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Abstract—Hyperspectral imagery typically provides a wealth of
information captured in a wide range of the electromagnetic spec-
trum for each pixel in the image; however, when used in statistical
pattern-classification tasks, the resulting high-dimensional feature
spaces often tend to result in ill-conditioned formulations. Popular
dimensionality-reduction techniques such as principal component
analysis, linear discriminant analysis, and their variants typi-
cally assume a Gaussian distribution. The quadratic maximum-
likelihood classifier commonly employed for hyperspectral
analysis also assumes single-Gaussian class-conditional distribu-
tions. Departing from this single-Gaussian assumption, a classifi-
cation paradigm designed to exploit the rich statistical structure
of the data is proposed. The proposed framework employs local
Fisher’s discriminant analysis to reduce the dimensionality of the
data while preserving its multimodal structure, while a subsequent
Gaussian mixture model or support vector machine provides effec-
tive classification of the reduced-dimension multimodal data. Ex-
perimental results on several different multiple-class hyperspec-
tral-classification tasks demonstrate that the proposed approach
significantly outperforms several traditional alternatives.

Index Terms—Dimensionality reduction, Gaussian-mixture-
model (GMM), hyperspectral data, local discriminant analysis,
support vector machine.

I. INTRODUCTION

S TATISTICAL PATTERN-CLASSIFICATION systems for
the analysis of hyperspectral imagery (HSI) typically em-

ploy dimensionality reduction followed by classification in
order to learn statistical models for each class in the reduced-
dimension feature space, subsequently using that information
to classify unlabeled HSI pixels/samples. Dimensionality-
reduction algorithms [1], as the name suggests, are typically de-
signed to reduce the dimensionality of the feature space without
losing desirable information. HSI data typically have hundreds
(even thousands) of spectral bands per pixel, and these bands
are often highly correlated. Dimensionality reduction seeks to
decrease computational complexity and ameliorate statistical
ill-conditioning by discarding redundant features that can po-
tentially deteriorate classification performance [2], [3]. Popu-
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lar dimensionality-reduction techniques include unsupervised
approaches, such as principal component analysis (PCA) and
independent component analysis (ICA), as well as supervised
approaches, such as Fisher’s linear discriminant analysis (LDA)
[4], [5]. There are numerous variants of these techniques. For
example, in [6], segmented PCA is applied to group original
bands of the HSI data into subsets of highly correlated adjacent
bands which are, however, suboptimal at best for a general
pattern-classification problem [7]. After dimensionality reduc-
tion, classification is applied. A popular parametric classifica-
tion strategy typically employed after dimensionality reduction
is based on the maximum-likelihood estimation (MLE) [8] of
posterior probabilities.

A key limitation to techniques such as PCA, LDA, MLE,
and their variants is that they assume that the class-conditional
distributions are Gaussian [9]. However, real-life observational
data are often not Gaussian and, in extreme cases, are ac-
tually strongly multimodal. PCA and LDA are likely to fail
as dimensionality-reduction techniques under such conditions.
In this paper, we propose a classification paradigm that is
designed to exploit the rich statistical structure of the data.
It does not make the simplifying single-Gaussian assumption,
and performs effective dimensionality reduction and classifi-
cation of highly non-Gaussian multimodal high-dimensional
HSI data. Toward that goal, we adopt a recently proposed
local Fisher’s discriminant analysis (LFDA) [10] to reduce
the dimensionality of HSI data before employing a Gaussian-
mixture-model (GMM) classifier or a support-vector-machine
(SVM) classifier. Unlike LDA, LFDA is designed to handle
multimodal non-Gaussian class distributions, and preserves the
underlying structure of such distributions in the projection.

GMM [11] classifiers have proved beneficial for a variety
of classification tasks, such as speech and speaker recognition,
biometrics, etc. Although some preliminary studies of GMMs
have been undertaken for HSI analysis [12], [13], GMMs
are not a popular tool within the hyperspectral-classification
community. The fundamental hesitation most researchers have
when employing a technique such as GMMs for HSI anal-
ysis is the impractical size of the resulting parameter space.
Learning such high-dimensional parameter vectors using lim-
ited (and costly) ground-truth/training data is highly im-
practical. On the other hand, employing conventional linear
dimensionality-reduction techniques such as PCA and LDA
as preprocessing often destroys the underlying multimodal
structure of the data, rendering GMMs ineffective. In con-
trast, in this paper, we adopt locality-preserving dimension-
ality reduction—specifically, LFDA—for GMM classification.
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Furthermore, we demonstrate that an appropriately optimized
LFDA preprocessing ensures that the GMM models learned in
the HSI feature space do not have an unreasonably large number
of free parameters to be estimated from training data.

LFDA significantly outperforms traditional supervised
dimensionality-reduction tools, preserving the multimodal
structure of the data in the reduced-dimension projected space.
With that observation, we also test the benefit of LFDA for
SVM [14] classifiers. SVMs seek to separate classes by learning
an optimal decision hyperplane that best separates the training
samples in a kernel-induced feature space. Nonlinear kernel
projections within the SVM framework often help convert
nonlinear separation in the input space to a linear separation
in the kernel-induced space, wherein a margin-maximizing
hyperplane classifier is employed. In recent work [15]–[17],
SVMs have been shown to be effective for remote-sensing
image classification, especially when the training-data-set size
is small. In this paper, we also demonstrate that the locality-
preserving property of LFDA yields very effective dimension-
ality reduction for SVM classifiers as well. We demonstrate the
various practical aspects of the proposed algorithms pertinent
to HSI classification, including optimizing system parameters
(such as the dimensionality of the LFDA projected subspace,
GMM initialization, number of Gaussian mixtures, kernel pa-
rameter for the SVM classifier, etc).

The remainder of this paper is organized as follows. In
Section II, we discuss conventional dimensionality-reduction
techniques and provide a motivation for LFDA-based dimen-
sionality reduction for hyperspectral classification. We also pro-
vide a description of the LFDA algorithm as well as empirical
evidence of its benefits with a synthetic data set. In Section III,
we describe in detail the GMM and SVM classifiers used in
this paper as well as the motivation for employing LFDA as
a dimensionality-reduction preprocessing for classification of
HSI data. In Section IV, we provide a description of the ex-
perimental hyperspectral data set used to validate the proposed
approach, describe the experimental setup, and show how to op-
timize the proposed system. We validate the proposed approach
with several popular hyperspectral remote-sensing data sets,
studying the classification performance by comparing to current
state-of-the-art parametric classification methods over a wide
range of practical operating conditions, such as pixel mixing
and reduced training-sample size. We conclude by summarizing
our results and suggesting future directions in Section V.

II. DIMENSIONALITY REDUCTION

Dimensionality reduction is a critical preprocessing step for
HSI analysis. Owing to the dense spectral sampling of HSI data,
the associated spectral information in the hyperspectral bands is
typically highly correlated and of very high dimension. Hence,
dimensionality reduction is commonly applied as a preprocess-
ing step to reduce the dimensionality of the data to ensure a
well-conditioned representation of the class-conditional statis-
tics. Common dimensionality-reduction methods include PCA,
LDA, and their many variants, such as subspace LDA [7], step-
wise LDA [3], etc. PCA seeks to find a linear transformation
which projects the data from a high-dimensional space to a

lower dimensional subspace by maximizing the variance of the
data in the projected subspace. The optimal projection in this
sense is determined by the eigenvectors corresponding to the
largest eigenvalues of the covariance matrix of the original data.
PCA constitutes unsupervised dimensionality reduction and is
commonly employed by researchers for classification and rep-
resentation tasks. However, PCA provides, at best, suboptimal
dimensionality reduction for classification tasks—that is, it is
well understood that PCA can potentially discard information
useful to the classification task at hand, particularly if such
information is contained along the low-energy directions [7].

On the other hand, LDA is also commonly employed to
project high-dimensional data onto a smaller dimensional sub-
space. However, LDA maximizes the between-class scatter
while minimizing the within-class scatter (more specifically, it
seeks to find a transformation that maximizes Fisher’s ratio in
the projected subspace). In that respect, under the assumption of
homoscedastic Gaussian class-conditional distributions, LDA is
optimized for classification tasks.

The LDA transformation is obtained by solving a generalized
eigenvalue problem

SbΦ = ΛSwΦ (1)

where Λ is the diagonal eigenvalue matrix, Φ is the transforma-
tion matrix, Sb is the between-class scatter matrix, and Sw is the
within-class scatter matrix. Although it is designed to maximize
class separation in the projected subspace (as measured by
Fisher’s ratio), it is still suboptimal in that it assumes that class-
conditional distributions are Gaussian with a homoscedastic
covariance structure. Such an approach will not perform well
when the data are heteroscedastic and can completely break
down if the data are multimodal. Finally, the dimensionality of
the projected subspace after an LDA transformation is upper
bounded by c− 1 by design (c is the number of classes in
the classification task), which is another major drawback of
LDA, particularly when the dimensionality of the input space
is very high, and c is small. A significant amount of potentially
useful information can be lost when the final dimensionality is
drastically smaller than the dimensionality of the input space.
A detailed analysis of PCA, LDA, and their variants can be
found in [1] and [7].

A. LFDA

LFDA [10] has been recently proposed as an extension to
LDA, which, by not restricting the class distributions to be uni-
modal Gaussian, is expected to outperform LDA significantly
for many practical classification situations. LFDA combines the
properties of LDA and locality-preserving projections (LPP)
[18]. Unlike LDA or PCA, LPP is a linear manifold-learning
technique that seeks to find a linear map that preserves the
local structure of neighboring samples in the input space. In
other words, after an LPP mapping, neighborhood points in the
original input space remain neighbors in the LPP-embedded
space, and vice versa. In [10], a detailed description of LPP
and LFDA is provided. By invoking a similar idea exploited
in LPP, LFDA obtains good between-class separation in the
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projection while preserving the within-class local structure (i.e.,
neighboring data pairs in the original space remain close under
the projection) at the same time. It is hence expected that
LFDA will surpass LDA and LPP as a dimensionality-reduction
projection when the data are significantly non-Gaussian or even
severely multimodal.

Consider a data set with training samples X = {xi}
n
i=1

in R
d (d-dimensional feature space) and class labels yi ∈

{1, 2, . . . , c}, where c is the number of classes and n is the total
number of training samples. Let nl be the number of available
training samples for the lth class,

∑c
l=1 nl = n. Define Ai,j ∈

[0, 1] as the affinity between xi and xj

Ai,j = exp

(
−
‖xi − xj‖

2

γiγj

)
(2)

where γi = ‖xi − x
(knn)
i ‖ denotes the local scaling of data

samples in the neighborhood of xi, and x
(knn)
i is the knn-nearest

neighbor of xi. Ai,j is then a symmetric matrix (referred to as
the affinity matrix) of size n× n which measures the distance
among data samples. Note that there are clearly many different
ways to define an affinity matrix, but the heat kernel, as defined
in (2), has been shown to result in very effective locality-
preserving properties.

In LFDA, the local between-class S(lb) and within-class
S(lw) scatter matrices are defined as

S(lb) =
1

2

n∑

i,j=1

W
(lb)
i,j (xi − xj)(xi − xj)

⊤ (3)

S(lw) =
1

2

n∑

i,j=1

W
(lw)
i,j (xi − xj)(xi − xj)

⊤ (4)

where W (lb) and W (lw) are n× n matrices defined as

W
(lb)
i,j =

{
Ai,j(1/n− 1/nl), if yi = yj = l
1/n, if yi �= yj

(5)

W
(lw)
i,j =

{
Ai,j/nl, if yi = yj = l
0, if yi �= yj .

(6)

Maximizing Fisher’s ratio as defined using the local scatter
matrices, we have that

ΦLFDA = arg max
ΦLFDA

tr

[(
Φ⊤

LFDAS
(lw)ΦLFDA

)−1

Φ⊤
LFDAS

(lb)ΦLFDA

]
(7)

is given by S(lb)ΦLFDA = ΛS(lw)ΦLFDA, where Λ is the diag-
onal eigenvalue matrix and ΦLFDA ∈ R

d is the transformation
matrix.

It is readily seen that, in LFDA, the global between- and
within-class scatter matrices in the original expression for
Fisher’s ratio are replaced by their local versions defined in (3)
and (4). LFDA can thus be viewed as a localized variant of LDA
because it does not force far-apart data pairs of the same class
to be close. Another way to picture this is as follows. By design,

the contribution of samples within a class that are far apart to
the scatter matrix is very small, while that of samples that are
close to each other is significantly higher. On the other hand, in
traditional LDA, all samples within a class contribute equally
to the scatter matrices. When class-conditional distributions
are significantly multimodal, traditional LDA fails because in
estimating global scatter across all samples within a class, the
local structure of the samples distributed over the various modes
is lost. LFDA, on the other hand, treats samples of a class within
each cluster/mode independently when estimating the scatter
matrices, thereby preserving local neighborhoods even when
the data distributions are complex. Hence, the linear projection
learned using LFDA can be expected to maximize Fisher’s
ratio (from between- to within-class scatter) even when input
class-conditional distributions are multimodal. Clearly, when
Ai,j = 1 ∀i, j, LFDA degenerates to traditional LDA. Due to
the data-dependent weighting by W in the estimation of the
scatter matrices, unlike LDA, the final dimensionality after an
LFDA projection is not upper bounded by c− 1.

Examples of dimensionality reduction for a 2-D two-class
multimodal synthetic data set using LFDA and LDA are shown
in Figs. 1–3. Here, knn is chosen as seven, and the dimensional-
ity of the projected subspace is chosen as one for both LDA and
LFDA. Fig. 1 shows the original two-class multimodal classi-
fication problem, along with the projecting directions learned
using LDA and LFDA. Figs. 2 and 3 show the histograms
of the data in the LFDA and LDA projected subspaces, re-
spectively. Note that LFDA preserves the multimodal structure
of the data in the projected subspace. Another measure that
quantifies this fact is the Kullback–Leibler (KL) distance [19].
The KL distance between classes 1 and 2 using LFDA (Fig. 2)
is 4.5, while this distance using LDA (Fig. 3) is 1.4. These
figures show that LFDA preserves the multimodal structure of
the data in the projected subspace. Unlike LFDA, LDA can
distort the information contained in multimodal distributions,
often projecting them onto subspaces wherein a unimodal
statistical structure is imposed. Hence, when using LFDA, in
going from Figs. 1 and 2 (LFDA), the inherent Bayes error is
approximately retained, but it increases significantly when go-
ing from Figs. 1–3 (traditional LDA).

Motivated by these properties, in this paper, we use LFDA
as a dimensionality-reduction step for hyperspectral image
classification. We propose that, combined with a classifier that
can handle multimodal distributions, such as a GMM, the
resulting classification is expected to accurately capture the
class-conditional statistics in a reduced-dimension subspace,
especially when classes are multimodal. The spectral response
of remotely sensed data can be affected by many factors, such
as differences in illumination conditions, geometric features of
material surfaces, and atmospheric effects [20]. It is hence rea-
sonable to expect that statistical distributions of classes/objects
in a remotely sensed image will possess a complicated mul-
timodal structure. Classifiers such as those based on GMMs
are hence a natural fit for remotely sensed data [12]. Another
common scenario where such multimodal structures would
exist is when the spatial resolution of the acquired imagery is
not fine enough to resolve the objects on ground, resulting in
mixed pixels.
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Fig. 1. Synthetic 2-D multimodal data and the directions of linear
dimensionality-reduction projection as estimated using LDA and LFDA.

Fig. 2. Histogram of the synthetic data in the previous figure when projected
onto a 1-D subspace using LFDA.

Fig. 3. Histogram of the synthetic data in the previous figure when projected
onto a 1-D subspace using LDA.

One of the principal reasons why the HSI research com-
munity has shied away from using GMMs is the significant
number of parameters that must be learned, necessitating large
training-data set sizes. To the best of our knowledge, LFDA,
as a preprocessing to GMMs, has not been explored in the
literature, and in this paper, we demonstrate the benefit of
doing so. We demonstrate how the LFDA transformation can
be optimized for the HSI-classification task at hand, and how,

when combined with GMM classifiers, the resulting system
outperforms traditional approaches. Furthermore, we demon-
strate that the benefits of LFDA do not simply stop at GMMs,
and in fact, LFDA is a very effective dimensionality-reduction
tool for SVMs as well. We explore these ideas next.

III. PARAMETRIC CLASSIFICATION

The Gaussian maximum-likelihood classifier [8]—arguably
one of the most commonly employed parametric classifiers
for remote-sensing tasks—assumes Gaussian class-conditional
statistics and relies on the first- and second-order statistics
of the data. The discriminant (class-membership) function is
given by

gl(x) = p(x|Cl)P (Cl), l = 1, 2, . . . , c (8)

where P (Cl) is the prior probability for the lth class label
Cl and c is the number of classes. The likelihood function
p(x|Cl) is assumed to take the parametric form p(x|Cl) ∝
N (µl,Σl), where the mean vector µl and covariance matrix
Σl are estimated from the training data. Gaussian MLE-based
classification is simple (i.e., a small number of parameters
need to be estimated) and has attractive convergence properties
as the amount of training data increases [11]. However, a
fundamental limitation of MLE classifiers is the assumption
that class-conditional likelihoods are Gaussian—for a variety of
classification tasks, this assumption can be inaccurate, resulting
in suboptimal classification performance.

A. GMM

A GMM [11]–[13] can be viewed as a combination of two
or more normal Gaussian distributions. In a typical GMM
representation, a probability density function for X = {xi}

n
i=1

in R
d is written as the sum of K Gaussian components

(modes), i.e.,

p(x) =

K∑

k=1

αkN (x, µk,Σk) (9)

where

N (x, µk,Σk) =
1

(2π)d/2|Σk|1/2

× exp

[
−
1

2
(x− µk)

⊤Σ−1
k (x− µk)

]
. (10)

In (9), K is the number of mixture components, while αk,
µk, and Σk are the mixing weight, mean, and covariance matrix,
respectively, of the kth component. These last three quantities
can be expressed by the parameter vector Θ = {αk, µk,Σk}.

Once the optimal number of components (K) per GMM has
been determined, the parameters for the mixture model can
be estimated by the expectation–maximization (EM) algorithm
[21], an iterative optimization strategy. The EM algorithm finds
a (local) maximum-likelihood or maximum a posteriori (MAP)
estimation of the parameters. Specifically, given a data set
X0 = {xi}

nl

i=1, xi is one data vector in the kth component
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subset Qk, and nl is the number of samples in Qk. The resulting
complete data log-likelihood is

L(Θ,X0) =
K∑

k=1

∑

i∈Qk

p(k|xi,Θ) log [αkN (xi, µk,Σk)] (11)

where p(k|xi,Θ) is the posterior probability for the kth com-
ponent of the GMM and can be written as

p(k|xi,Θ) =
αkN (xi, µk,Σk)∑K
k=1 αkN (xi, µk,Σk)

. (12)

At each iteration, the parameter Θ is obtained by max-
imizing the likelihood function L(Θ,X0) described in (11)
(the M-step). The parameter set is then updated (12) with an
expected value of these parameters for the next iteration (the
E-step)

α̂k =
1

nl

nl∑

i=1

p(k|xi,Θ) (13)

µ̂k =

∑nl

i=1 p(k|xi,Θ)xi∑nl

i=1 p(k|xi,Θ)
(14)

Σ̂k =

∑nl

i=1 p(k|xi,Θ)(x− µk)(x− µk)
⊤

∑nl

i=1 p(k|xi,Θ)
. (15)

The aforementioned procedure is iterated until the relative
difference between successive values of the complete data
log-likelihood provided by (11) reaches some predetermined
convergence threshold [22].

Estimating an appropriate number of components/modes (K)
is important to successful learning and deployment of GMMs
for classification tasks. The Akaike information criterion (AIC)
[23] is a commonly employed metric to estimate an optimal
value for K. For the parameter vector Θ, the AIC is expressed
in terms of the likelihood function as

AIC(Θ) = −2Lmax(Θ,X0) + 2K (16)

where Lmax(Θ,X0) is the maximum log-likelihood function
according to each model and K is the number of clusters to be
estimated. The preferred model is the one with the minimum
AIC(Θ) value.

The Bayes information criterion (BIC) [24] is another metric
commonly used for estimating an optimal value of K in GMM
models, and it is given as

BIC = −2Lmax(Θ,X0) +K log(n) (17)

where n is the total number of samples. It has been reported in
the pattern-recognition community (i.e., [25]) that, for certain
applications, the AIC tends to overestimate the value of K,
while the BIC often yields a much smaller K and is hence more
effective. In this paper,we study the efficacy of both the AIC and
BIC for GMM-based classification of high-dimensional HSI.

As we mentioned previously, the size of the resulting pa-
rameter space often makes GMMs impractical in HSI-analysis
tasks. For example, if the HSI data are d dimensional, then
the resulting dimensionality of the parameter space for a
K-component GMM, assuming full covariance matrices, is

K(1 + d(d− 1)/2) +Kd. For d = 100 and K = 10 (a reason-
able choice for the HSI dimensionality and number of mixture
components, respectively), the resulting parameter space has
dimension 50 510. Learning such high-dimensional parameter
vectors using limited (and costly) ground-truth/training data is
highly impractical.

We have demonstrated in Section II how LFDA can sig-
nificantly outperform LDA as a dimensionality-reduction tool,
preserving the multimodal structure of the data in the reduced-
dimension projected space. Consider the hypothetical example
provided earlier—for an LFDA projection of a 100-D space
onto a 10-D subspace, the resulting parameter space for a ten-
mixture GMM reduces from 50 510 down to 560. We hence
argue that LFDA serves as an ideal dimensionality-reduction
projection for GMM classifiers; we test this hypothesis for a
challenging hyperspectral-classification task in the experimen-
tal results to follow in Section IV. First, we consider SVMs as
an alternative to GMMs for classification.

B. SVM

For a training-data set X = {xi}
n
i=1 in R

d with class labels
yi ∈ {+1,−1} and a nonlinear kernel mapping φ(·), an SVM
[16] classifies binary data by determining an optimal hyper-
plane in the kernel-induced space by solving

min
ω,ξi,b

{
1

2
‖ω‖2 + ς

n∑

i=1

ξi

}
(18)

subject to the constraints

yi (〈φ(ω,xi)〉+ b) ≥ 1− ξi (19)

for ξi ≥ 0 and i = 1, . . . , n, where ω is normal to the optimal
decision hyperplane (i.e., 〈ω, φ(x)〉+ b = 0), n denotes the
number of samples, b is the bias term, ς is the regularization
parameter which controls the generalization capacity of the
machine, and ξi is the positive slack variable allowing one to ac-
commodate permitted errors appropriately. The aforementioned
problem is solved by maximizing its Lagrangian dual form [17]

max
α





n∑

i=1

αi −
1

2

n∑

i,j=1

αiαiyiyjK(xi,xj)



 (20)

where α1, α2, . . . , αn are nonzero Lagrange multipliers con-
strained to 0 ≤ αi ≤ ς , and Σiαiyi = 0, for i = 1, . . . , n. Some
commonly implemented kernel functions are the linear kernel,
the polynomial kernel, and the radial-basis-function (RBF)
kernel [16]. In this paper, RBF is considered

K(xi,xj) = exp

(
−
‖xi − xj‖

2

2σ2

)
(21)

where σ is a width parameter characterizing the RBF. Finally,
the decision function is represented as

f(x) = sgn

(
n∑

i=1

yiαiK(xi,x) + b

)
. (22)
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As mentioned before, traditional SVMs are binary classi-
fiers by design. Various approaches exist to extend the binary
SVMs to tasks involving more than two classes [26], [27].
The most popular approach is one-against-all [28], which trains
the SVM for every possible class pair. It is common to em-
ploy a backward feature-reduction algorithm—recursive fea-
ture elimination (RFE) [28]—to eliminate redundant features
that do not contribute positively to the SVM classifier. The
RFE approach focuses on retaining features that maximize the
separation margin while minimizing the generalization error.
RFE-SVM is therefore becoming increasingly popular in high-
dimensional classification applications, such as HSI analysis
[15]–[17]. Hence, it serves as a powerful baseline against which
to compare our proposed methods.

In this paper, we demonstrate the use of LFDA as an alternate
dimensionality-reduction tool for SVM classifiers. The locality-
preserving quality of LFDA is the key motivation behind study-
ing its benefits with SVM classifiers for HSI classification.
By preserving locality and neighborhood relations, complex
nonlinear decision surfaces in the input space are expected to
be preserved in the low-dimensional LFDA projected subspace,
wherein an SVM classifier can operate to attain linear separa-
tion in a kernel-induced space. Furthermore, since the LFDA
embedding optimizes Fisher’s ratio, one can be assured that the
projected subspace will possess good class separation.

IV. EXPERIMENTAL RESULTS

In this section, we validate our approach with several popular
HSI data sets and present experimental results demonstrat-
ing the benefits of LFDA-based dimensionality reduction for
nonlinear classifiers such as GMMs and SVMs. We report
the performance of classification systems as measured by the
overall classification accuracy, along with the 95% confidence
intervals for these estimates. The primary objectives of the
experimental results reported in the next two subsections are
as follows: 1) tuning the parameters of the classification sys-
tem (dimensionality reduction and classification) for the HSI
task at hand and 2) quantifying the efficacy of LFDA-based
dimensionality reduction for HSI classification and comparing
it to that of traditional state-of-the-art methods commonly
employed by researchers in the HSI community, over a wide
range of operating conditions (i.e., studying the sensitivity of
the classification algorithm to the amount of training data used,
as well as the extent of pixel mixing in the data set). All data
used in this paper are normalized to have a range of [0, 1].

A. Experimental Hyperspectral Data

The first experimental HSI data set employed was acquired
using the National Aeronautics and Space Administration’s
Airborne Visible/Infrared Imaging Spectrometer sensor and
was collected over northwest Indiana’s Indian Pines test site
in June 1992.1 The image represents a vegetation-classification
scenario with 145 × 145 pixels and 220 bands in the 0.4- to

1ftp://ftp.ecn.purdue.edu/biehl/MultiSpec.

Fig. 4. Spectral signatures of eight classes from the Indian Pines data set.

2.45-µm region of the visible and infrared spectrum with a
spatial resolution of 20 m. The main crops of soybean and
corn in the image are in their early growth stage. The no till,
min till, and clean till indicate the amounts of previous crop
residue remaining. Fig. 4 shows the spectral signatures for the
eight classes extracted from this imagery. Approximately 8600
labeled pixels are employed to train and validate/quantify the
efficacy of the proposed system. This data set is partitioned into
approximately 1496 training pixels and 7102 test pixels.

The other two data sets used in this paper were collected
by the Reflective Optics System Imaging Spectrometer sensor
[29]. The image, covering the city of Pavia, Italy, was col-
lected under the HySens project managed by DLR (the German
Aerospace Agency). The images have 115 spectral bands with a
spectral coverage from 0.43 to 0.86 µm and a spatial resolution
of 1.3 m. Two scenes are used in our experiment. The first one
of these is the university area which has 103 spectral bands
with a spatial coverage of 610 × 340 pixels. The second one
is the Pavia city center which has 102 spectral bands with
1096 × 715 pixels formed by combining two separate images
representing different areas of the Pavia city. Figs. 5 and 6 show
the spectral signatures of the nine classes in this data set. The
numbers of training and testing samples used for the University
of Pavia data set are 1476 and 7380, respectively. The numbers
of training and testing samples used for the Pavia Centre data
set are 1477 and 8862, respectively.

B. Optimizing LFDA-SVM and LFDA-GMM

In this section, we report experiments demonstrating the
sensitivity of the proposed LFDA-GMM and LFDA-SVM ap-
proaches over a wide range of the parameter space and show
how this information can be used to optimize the system
for any HSI-classification task. System parameters—such as
dimensionality of the projected subspace, knn in the affinity
matrix, and σ for the RBF kernel in SVMs—are optimized
using training data. Development data are derived from the
available training data by further dividing them into training
and testing samples for tuning these parameters. The testing



LI et al.: LOCALITY-PRESERVING DIMENSIONALITY REDUCTION AND CLASSIFICATION 1191

Fig. 5. Spectral signatures of nine classes from the University of Pavia
data set.

Fig. 6. Spectral signatures of nine classes from the Pavia Centre data set.

accuracy obtained using this development data set is used to
gauge an effective range for the system parameters to ensure a
reliable classification performance.

As we mentioned previously, unlike traditional LDA, the
dimensionality of the LFDA projected subspace is not restricted
to c− 1. As a result, when LFDA is applied for dimensionality
reduction of hyperspectral data, we need to find an optimal
dimensionality for the LFDA projection. It is also expected that
the knn term used to estimate γi in (2) will affect the affinity
matrix in LFDA. Fig. 7 shows the overall development-data
accuracy of LFDA-GMM as a function of knn and reduced
dimension for the University of Pavia HSI data set. It is clear
from Fig. 7 that the system is sensitive to the choice of system
parameters, but these follow a systematic trend, consistently
seen across all the data sets. In particular, it can be seen that
the performance peaks at small values of both the reduced
dimension and knn. The optimal dimensionality of the LFDA
projected subspace is expected to vary with the data set at
hand. However, as can be seen in Fig. 7, an optimal value of

Fig. 7. LFDA-GMM for the University of Pavia data set: Overall development
accuracy versus reduced dimension and parameter knn.

the reduced-dimension parameter for all data sets is obviously
smaller than the true dimensionality of the input space. For
example, a reduced dimension of ten appears to be optimal
for the University of Pavia data set. Although the extent of
dimensionality reduction is significant in such a projection, a
GMM classifier trained on the LFDA projected subspace is ex-
pected to capture the underlying statistical structure accurately
without the accompanying excessive overdimensionality of the
resulting parameter vector that would have been experienced if
it were trained on the original input space.

Fig. 8 shows the overall development-data accuracy of
LFDA-SVM for the University of Pavia data set. The SVM
performance is known to be sensitive to the width parameter
(σ) for the RBF kernel in (21), as is LFDA to the reduced
dimension and knn. We performed a grid search over a wide
range of all these system parameters, studying the development-
data accuracy as a function of these parameters. In a practical
setting, one can study these performance curves to optimally
tune the system. Fig. 9 shows the overall development-data
accuracy as a function of reduced dimension for the RFE-SVM
baseline algorithm with several values of σ. Table I summa-
rizes the optimal parameters that we chose for LFDA-GMM,
LFDA-SVM, and RFE-SVM. We note that the optimal re-
duced dimension for LFDA-SVM is obviously smaller than
that for RFE-SVM. This further suggests that LFDA is able
to find a transformation that can significantly reduce the di-
mensionality while preserving the rich statistical structure of
the data—something that a feature-elimination strategy cannot
achieve.

The quality (i.e., the accuracy or goodness of fit) of the
GMM model learned from the training data is sensitive to the
initialization of the parameter space, because the convergence
of the EM algorithm employed in GMM training would depend
on the initial seed selection of the parameter space. In this
paper, as is commonly done, a K-means clustering is used
for initializing the parameter vector [30]. To determine an
appropriate value of K, we incrementally increase the num-
ber of mixture components. Following this, a metric such as
BIC or AIC is employed to determine the optimal number of
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Fig. 8. LFDA-SVM for the University of Pavia data set: Overall development
accuracy versus reduced dimension, knn, and σ.

components for the GMM. Table II shows the number of
mixtures estimated using these two metrics for the Pavia Centre
data set. The maximum number of components per class is set
to five, and each column in the table corresponds to a unique
class in the data set. From Table II, we observe that the number
of components estimated using AIC is consistently greater
than that estimated using BIC. We found the overall accuracy
with AIC to be almost the same as that with BIC. Hence, we
conclude that, for such HSI-classification tasks, BIC is better

Fig. 9. RFE-SVM for the University of Pavia data set: Overall development
accuracy versus reduced dimension and σ.

TABLE I
OPTIMAL PARAMETERS FOR THE VARIOUS ALGORITHMS AFTER

TUNING FOR EXPERIMENTAL HYPERSPECTRAL DATA

TABLE II
NUMBER OF COMPONENTS ESTIMATED USING BIC AND AIC FOR THE

PAVIA CENTRE DATA SET, WITH TA VARYING FROM 100% TO 50%

suited to determine the number of mixtures in the GMM model;
we thus employ BIC in all experiments that follow. It is also
important to point out that a full covariance matrix is used and
learned for each Gaussian mode in the GMM models. To further
reduce complexity, a diagonal covariance matrix can be used,
but that is not necessary in this paper because of the significant
dimensionality reduction already attained by LFDA.
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Fig. 10. Indian Pines: Overall accuracy versus pixel-mixing abundance, both expressed in percentage, for several different classification methods.

Fig. 11. University of Pavia: Overall accuracy versus pixel-mixing abundance, both expressed in percentage, for several different classification methods.

Fig. 12. Pavia Centre: Overall accuracy versus pixel-mixing abundance, both expressed in percentage, for several different classification methods.

C. Comparison Against Current State-of-the-Art Parametric

Classification Techniques

To demonstrate the benefits of LFDA as a powerful
dimensionality-reduction tool for HSI classification, we com-
pare its performance using GMM and SVM classifiers with
that of other traditional dimensionality-reduction methods, in-
cluding LDA, regularized LDA (RLDA), and subspace LDA.
Data distribution in LDA-projected subspaces tends to be Gaus-
sian, which is hence followed by the conventional quadratic
Gaussian MLE classifier. RLDA [31] alleviates the problem of
an unstable inverse commonly encountered in traditional LDA
under small-sample-size and high-dimensionality situations.
The resulting algorithms are thus referred to as LDA-MLE and
RLDA-MLE in this paper.

In subspace LDA [7], an intermediate PCA transformation is
employed to discard the null space of the within-class scatter
matrix, following which LDA is applied. This is an alternate
mechanism to alleviate ill-conditioning in LDA formulations.
Additionally, subspace LDA is an interesting algorithm to
which to compare LFDA, since LFDA essentially combines
LPP (an unsupervised linear manifold learning) and LDA (a
supervised dimensionality reduction) to exploit the benefits of
LPP within the LDA setup. Subspace LDA followed by GMM
(subspace LDA-GMM) is hence another algorithm we study to
highlight the benefits of LFDA-GMM.

By design, LDA, RLDA, and subspace LDA result in a
(c− 1)-dimensional feature subspace after the dimensionality-
reduction projection. The extent of dimensionality reduction
after LFDA, as discussed previously, is determined by studying
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Fig. 13. Indian Pines: Overall accuracy (expressed in percentage) versus the training-data set size.

Fig. 14. University of Pavia: Overall accuracy (expressed in percentage) versus the training-data set size.

Fig. 15. Pavia Centre: Overall accuracy (expressed in percentage) versus the training-data set size.

the performance as a function of different subspace dimensions
and choosing a value that maximizes the development-data
accuracy.

Another algorithm that we will employ as a baseline is RFE-
SVM, which is an established and powerful dimensionality-
reduction and classification approach. Finally, we recently
studied a kernel extension of the LFDA algorithm—kernel
LFDA with MLE classifier (KLFDA-MLE) for HSI clas-
sification [32]. We found KLFDA-MLE to outperform
powerful approaches such as RFE-SVM in [28]. In this
paper, we use this as an additional baseline algorithm to
which to compare the performance of LFDA-SVM and
LFDA-GMM.

A comparison of the proposed methods (LFDA-GMM and
LFDA-SVM) with these state-of-the-art parametric classifica-
tion techniques is shown in Figs. 10–18. To simulate real-

life challenging operating conditions, we provide results for
a wide range of pixel-mixing conditions. In many situations,
the spatial resolution may not be fine enough to resolve the
object of interest on ground, and inadvertent mixing between
multiple classes may occur [33]. In this experiment, we use
the data sets described previously and linearly mix signatures
from background classes with the signature of the class being
classified. We report results over a range of percentage target-
abundance (TA) values. For example, a TA of 70% indicates
that 30% of background signatures were mixed linearly with
70% of the target class. An abundance of 100% implies that
pure pixels are employed without any mixing. Here, “target
class” simply refers to the true class of the pixel currently
being classified/tested. The background signatures/pixels used
for mixing the target class are gathered (with uniform weights)
from across all the other classes.
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Figs. 10–12 show the overall accuracy as a function of
TA for all four HSI data sets. The methods proposed in this
paper—both LFDA-GMM and LFDA-SVM—are indeed very
powerful classification approaches, outperforming traditional
state-of-the-art approaches significantly, even under adverse TA
conditions.

We also conducted an experiment wherein we varied the
amount of training data and studied the sensitivity of the pro-
posed methods relative to conventional methods over a range of
training-data set sizes [34]. In practical situations, the number
of training samples available is often insufficient to estimate
models for each class. We report the overall accuracy of these
classification systems as a function of the relative training-
sample size in Figs. 13–15. This relative training-sample size
(on the horizontal axis) is expressed relative to the spectral
dimensionality of the HSI data. Hence, an abundance of 6N
implies that the amount of training data used is six times
the dimensionality of the feature space (here, N denotes the
dimensionality of the original feature space, or the number of
spectral bands for this classification task). To avoid any spatial
biases, we randomly chose a subset of training samples for
each sample-size value and repeated the experiment 20 times,
reporting the average classification accuracy. Note that, with
decreasing training-data set size, the overall accuracy for all
systems decreases, as expected. However, the overall accuracy
of LFDA-GMM and LFDA-SVM is always higher than that of
the other baseline methods. Even at a very low training-data set
size (e.g., 3.4N in Fig. 10), the performance of the proposed
methods is impressive.

We also report visual ground-cover classification maps
for the Indian Pines and Pavia data sets, since they come
with labeled ground truth for training and visual compari-
son. Figs. 16–18 show the thematic maps resulting from the
classification of these hyperspectral scenes using LDA-MLE,
LFDA-GMM, RFE-SVM, and LFDA-SVM. We produced
ground-cover maps of the entire HSI scene for these images
(including unlabeled pixels). However, to facilitate easy com-
parison between methods, only areas for which we have ground
truth are shown in these maps. Clearly, LFDA-GMM and
LFDA-SVM consistently result in maps that are less noisy and
more accurate compared to traditional state-of-the-art methods.
For example, see the circled area of Soybeans-min till in Fig. 18
or the circled region of Asphalt in Fig. 16. It can be observed
that LFDA-GMM and LFDA-SVM result in maps having a
significantly reduced misclassification noise.

V. CONCLUSION

We have presented a locality-preserving discriminant analy-
sis for hyperspectral dimensionality reduction. This approach
was previously proposed and tested with simple binary-
classification data sets having a much smaller dimensional-
ity. Additionally, previous work has not studied LFDA as a
dimensionality-reduction tool for complex nonlinear classifiers
such as GMMs and nonlinear kernel-based SVMs. In this paper,
we argued that LFDA serves as a very effective dimensionality-
reduction tool for such classifiers, for very high-dimensional
and challenging classification tasks such as HSI ground-cover

Fig. 16. (a) False color image of the University of Pavia (using bands 60,
30, and 2), (b) ground truth of the labeled area with nine classes, and (c) the-
matic maps resulting from classification of “LDA-MLE,” (d) “LFDA-GMM,”
(e) “RFE-SVM,” and (f) “LFDA-SVM.”
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Fig. 17. (a) False color image of the Pavia Centre, (b) ground truth of
the labeled area with nine classes, and (c) thematic maps resulting from
classification of “LDA-MLE,” (d) “LFDA-GMM,” (e) “RFE-SVM,” and
(f) “LFDA-SVM.”

Fig. 18. (a) False color image of Indian Pines (using bands 80, 30 and 20),
(b) ground truth of the labeled area with eight classes, and (c) thematic maps
resulting from classification of “LDA-MLE,” (d) “LFDA-GMM,” (e) “RFE-
SVM,” and (f) “LFDA-SVM.”

classification. Furthermore, since LFDA is a linear projection,
its complexity is not significantly higher than that of traditional
LDA. While there is some additional overhead in terms of
memory when estimating the affinity matrix, LFDA does not
add any additional complexity to the classification backend
(e.g., GMM or SVM).

We provided experimental results with HSI data demon-
strating system performance over the parameter space for the
proposed approach, a procedure that can be employed for
optimizing the system for any classification task at hand. We
also studied the performance of the proposed system under two
real-life adverse operating scenarios commonly encountered
in remote-sensing analysis—i.e., under very limited training
data and under severe pixel mixing—and we showed that
the proposed approach significantly outperforms conventional
techniques under both conditions.
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We note that, although we have not included results of
GMM classification without any dimensionality reduction in
this paper, we performed such classification as well and found
that the overall classification performance of basic GMMs with
HSI data is dismally low—for example, with the University
of Pavia data set, when all of the training data were used, the
accuracy was a low 53%, while when the amount of training
data was dropped to 4.3N , the accuracy dropped to 20%,
indicating that GMM training effectively broke down due to
an immensely high-dimensional parameter space. These obser-
vations further corroborate our arguments as to the benefits of
LFDA as a dimensionality-reduction tool for classifiers such
as GMMs.

We note also that, in this paper, we have considered classifi-
cation tasks involving up to nine classes in a relatively well-
structured environment. However, this data complexity can
indeed be scaled up to complicated scenes involving many more
classes—in fact, we expect the LFDA-GMM/SVM approach to
be even more effective at capturing subtle statistical differences
for classification in such complex environments.
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