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ABSTRACT

Locality-preserving projection as well as local Fisher dis-
criminant analysis is applied for dimensionality reduction
of hyperspectral imagery based on both spatial and spectral
information. These techniques preserve the local geometric
structure of hyperspectral data into a low-dimensional sub-
space wherein a Gaussian-mixture-model classifier is then
considered. In the proposed classification system, local spa-
tial information—which is expected to be more multimodal
than strictly spectral features—is used. Results with ex-
perimental hyperspectral data demonstrate that this system
outperforms traditional classification approaches.

Index Terms— Dimensionality reduction, linear discrim-
inant analysis, hyperspectral data, pattern classification.

1. INTRODUCTION

Hyperspectral imagery (HSI) obtained by remote-sensing sys-
tems is a 3D cube covering a wide range of the electromag-
netic spectrum [1]. Typically, hyperspectral data provides
hundreds of narrow contiguous bands which include signif-
icant information about the spectral features of the materials
in the scene. Over the last two decades, various hyperspectral
image classification algorithms have been developed [2] for a
variety of applications requiring robust ground-cover classifi-
cation of remotely-sensed HSI.

Dimensionality reduction is an important preprocessing
step for hyperspectral image classification. Since hyperspec-
tral images possess a wealth of spectral information for each
pixel in the image, an effective dimensionality reduction can
exploit useful features specific for the classification task at
hand and result in improved classification performance.

Principal component analysis (PCA) [3] and linear dis-
criminant analysis (LDA) [3] are popular dimensionality-
reduction techniques for hyperspectral image classification.
Locality preserving projection (LPP) [4—6] is a recently pro-
posed dimensionality-reduction algorithm which is designed
to preserve the distance between samples while projecting
data into a lower-dimensional subspace. In other words, LPP
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can preserve the local structure of neighboring samples in the
input space. This is distinctly different from PCA and LDA.
Nevertheless, LPP is an unsupervised method. In [7], we
have studied the supervised local Fisher discriminant anal-
ysis (LFDA), which can be viewed as LPP plus supervised
LDA. This property of LFDA guarantees good between-class
separation in the projection while preserving the within-class
local structure.

In our previous work [7], LFDA is presented as a dimen-
sionality reduction using only spectral features. Many recent
studies have demonstrated that spatial information is helpful
for hyperspectral image classification since spatial texture is
useful for hyperspectral images, especially at high resolution.
In this work, we investigate LFDA as well as LPP coupled
with a Gaussian-mixture-model (GMM) [8] classifier to im-
prove the classification performance based on spatial-spectral
information. The combination of LPP and the GMM classifier
can be effective for hyperspectral image classification.

The remainder of the paper is organized as follows. Sec. 2
briefly reviews some dimensionality-reduction techniques.
Sec. 3 describes the classifiers we have used as well as our
proposed method. Sec. 4 provides a description of the ex-
perimental hyperspectral dataset and presents experimental
results. Finally, Sec. 5 makes some concluding remarks.

2. DIMENSIONALITY REDUCTION

Dimensionality reduction is commonly used as a preprocess-
ing step to reduce the dimensionality of the data while en-
suring a well-conditioned representation of class statistics.
Popular dimensionality-reduction methods include PCA and
LDA [3]. PCA [9] seeks to find a linear transformation which
projects high-dimensional data into a low-dimensional space
in terms of maximizing the variance of the data in projected
space. LDA [3] seeks to find a linear transformation which
maximizes the between-class scatter matrix while minimiz-
ing the within-class scatter matrix. In general, for classifi-
cation tasks, PCA-based dimensionality reduction is subopti-
mal compared to LDA-based methods [2] due to the fact that
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PCA-based methods aim to find projections with minimal re-
construction error, whereas LDA-based methods seek to find
projections that preserve the discriminant information. How-
ever, a limitation of LDA is that the technique assumes that
the class-conditional distributions are single Gaussian [10].
In this paper, we introduce dimensionality reduction designed
to exploit the rich statistical structure of hyperspectral data.
These techniques do not make the single-Gaussian assump-
tion but rather assume that the data is highly non-Gaussian
and multimodal, which is suitable for hyperspectral data.

2.1. LPP

Unlike PCA and LDA, LPP seeks to find a linear map W that
preserves the local structure of neighboring samples from the
input space. Fig. 1 illustrates the difference between PCA and
LPP (both are unsupervised dimensionality-reduction meth-
ods) using synthetic data.

LPP preserves neighborhood relationships and forces
neighboring points in the input space to remain close in the
projected space. Consider a dataset with training samples

= {x;};_, in R? (d-dimensional feature space) and class
labels yi € {1,2,...,C}, where C is the number of classes,
and n is the total number of training samples. Let n; be
the number of available training samples for the I class,
Zlczl n; = n. Define A; ; € [0, 1] as the affinity between x;

and x;,
L 112
Am—JXP<—WQT;3”>, (1)
Vg

= |Ix; — xgk"“)H denotes the local-scaling of data
samples in the neighborhood of x;, and xgk"“) is the kp,-
nearest neighbor of x;. A is then a symmetric matrix (re-
ferred to as the affinity matrix) of size n X n which measures

the distance among data samples.

where ~;

The eigenmap is calculated via computing the eigenvec-
tors and eigenvalues of the generalized eigenvalue problem,

XLXTW = AXDX'W, (2)

where A is the diagonal eigenvalue matrix; W is the eigen-

vector matrix; and L = D — A is the Laplacian matrix such

that D is a diagonal matrix with the i diagonal element being
D;; = Z?:l A; ;. Further details can be found in [4].

2.2. LFDA

LFDA is a supervised dimensionality-reduction technique
which is designed to handle multimodal, non-Gaussian dis-
tributions. In essence, LFDA combines the properties of
LDA and LPP. In LFDA, the local between-class S and

within-class S(™) scatter matrices are defined as,
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where W) and W %) are i x n matrices defined as,
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1/n, if yi # yj,
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Maximizing the Fisher’s ratio as defined using the local scat-
ter matrices, we have that

Orppa =

—1
argmax tr [(@EFDAS(IW) (I)LFDA) (I)ITFDAS(“)) (I)LFDA

PLrpA

)

is given by S P o = ASM P ppa, where A is the diago-
nal eigenvalue matrix, and ®ypps € R4 is the transformation
matrix. LFDA obtains good between-class separation in the
projection while preserving the within-class local structure at
the same time. A more complete description of LFDA can be
foundin [7,11].

3. CLASSIFICATION

The maximume-likelihood-estimation (MLE) [12] classifier is
one of the most popular methods of classification of remote-
sensing data. However, a fundamental limitation of MLE
classifiers is the assumption that class-conditional likelihoods
are Gaussian—for a variety of classification tasks, this as-
sumption can be inaccurate, resulting in suboptimal classi-
fication performance.

3.1. GMM

A GMM [8] can be viewed as a combination of two or more
normal Gaussian distributions. In a typical GMM representa-
tion, a probability density function for X = {x;};_, in R is
written as the sum of K Gaussian components (modes); i.e.,

K
x) = > N (x, i, ), ®)

k=1

where
N(x, p, X)) =

1 1 _
emn@2|s, 172 P [—2(X — ) B = )| )
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Fig. 1. (a) A synthetic 2D multimodal data and the directions of PCA, LDA, LPP and LFDA; (b) the data distribution after

projection into a 1D subspace.

In (8), K is the number of mixture components, while o, L,
and X, are the mixing weight, mean, and covariance matrix,
respectively, of the k™ component. These last three quantities
can be expressed by the parameter vector © = {ay, fk, Sk }-
Once the optimal number of components, K, per GMM has
been determined, the parameters for the mixture model can be
estimated by the expectation-maximization (EM) algorithm
[13], an iterative optimization strategy.

The spectral response of hyperspectral data can be af-
fected by many factors, such as differences in illumination
conditions, geometric features of material surfaces, and at-
mospheric effects. It is hence reasonable to expect that the
statistical distribution of classes in hyperspectral imagery has
a complicated multimodal structure. Classifiers such as those
based on GMM are hence a natural fit for hyperspectral data.
The visualization in Fig. 1 suggests that the combination of
LPP and a GMM classifier can be effective for hyperspectral
image classification.

In this work, we exploit LPP as well as LEFDA for dimen-
sionality reduction based on the spatial-spectral information
for hyperspectral image classification. PCA first reduces the
dimensionality of original image bands from d to a certain
value d’ (d' < d). For each pixel, we extract a spatial win-
dow of size B x B surrounding the current pixel; the resulting
B x B x d’ cube from this window is then “rasterized” into
a vector of dimension B2 - d’ which is considered to be the
new feature vector (including spectral information as well as
spatial information) for the center sample (pixel) in the cur-
rent spatial window. Following this procedure, LFDA or LPP
is employed on this new space to extract features. In doing
so, the local spatial information of hyperspectral image is uti-
lized, and it is expected that the spatial texture tends to be

more multimodal than features based solely on spectral infor-
mation. Thus, LPP/LFDA coupled with the GMM classifier
is expected to improve classification performance.

4. EXPERIMENTS AND ANALYSIS

In this section, we evaluate the classification performance of
the proposed algorithm for hyperspectral data classification.
The HSI dataset employed was acquired using NASA’s Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) sen-
sor and was collected over northwest Indiana’s Indian Pine
test site in June 1992!. The image represents a vegetation-
classification scenario with 145 x 145 pixels and 220 spectral
bands with a spatial resolution of 20 m. Eight classes are used
in this study. There are about 188 training samples per class
and a total of 7,120 testing samples.

Fig. 2 illustrates the overall accuracy versus reduced di-
mensionality for the Indian Pines dataset (8 classes). It is
worth mentioning that the reduced dimensionality of LFDA
is not restricted to C'— 1 where C' is the number of classes. For
traditional LDA, the classification accuracy using only spec-
tral information for this dataset is 76.42% while the accuracy
obtained using spatial-spectral information is 79.75%, which
are both lower than the techniques shown in Fig. 2—PCA-
spectral, PCA-spatial-spectral, LPP-spectral, LPP-spatial-
spectral, LFDA-spectral and LFDA-spatial-spectral. We also
show the overall classification accuracy versus varying re-
duced dimensionality for the Indian Pines dataset. From
the experimental results, it can be seen that the overall ac-
curacy of LPP is always higher than that of PCA, both for
spatial as well as spectral classification. Furthermore, when

lftp://ftp.ecn.purdue.edu/biehl/MultiSpec
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Fig. 2. Indian Pines dataset: overall classification accuracy
versus reduced dimensionality.

the dimensionality is 17, the proposed LFDA-spatial-spectral
classifier provides the best performance, approximately 3%
higher accuracy then the LFDA-spectral technique introduced
in [7, 14]. For this dataset, in Fig. 2, the reduced dimension-
ality indicates the final dimensionality of the space in which
the classifiers are applied; spatial window size B is 5; and
parameter d’ is 24, 10, and 22 for LDA, LPP, and LFDA,
respectively. Finally, we note that we report results from
the proposed spatial-spectral classification following an opti-
mization of all system parameters.

5. CONCLUSIONS

In this paper, we investigated LPP and LFDA as dimension-
ality reduction for hyperspectral image classification. Unlike
traditional PCA and LDA, LPP and LFDA are designed to
handle non-Gaussian class distributions and preserve the un-
derlying structure of such distributions in the projected space.
We exploited these techniques for hyperspectral data based
on spatial and spectral information, and GMM was employed
as the classifier to predict class labels. The hyperspectral
dataset—representing vegetation classification—was used to
evaluate the proposed strategy and compare it to traditional
classification methods. Experimental results demonstrated
that the proposed system provides better classification perfor-
mance compared to traditional approaches.
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