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ABSTRACT

As computer memory hierarchy becomes adaptive, its pedoca
increasingly depends on forecasting the dynamic prograatity.
This paper presents a method that predicts the localitygshafsa
program by a combination of locality profiling and run-timeep
diction. By profiling a training input, it identifies locajitphases
by sifting through all accesses to all data elements usinghla-
distance sampling, wavelet filtering, and optimal phaséitjar-
ing. It then constructs a phase hierarchy through grammear co
pression. Finally, it inserts phase markers into the proguaing
binary rewriting. When the instrumented program runs, @suthe
first few executions of a phase to predict all its later exieost

Compared with existing methods based on program code and ex-

ecution intervals, locality phase prediction is uniqueshese it uses
locality profiles, and it marks phase boundaries in prograntec
The second half of the paper presents a comprehensive tgalua
It measures the accuracy and the coverage of the new teehaigl
compares it with best known run-time methods. It measusdeit-
efit in adaptive cache resizing and memory remapping. Finall
compares the automatic analysis with manual phase marKimg.
results show that locality phase prediction is well suitedidenti-
fying large, recurring phases in complex programs.

Categories and Subject Descriptors

D.3.4 [Programming Language$§: Processors-eptimization,
compilers

General Terms
Measurement, Performance, Algorithms

Keywords

program phase analysis and prediction, phase hierarcbglitp
analysis and optimization, reconfigurable architectuyaadic op-
timization
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1. INTRODUCTION

Memory adaptation is increasingly important as the memaéry h
erarchy becomes deeper and more adaptive, and prograntst exhi
dynamic locality. To adapt, a program may reorganize ita tiat-
out multiple times during an execution. Several studie®lexam-
ined dynamic data reorganization at the program level [5125,
27, 32] and at the hardware level [20, 35]. They showed ingires
improvements in cache locality and prefetching efficieridpfor-
tunately, these techniques are not yet widely used partpize
they need manual analysis to find program phases that beosfit f
memory adaptation. In this paper, we show that this problam ¢
be addressed by locality-based phase prediction.

Following early studies in virtual memory management by-Bat
son and Madison [4] and by Denning [8], we define a localityggha
as a period of a program execution that has stable or slowgehan
ing data locality inside the phase but disruptive transip@riods
between phases. For optimization purpose, we are interé@ste
phases that are repeatedly executed with similar localitfhile
data locality is not easy to define, we use a precise meastinesin
paper. For an execution of a phase, we measure the localitg by
miss rate across all cache sizes and its number of dynantiaéas
tions. At run time, phase prediction means knowing a phase an
its locality whenever the execution enters the phase. Atelpre-
diction is necessary to enable large-scale memory chanpiés w
avoiding any adverse effects.

Many programs have recurring locality phases. For exangle,
simulation program may test the aging of an airplane modee T
computation sweeps through the mesh structure of the agpkx
peatedly in many time steps. The cache behavior of each tepe s
should be similar because the majority of the data accelss &ime
despite local variations in control flow. Given a differemput, for
example another airplane model or some subparts, the thpciili
the new simulation may change radically but it will be cotesis
within the same execution. Similar phase behavior are camimo
structural, mechanical, molecular, and other scientifitc@mmer-
cial simulations. These programs have great demand for egbmp
ing resources. Because of their dynamic but stable phdsasate
good candidates for adaptation, if we can predict localitsges.

We describe a new prediction method that operates in theps.st
The first analyzes the data locality in profiling runs. By ekam
ing the distance of data reuses in varying lengths, the aisatyn
“zoom in” and “zoom out” over long execution traces and destec
locality phases usingariable-distance samplingvavelet filtering
andoptimal phase partitioningThe second step then analyzes the
instruction trace and identifies the phase boundaries ircode.
The third step uses grammar compression to identify phase hi
archies and then inserts program markers through binaryitrew
ing. During execution, the program uses the first few instarof a



phase to predict all its later executions. The new analysisiders
both program code and data access. It inserts static mdrikers
the program binary without accessing the source code.

Phase prediction has become a focus of much recent research.

Most techniques can be divided into two categories. The ifirst
interval based. It divides a program execution into fixawta in-
tervals and predicts the behavior of future intervals fraastmb-
servations. Interval-based prediction can be implemeatgiulely
and efficiently at run time [2, 3, 9, 10, 13, 30]. It handlesiarb
trarily complex programs and detects dynamically changiats
terns. However, run-time systems cannot afford detail¢d alaal-
ysis much beyond counting the cache misses. In additios i+
clear how to pick the interval length for different prograarsi for
different inputs of the same program. The second categargde
based. It marks a subset of loops and functions as phasesand e
timates their behavior through profiling [17, 21, 22]. Puaihse
rather than reactive, it uses phase markers to control titeviaae
and reduce the need for run-time monitoring. However, tlee pr
gram structure may not reveal its locality pattern. A phass m
have many procedures and loops. The same procedure or lgop ma
belong to different locality phases when accessing diffedata at
different invocations. For example, a simulation step im@gpam
may span thousands of lines of code with intertwined fumctialls
and indirect data access.

In comparison, the new technique combines locality analysd
phase marking. The former avoids the use of fixed-size wisdow
in analysis or prediction. The latter enables pro-activasghadap-
tation. In addition, the phase marking considers all irdtoms in
the program binary in case the loop and procedure strucares
obfuscated by an optimizing compiler.

In evaluation, we show that the new analysis finds recurrivagps
of widely varying sizes and nearly identical locality. Thkage
length changes in tune with program inputs and ranges from tw
hundred thousand to three billion instructions—tleisgthis pre-
dicted with 99.5% accuracy. We compare it with other phage pr
diction methods, and we show its use in adaptive cache ngsizid
phase-based memory remapping.

Locality phase prediction is not effective on all prografBeme
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Figure 1: The reuse-distance trace of Tomcatv

example ofTomcaty a vectorized mesh generation program from
SPEC95 known for its highly memory-sensitive performarkig-
ure 1 shows the reuse distance trace. Each data access ista poi
in the graph—ther-axis gives the logical time (i.e. the number of
data accesses), and thaxis gives the reuse distanteThe points
are so numerous that they emerge as solid blocks and lines.

The reuse distance of data access changes continuoushglhro
out the trace. We define a phase change as an abrupt change in
data reuse pattern. In this example, the abrupt changegedive
trace into clearly separated phases. The same phases iepeat
fixed sequence. Reading the code documentation, we sealindee
that the program has a sequence of time steps, each has five sub
steps—preparation of data, residual values, solving tid@atnoal
systems, and adding corrections. What is remarkable isvibat
could see the same pattern from the reuse distance traceutvith
looking at the program.

The example confirms four commonly held assumptions about
program locality. First, the data locality may change canly in
an execution; however, major shifts in program localityrageked

programs may not have predictable phases. Some phases tnay ndy radical rather than gradual changes. Second, localiasgsh

be predictable from its data locality. We limit our analygigpro-
grams that have large predictable phases, which nevesthéle
clude important classes of dynamic programs. For some @nogjr
such as a compiler or a database, the analysis can stillifigent
phases but cannot predict the exact locality.

2. HIERARCHICAL PHASE ANALYSIS

This section first motivates the use of locality analysis treh
describes the steps of locality-based phase prediction.

2.1 Locality Analysis Using Reuse Distance

In 1970, Mattson et al. defined theRU-stack distancas the
number of distinct data elements accessed between two@ense
tive references to the same element [24]. They summarized th
locality of an execution by the distance histogram, whickede
mines the miss rate of fully-associative LRU cache of alksiz
Building on decades of development by others, our earlietkwo
reduced the analysis cost to near linear time. A number @ftec
studies found that reuse-distance histograms change dictable
patterns in many programs [12, 14, 23, 28]. In this work we ige o
step further to see whether predictable patterns existfmgparts of
a program. For brevity we call the LRU stack distance betvieen
accesses of the same datathase distancef the second access.

Reuse distance reveals patterns in program locality. Wehese

have different lengths. The size of one phase has littl¢ioslavith
the size of others. Third, the size changes greatly with narog
inputs. For example, the phasesToimcatvcontain a few hundred
million memory accesses in a training run but over twentg-bi-
lion memory accesses in a test run. Finally, a phase oftamsec
with similar locality. A phase is a unit of repeating behavior rather
than a unit of uniform behavioio exploit these properties, local-
ity phase prediction uses reuse distance to track fine-ghainges
and find precise phase boundaries. It uses small training taun
predict larger executions.

Reuse distance measures locality better than pure program o
hardware measures. Compiler analysis cannot fully andtycze-
ity in programs that have dynamic data structures and iodiata
access. The common hardware measure, the miss rate, isddefine
over a window. Even regular programs may have irregulareach
miss rate distributions when we cut them into windows, asvsho
later in Figure 3. It is difficult to find a fixed window size that
matches the phases of unequal lengths. We may use the naiss tra
but a cache miss is a binary event—hit or miss for a given cache
configuration. In comparison, reuse distance is a precisie.stt
is purely a program property, independent of hardware cordig
tions.

To reduce the size of the graph, we show the reuse distarz tra
after variable-distance sampling described in Sectiorl2.2



To speculate is to see. Reuse distance shows an interegting p
ture of program locality. Next we present a system that aatbm
cally uncovers the hierarchy of locality phases from thitypie.

2.2 Off-line Phase Detection

Given the execution trace of training runs, phase detedjnn
erates in three steps: variable-distance sampling celteetreuse
distance trace, wavelet filtering finds abrupt changes, avadlyij
optimal phase partitioning locates the phase boundary.

2.2.1 \Variable-Distance Sampling

Instead of analyzing all accesses to all data, we sample b sma
number of representative data. In addition, for each datageord
only long-distance reuses because they reveal globalrpatte
Variable-distance sampling is based on the distance-Isasegling
described by Ding and Zhong [12]. Their sampler uses ATOM to
generate the data access trace and monitors the reusecdistan
every access. When the reuse distance is above a thresheld (t
qualification thresholjl the accessed memory location is taken as

following basic formulas:
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where, < a,b > is the scaler product of andb, f(x) is the
input signal,j is the analysis levely and are the scaling and
wavelet function respectively. Many different wavelet fhes ex-
ist in the literature, such ddaar, Daubechiesand Mexican-hat
We useDaubechies-6n our experiments. Other families we have
tested produce a similar result. On high-resolution leuhkspoints
with high wavelet coefficient values signal abrupt changlesre-
fore they are likely phase changing points.

The wavelet filtering takes the reuse-distance trace of dath
sample as a signal, then computes the level-1 coefficiergdoh
access and removes from the trace the accesses with a loketvave
coefficient value. An access is kept only if its coefficient>

a data sample. A later access to a data sample is recorded as am + 34, wherem is the mean and is the standard deviation. The

access sample if the reuse distance is over a second thaetel
temporal threshold To avoid picking too many data samples, it re-
quires that a new data sample to be at least a certain spaaeagis
away (thespatial threshol§lin memory from existing data samples.
The three thresholds in Ding and Zhong's method are difficult
to control. Variable-distance sampling solves this probley us-
ing dynamic feedback to find suitable thresholds. Given & ar
trary execution trace, its length, and the target numbeauwiptes,
it starts with an initial set of thresholds. It periodicakthecks
whether the rate of sample collection is too high or too lowsid-
ering the target sample size. It changes the thresholdsdingty
to ensure that the actual sample size is not far greateritieaartget.
Since sampling happens off-line, it can use more time to fjd a
propriate thresholds. In practice, variable-distanceiaug finds

difference between this coefficient and others is stasityisignifi-
cant. We have experimented with coefficients of the next lievels
and found the level-1 coefficient adequate.

Figure 2 shows the wavelet filtering for the access trace ata d
sample irMolDyn, a molecular dynamics simulation program. The
filtering removes accesses during the gradual changesdetizy
have low coefficients. Note that it correctly removes aces$hat
correspond to local peaks. The remaining four accessesaitedi
global phase changes.

Sherwood et al. used the Fourier transform to find periodie pa
terns in execution trace [29]. The Fourier transform shdwvesfte-
quencies appeared during the whole signal. In comparisavehets
gives thetime-frequencyor the frequencies appeared over time.
Joseph et al. used wavelets to analyze the change of processo

15 thousand to 30 thousand samples in less than 20 adjustmentvoltage over time and to make on-line predictions using din ef

of thresholds. It takes several hours for the later stepsavielet
filtering and optimal phase partitioning to analyze thesapes,
although the long time is acceptable for our off-line analynd
can be improved by a more efficient implementation (curyensh
ing Matlab and Java).

The variable-distance sampling may collect samples at an un
even rate. Even at a steady rate, it may include partial tsefoid
executions that have uneven reuse density. However, tgettar
sample size is large. The redundancy ensures that thesdesamp
together contain elements in all phase executions. If astateple
has too few access samples to be useful, the next analygiwste
remove them as noise.

2.2.2 Wavelet Filtering

Viewing the sample trace as a signal, we usedtserete Wavelet
Transform (DWTps a filter to expose abrupt changes in the reuse
pattern. The DWT is a common technique in signal and image
processing [7]. It shows the change of frequency over time.aA
mutli-resolution analysis, the DWT applies two functionsdata:
the scale function and the wavelet function. The first smodttie
signal by averaging its values in a window. The second calesl
the magnitude of a range of frequencies in the window. The win
dow then shifts through the whole signal. After finishing ta-
culations on the whole signal, it repeats the same procegeat
next level on the scaled results from the last level instdamhdhe
original signal. This process may continue for many levalsaa
multi-resolution process. For each point on each level,adirsg
and a wavelet coefficient are calculated using the variatafrthe

cient Haar-wavelet implementation [18]. We use waveletslar

to their off-line analysis but at much finer granularity (hese of
the nature of our problem). Instead of filtering the accemsetiof
all data, we analyze the sub-trace for each data elemens ighi
critical because a gradual change in the subtrace may beasesn
abrupt change in the whole trace and cause false positivégein
wavelet analysis. We will show an example later in Figure 3 (b
where most abrupt changes seen from the whole trace are & ph
changes.

After it filters the sub-trace of each data sample, the fileri
step recompiles the remaining accesses of all data samptée i
order of logical time. The new trace is callefiltered trace Since
the remaining accesses of different data elements may|digna
same phase boundary, we use optimal phase partitioningttefu
remove these redundant indicators.
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Figure 2: A wavelet transform example, where gradual change
are filtered out



2.2.3 Optimal Phase Partitioning

As explained earlier, phase detection finds the number cfgsha

At a phase boundary, many data change their access patternsbut cannot locate the precise time of phase transitions. pfé-

Since the wavelet filtering removes reuses of the same d#tanwi
a phase, the remaining is mainly accesses to different datples
clustered at phase boundaries. These two properties sugges
conditions for a good phase partition. First, a phase shioaldde

sion is in the order of hundreds of memory accesses whileiealyp
basic block has fewer than ten memory references. Morether,
transition may be gradual, and it is impossible to locatenglsi

point. We solve this problem by using the frequency of thespha

accesses to as many data samples as possible. This enatres thinstead of the time of their transition.

we do not artificially cut a phase into smaller pieces. Segand
phase should not include multiple accesses of the sameatafdes
since data reuses indicate phase changes in the filtered {fhe
complication, however, comes from the imperfect filteringtbe
wavelet transform. Not all reuses represent a phase change.
We convert the filtered trace into a directed acyclic grapleneh
each node is an access in the trace. Each node has a diregéetth ed
all succeeding nodes. Each edge (from acedssh) has a weight
defined asw = ar + 1, wherel > o > 0, andr is the num-
ber of node recurrences betweemndb. For example, the trace
acee f ge fbd has two recurrences efand one recurrence gfbe-
tweenc andb, so the edge weight between the two nodekis- 1.
Intuitively, the weight measures how fit the segment froto b
is as a phase. The two factors in the weight penalize two teriele
The first is the inclusion of reuses, and the second is theicneaf

We define the frequency of a phase by the number of its execu-
tions in the training run. Given the frequency found by ttst &ep,
we want to identify a basic block that is always executed et
ginning of a phase. We call it thmarker blockfor this phase. If the
frequency of a phase j§ the marker block should appear no more
than f times in the block trace. The first step of the marker selec-
tion filters the block trace and keeps only blocks whose feeqy
is no more tharf. If a loop is a phase, the filtering will remove
the occurrences of the loop body block and keep only the meade
and the exit blocks. If a set of mutual recursive functionsn® a
phase, the filtering will remove the code of the functions keep
only the ones before and after the root invocation. Afteeffittg,
the remaining blocks are candidate markers.

After frequency-based filtering, the removed blocks leargd
blank regions between the remaining blocks. If a blank megso

new phases. The optimal case is a minimal number of phasks wit larger than a threshold, it is considered as a phase exacufte

least reuses in each phase. Since the trace is not perieetetght
and the factorx control the relative penalty for too large or too

small phases. If is 1, we prohibit any reuses in a phase. We may

threshold is determined by the length distribution of thankl re-
gions, the frequency of phases, and the execution lengtice $he
training runs had at least 3.5 million memory accesses, mplgi

have as many phases as the length of the filtered trace. Tie res used 10 thousand instructions as the threshold. In othedsyar

whena > 1 is the same ag = 1. If «is 0, we get one phase. In
experiments, we found that the phase partitions were ginien

« is between 0.2 and 0.8, suggesting that the noise in theefilter
trace was acceptable. We used-= 0.5 in the evaluation.

phase execution must consume at least 0.3% of the total ixecu
to be considered significant. We can use a smaller thresbiioid
sub-phases after we find large phases.

Once the phase executions are identified, the analysisd=yasi

Oncea is determined, shortest-path analysis finds a phase parti- the block that comes after a region as markers marking thedsou

tion that minimizes the total penalty. It adds two nodes: @&rc®
node that has directed edges flowing to all original noded, an
sink node that has directed edges coming from all origindeso
Any directed path from the source to the sink gives a phas# par
tion. The weight of the path is its penalty. Therefore, thet iphase
partition gives the least penalty, and it is given by the sxipath
between the source and the sink.

Summary of off-line phase detectidhe program locality is a
product of all accesses to all program data. The phase @etect
first picks enough samples in time and space to capture tie hig
level pattern. Then it uses wavelets to remove the tempedain-
dancy and phase partitioning to remove the spatial redwyddine
next challenge is marking the phases in program code. Theletav
filtering loses accurate time information because sampkesan-
sidered a pair at a time (to measure the difference). In iaddlithe
locality may change through a transition period instead tha-
sition point. Hence the exact time of a phase change is difficu
attain. We address this problem in the next step.

2.3 Phase Marker Selection

The instruction trace of an execution is recorded at theldaan
ity of basic blocks. The result is a block trace, where eaemeht
is the label of a basic block. This step finds the basic blooks i
the code that uniquely mark detected phases. Previousgmmogr
analysis considered only a subset of code locations, fampba
function and loop boundaries [17, 21, 22]. Our analysis éxam
all instruction blocks, which is equivalent to examiningmbgram
instructions. This is especially important at the binamelewhere
the high level program structure may be lost due to aggressim-
piler transformations such as procedure in-lining, sofengpelin-
ing, loop fusion, and code compression.

ary between the two phases. Two regions are executions of the
same phase if they follow the same code block. The analysks pi
markers that mark most if not all executions of the phaseseén t
training run. We have considered several improvementscibrat
sider the length of the region, use multiple markers for tmes
phase, and correlate marker selection across multiple ndow/-

ever, this basic scheme suffices for programs we tested.

Requiring the marker frequency to be no more than the phase
frequency is necessary but not sufficient for phase markiAg.
phase may be fragmented by infrequently executed code $lock
However, a false marker cannot divide a phase more fhémes.

In addition, the partial phases will be regrouped in the rstep,
phase-hierarchy construction.

2.4 Marking The Phase Hierarchy

Hierarchical construction Given the detected phases, we con-
struct a phase hierarchy using grammar compression. The pur
pose is to identify composite phases and increase the guityul
of phase prediction. For example, for themcatyrogram showed
in Figure 1, every five phase executions form a time step that r
peats as a composite phase. By constructing the phasechigrar
we find phases of the largest granularity.

We use SEQUITUR, a linear-time and linear-space compnessio
method developed by Nevill-Manning and Witten [26]. It com-
presses a string of symbols into a Context Free Grammar. ifa bu
the phase hierarchy, we have developed a novel algorithhexha
tracts phase repetitions from a compressed grammar areseayis
them explicitly as a regular expression. The algorithm rsigely
converts non-terminal symbols into regular expressiangnhem-
bers previous results so that it converts the same non+afisym-
bol only once. A merge step occurs for a non-terminal once its



right-hand side is fully converted. Two adjacent regulgressions

are merged if they are equivalent (using for example thevatgrt Table 1: Benchmarks

test described by Hopcroft and Ullman [16]). —
. Benchmark Description Source
SEQUlT.L.JR was ysed by Larus to find frequent code path.s [19] FFT fast Fourier transformation textbook
and by Chilimbi to find frequent data-access sequences [BirT — - y
) Applu solving five coupled nonlinear PDE’s Spec2KFp
methods model the grammar as a DAG and finds frequent sub- Compress| common UNIX combression Utility 1 Specasint
sequences of a given length. Our method traverses the noimtg G P GNUC Tor 5p3 utity Sp 95int
symbols in the same order, but instead of finding sub-se@seiitc cc ~ Comprier .. - pecIom
produces a regular expression. Tomcatv yegton;ed mesh genergtlor? Spec95Fp
Phase marker insertion The last step uses binary rewriting to | SWim finite difference approximations for | Spec95Fp
insert markers into a program. The basic phases (the leétke o shallow water equation
phase hierarchy) have unique markers in the program, sogtesi \Vortex an object-oriented database | Spec95Int
diction is trivial. To predict the composite phases, we ihagre- Mesh dynamic mesh structure simulation| CHAOS
dictor into the program. Based on the phase hierarchy, #gigior MolDyn | molecular dynamics simulation CHACS

monitors the program execution and makes predictions based

the on-line phase history. Since the hierarchy is a regupres-

sion, the predictor uses a finite automaton to recognizeuherat accuracy and coverage of strict phase prediction, wheregane
phase in the phase hierarchy. In the programs we tested,shifar  that phase behavior repeats exactly including its lengticept for
simple method suffices. The cost of the markers and the goedic  MolDyn, the accuracy is perfect in all programs, thatfig number
is negligible because they are invoked once per phase éxecut of the executed instructions is predicted exactly at thénming of

which consists of on average millions of instructions asish a phase executionVe measure the coverage by the fraction of the

the evaluation. execution time spent in the predicted phases. The high acgur
requirement hurts coverage, which is over 90% for four pogy

3. EVALUATION but only 46% forTomcatvand 13% forMolDyn. If we relax the

accuracy requirement, then the coverage increases to 99fiedo
programs and 98% and 93% for the other two, as shown in the
lower half of the table. The accuracy drops to 90%Simimand
13% in MolDyn. MolDyn has a large number of uneven phases
when it finds neighbors for each particle. In all programs ghase
prediction can attain either perfect accuracy, full cogetar both.
The granularity of the phase hierarchy is shown in Table by t
average size of the smallest (leaf) phases and the largegtosite
phases. The left half shows the result of the detection nuah tiae
right half shows the prediction run. The last row shows trerage

sic implementation from a textbook. The next six progranes ar cross all programs. With the exceptionMésh which has two

from SPEC: three are floating-point and three are integerpros. same-length inputs, the prediction run is larger than theatien
Three are from SPECO5 suite, one from SPEC2K, and two (with run by, on average, 100 times in exgcutlon length and 400stime
small variation) are from both. Originally from the CHAOSogp the phase frequency. The average size of the leaf phasesrixoge
at University of MarylandMolDynandMeshare two dynamic pro- two hundred thousa'm.d to flvg million |nstrU(.:t|.ons. in the detm
grams whose data access pattern depends on program inpluts anfUn @nd from one million to eight hundred million in the pretitin
changes during execution [6]. They are commonly studiedyin d  'un- The largest phase is, on average, 13 times the size &#ahe
namic program optimization [11, 15, 25, 32]. The floatingepo phase in the detection run and 50 times in the prediction run.

programs from SPEC are written in Fortran, and the integes pr The re_su!ts shovx_/ that the pha_se length is anything but ur_1ifor
grams are in C. Of the two dynamic prograrvolDyn is in For- The prediction run is over 1000 times longer than the deiratin

tran, andvleshis in C. We note that the choice of source-level lan- Or AppluandCompres@nd nearly 5000 times longer fitolDyn.

guages does not matter because we analyze and transforrapesog | € 10nger executions may have about 100 times more phase ex-
at the binary level. ecutions Tomcatv, SwimandApplu and over 1000 times larger

For programs from SPEC, we use tiestor thetrain input for phase size (irCompresk The phase size differs from phase to
phase detection and thef input for phase prediction. For the pre- p.hase,. program to program, and input to input, suggestlagath
diction of Mesh we used the same mesh as that in the training single interval or threshold would not work well for this sétpro-

We conduct four experiments. We first measure the granylarit
and accuracy of phase prediction. We then use it in cachemgsi
and memory remapping. Finally, we test it against manuas@ha
marking. We compare with other prediction techniques infitis¢
two experiments.

Our test suite is given in Table 1. We pick programs from diffe
ent sets of commonly used benchmarks to get an interesting mi
They represent common computation tasks in signal prawgssi
combinatorial optimization, structured and unstructumeesh and
N-body simulations, a compiler, and a databade:T is a ba-

run but with sorted edges. For all other programs, the ptiedic ~ 9ramS:
is tested on executions hundreds times longer than thoskinse . .
phase detection. 3.1.1 Comparison of Prediction Accuracy
We use ATOM to instrument programs to collect the data and  Figure 3 shows the locality of two representative programs—
instruction trace on a Digital Alpha machine [31]. All pragns TomcatvandCompress—in two columns of three graphs each. The
are compiled by the Alpha compiler using “-O5” flag. After gka upper graphs show the phase detection in training runs. e o
analysis, we again use ATOM to insert markers into programs. graphs show phase prediction in reference runs. The uppphgr
. show a fraction of the sampled trace with vertical lines rirayithe
3.1 Phase Prediction phase boundaries found by variable-distance samplinge heefid-
We present results for all programs except &nc and Vortex tering, and optimal phase partitioning. The lines fall ékaat the
which we discuss at the end of this section. We first measw@re th points where abrupt changes of reuse behavior happen, rstpowi
phase length and then look at the phase locality in detail. the effect of these techniques. The phases have differegths.

Table 2 shows two sets of results. The upper half shows the Some are too short in relative length and the two boundares b



Table 2: The accuracy and coverage of phase prediction

| Benchmarks | FFT [ Applu | Compress| Tomcatv] Swim | Mesh | MolDyn | Average |
Strict Accuracy(%)| 100 | 100 100 100 100 | 100 | 96.47 99.50
accuracy| Coverage(%) 96.41| 98.89 | 92.39 45.63 72.75| 93.68 | 13.49 73.32
Relaxed | Accuracy(%)| 99.72 | 99.96 | 100 99.9 90.16 | 100 | 13.27 86.14
accuracy| Coverage(%) 97.76| 99.70 | 93.28 99.76 99.78 | 99.58 | 99.49 98.48

Table 3: The number and the size of phases in detection and padéction runs

Detection Prediction

Tests leaf exe. len. | avg. leaf size| avg. largest phasg leaf exe. len. | avg. leaf size| avg. largest phase

phases| (Minst.) | (Minst.) size (M inst.) phases| (Minst.) | (Minst.) size (M inst.)
FFT 14 23.8 2.5 11.6 122 5730.4 50.0 232.2
Applu 645 254.3 0.394 3.29 4437 | 335019.8| 75.5 644.8
Compress|| 52 52.0 0.667 2.2 52 62418.4 | 800.2 2712.0
Tomcatv || 35 175.0 49 34.9 5250 | 24923.2 | 4.7 33.23
Swim 91 376.7 4.1 37.6 8101 | 333349 |41 37.03
Mesh 4691 | 51519 |1.1 98.2 4691 | 5151.9 1.1 98.2
MolDyn 59 11.9 0.202 3.97 569 50988.1 | 89.6 1699.6
Average | 798 863.66 | 1.98 27.39 3317 | 73938.1 | 146.5 779.58

come a single line in the graph. The numbers next to the lines a

the sharp focus of phase crosses and the irregular spreaitiofdl

the basic block IDs where markers are inserted. The same codedots—it indeed matters where and how to partition an exeguti

block precedes and only precedes the same locality phaseirgh
the effect of marker selection.

The middle two graphs show the locality of predicted phases.
To visualize the locality, we arbitrarily pick two differeicache

into phases. Locality phases are selected at the right plitbe
the right length, while intervals are a uniform cut. Comphbte
the phases, the intervals are too large to capture the twouio f
million-instruction phases ifomcatvand too small to find the over

sizes—32KB and 256KB cache—and use the two miss rates as co-one billion-instruction phases ompressWhile the program be-

ordinates. Each execution of a phase is a cross (X) on thdgrap
Tomcatvhas 5251 executions of 7 locality phases: all five thousand
crosses are mapped to seven in the graph. Most crossespoperia
fectly. The phase prediction is correct in all cases becthesexe-
cutions of the same phase maps to a single cross except falh sm
difference in the second and third phase, where the firstleafp
executions have slightly different locality. We label egqttase by
the phase ID, the relative frequency, and the range of pleaggh.
The relative frequency is the number of the executions ofaseh
divided by the total number of phase executions (5251 Tfm-
caty). The last two numbers give the number of instructions in the
shortest and the longest execution of the phase, in the finitlo
lions of instructions. Compresss shown by the same format. It
has 52 executions of 4 locality phases: all 52 crosses maguto f
showing perfect prediction accuracy. The phase lengthesfrom

2.9 thousand to 1.9 million instructions in two programsr &ach
phase, the length prediction is accurate to at least thgedfisant
digits.

The power of phase prediction is remarkable. For example, in
Compresswhen the first marker is executed for the second time,
the program knows that it will execute 1.410 million instioos
before reaching the next marker, and that the locality isstirae
for every execution. This accuracy confirms our assumptian t
locality phases are marked by abrupt changes in data reuse.

Phase vs. intervalAn interval method divides the execution
into fixed-size intervals. The dots in the bottom graphs gtiFé 3
show the locality of ten million instruction intervals. TB493 dots
in Tomcatvand 6242 dots irCompressdo not suggest a regular
pattern.

Both the phases and intervals are partitions of the sameuexec
tion sequence—the 25 billion instructions Tomcatvand 62 bil-
lion in Compress Yet the graphs are a striking contrast between

havior is highly regular and fully predictable for phaseé®gcomes
mysteriously irregular once the execution is cut into iveds.

Phase vs. BBVA recent paper [10] examined three phase anal-
ysis techniques—procedure-based [21, 22], code workih{Pse
and basic-block vector (BBV) [30]. By testing the variation
IPC (instruction per cycle), it concluded that BBV is the mas-
curate. We implemented BBV prediction according to the algo
rithm of Sherwood et al [30]. Our implementation uses theesam
ten million-instruction windows and the same thresholdlaster-
ing. We implemented their Markov predictor but in this sective
use only the clustering (perfect prediction). It randomtgjected
the frequency of all code blocks into a 32-element vectooteef
clustering. Instead of using IPC, we use locality as the imé&r
evaluation.

BBV clusters the intervals based on their code signature and
execution frequency. We show each BBV cluster by a bounding
box labeled with the relative frequency. BBV analysis proeki
more clusters than those shown. We do not show boxes for clus-
ters whose frequency is less than 2.1%, partly to make thghgra
readable. We note that the aggregated size of the smalecsuist
quite large (51%) fofTomcatv In addition, we exclude the out-
liers, which are points that are farthest from the clustetee@d,
statistically speaking); otherwise the bounding boxedaager.

As shown by previous studies [10, 30], BBV groups intervals
that have similar behavior. fomcaty the largest cluster accounts
for 26% of the execution. The miss rate varies by less tha¥ a8
the 256KB cache and 0.5% for the 32KB cache. However, the sim-
ilarity is not guaranteed. In the worst caseGompressa cluster
of over 23% execution has a miss rate ranging from 2.5% to 5.5%
for the 256KB cache and from 7% to 11% for the 32KB cache. In
addition, different BBV clusters may partially intersedtote that
with fine-tuned parameters we will see smaller clusters iwitver
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Figure 3: Prediction Accuracy for Tomcatv and Compress. Part (a) and (b) show the phase boundaries found by off-linghase
detection. Part (c) and (d) show the locality of the phases €md by run-time prediction. As a comparison, Part (e) and (f)show the
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Figure 4: The miss rates ofCompress phases on IBM Power 4

variation. In fact, in the majority of cases in these proggaBBV
produces tight clusters. However, even in best cases, BBatais
do no have perfectly stacked points as locality phases do.

Table 4 shows the initial and normalized standard deviafidre
locality is an 8-element vector that contains the miss ratedche
sizes from 32KB to 256KB in 32KB increments. The standard de-
viation is calculated for all executions of the same phasktha
intervals of each BBV cluster. Then the standard deviatiballo
phases or clusters are averaged (weighted by the phasesterclu
size) to produce the number for the program. The numbers & BB
clustering and prediction, shown by the last two columne,sam-
ilarly small as reported by Sherwood et al. for IPC [30]. ISthe
numbers for locality phases are much smaller—one to fiversrde
of magnitude smaller than that of BBV-based prediction.

Table 4: Standard deviation of locality phases and BBV phase

standard deviations
locality phase| BBV BBV RLE Markov

prediction clustering prediction
FFT 6.87E-8 0.00040 0.0061
Applu 5.06E-7 2.30E-5 0.00013
Compress, 3.14E-6 0.00021 0.00061
Tomcatv 4,53E-7 0.00028 0.0016
Swim 2.66E-8 5.59E-5 0.00018
Mesh 6.00E-6 0.00012 0.00063
MolDyn 7.60E-5 0.00040 0.00067

So far we measure the cache miss rate through simulatioshwhi
does not include all factors on real machines such as thdteof t
operating system. We now examine the L1 miss rate on an IBM
Power 4 processor for the first two phaseCoimpresgthe other
two phases are too infrequent to be interesting). Figurewslthe
measured miss rate for each execution of the two phases.ull b
the first execution of Phase 1 have nearly identical miss rate
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Figure 5: Sampled reuse distance trace aBcc and Vortex. The
exact phase length is unpredictable in general.

sumes that each phase, once in execution, maintains ideltic
cality. Next are two such examples.

3.1.2 GcandVortex

The programsscc and Vortexare different because their phase
length is not consistent even in the same executionGdn the
phase length is determined by the function being compiled- F
ure 5 shows the distance-based sample trace. Unlike peetiiace
graphs, it uses horizontal steps to link sample points. ek
in the upper graph roughly correspond to the 100 functiortheén
6383-line input file. The size and location of the peaks aterde
mined by the input and are not constant.

Vortexis an object-oriented database. The test run first construct
a database and then performs a set of queries. The lower ti§ure
Figure 5 shows the sample trace. It shows the transition ffata
insertion to query processing. However, in other inputs, ¢dbn-
struction and queries may come in any order. The exact behavi
like Gcg is input dependent and not constant.

Our recent results show that an extension of the phase @alys
can mark the phases i@cg which are the compilation of input
functions. Still, the prediction results are input depemideDing
and Zhong showed that the overall reuse pattern of theserwvo p
grams are stable across many inputs [12]. It suggests acfioedi
strategy based on statistics. We do not consider this égtens

the 32KB 2-way data cache. The executions of Phase 2 show morethis paper and will not discuss these two programs further.

variation. The effect from the environment is more visibid’hase
2 likely because its executions are shorter and the misdoaty
than those of the first phase.

The comparison with interval-based methods is partial beea
we use only programs that are amenable to locality-phasticre
tion. Many dynamic programs do not have consistent locdftity
them interval-based methods can still exploit run-timeégras, while
our current phase prediction scheme would not work becaase i

3.2 Adaptive Cache Resizing

During an execution, cache resizing reduces the physichleca
size without increasing the miss rate [2, 21]. Thereforeaii re-
duce the access time and energy consumption of the cacheutvith
losing performance. We use a simplified model where the cache
consists of 64-byte blocks and 512 sets. It can change frosetdi
mapped to 8-way set associative, so the cache size can change



tween 32KB and 256KB in 32KB units. In the adaptation, we need
to predict the smallest cache size that yields the same wrtissas
the 256KB cache.

As seen in the example ofomcaty program data behavior
changes constantly. A locality phase is a unit of repeatettplior
rather than a unit of uniform behavior. To capture the chamdie-
havior inside a large phase, we divide it into 10K intervaislied
phase intervals). The adaptation finds the best cache sizaft
interval during the first few executions and reuses them dter|

runs. The scheme needs hardware support but needs no more tha

that of interval-based cache resizing.

Interval-based cache resizing divides an execution intedfix
length windows. Based on the history, interval predictitassi-
fies past intervals into classes and predicts the behawies df the
next interval using methods such as last-value and Markod-mo
els. For cache resizing, Balasubramonian et al. used tle caiss
rate and branch prediction rate to classify past inten&lsHecent
studies considered code information such as code workinf@ke
and basic-block vector (BBV) [30]. We test interval-based-p
diction using five different interval lengths: 10K, 1M, 10M0QM,
and 100M memory accesses. In addition, we test a BBV predicto
using 10M instruction windows, following the implementatiof
Sherwood et al [30].

The interval methods do not have phase markers, so they con-
stantly monitor every past interval to decide whether a plchange
has occurred. In the experiment, we assume perfect detettiere
is a phase change if the best cache size of the next inteffidi
from the current one. BBV method uses a run-length encoding
Markov predictor to give the BBV cluster of the next interytie
best predictor reported in [30]). However, as the last sacthows,
the intervals of a BBV cluster do not always have identicahle
ity. We use perfect detection for BBV as we do for other indrv
methods.
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Figure 6: Average cache-size reduction by locality phaseni
terval, and BBV prediction methods, assuming perfect phase
change detection and minimal-exploration cost for intervdand
BBV methods. Upper graph: no increase in cache misses.
Lower graph: at most 5% increase.

At a phase change, the phase method reuses the best cache size
stored for the same phase. The BBV method reuses the current

best cache size for each BBV cluster. For run-time explonative
count the minimal cost—each exploration takes exactly tia t
runs, one at the full cache size and one at the half cache e

we use the best cache size from the third interval. In therexpe
iment, we know the best cache size of each phase or interval by
running it throughCheetah a cache simulator that measures the
miss rate of all eight cache sizes at the same time [33]. The re
sults for interval and BBV methods are idealistic becausy tise
perfect phase-change detection. The result of the phasesh
method is real. Because it knows the exact behavior repetitihe
phase-interval method can amortize the exploration castimany
executions. With the right hardware support, it can gaugesiact
loss compared to the full size cache and guarantee a bourtteon t
absolute performance loss.

Figure 6 shows the average cache size from phase, intendal, a
BBV methods. The first graph shows the results of adaptatitm w
no miss-rate increase. The results are normalized to theepha
method. The largest cache size, 256KB, is shown as the last ba
in each group. Different intervals find different cache sjzeut
all reductions are less than 10%. The average is 6%. BBV gives
consistently good reduction with a single interval size.e Tim-
provement is at most 15% and on average 10%. In contrast, the
phase adaptation reduces the cache size by 50% for mosaprsgr
and over 35% on average.

Figure 6(b) shows the results of adaptation with a 5% bound on
the miss-rate increase. The effect of interval methodesayieatly.
The 10M interval was 20% better than the locality phaseFier
but a factor of three worse falomcatvand Swim The 100M in-

terval has the best average reduction of nearly 50%. BBVnagai
shows consistently good reduction with a single interva¢ siOn
average itis slightly better than the best interval metfide phase
method reduces the cache size more than other methods dib for a
programs except foFFT. FFT has varied behavior, which causes
the low coverage and consequently not as large cache-gine-re
tion by locality phase predictiorMolDyn does not have identical
locality, so phase-based resizing causes a 0.6% incretserinm-
ber of cache misses. Across all programs, the average feduct
using locality phases is over 60%.

Earlier studies used more accurate models of cache and mea-
sured the effect on time and energy through cycle-accunaea-
tion. Since simulating the full execution takes a long tirpast
studies either used a partial trace or reduced the progrant in
size [2, 21]. We choose to measure the miss rate of full execu-
tions. While it does not give the time or energy, the miss iate
accurate and reproducible by others without significardr&ffin
calibration of simulation parameters.

3.3 Phase-Based Memory Remapping

We use locality phases in run-time memory remapping. To sup-
port data remapping at the phase boundary, we assume thersupp
of thelmpulsememory controller, developed by Carter and his col-
leagues at University of Utah [34, 35]mpulsereorganizes data
without actually copying them to CPU or in memory. For exam-
ple, it may create a column-major version of a row-majoryavia
remapping. A key requirement for exploititigppulseis to identify
the time when remapping is profitable.



We consider affinity-based array remapping, where arrags th
tend to be accessed concurrently are interleaved by remag§8).

To demonstrate the value of locality phase prediction, veduate
the performance benefits of redoing the remapping for eaakgh
rather than once for the whole program during compilatione W
apply affinity analysis for each phase and insert remappaalg at
the location of the phase marker. The following table shdwes t
execution time in seconds on 2GHz Intel Pentium IV machirté wi
thegcccompiler usingO3.

For the two programs, we obtain speedups of 35.5% and 2.8%
compared to the original program and 13% and 2.5% compared to
the best static data layout [36], as shown in Table 5. In tisete
of anlmpulseimplementation, we program the remapping and cal-
culate the running time excluding the remapping cost. Tal8eof
Zhang's dissertation shows the overhead of setting up rpimge
for a wide range of programs. The overhead includes setiing u
shadow region, creating memory controller page table, tliash-
ing, and possible data movement. The largest overhead sisown
1.6% of execution time for static index vector remapping [34

For example for the 14 major arrays 8wim whole-program
analysis shows close affinity between artegndv, uold andpold,
and unewand pnew Phase-based analysis shows affinity group
{u,v,p} for the first phase{u,v,p,unew,vnew,pnéwor the second
phase, and three other grougs,uold,unew, {v,vold,vnew, and
{p,pold,pney, for the third phase. Compared to whole-program
reorganization, the phase-based optimization reducdeaaisses
by one third (due to arrap) for the first phase, by two thirds for
the second phase, and by half for the third phase.

Using the two example programs, we have shown that phase pre-

diction finds opportunities of dynamic data remapping. Theia
tional issues of affinity analysis and code transformaticn dis-
cussed by Zhong et al [36]. The exact interaction witipulselike

tools is a subject of future study.

3.4 Comparison with Manual Phase Marking

We hand-analyzed each program and inserted phase mariaans (
ual marker$ based on our reading of the code and its documenta-
tion as well as results fromgprof (to find important functions). We
compare manual marking with automatic marking as follows. A
a program runs, all markers output the logical time (the neimb
of memory accesses from the beginning). Given the set of logi
cal times from manual markers and the set from auto-markess,
measure the overlap between the two sets. Two logical times a
considered the same if they differ by no more than 400, whsch i
0.02% of the average phase length. We use the recall andioreci
to measure their closeness. They are defined by the formelas.b
The recall shows the percentage of the manually marked tinag¢s
are marked by auto-markers. The precision shows the pagent
of the automatically marked times that are marked manually.

|MNA|
Recall = —F——-— (1)
| M |
Precision = % 2)

Table 5: The effect of phase-based array regrouping, excludg
the cost of run-time data reorganization

[ Benchmark] Original | Phase (speeduf) Global (speedup)
Mesh 4.29 4.17 (2.8%) 4.27 (0.4%)
Swim 52.84 | 34.08 (35.5%) | 38.52(27.1%)

Table 6: The overlap with manual phase markers

Benchmark Detection Prediction
Recall | Prec. || Recall| Prec.
FFT 1 1 1 1
Applu 0.993 | 0.941 (| 0.999 | 0.948
Compress || 0.987 | 0.962 || 0.987 | 0.962
Tomcatv 0.952 | 0556 1 0.571
Swim 1 0341 1 0.333
Mesh 1 0.834 1 0.834
MolDyn 0.889 | 0.271 || 0.987 | 0.267
Average 0.964 | 0.690 | 0.986 | 0.692

wherel is the set of times from the manual markers, ahi$ the
set of times from auto-markers.

Table 6 shows a comparison with manually inserted markers fo
detection and prediction runs. The columns for each run tjige
recall and the precision. The recall is over 95% in all cases e
cept forMolDyn in the detection run. The average recall increases
from 96% in the detection run to 99% in the prediction run be-
cause the phases with a better recall occur more often irefong
runs. Hence, the auto-markers capture the programmersrund
standing of the program because they catch nearly all mignual
marked phase changing points.

The precision is over 95% f@kppluandCompressshowing that
automatic markers are effectively the same as the manudiensar
MolDyn has the lowest recall of 27%. We checked the code and
found the difference. When the program is constructing #ighs
bor list, the analysis marks the neighbor search for eacticfgar
as a phase while the programmer marks the searches for &l par
cles as a phase. In this case, the analysis is correct. Tobhuei
search repeats for each particle. This also explains Mbldyn
cannot be predicted with both high accuracy and high coeerag
the neighbor search has varying behavior since a particjelanze
a different number of neighbors. The low recall in other pamgs
has the same reason: the automatic analysis is more thotbagh
the manual analysis.

Four of the test programs are the simulation of grid, mesh and
N-body systems in time steps. Ding and Kennedy showed thst th
benefited from dynamic data packing, which monitored the run
time access pattern and reorganized the data layout neutiipks
during an execution [11]. Their technique was automaticepkc
for a programmer-inserted directive, which must be exetotee
in each time step. This work was started in part to automigtica
insert the directive. It has achieved this goal: the largestposite
phase in these four programs is the time step loop. Theretoee
phase prediction should help to fully automate dynamic gatk-
ing, which is shown by several recent studies to improveqoerf
mance by integer factors for physical, engineering, antbbioal
simulation and sparse matrix solvers [11, 15, 25, 32].

SummaryFor programs with consistent phase behavior, the new
method gives accurate locality prediction and consequetelds
significant benefits for cache resizing and memory remappirig
more effective at finding long, recurring phases than previneth-
ods based on program code, execution intervals, their aaatibn,
and even manual analysis. For programs with varying phasae
ior, the profiling step can often reveal the inconsistendyerTthe
method avoids behavior prediction of inconsistent phasesigh
a flag (as shown by the experiments reported in Table 2). Using
small input in a profiling run is enough for locality phase gice
tion. Therefore, the technique can handle large prograridoeny
executions. For programs such@SCandVortex where little con-



sistency exists during the same execution, the localityyaisacan
still recognize phase boundaries but cannot yet make pieakc
Predictions based on statistics may be helpful for thesgranos,
which remains to be our future work. In addition, the curizamaly-
sis considers only temporal locality. The future work withsider
spatial locality in conjunction with temporal locality.

4. RELATED WORK

This work is a unique combination of program code and data
analysis. It builds on past work in these two areas and camgiés
interval-based methods.

Locality phasesEarly phase analysis, owing to its root in virtual-
memory management, was intertwined with locality analydis

have this limitation and can exploit the general class oftmne
patterns.

5. CONCLUSIONS

The paper presents a general method for predicting higcalch
memory phases in programs with input-dependent but cemsist
phase behavior. Based on profiling runs, it predicts progeaes
cutions hundreds of times larger and predicts the lengthHaoad-
ity with near perfect accuracy. When used for cache adaptati
it reduces the cache size by 40% without increasing the numbe
of cache misses. When used for memory remapping, it improves
program performance by up to 35%. It is more effective attiden
fying long, recurring phases than previous methods basqu@n

1976, Batson and Madison defined a phase as a period of execugram code, execution intervals, and manual analysis. digrizes

tion accessing a subset of program data [4]. They showediexpe
mentally that a set of Algol-60 programs spent 90% time inanaj
phases. However, they did not predict locality phases.risabelies
used time or reuse distance as well as predictors such aoMark
models to improve virtual memory management. RecentlygDin
and Zhong found predictable patterns in the overall logéilitt did
not consider the phase behavior [12]. We are not aware ofaog-t
based technique that identifies static phases using lpealdlysis.

Program phasesAllen and Cocke pioneered interval analysis to
convert program control flow into a hierarchy of regions [Epr
scientific programs, most computation and data access éoepn
nests. A number of studies showed that the inter-proceduray-
section analysis accurately summarizes the program dhtioe.
Recent work by Hsu and Kremer used program regions to control
processor voltages to save energy. Their region may spas ko
functions and is guaranteed to be an atomic unit of execuitioler
all program inputs [17]. For general purpose programs, fdia
ramonian et al. [2], Huang et al. [21], and Magklis et al. [22}
lected as phases procedures whose number of instructioasas
a threshold in a profiling run. The three studies found the bes
voltage for program regions on a training input and theretéghe
program on another input. They observed that differenttsplid
not affect the voltage setting. The first two studies alsosuesl
the energy saving of phase-based cache resizing [2, 21dntpar-
ison, the new technique does not rely on static program tsireic
It uses trace-based locality analysis to find the phase lzoiex]
which may occur anywhere and not just at region, loop or proce
dure boundaries.

Interval phaseslinterval methods divide an execution into fixed-
size windows, classify past intervals using machine or duaked
metrics, and predict future intervals using last value, kdeay or
table-driven predictors [9, 10, 13, 30]. The past work usgervals
of length from 100 thousand [2] to 10 million instruction®]&nd
executions from 10 milliseconds to 10 seconds [13]. Intepve-
diction works well if the interval length does not matten, &xam-
ple, when an execution consists of long steady phases. @ittger
it is difficult to find the best interval length for a given pragn on
a given input. The experimental data in this paper show therin
ent limitation of intervals for programs with constantlyactying
data behavior. Balasubramonian et al. searches for thénbexstal
size at run time [3]. Their method doubles the interval langt-
til the behavior is stable. Le¥ be the execution length, this new
scheme search&3(logN) choices in the space d¥f candidates.

In this work, we locate phases and determine their exactheng
through off-line locality analysis. We show that importatdasses
of programs have consistent phase behavior and the higheaagcu
and large granularity of phase prediction allow adaptatidth a
tight worst-performance guarantee. However, not all paog are
amenable to the off-line analysis. Interval-based mettdmsot

programs with inconsistent phase behavior and avoids ffestic-
tions. These results suggest that locality phase predistimuld
benefit modern adaptation techniques for increasing pagnce,
reducing energy, and other improvements to the computéersys
design.

Scientifically speaking, this work is another attempt to emd
stand the dichotomy between program code and data access and
bridge the division between off-line analysis and on-linediction.
The result embodies and extends the decades-old idea dadityo
could be part of the missing link.
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