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Abstract

Hashing has recently attracted considerable attention for large
scale similarity search. However, learning compact codes
with good performance is still a challenge. In many cases,
the real-world data lies on a low-dimensional manifold em-
bedded in high-dimensional ambient space. To capture mean-
ingful neighbors, a compact hashing representation should
be able to uncover the intrinsic geometric structure of the
manifold, e.g., the neighborhood relationships between sub-
regions. Most existing hashing methods only consider this
issue during mapping data points into certain projected di-
mensions. When getting the binary codes, they either directly
quantize the projected values with a threshold, or use an or-
thogonal matrix to refine the initial projection matrix, which
both consider projection and quantization separately, and will
not well preserve the locality structure in the whole learn-
ing process. In this paper, we propose a novel hashing algo-
rithm called Locality Preserving Hashing to effectively
solve the above problems. Specifically, we learn a set of lo-
cality preserving projections with a joint optimization frame-
work, which minimizes the average projection distance and
quantization loss simultaneously. Experimental comparisons
with other state-of-the-art methods on two large scale datasets
demonstrate the effectiveness and efficiency of our method.

Introduction

The explosive growth of the vision data on the internet has
posed a great challenge to many applications in terms of fast
similarity search. To handle this problem, hashing based ap-
proximate nearest neighbor (ANN) search techniques have
recently become more and more popular because of their im-
provements in computational speed and storage reduction.

Given a dataset, hashing methods convert each dataset
item into a binary code so as to accelerate search. In many
cases, the real-world data lies on a low-dimensional mani-
fold (Niyogi 2004). To depict such a manifold, the neighbor-
hood relationships between data points are essential. Hence,
a compact hashing representation should preserve the neigh-
borhood structure as much as possible after Hamming em-
bedding. So far, a lot of hashing methods (Weiss, Torralba,
and Fergus 2008; Wang, Kumar, and Chang 2010a; 2012;
Liu et al. 2012; Zhao, Liu, and Lu 2013) have been proposed
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from this perspective. In these methods, a typical two-stage
strategy is adopted in hashing function learning, as men-
tioned in (Kong and Li 2012a). In the first stage, several pro-
jected dimensions are generated in certain ways. Then in the
second stage, the projected values will be quantized into bi-
nary codes. One problem with these methods is that they pre-
serve locality structure only in the first stage. In the second
stage, directly thresholding the projected values is chosen to
get binary codes, which means a number of neighbor points
close to the threshold will be inevitably hashed to distinct
bits. Another case is shown in (Gong and Lazebnik 2011;
Kong and Li 2012b; Xu et al. 2013), where an orthogonal
matrix is used to refine the initial projection matrix in the
second stage. However, the orthogonal transformation is just
a rotation operation, which will not really “change” the pro-
jection matrix. The step-by-step learning procedure adopted
by these methods considers the two stages separately during
Hamming embedding.

In this paper, we propose a novel hashing algorithm
named Locality Preserving Hashing (LPH) to solve the
above problems. The main contributions of our work are out-
lined as follows:

(1) We take advantage of a more general method of minimiz-
ing the quantization loss. Our approach can maintain the
neighborhood structure preserved in projection stage as
much as possible.

(2) A joint optimization framework, which minimizes the av-
erage projection distance and the quantization loss simul-
taneously, is provided. To the best of our knowledge, this
is one of the first work that learns hash codes with a
joint optimization of projection and quantization stages
together to preserve the locality structure of a dataset in
Hamming space.

(3) Relaxation and an iterative algorithm along with state-
of-the-art optimization techniques are proposed to solve
the joint optimization problem efficiently. Experimental
results show that our approach is superior to other state-
of-the-art methods.

Related Work

Given a data set X = [x1,x2, · · · ,xn]
⊤ ∈ Rn×d, the basic

idea of hashing is to map each point xi to a suitable K-
dimensional binary code yi ∈ {−1,+1}K with K denoting
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the code size. Linear projection-based hashing methods have
been widely used due to their simplicity and efficiency. In
linear projection-based hashing, after learning a projection
matrix W = [w1, ...,wK ] ∈ Rd×K , the kth hash bit yik of
xi can be expressed as the following form:

yik = sgn(f(w⊤
k xi + bk)), (1)

where bk is a bias, f(·) is an arbitrary function and sgn(·)
is the sign function. Then the corresponding {0, 1} code can
be given by 1

2 (1 + yik).
Broadly, hashing methods can be roughly divided into two

main categories (Gong and Lazebnik 2011; Liu et al. 2011):
data-independent methods and data-dependent methods. Lo-
cality Sensitive Hashing (LSH) (Gionis et al. 1999) and its
variants (Datar et al. 2004; Kulis, Jain, and Grauman 2009;
Kulis and Grauman 2009) are one representative kind of
data-independent methods. They use random projections to
get binary codes of data. Although, there exists an approx-
imate theoretical proof for these methods that the locality
structure is asymptotically preserved in Hamming space, it
requires numerous tables with long codes for high accuracy
in practice (Gionis et al. 1999). Especially for large scale
applications, the numerous hashing tables will cost consid-
erable storage and query time. Besides, long codes will de-
crease the collision probability of similar samples, conse-
quently resulting in low recall.

Due to the shortcomings of data-independent methods,
many data-dependent methods have been developed to learn
more compact hash codes from dataset. Semantic Hashing
(Salakhutdinov and Hinton 2009) employs a deep genera-
tive model combined with restricted Boltzmann machine to
generate hash functions. In PCA-Hashing (PCAH) (Wang
et al. 2006; Gong and Lazebnik 2011), the eigenvectors of
the data covariance matrix with maximum eigenvalues are
used as hashing projection matrix. Spectral Hashing (SH)
(Weiss, Torralba, and Fergus 2008) formulates the hashing
problem as a particular form of graph partition to seek a code
with balanced partitioned and uncorrelated bits. After that,
some state-of-the-art hashing methods inspired by SH are
put forward, including Hashing with Graphs (AGH) (Liu et
al. 2011) and Harmonious Hashing (HamH) (Xu et al. 2013).
AGH introduces anchor graphs to accelerate the computa-
tion of graph Laplacian, while HamH adopts a linear relax-
ation of the neighborhood graph and tries to maintain equiv-
alent variance on each dimension. Isotropic Hashing (IsoH)
(Kong and Li 2012b) is another hashing method proposed to
seek a projection with equal variances for different dimen-
sions by rotating the PCA-projected matrix. In (Gong and
Lazebnik 2011), Iterative Quantization (ITQ) is proposed to
learn an orthogonal matrix by minimizing the quantization
loss of mapping the data generated by PCA projection to bi-
nary codes.

Recently, some hashing algorithms exploiting label infor-
mation have been developed. By introducing semantic pairs,
Semi-Supervised Hashing (SSH) (Wang, Kumar, and Chang
2010a; 2012) minimizes the empirical error on the labeled
pairs and maximizes the information theoretic regularization
on all data to learn hash functions. LDA-Hash (Strecha et al.
2012) learns hash codes by making the Hamming distance

minimized between positive pairs and maximized between
negative pairs. In (Liu et al. 2012), Kernel-Based Supervised
Hashing (KSH) uses the equivalence between optimizing the
code inner products and the Hamming distances to map the
data to compact codes whose Hamming distances are min-
imized on similar pairs and simultaneously maximized on
dissimilar pairs.

Locality Preserving Hashing

This section presents the formulation of our Locality Pres-
erving Hashing (LPH) method. First, we introduce the
motivation of our method. Then, we discribe the deduction
of LPH and formulate it as a joint optimization problem. Fi-
nally, we give an iterative algorithm along with state-of-the-
art optimization techniques to solve the proposed problem.
To facilitate our discussion, some notations are given below.

We aim to map the data X ∈ Rn×d to a Hamming
space to get compact hash representations. Let Y =
[y1,y2, · · · ,yn]

⊤ ∈ Rn×K be the K-bit Hamming embed-
ding of X. In our work, linear projections along with thresh-
olding are used to obtain hash bits. For every data point xi,
the kth hash bit is defined as

yik = sgn(w⊤
k xi + bk), (2)

where bk is the negative mean value of the projected data.
Without loss of generality, we assume X is zero centered,
i.e.,

∑n

i=1 xi = 0. Thus bk = − 1
n

∑n

i=1 w
⊤
k xi = 0. One

can get the corresponding {0, 1} code as

hik =
1

2
(1 + yik) =

1

2
(1 + sgn(w⊤

k xi)). (3)

Motivation

As the real-world data usually lies on a low-dimensional
manifold, the neighborhood structure of the manifold should
be preserved to capture meaningful neighbors with hash-
ing. Mainstream hashing methods adopt a two-stage strategy
step by step. In order to make the locality preserving projec-
tion matrix learned in projection stage be well preserved in
quantization stage, we adopt a more general quantization ap-
proach and formulate the two-stage learning procedure as a
joint optimization problem. Apparently, if the locality struc-
ture of the dataset is well preserved in Hamming space, the
true positive rate of the returned samples will be high. As a
result, our goal is to learn such codes that the locality struc-
ture is well preserved after the dataset has been embedded
into Hamming space.

Projection Stage

As aforementioned, for most existing hashing methods, the
two-stage strategy is usually adopted to learn hash codes.
In the first stage, one wants to learn a projection matrix in
which the neighborhood structure is well preserved. We con-
struct an affinity matrix A first, whose entry Aij , represent-
ing the similarity of data xi and xj , is defined as follows:

Aij =

{

exp(
‖xi−xj‖

2

σ
), xi ∈ Nk(xj) or xj ∈ Nk(xi),

0, otherwise,
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(a) (b)

Figure 1: 2-D illustration of quantization stage. A circle de-
notes a vertex of the hypercube {−1, 1}2, and a dot denotes
a data point. (a) shows the bad circumstance of traditional
quantization condition after projection stage; (b) presents the
optimized quantization situation by minimizing the quanti-
zation loss.

where Nk(x) denotes the k-nearest neighbors of x. Let
{pi}

n
i=1 be the list of projection vectors, i.e., pi = W⊤xi.

Then, we minimize the following objective function (Niyogi
2004):

∑

ij

Aij‖pi − pj‖
2, (4)

Empirically, if xi and xj are close then pi and pj will be
close as well (Niyogi 2004). So, the locality structure is pre-
served. With some algebra manipulations, we have

∑

i,j

Aij‖pi − pj‖
2 = 2tr{W⊤X⊤LXW}, (5)

where L = D−A, D = diag(A1) with 1 = [1, · · · , 1]⊤ ∈
Rn and tr{·} is the trace of a matrix.

Quantization Stage

In the second stage, we want to obtain the hash codes from
projection vector p while maintaining the locality preserv-
ing property of the projected data as much as possible. We
found that sgn(p) can be seen as the vertex of the hyper-
cube {−1, 1}K corresponding to p in terms of Euclidean
distance. The closer sgn(p) and p are, the better the local-
ity structure will be preserved (see Figure 1), which can be
formulated as the following optimization problem:

min
pi

n
∑

i=1

‖sgn(pi)− pi‖
2. (6)

The objective function can be rewritten in a compact matrix
form:

n
∑

i=1

‖sgn(pi)− pi‖
2 = ‖Y −XW‖2F , (7)

where ‖·‖F denotes the Frobenius norm. Note that our quan-
tization method is different from those in ITQ and HamH,
where they aim to rotate the projection matrix to minimize
the loss function by introducing an orthogonal matrix. By
contrast, we adopt a more general way to minimize the quan-
tization loss (7) without extra rotational operations. Besides,
our method does not require a pre-learned projection matrix.

A Joint Optimization Framework

In contrast to the mainstream two-stage strategy of hash-
ing conducted step by step, we propose a joint optimization
framework to hold the locality preserving property in the two
stages simultaneously. By incorporating the graph Laplacian
regularization term and the quantization loss, we minimize
the following joint optimization function:

H(Y,W) = tr{W⊤X⊤LXW}+ ρ‖Y −XW‖2F , (8)

where ρ is a positive parameter controlling the tradeoff be-
tween projection and quantization stages.

By minimizing Eq.(8), the neighborhood structure of the
dataset can be well preserved in just one step, which is al-
ways better than step-by-step learning since it hardly ensures
the locality preserving projection matrix learned in projec-
tion stage not to be destroyed in quantization stage. In ad-
dition, as discussed above, ITQ and HamH learn an orthog-
onal matrix to refine the initial projection matrix to mini-
mize the quantization loss. The orthogonal transformation
just rotates the projection matrix, it can not change the in-
trinsic structure of the matrix. In other words, if we treat the
projection matrix W ∈ Rd×K as K hyperplanes, the rela-
tive relationship between each hyperplane has been decided
in projection stage. Consequently, it makes the quantization
stage not really “work” in a certain sense. In contrast, our
joint optimization framework will make W determined by
both projection and quantization stages. It does not need a
pre-learned W as well. As a result, the projection matrix
W learned by our method will hold the locality preserving
property in two stages simultaneously.

Motivated by SH, we would like the hash bits to be in-
dependent and generate a balanced partition of the dataset.
Further, we relax the independence assumption to pairwise
decorrelation of bits, then we have the following problem:

(Y∗,W∗) = arg min
Y,W

H(Y,W) (9)

subject to : Y⊤1 = 0

Y⊤Y = nIK×K ,

where IK×K is the identity matrix with size of K ×K.

The above problem is difficult to solve since it is a typi-
cal combinatorial optimization problem which is usually NP
hard. In the next section, we relax the constraints and adopt a
coordinate-descent iterative algorithm to get an approximate
solution.

Relaxation and Optimization

The constraints Y⊤1 = 0 mean that each bit takes 50%
probability to be 1 or -1. However, for real-world data, it
is not always the case, as illustrated in Figure 2. The con-
straints will force one to select the red hyperplane instead
of the green one. Hence, we will discard these strong con-
straints.

Moreover, we relax the pairwise decorrelation of bits
Y⊤Y = nIK×K by imposing the constraints W⊤W =
IK×K instead as in (Wang, Kumar, and Chang 2012; 2010a),
which request the projection directions to be unit-norm and
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Figure 2: An illustration of splitting the data points with
hashing hyperplanes. On the left panel, the red hyperplane
and the green one are equivalent. However, on the right, the
green hyperplane is more reasonable.

orthogonal to each other. The relaxed problem is thus ex-
pressed as

(Y∗,W∗) = arg min
Y,W

H(Y,W) (10)

subject to : W⊤W = I.

It is still not easy to be solved because of the orthogo-
nality constraints. Fortunately, H(Y,W) is lower-bounded
as Eq.(8) is always nonnegative. To seek a local minimum
of Eq.(10), we employ a coordinate-descent iterative proce-
dure. We begin the iterative algorithm with a random orthog-
onal initialization of W, which provides better performance
than arbitrary random initialization since it corresponds to
the orthogonality constraints. In each iteration, we first fix
W and optimize Y, then fix Y and optimize W. The de-
tails of the two alternating steps are described below.
Quantization step: fix W and optimize Y. Expanding
Eq.(8), we obtain

H(Y,W) = C1 + ρ(‖Y‖2F + C2 − 2tr{YW⊤X⊤})

= C1 + ρnK + ρC2 − 2ρtr{YW⊤X⊤},

where C1 = tr{W⊤X⊤LXW} and C2 = tr{XWW⊤

X⊤}. Because W and X are fixed, minimizing H(Y,W)
with respect to Y is equivalent to maximizing

tr{YW⊤X⊤} =
n
∑

i=1

K
∑

j=1

yij(XW )ij , (11)

where (XW )ij denotes the (i, j)th element in XW. To
maximize the above expression, we should have yij = 1
when (XW )ij ≥ 0 and yij = −1 otherwise. That is,

Y = sgn(XW). (12)

Projection step: fix Y and optimize W. For a fixed Y,
our problem corresponds to a typical minimization with or-
thogonality constraints. A popular solution to the optimiza-
tion problem is the gradient flow method on the orthogonal
constraints (Helmke and Moore 1996; Ng, Liao, and Zhang
2011).

We denote Mν
µ = {W ∈ Rµ×ν : W⊤W = I},

TWM
ν
µ = {T ∈ Rµ×ν : T⊤W + W⊤T = 0}. TheMν

µ

is usually referred to as the compact µ× ν Stiefel manifold
(Kreyszig 1968) and TWM

ν
µ is its tangent space. Generally,
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Figure 3: The values of objective function (8) for learning a
48-bit code on (a) STL-10 and (b) GIST1M datasets.

there are two known metrics for TWM
ν
µ: the Euclidean met-

ric 〈T1,T2〉e = tr{T⊤
1 T2} and the canonical metric

〈T1,T2〉c = tr{T⊤
1 (I−

1

2
WW⊤)T2},

where T1,T2 ∈ TWM
ν
µ.

In our work, we use the the canonical metric and apply
the Cayley transformation to overcome the non-convex con-
straints and the expensive cost of preserving orthogonality,
as mentioned in (Wen and Yin 2013). The gradient under
canonical metric is given below:

∇cF = G−WG⊤W, (13)

where G is the gradient of our objective function H(Y,W)
with respect to W:

G = 2(X⊤LXW + ρX⊤XW − ρX⊤Y). (14)

With the Cayley transformation: P(τ) = QW, where
Q = (I+ τ

2M)−1(I− τ
2M) and M is a skew-symmetric ma-

trix defined as M = GW⊤ −WG⊤, we employ the new
trial point P(τ) to replace W. Moreover, P(τ)⊤P(τ) =
W⊤W for all τ ∈ R and {P(τ)}τ≥0 is a descent path
(Wen and Yin 2013). Hence, orthogonality is preserved
and a gradient descent method can be adopted to mini-
mize H(Y,W). In practice, the Crank-Nicolson-like update
scheme (another form of Cayley transformation) is used as
the iteration formulation:

P(τ) = W − τM(
W +P(τ)

2
), (15)

where τ denotes a step size satisfying the Armijo-Wolfe con-
ditions (Nocedal and Wright 1999). And we accelerate it by
Barzilai-Borwein (BB) step size as in (Wen and Yin 2013).

We alternate between projection step and quantization
step for several iterations to seek a locally optimal solution.
Since in each step we minimize the objective function, we
have

H(Y(t)
,W

(t)) ≥ H(Y(t+1)
,W

(t)) ≥ H(Y(t+1)
,W

(t+1)),

where Y(t) denotes the tth iteration results of Y, the same
as W(t). The typical behavior of the values of Eq.(8) is pre-
sented in Figure 3. We do not have to iterate until conver-
gence. In practice, we use 50 iterations for all experiments,
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Algorithm 1 Locality Preserving Hashing (LPH)

Input: Data X (zero-centered); random initialization ma-
trix W(0); positive parameter ρ; number of hash bits K;
iteration counter t← 1.
repeat

Update binary codes Y(t) from W(t−1) by Eq.(12);

Update projection matrix W(t) from Y(t) by Eq.(15);
t← t+ 1;

until convergence;
Output: Hash codes Y and projection matrix W.

which has already achieved good performance. The whole
procedure of LPH is outlined in Algorithm 1.

In particular, if we remove quantization stage from Eq.(8)
by setting ρ = 0, our method will reduce to the classical
SH problem. On the other hand, if we set ρ→∞ in Eq.(8),
our method is equivalent to only minimizing the quantiza-
tion loss (7), which is denoted as LPH-q in the experiments.
These two paradigms can be seen as the special cases of our
model. We experimentally present that our method (with ρ
equal to 1) has the best performance.

Experiments

Datasets

We evaluate our LPH method on the two benchmark
datasets: STL-10 and ANN-GIST1M.

• STL-10 dataset is an image recognition dataset with
higher resolution (96×96). It has 10 classes, 5000 train-
ing images, 8000 test images and 100000 unlabeled im-
ages. In our experiments, images are represented as 384-
dimensional grayscale GIST descriptors (Oliva and Tor-
ralba 2001). The training set consists of 100000 unlabeled
images, and the test set consists of 1000 test images.

• ANN-GIST1M dataset is a subset of the largest set pro-
vided for the task of ANN search. We randomly sample
100000 images from its 1 million 960-dimensional GIST
features as the training set, and 1000 query images as the
test set.

Evaluation Protocols and Baselines

We evaluate the performance of nearest neighbor search by
using Euclidean neighbors as ground truth. More specifi-
cally, we randomly pick 10000 samples from the training set
to construct a pair-wise distance matrix D∗ with l2 norm and
set the 10th percentile distance in D∗ as the threshold, which
is used to judge whether a returned point is a true positive or
not. And we adopt Hamming ranking to report the aver-
aged precision as in (Wang, Kumar, and Chang 2012; 2010a;
2010b). Then, we compute the Precision-Recall curves and
retrieving accuracy.

The existing hashing methods can be divided into three
categories: supervised, semi-supervised and unsupervised.
Our LPH is essentially unsupervised, for fair comparison,
we compare our method with the following representative
unsupervised ones: LSH (Gionis et al. 1999), PCAH (Gong
and Lazebnik 2011), SH (Weiss, Torralba, and Fergus 2008),
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Figure 6: Precision-recall curves with 48 bits on (a) STL-10
and (b) GIST1M datasets.
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Figure 7: Precision of first 1000 samples with different num-
ber of bits on (a) STL-10 and (b) GIST1M datasets.

AGH (Liu et al. 2011) (we use its two-layer hash functions
to generate hash bits), ITQ (Gong and Lazebnik 2011), IsoH
(Kong and Li 2012b) (we implement the Lift and Projection
algorithm there to solve the rotating problem), HamH (Xu et
al. 2013).

Results

We first present the precision curves with different number
of retrieved samples in Figures 4 and 5. We vary the length of
hash bits from 32 to 96 to see the performance of all meth-
ods. It is clear that our LPH method outperforms all other
methods on each dataset and each code size, proving its ef-
ficiency and stability. ITQ, IsoH and HamH perform better
than other methods since they rotate the initial projection
matrix to minimize their loss functions in quantization stage.
Another case is AGH, which employs a hierarchical thresh-
old learning procedure. Both are always better than directly
thresholding. By contrast, LPH preserves the locality struc-
ture in projection stage and tries to maintain the property in
quantization stage with a joint optimization technique. Con-
sequently, the experimental results demonstrate that our lo-
cality preserving strategy is more reasonable.

In Figure 6, we plot the precision-recall curves with 48
bits, and Figure 7 illustrates the precision of first 1000 re-
turned samples with different length of hash bits. It can be
seen again, the performance of LPH is superior to other
state-of-the-art methods. From these figures, We also note
that PCAH and LSH have almost the worst performance,
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Figure 4: Precision curves on STL-10 dataset with different number of retrieved samples at 32, 48, 64, 96 bits respectively.
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(b) 48 bits
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(c) 64 bits
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Figure 5: Precision curves on GIST1M dataset at different number of retrieved samples with 32, 48, 64, 96 bits respectively.

Table 1: Precision of first 1000 samples with different num-
ber of bits on (a) STL-10 and (b) GIST1M datasets.

STL-10 GIST1M

#bits 32 48 96 32 48 96

LPH 0.7194 0.7368 0.7586 0.5499 0.5651 0.5700

LPH-q 0.6956 0.7087 0.7342 0.5377 0.5485 0.5514

SH 0.5460 0.5305 0.5623 0.4491 0.5109 0.5546

since the maximum variance projection can hardly preserve
locality structure and the random projection is weak in pre-
serving neighborhood relationships.

Table 1 shows the precision of first 1000 returned samples
with different code sizes of LPH, LPH-q and SH. Obviously,
our LPH method outperforms these two methods on each
code size, which once again verifies that the joint learning
framework of LPH is effective and efficient.

Finally, we record the training time on the two datasets
in Table 2. Although LPH needs more time than the most
hashing methods, it is still faster than AGH. Considering
the complicated optimization procedure and the learning
process running totally off-line, the time of our method is
acceptable. We skip the test time comparisons, since their
query processes are similar and efficient.

Conclusions

To capture meaningful neighbors, a lot of hashing algo-
rithms have been proposed to preserve the neighbor rela-
tionships. However, they either guarantee the locality struc-

Table 2: Training time (in seconds) of all methods on (a)
STL-10 and (b) GIST1M datasets.

STL-10 GIST1M

#bits 24 32 48 24 32 48

LSH 0.61 0.79 0.88 1.49 1.64 2.08

PCAH 0.04 0.03 0.05 0.06 0.07 0.09

SH 0.74 0.84 0.94 2.99 3.08 3.17

AGH 177.65 203.08 287.84 333.32 428.56 572.60

IsoH 0.12 0.15 0.24 0.14 0.18 0.27

ITQ 3.13 4.33 6.48 3.10 4.31 6.44

HamH 1.60 1.61 1.87 3.26 3.33 3.67

LPH 123.58 173.86 229.47 297.63 350.48 449.25

ture only in the projection stage, or do this separately be-
tween the two stages. In this paper, we have proposed a new
method named Locality Preserving Hashing to hold the lo-
cality preserving property in two stages simultaneously, by
combining minimizing the average projection distance and
the quantization loss with a joint learning technique. Exper-
imental results present significant performance gains over or
comparable to other state-of-the-art methods in large scale
similarity search on high-dimensional datasets.
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