2: L1 (right) and L2 (left) level contention study by in-
creasing their associativity and capacity. It clearly shows that the
major performance bottleneck resides at the L1 D-cache level for
CNF workloads.

(not cached in Kepler’s L1). It diverts the memory requests
to bypass the L1 D-cache (labeled as ‘Bypass Path’ in Fig-
ure 1) and directly sends requests through an interconnect
into the next level memory hierarchy. On the response fill
from the return queue, there are two paths to fill the data
correspondingly. If the original memory request follows the
L1 D-Path, then the response data will be filled into the
reserved cache line in L1 D-cache and the corresponding
MSHR entry is marked as filled (‘Fill Path 1’). Otherwise,
the data will directly write back into the register file (‘Fill
Path 2’).

Compared to the Bypass Path, the L1 D-Path low-
ers access latencies if requested data already resides in the
cache. However, memory accesses following this path may
incur high stall cycles for resource contention due to mas-
sive parallelism, and also thrash the cache by evicting out
the data lines that may be reused shortly. Ideally, an effi-
cient locality monitoring mechanism should exist to divert
memory requests with high data reuse into the L1 D-cache,
while other requests that have no or low data reuse will be
directed to the Bypass Path instead of contending on the
cache resources.

3. GPU CACHE INEFFICIENCY AND WORK-
LOAD ANALYSIS

App Name N-IPC Num Dynamic Insts Type Suite
PTF 1.36 7022693 CNF [9]
SD2 1.36 740966400 CNF [9]
NW 1.24 1617408 CNF [9]
SSSP 1.21 385881828 CNF [8]
LUD 1.17 5875200 CNF [9]
HS 1.05 109686484 CNF [9]
BH 1.04 7909748 CNF [8]

CFD 1.00 9308160 CI [9]
LFK 1.00 7516393326 CI [9]
GS 1.00 12648 CI [9]
FFT 1.00 104005632 CI [33]
MYC 1.00 26986736 CI [9]
PF 1.00 649231040 CI [9]

SD1 0.97 8281816 CF [9]
HT 0.55 8811310884 CF [9]
MM 0.54 58851328 CF [21]
BT 0.41 542310058 CF [9]
BP 0.23 190054784 CF [9]

Table 1: Application categorization based on cache bypassing im-
pact. CNF: Cache Unfriendly, CI: Cache Insensitive, CF: Cache
Friendly. IPC is normalized to the case of all taking L1 D-Path
(N-IPC). The selected applications include Particular Filter (PTF),
Srad2 (SD2), Needleman-Wunsch (NW), Single-Source Shortest Path
(SSSP), LU Decomposition (LUD), Hotspot (HS), Barnes-Hut (BH),
CFD Solver (CFD), Leukocyte (LFK), Gaussian Elimination (GS),
Fourier Transformation (FFT), Myocyte (MYC), PathFinder (PF),
Srad1 (SD1), Heartwall (HT), Matrix Multiplication (MM), B+Tree
(BT), and Back Propagation (BP).

To evaluate the efficacy of the GPU caches, we first char-
acterize a wide range of GPU applications (shown in Ta-
ble 1) covering various cache sensitivity and memory ac-
cess patterns (e.g., applications with highly irregular access
patterns such as BH and SSSP). These applications are se-
lected from multiple widely used benchmark suites (includ-
ing GPGPUsim benchmarks [7], CUDA SDK [3], AMD SDK
[1], Rodinia [9], and Lonestar suites [8], etc) and represent
production GPU codes which are optimized and hand-tuned
using explicitly managed scratchpad memory extensively.
We quantify how much performance improvement, which is
measured using normalized instruction per cycle (N-IPC),
each application can gain if all memory requests have taken
the Bypass Path compared to all taking the L1 D-Path
in Figure 1. This IPC improvement is shown in Table 1,
where the eighteen applications are sorted in descending or-
der. Applications whose IPC improvement is greater than 1
are classified as Cache Unfriendly (CNF), indicating the
current L1 D-cache management has detrimental impact
on their performance. Applications whose IPC values are
not impacted are classified as Cache Insensitive (CI), as
whether having a L1 D-cache or not has negligible effects
on their performance. The remaining applications whose
IPC improvement is less than 1 are Cache Friendly (CF):
workloads that perform better if all accesses go through L1
D-cache. Section 5 provides a detailed description of these
applications and the baseline architecture the results from
this section were collected from.

3.1 GPU Cache Inefficiency
The memory access stream of GPU workloads has two

characteristics: a mix of data requests with different reuse
frequencies and different reuse distances [12]. For instance,
in the Fermi architecture [5], incoming accesses will enter
into the L1 D-cache without being checked on whether they
have future reuse. All data accesses contend with each other
for limited cache resources, resulting in memory pipeline
stalls. To the other extreme, similar to the bypassing ap-
proach used in Table 1, Kepler [4] will bypass all global
memory accesses from L1, only handling register spills to
the local memory.

In general, there are three types of contention at the L1 D-
cache level: (a) Inter-warp contention: capacity misses.
Current GPU architectures (e.g. Fermi and Kepler) com-
monly have 16∼48 KB capacity of L1 D-cache [5, 4], but
the memory footprint of the applications is typically one to
two orders of magnitude larger, which causes severe thrash-
ing. Data blocks get evicted out frequently before any reuse
happens, especially when the reuse distance is long. More
importantly, memory requests with no reuse may evict cache
lines that have high reuse, resulting in cache pollution. (b)
Intra-warp contention: conflict misses. This is caused
by the concurrent threads within the same warp (32 threads)
accessing to the same cache set (current GPU L1 has much
lower set-associativity than 32). (c) Other resource con-
gestion. They include resource allocation failures from lim-
ited MSHRs and miss queue entires. These resources can be
quickly occupied and cause stalls if data requests come into
L1 without being filtered based on their reuse patterns.

To reduce the contention described above, we apply the
most direct optimization, which is increasing the capacity
and associativity of the L1 and L2 caches, and observe how
it affects overall performance. We intentionally increase the
cache associativity and capacity to a large value, which is
expensive and impractical to implement in real GPU cache
designs due to increased access latency, area, and power con-
sumption. Figure 2 shows several observations for the CNF
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applications, which encountered the most cache contention:
(1) Compared to the L1 D-cache, CNF’s performance is in-
sensitive to the capacity and associativity increase of L2,
which indicates that L2 is not the major performance bottle-
neck. (2) CNF’s performance can be improved by increasing
L1 D-cache’s size and associativity (to full associativity), but
it is mainly bounded by cache capacity. (3) Even with these
impractical cache configurations, the performance improve-
ments for some CNF applications are still not significant,
including NW, LUD, HS, and BH. These findings motivate
us to develop a cost-effective cache bypassing mechanism for
GPUs to maximally reduce the contention by only letting
the most useful data into the L1 D-cache.

The state-of-the-art bypass policy, protection distance pre-
diction (PDP) [12], has been proposed for CPU LLCs. This
technique applies a protection distance (PD) counter to each
cache line and uses it to time how many accesses are left for
this line to be protected. If PD = 0, this line is marked as
unprotected and can be replaced by the incoming accesses. If
there are no unprotected lines left, cache is bypassed. How-
ever, applying PDP-based approaches (static or dynamic)
to a GPU L1 D-cache can encounter several problems [11].
First, due to warp interleaving and resource congestion in
GPUs, as a hit-rate based scheme designed for single thread
processors, PDP may not improve the performance of CNF
applications because the hit rate does not directly correlate
to performance in GPUs (see Section 6.1(c)). Second, by
augmenting a cache line with a protecting distance, PDP
is susceptible to bypass the blocks with frequent data reuse
and short reuse distances, but keeps the staled blocks with
very long reuse distances for a protection interval (see Sec-
tion 6.1(d)), causing cache pollution. Third, many of the
CF applications shown in Table 1 have been optimized for
cache performance. Therefore, any request bypassing caused
by inaccurate PDP prediction can result in a significant per-
formance degradation (see Section 6.1(b)). Finally, it is dif-
ficult for PDP to predict applications with irregular memory
accesses, such as BH and SSSP (see Section 5 and 6.1(a)).

3.2 Impact of Applications On Performance
An application’s intrinsic memory access and reuse pat-

tern can also affect its performance. In this section, we use
the application characterizations from Table 1 to provide in-
sights in making design decisions for our proposed approach.

In Table 1, the CI Category contains of six applications
where enabling the L1 D-cache has no performance impact.
We categorize the reasons behind such insensitivity into four
typical scenarios: (1) workloads have no read access from
the global memory, such as LEK and CFD; (2) workloads
have the characteristics of intensive branching and very lit-
tle memory access, such as MYC and GS, which also have
very low IPC due to branch divergences; (3) streaming work-
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loads, such as FFT, in which the global memory access hap-
pens only for loading the input signal sets into the shared
memory; (4) workloads have high memory level parallelism,
such as PF, where the critical path is determined by the
first memory access miss. Because of their performance in-
sensitivity to the L1 D-cache, the CI applications are not
the focus of our study. However, we include them to prove
the robustness of our proposed design.

The cache sensitive workloads include both CNF and CF
applications. For CNF workloads, bypassing all memory re-
quests from L1 D-cache improves the performance of NW,
PTF, and SD2 by 24.2%, 36.8% and 36.6%, respectively.
This is a direct result of the low cache performance across
the CNF workloads, as shown in Figure 5(a). Compared
with the CF applications, the overall cache hit rate in CNF
is much worse. For example, the hit rates for NW and HS
are smaller than 1%. LUD has the highest hit rate in CNF
(36.8%). However, 62.8% of its hits are write hits, which
are useless due to the write evict policy in baseline GPUs
[5, 4]. On average, the cache hit rate for CNF workloads
is only 8.9%, while the average for the CF workloads is as
high as 55.4%. To understand why CNF workloads have
such low cache performance, we evaluate the data locality
of each application and quantify the data reuse rate of their
memory stream in each SM. As shown in Figure 5(b), CNF
workloads have a larger portion of data requests without any
reuse, 53.2% on average compared to only 7.9% in the CF
category. To analyze the characteristics of the reuse in the
CNF workloads, we present the reuse distance histograms of
these workloads in Figure 4. As shown in Figure 4, the reuse
distances are relatively high when the cache block size is
128 bytes (baseline architecture). Such large reuse distances
(>128) present a challenge for the limited number of blocks
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(i.e., limited capacity) in the L1 D-cache. Also, Figure 3
shows that memory requests for the majority of CNF appli-
cations (other than PTF and SSSP) are only reused less than
three times. These data accesses with no or low reuse cause
two problems: (1) they will contend with accesses with high
reuse for resources and resulting in the average stall time
for CNF workloads as high as 48.04% of the total execution
time; (2) such accesses without any reuse are scattered in-
side the memory access stream, which indirectly increases
the reuse distance of accesses with reuse. Finally, without
accurate locality information, deciding which memory re-
quests should enter L1 D-cache is difficult for applications
with irregular access patterns (e.g. SSSP), which has been
neglected by the previous studies [11, 15, 24, 30].

4. DESIGN METHODOLOGY
The focus of this work is to design efficient bypassing for

a GPU L1 D-cache that can dynamically divert memory re-
quests based on reuse patterns. As shown in Figure 1, there
are two design points available to implement such mech-
anism: an independent hardware component between the
coalescing unit and L1 D-cache ( 1 in Figure 1), and the
existing L1 D-cache integrated with the locality filtering ca-
pability ( 2 in Figure 1). We choose 2 over 1 because
both structures consist of entries that can be identified as
tags (e.g. L1 tag store) so such redundancy in 1 will in-
crease access latency by performing additional tag checks
per access. Also, 2 will likely have smaller area and higher
energy efficiency. Accordingly, we propose to decouple the
tag and data stores of the existing L1 D-cache and integrate
the locality filtering capability into the tag store through mi-
nor hardware expansions. In this way, we can leverage the
management of the independent tag store to control which
memory requests can allocate data lines in the data store.
By taking advantage of the tag store’s smaller entry size
(8∼9 bytes) compared to that of the data store (128 bytes
per line), additional entries in each set can be added in the
tag store with lower overhead such that it can capture the
locality information of a working set larger than the data
store size. We name our new design ”Decoupled L1D”
and its diagram is shown in Figure 6.

4.1 Decoupled L1D: Structure
As shown in Figure 6, the tag and data store in the De-

coupled L1D cache are independent structures although we
choose to let them have the same number of sets to simplify
the management. The decoupled tag store has expanded the
original tag store with more entries in each set, and each tag
entry has also been padded with more fields. In addition to
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the original fields, including the address tag, a status field,
and a LRU counter, the new tag store entry now contains
a Reference Count (RC) field and a Position field. The RC
field (6-bit) holds the reference frequency (reuse) accumu-
lated for the address. The Position field (2-bit) connects a
tag store entry with a data line in the data store using a
pointer to record the data line’s position. Once a data line
in the data store is allocated, the corresponding tag store
entry needs to set the Position field accordingly. The new
data store in our Decoupled L1D has the same structure as
the original one, except that each set has added one field
named Free Line, indicating how many free lines are avail-
able for use in the set. This field will be updated upon a
new data line allocation or an eviction.

4.2 Decoupled L1D: Operations
Instead of having uniform operations in the current L1

D-cache design, our Decoupled L1D enables separate sets of
update and replacement logic for the tag and data stores.
Also, we add a new cache request status bypass into the ex-
isting four statuses, i.e., hit, hit pending, miss, and reserva-
tion failed, of a L1 D-cache request. Figure 6 and 7 describe
how the Decoupled L1D operates.

In the initial architectural status, each tag-store entry and
data line is cleared (Position field is set to invalid). The
Free Line field is initialized with the associativity size of
each set in the data store. On a probe miss of the tag
store, a new tag entry is allocated, and a bypass status is
returned, as shown in Figure 7. A bypass will not trigger the
cache miss handler but instead it will directly take the By-
pass Path (Figure 6) without allocating a line in the data
store. If there are no free tag entries in that set, the entry
with the smallest RC is taken as the replacement victim. In
other words, the LFU (Least Frequently Used) replacement
policy is used for the decoupled tag store. Since the way
to update RC can significantly impact the lifetime of a tag
entry, we apply a customized dynamic aging2 scheme to the
RC fields of the tag entries in the following scenarios: upon
an allocation or eviction in the data store, the RC values of
all the corresponding tag entries in that set (not including
the allocated or evicted tag entry) are reduced by 1. Thus,
the RC values of stale entries (i.e. entries with no future
reference or long re-reference interval that still remain in the
tag store) are reduced and eventually become small enough
to be evicted out of the tag store.

On a probe hit in the decoupled tag store, there are
two different operations depending on whether the Position

2
We have explored several aging schemes (e.g. bit-shifting RC only

upon evictions in the data store) but do not report them here due to
space limitations.



field has pointed to an allocated data line. If the field has
been set with a data-store line position, this memory request
will proceed as a cache hit or cache hit-pending, similar to
the original L1 D-cache. Otherwise, it will increase the RC
value of the tag entry and then compare it with a locality
threshold, which is pre-defined based on workload character-
istics so that the data blocks with no or low reuse will not be
inserted into the L1 D-cache. The subsequent program flow
after the comparison is shown in Figure 7. If there are no
free data lines in a selected set upon a data-line allocation,
the data store’s replacement policy (e.g. LRU, SHiP, RRIP,
etc) will be triggered to find the victim line for eviction.
Then, the RC value of the corresponding tag entry is set to
0 and the rest of the tag entries in the set will be aged. This
ensures that the temporal locality of the data lines is pre-
served in our design by using the replacement policy from
the original L1 D-cache. The associated parameters intro-
duced in this section (including the number of tag entries,
the set associativity, and the locality threshold) have direct
impact on the area, power and performance of our design.
We explore them in Section 6.2.

Fairness: For a fair system, the decision on allocating
and replacing tag entries must closely match the data
reuse frequency and distance. In our design, the local-
ity of the program is preserved. If a data block has high
reuse, its RC will continue to accumulate and eventually
pass the threshold to allocate a new line in the data store
for capturing subsequent reuses. Also, the state-of-the-art
cache replacement policies (e.g. LRU, RRIP, etc) are used
in the data store to help evict the tag entries (dynamic ag-
ing) that exhibit a distant re-reference interval caused by
frequent bursts of references. In this way, the tag and data
stores are circulated in a sustainable way with minimum
number of stale tag entires generated.

4.3 SM Dueling
Our proposed design aims to improve performance of CNF

applications. For CF applications, whose performance ben-
efits greatly from utilizing the L1 D-cache, a locality thresh-
old on RC may delay the data to be stored in the cache for
reuse. Therefore, we can disable the RC checking for CF
workloads by setting the locality threshold to zero, i.e., all
accesses go to the L1 D-cache. For our decoupled tag store,
the newly added tag entries can be power gated to reduce
the energy overhead. To decide which mechanism to use for
an application during execution, we employ a simple, but ef-
fective SM dueling technique [23] based on the insights from
Figure 5a. Assume that we have a GPU with N SMs (N≥2).
Initially, we assign SM 0 to use our new design and SM 1 to
use the original L1 D-cache. The remaining SMs can choose
to use either type. At a pre-defined time interval (see Table
3), SM 0 and SM 1 will compare their cache miss rates: if
SM 0 has a higher cache miss rate than SM 1, then all the
SMs will start using the original L1 D-cache; otherwise all
the SMs will enable the new design.

5. EXPERIMENTAL METHODOLOGY
Simulation Environment: Our proposed design is eval-

uated using GPGPUsim V3.2.2 [7], which is a widely used
cycle-accurate simulator for GPU architecture research. The
baseline architecture is modeled based on a generic NVIDIA
Fermi GPU [5] and its configuration is shown in Table 2. Our
new design can be similarly applied to other recent GPU ar-
chitectures as well, such as NVIDIA Kepler and Maxwell [4].
The design choices for our Decoupled L1D (based on a 16KB

SIMT Core (SM) 15 cores, SIMD width=32, 1.4GHz,
5-stage pipeline

Max/SM 1536 threads, 32768 registers, 48 warps,
32 MSHRs with 256 entries

L1 Cache/SM 16KB/core, 128B line, 4-way assoc,
1-cycle hit latency

Shared Mem/SM 48 KB; 32 banks; 3-cycle latency;
1 access per cycle

Unified L2 Cache 768 KB, 128KB/bank, 6 banks,
128B line, 16-way assoc

DRAM 6 memory channels,
BW: 48 bytes/cycle, 1.4 GHz

DRAM Schedule Queue Size = 16 and Out of order (FR-RCFS)
Warp Scheduling Policy Greedy then oldest (GTO)

Table 2: Baseline architecture configuration.

Decoupled
L1D

Tag Store Data Store
#entries 256 #lines 128
structure 32 set, 8-way 32 set, 4-way

replacement
policy

LFU
dynamic aging

LRU, SHiP,
RRIP, etc.

threshold 2 N/A

SM Dueling

Initially, SM0– new design; SM1–baseline cache;
the rest SMs follow SM1.
Time interval: 500 cycles.

Miss rate difference threshold: 10%.

Table 3: Configurations of our proposed Decoupled L1D.

L1 D-cache) is shown in Table 3, which will be validated in
Section 6.2 (design space exploration).

Benchmarks: All 18 applications used in this study are
shown in Table 1, which represents a wide range of opti-
mized real-world GPU applications. Since shared memory
is extensively used, the performance tends to be less sensi-
tive to the L1 D-cache, which makes them the perfect candi-
dates to show whether our proposed design can still improve
performance over optimized codes. We evaluate 14 work-
loads from Rodinia Benchmark [9] with their default inputs.
We include two additional applications: Matrix Multiplica-
tion (MM), a highly efficient version using tiled cache [21];
and Fast Fourier Transformation (FFT), an optimized ver-
sion fully utilizing on-chip memory [33]. We also include
two widely-used workloads: Barnes Hut N body Simulation
(BH) and Single-Source Shortest Paths (SSSP) from Lon-
estar GPU suite [8], both of which exhibit irregular mem-
ory access patterns. BH exhibits memory irregularity from
data-dependent memory accesses, and SSSP has access ir-
regularity from the memory traversing in a recursive itera-
tion. In our experiments, all workloads run to completion
on the simulator.

6. RESULTS AND ANALYSIS
6.1 Overall Performance Evaluation

To evaluate the performance of our proposed Decoupled
L1D cache design, we compare it with several related schemes
and show the results and detailed analysis. As discussed
previously, Decoupled L1D uses state-of-the-art replacement
policies (e.g. LRU, RRIP [14], etc.) in the data store to pre-
serve data lines’ temporal locality. To make a fair compar-
ison, we use the same cache replacement policy (a version
of LRU implemented in GPGPUsim) as the basis for all the
following schemes:

BL: Baseline Architecture. This configuration is shown
in Table 2. All the global/local memory accesses will be
inserted into the L1 D-cache. If resources are unavailable,
the memory pipeline is stalled. This architecture favors CF
workloads (Table 1).

BALL: Bypass all memory accesses from the L1 D-cache.
All the global/local memory accesses will be diverted into
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Figure 8: Performance comparisons of various cache manage-
ment and bypassing schemes for the CNF workloads.

the Bypass Path (Figure 1). L1 D-cache is disabled. BALL
favors CNF workloads (Table 1).

Profiled-BYPASS : During a profiling run, we record the
reference frequency for each data block by going through
every coalesced memory request before they hit L1 D-cache.
This profiled information is then used to direct fine-grained
L1 bypassing (acted as a software filter) in a new run. This
static approach is used to evaluate performance benefits that
can be achieved when the reuse information of a workload is
already available. Applying such an approach for bypassing
has three major downsides: (1) it is dependent on the input
and thread-configuration; (2) memory traces could be non-
deterministic for each run; and (3) applying bypassing in
a new run based on the previous profiling information may
change the completion time of different thread blocks (TBs)
and their associated dispatch order.

We implemented three types of profiling-based filters: (1)
a per SM local filter recording the intra-SM data reuse (lo-
cal), (2) a kernel-level global filter recording the inter-SM
data reuse (global), and (3) a combined local+global filter.
All three filters have unlimited entries to store workloads’
memory addresses and their reference counts. Different lo-
cality thresholds from 1 to 16 were tested for the best per-
formance. Among them, the global+local filter achieved the
best average performance over BL. The reason is that with
bypassing enabled, the thread block execution order is al-
tered from the profiling run and the inter-SM reuses may
become intra-SM reuse. From this point on, we will only
use the global+local filter (named “Profiled-BYPASS”)
for comparisons with other mechanisms. The profiling costs
are not included in the figures of this section.

MRPB : The state-of-the-art GPU dynamic bypassing ap-
proach [15]. When any of the resource unavailable events
happens that may lead to a pipeline stall, the memory re-
quests are bypassed from the L1 D-cache until resources
are available. MRPB includes memory request reordering
queues, which are also modeled in our experiment.

PDP-best : The state-of-the-art CPU bypassing approach
for LLCs, as discussed in Section 3.1. Both static and dy-
namic PDP approaches have been proposed in [12], in which
the performance upper bound of PDP is achieved by the
static PDP approach. Thus we compare our design to PDP-
best, which is the best performed static PDP-bypass with
the optimal PD specific to each workload (by exhaustively
searching all possible PDs).

Decoupled L1D : Our design as described in Section 4.
Based on the experimental results, we make the following

observations and analysis:
(a) Performance Comparisons For CNF Workloads:

Figure 8 shows that for CNF workloads our proposed De-
coupled L1D achieves the highest performance, up to 56.8%

and an average of 30.3% performance improvement (using
the geometric mean) over BL. The performance comparisons
among the different schemes highlights the importance of
cache bypassing for GPUs. BL (all memory accesses go
into the L1 D-cache) performs the worst because without
any cache insertion management, memory requests with lit-
tle to no reuse are diverted into the L1 D-cache, causing
cache pollution and congesting the memory pipeline. BALL
(all memory accesses bypass L1 D-cache) improves the per-
formance for CNF workloads due to fewer memory pipeline
stalls, however this mechanism completely disables the cache
and overlooks data reuse in the memory access stream. As
shown in Figure 5b, there are still over 40% of the data ac-
cesses that have reuse for the CNF workloads. MRPB im-
proves CNF’s performance over BL by a geometric mean of
19.2%, only bypassing when a resource (cache lines, MSHR,
miss queue entry, etc.) unavailable event occurs, in order
to reduce resource contention. The disadvantage of MRPB
is that it does not consider any data reuse pattern in the
access stream. In other words, MRPB could still let data
with no or low reuse be cached and bypass data with high
reuse. In comparison, our proposed Decoupled L1D enables
a fine-grained and effective bypassing based on reference
count, which can better capture the data reuse in an access
stream. Figure 8 shows that our design outperforms MRPB
by up to 36% and an average of 11% for CNF workloads.
On average, our dynamic approach also achieves better per-
formance than the Profiled-BYPASS. For some CNF work-
loads like BH, we even observe an up to 11% performance
improvement, without even counting the profiling overhead
in Profiled-BYPASS. This proves that our dynamic method
is more flexible and practical than the profiling-based by-
pass, without encountering profiling overheads, inaccurate
requests diverting, and the potential nondeterministic ef-
fects.

Comparing with PDP-best, for the irregular CNF work-
loads like BH and SSSP, our Decoupled L1D outperforms
PDP-best by 8% and 11%. For PTF, which has long reuse
distances and burst access patterns, Decoupled L1D outper-
forms PDP-best by 10.33%. For the regular CNF applica-
tions with very low reuse such as HS, NW, and LUD (Figure
3), our design performs as well as PDP-best. Based on [5, 4],
the primary reason for creating a GPU L1 D-cache is for im-
proving the efficiency of irregular workloads processing, since
shared memory cannot address the irregularities at runtime.
We argue that the essential goal of our design is to explore
the potential efficiency improvement for irregular workloads
using bypassing. Unlike the hit-rate based PDP approaches
constrained by the protection distance (discussed in Section
3.1), our Decoupled L1D monitors the dynamic reuse fre-
quency and reuse distances using the decoupled tag store,
which better captures the reuse patterns for irregular appli-
cations. Additionally, with the customized dynamic aging,
stale tag entries in the tag store can be evicted out timely
to avoid cache pollution.

(b) Performance Comparisons For CF and CI Work-
loads: CF applications, which have favorable caching be-
havior and regular control, can suffer greatly from inaccurate
bypassing due to disrupted data locality. In Figure 9, signif-
icant performance loss compared to BL has been observed
for BALL (up to 77%), MRPB (up to 19%), and PDP-best
(up to 30%). On the contrary, we do not observe perfor-
mance loss for our design because SM Dueling determines
if the new management scheme fits well with the workload
pattern and dynamically turns bypassing on or off in all SMs
(see Section 4.3). For CI workloads, as expected, our design
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Figure 9: Performance comparisons of various cache manage-
ment and bypassing schemes for the CF workloads.
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Figure 11: The reuse distance histogram of L1 access stream of
PTF (a case with long reuse distance shown in Figure 4) shaped
by different designs. The reuse distance is computed at the cache
access level instead of cache structure level (e.g., the reuse dis-
tance for access pattern ABCA is 2).

along with other L1 D-cache management schemes has no
effect on performance (with an average variance of 0.03%
over the baseline performance).

(c) Hit Rate Improvement: Figure 10a shows that
Decoupled L1D can significantly improve the L1 D-cache hit
rate for CNF workloads over BL by an average of 38.5%. Our
design also outperforms the hit-rate based scheme PDP-best,
with significant improvements for SD2 (71%), LUD (24%)
and SSP (13%). This also confirms that hit rate is not di-
rectly correlated to performance (Figure 8) on GPUs due
to warp interleaving and resource congestion. Meanwhile,
MRPB only achieves a 17.4% average hit rate due to its
coarse-grained bypassing and lack of consideration for data
locality. Furthermore, both NW and HS have negligible hit
rates (<1%) across different mechanisms, caused by low ref-
erence counts (RC ) for their memory requests (either 1 or 2
according to Figure 3).

(d) Shaping Cache-Friendly Memory Access: Using
the CNF workload PTF as an example, Figure 11 shows that
our design can shape a more cache-friendly memory access
stream than other approaches. First, the data accesses that
have a long reuse distance and therefore low reuse frequency
will not be inserted into the L1 D-cache. As shown in Figure
11, the accesses with reuse distances of 512, 1024, and 2048
(such reuses require a cache with the capacity of 2048∗the
128 cache line size = 256kB) will be bypassed in our design
to avoid cache pollution. Second, our design can reduce the
reuse distance of data accesses by filtering out unfriendly
memory accesses. For instance, the percentage of the reuse
distance ‘1’ has been significantly increased by our design
and the overall reuse distance range is shrunk to better fit
the limited cache capacity.

(e) Alleviating Various Contention: Through our
Decoupled L1D, the footprint of the filtered L1 access stream
for CNF applications is dramatically reduced by an average
of 63.4% compared to the baseline. This in turn reduces
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Figure 12: Impact of cache replacement policies on performance
of CNF workloads on GPUs.

L1 capacity and conflict contention. Since the bypassed
requests do not compete for L1 MSHRs and miss queues
(Figure 1), the stall cycles due to reservation fails have also
been significantly reduced by an average of 84.5% for CNF
workloads.

(f) DRAM And L2 Level Traffic After Bypassing:
Figure 10b and 10c show the L2 and DRAM traffic after
using various bypassing mechanisms. In Figure 10b, our
dynamic bypassing mechanism encounters the least amount
of traffic to L2 (least pressure to NoC). The same obser-
vation can be made for DRAM traffic, shown in Figure
10c. Also, for the two irregular applications BH and SSSP,
DRAM traffic from PDP-best is much higher than our de-
sign, which can result in resource congestion. This makes
applying PDP approaches on GPUs less attractive because
it requires warp throttling techniques to accompany PDP
bypassing (e.g., the design in [11]) to be effective for irreg-
ular workloads. However, warp throttling can significantly
reduce parallelism and subsequently reduce overall perfor-
mance, which our design does not suffer from.

(g) Impact of Cache Replacement Policies On Per-
formance: Advanced replacement policies such as RRIP
[14] and SHiP [29] have been proposed to amortize cache
contention in CPU LLCs. Although RRIP and SHiP can re-
duce cache contention, the blocks with long reuse distances
are still brought into the cache albeit in the LRU position.
This is less a problem in CPU LLCs but is problematic for
GPU L1 D-cache. Figure 12 shows the performance com-
parison of CNF workloads running on Baseline+LRU, Base-
line+RRIP, and Decoupled L1D+ LRU. We can easily ob-
serve that the replacement policies have little performance
impact on CNF workloads. This is because unlike the CPU
LLCs, GPU L1 D-cache has a much smaller cache associativ-
ity and capacity. Bringing in data with long reuse distances
may evict more data with good locality. More importantly,
without bypassing, all the L1 D-cache misses compete for
limited cache resources (e.g. MSHRs and miss queue), re-
sulting in serious resource congestion. Therefore, an efficient
bypassing strategy such as ours is very necessary for GPUs,
no matter which cache replacement policy is applied.

6.2 Design Space Exploration
Decoupled L1D tag store’s entry size: In the de-

coupled tag store, there are two types of entries based on
their Position field (Figure 6 in Section 4). The entries with
their Position set to valid are those that have already been
connected with a data-store line position (named commit-
ted entries) and the rest are those that are competing for
allocating a data line in the data store (named candidate
entries). The lower bound number of the tag entries should
be larger than the number of cache lines. Otherwise, some
data cache lines are wasted. A larger size of tag entries can
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(b) Off-chip L2 accesses per thousand in-
structions for various designs, representing
L2 level traffic.
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Figure 10: Cache performance (hit rate) and memory traffic caused by bypassing in various designs.
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Figure 13: Design space exploration for our proposed decoupled L1 D-cache for GPUs. The design choices match Table 3.

accommodate more candidate entries with a longer reuse
distance. However, if the size of tag entries is too large, it
will lose the sensitivity on reuse distance and cause cache
pollution. For example, at the entry size 384, there are at
least 256 entries that can be allocated for candidate entries
since there are 128 cache lines (Table 2). If an entry has
burst access pattern with reuse distance longer than 128, it
can still stay in the tag store and may evict out other entries
with short reuse distance by allocating lines in data store,
causing cache pollution. Base on the results shown in Figure
13a, 256 entries should be used as the entry size in the tag
store.

Decoupled L1D tag store’s associativity: Figure 13b
presents the effect of varying the tag store’s associativity of
the decoupled L1D on performance. The expanded tag store
will record the reuse frequency of the incoming memory ac-
cesses and the size of way per set will affect how long an
entry can reside in the tag store. When the number of ways
is small, it may thrash the tag entries (that compete for allo-
cating data lines) frequently due to high contention. When
the number of ways is large, it can preserve the entries with
a longer reuse distance. Our simulation results show that
the 16-way design point can achieve only a 2% performance
improvement over the 8-way with doubled size of the tag
entries. Therefore, we select 8-way because it provides the
highest performance per unit area.

Reference Count (RC)’s locality threshold selec-
tion: The RC field and locality threshold are discussed in
Section 4.2 as part of our new tag store design. Figure 13c
shows the effect of varying the values of the locality thresh-
old on performance. The majority of our CNF benchmarks
achieve the highest performance at the threshold value of
2 (or near the highest) due to their low data reuse pattern
shown in Figure 3. Thus, we set the locality threshold value
to 2 in our design. In this work, we did not implement an
online system for determining the value of the threshold for
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Figure 14: The effectiveness of our design on the baseline L1 D-
cache with different capacities. All data is normalized to a 16KB
baseline cache.

individual workloads because cache unfriendly workloads do
not exhibit high variation for this design point.

6.3 Sensitivity to L1 D-cache Sizes
Figure 14 shows the sensitivity of our design on various L1

D-cache sizes. From the performance comparisons between
the baseline caches and our approach, we have two obser-
vations: (1) For every cache size we studied, our design has
shown performance improvements over the baseline, even at
a larger cache size (128KB). With the increasing cache size,
the performance improvements of our design over the base-
line do not increase as rapidly. This is because smaller cache
sizes are more sensitive to contention caused by large cache
footprint while bigger caches can accommodate larger work-
ing sets and accesses with longer reuse distance. Also, for
a workload, if the working set fits in the cache already, fur-
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Figure 15: Performance of our design with various warp schedul-
ing policies, normalized to pure GTO performance.

ther increasing the cache size has no performance benefit.
(2) Even a 16KB Decoupled L1D can achieve the average
performance close to a 128KB baseline L1 D-cache, which
indicates that our design can significantly improve GPU per-
formance without incurring higher area overhead.

6.4 Sensitivity to Warp Scheduling Policies
Prior sections use the Greedy-Then-Oldest (GTO) warp

scheduling policy for experiments. Figure 15 shows the sen-
sitivity of our design to various warp scheduling policies.
Loosely Round Robin Scheduler (LRR) is oblivious to the
access locality while GTO outperforms it by preserving the
intra-warp data locality. The two-level scheduler (2LEVEL)
proposed by Narasiman et al.[22] exploits inter-warp data
locality by scheduling groups of warps (called FG) together
to ensure different groups touching long-latency memory ac-
cesses at different times. However, 2LEVEL still performs
worse than GTO. Rogers et al.[24] found that performing
inter-FG in round-robin would destroy intra-warp locality of
old warps, which however can be captured by GTO. Figure
15 highlights that improving the scheduling policy can in-
crease performance by reducing the inter-warp contention.
Our design complements it by further reducing the intra-
warp contention (e.g., conflict misses & MSHR reservation
fails), which cannot be addressed by any warp scheduler [15].
Therefore, our design can achieve further performance gains
with different warp scheduling policies.

6.5 Hardware Cost And Energy Efficiency
We evaluate the hardware cost and energy efficiency of

our Decoupled L1D design using CACTI 6.5 [28].
Hardware Cost: The major source of area overhead for

supporting the SRAM-based Decoupled L1D comes from the
expanded tag store. We didn’t change the bandwidth and
number of ports in the Decoupled L1D and we assume 1
additional cycle for the extended tag-store probe. However,
this additional latency is hidden by the thread-level par-
allelism, similar to the additional buffer latency described
in [15]. Each tag has two additional fields, one for RC (6
bit) and the other for Position field (2 bit). With the ex-
panded tag entries (256), the total area of Decoupled L1D is
estimated as 0.244 mm2 for the entire 15-SM system using
45nm technology, which is 0.008mm2 more than the original
L1 D-cache. Such additional area represents approximately
0.02% of the GTX480 area [5], which is also a 15-SM system
implemented in a 40nm technology. Other miscellaneous
overheads such as the 2-bit per set ‘Free Lines’ counter in
Decoupled L1D are negligible in comparison.

Energy Efficiency: Since our design is a simple tag store
extension to the existing L1 D-cache, it does not require
a large amount of energy-consuming cache logic circuitry.
From the baseline L1 D-cache to Decoupled L1D, the dy-
namic read energy per access and total leakage power in-

creases by 0.002 nJ and 1.7 mW respectively. Such small en-
ergy overhead can be disregarded compared to the substan-
tial energy improvements from our design by significantly
reducing L1 cache misses (by up to 80% for SSSP) and off-
chip (L2+DRAM) memory accesses. Specifically, the three
CNF workloads with the most energy reduction are PTF
(10.4%), BH (14.7%) and SSSP (11.4%).

7. RELATED WORK
CPU Cache Management: Prior studies have looked

into optimizing LRU-based cache replacement policies for
better performance, such as PiPP[32], RRIP[14] and SHiP[29].
However, due to the small cache capacity and massive par-
allelism in GPUs, even the most advanced replacement poli-
cies cannot address their cache contention problems [24].
Our locality-driven dynamic bypassing design aims to de-
cide if a memory access should even be inserted into the
cache, in order to reduce cache contention. Our approach
is complementary to these cache replacement optimizations
and in fact they are applied to preserve the temporal local-
ity of the cache lines in our design. There also have been
some work [19, 12, 13, 18] proposed for CPUs on cache by-
passing, which are usually designed for LLCs, where data
locality is already filtered by previous level(s). But the poor
locality of GPU workloads imposes difficulty for these ap-
proaches to make robust predictions for L1 D-cache (where
locality is unfiltered). Our approach is specifically designed
for throughput-oriented architectures like GPUs and it out-
performs the state-of-the-art CPU bypassing approach PDP-
best [12] for both CNF and CF workloads, especially for
irregular applications. V-Way cache [23] manipulates data
store to enable global data replacement. On the contrary,
our design focuses on integrating locality filter into the L1 D-
cache for bypassing by using an expanded tag store to trace
the reuse frequency of accesses, with significantly different
structures and operations.

GPU cache management: Previous work [22, 24, 17,
20] has made efforts on improving cache performance by
changing the warp scheduling policies. For instance, CCWS
[24] dynamically throttles active warps to avoid cross-warp
contention by using a victim cache tag array. However,
warp schedulers can neither address intra-warp contention
nor eliminate cache pollution that is extensively caused by
caching “unfriendly” data. Furthermore, warp throttling
methods can reduce parallelism for processing memory re-
quests and subsequently limit the resource utilization. MRPB
[15] designs a FIFO queue for reordering memory requests
in order to reduce intra- and inter- warp contention. It
also uses a simple bypassing mechanism, which only by-
passes when intra-warp contention occurs upon unavailable
resources (e.g. MSHR reservation fails). More importantly,
it does not consider any data locality of the access stream,
which results in incorrectly bypassing accesses with good
reuse. In contrast, our design aims to only store the data
with high re-references and short reuse distance to maxi-
mally reduce cache pollution and resource contention. As
shown in Section 6.1, for both CNF and CF workloads, our
design outperforms MRPB significantly, which outperforms
CCWS [24] and [22]. Work [11] directly applies a dynamic
PDP approach (runtime best-effort prediction using hard-
ware sampling) on GPUs for L1 bypassing and uses warp
throttling if contention at L2 and DRAM level are gener-
ated by PDP. Our efficient design outperforms PDP-best
(exhaustively search for the best PD) for both CF and ir-
regular CNF applications without increasing L2 and DRAM
level traffic. Xie et al. [31] analyzed which global-memory



loads should be cached at compile time and chose a subset
of thread blocks to use the cache at runtime. In [27], the
program counters (PCs) of memory instructions are used to
make a cache-bypassing decision. In comparison, we rely
on memory address to drive our dynamic cache bypassing.
As GPU kernels are relatively short, the working set of a
memory access instruction can be relatively large, especially
considering the same PC in all the thread blocks. Therefore,
the instruction-level bypassing [31, 27] is more coarse-grain
and may lose the opportunity of exploiting data reuse at
memory address granularity.

Compiler [30, 16] and software level [10, 26] techniques
were also proposed to improve GPU cache performance.
Compiler-driven mechanisms [30, 16] depend heavily on in-
puts and profiling runs. Although they can be effective to
optimize cache performance for regular applications, they
cannot predict the runtime behaviors of irregular applica-
tions. Unlike our dynamic hardware approach, software
techniques [10, 26] need to directly interact with applications
for code optimization or data transformation, and can be
detrimental to cross-platform performance portability [15].

8. CONCLUSIONS
In this paper, we analyze the GPU workloads to reveal

the data reuse characteristics of different types of applica-
tions. For cache unfriendly (CNF) applications, their mem-
ory access stream feature accesses with low reuse and/or
long reuse distances, causing severe cache contention and
resource congestion. To address this challenge, we propose
a locality-driven dynamic bypassing solution that integrates
locality filtering functionality into the decoupled tag store
of the current GPU L1 D-cache through simple and cost-
effective hardware extensions. Experiment results show that
our design achieves significant performance and energy im-
provements over the baseline caches and outperforms the
state-of-the-art CPU and GPU cache bypassing schemes. It
can significantly reduce various levels of contention with-
out generating extra memory traffic and remain effective for
various cache capacities and warp scheduling policies.
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