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Locality Results for Certain Extensions of

Theories with Bridging Functions

Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Campus E 1.4, Saarbrücken, Germany

Abstract. We study possibilities of reasoning about extensions of base
theories with functions which satisfy certain recursion (or homomor-
phism) properties. Our focus is on emphasizing possibilities of hierarchi-
cal and modular reasoning in such extensions and combinations thereof.
We present practical applications in verification and cryptography.

1 Introduction

In this paper we study possibilities of reasoning in extensions of theories with
functions which satisfy certain recursion (or homomorphism) axioms. This type
of axioms is very important in verification – for instance in situations in
which we need to reason about functions defined by certain forms of primitive
recursion – and in cryptography, where one may need to model homomorphism
axioms of the form ∀x, y, z(encodez(x ∗ y) = encodez(x) ∗ encodez(y)). Decision
procedures for recursive data structures exist. In [13], Oppen gave a PTIME deci-
sion procedure for absolutely free data structures based on bidirectional closure;
methods which use rewriting and/or basic equational reasoning were given e.g.
by Barrett et al. [2] and Bonacina and Echenim [3]. Some extensions of theories
with recursively defined functions and homomorphisms have also been studied.
In [1], Armando, Rusinowitch, and Ranise give a decision procedure for a theory
of homomorphisms. In [18], Zhang, Manna and Sipma give a decision procedure
for the extension of a theory of term structures with a recursively defined length
function. In [8] tail recursive definitions are studied. It is proved that tail recur-
sive definitions can be expressed by shallow axioms and therefore define so-called
“stably local extensions”. Locality properties have also been studied in a series
of papers on the analysis of cryptographic protocols (cf. e.g. [4,5,6]).

In this paper we show that many extensions with recursive definitions (or with
generalized homomorphism properties) satisfy locality conditions. This allows us
to significantly extend existing results on reasoning about functions defined using
certain forms of recursion, or satisfying homomorphism properties [1,8,18], and
at the same time shows how powerful and widely applicable the concept of local
theory (extension) is in automated reasoning. As a by-product, the methods we
use provide a possibility of presenting in a different light (and in a different form)
locality phenomena studied in cryptography in [4,5,6]; we believe that they will
allow to better separate rewriting from proving, and thus to give simpler proofs.
The main results are summarized below:
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– We show that the theory of absolutely free constructors is local, and locality
is preserved also in the presence of selectors. These results are consistent
with existing decision procedures for this theory [13] which use a variant of
bi-directional closure in a graph formed starting from the subterms of the
set of clauses whose satisfiability is being checked.

– We show that, under certain assumptions, extensions of the theory of abso-
lutely free constructors with functions satisfying a certain type of recursion
axioms satisfy locality properties, and show that for functions with values in
an ordered domain we can combine recursive definitions with boundedness
axioms without sacrificing locality. We also address the problem of only con-
sidering models whose data part is the initial term algebra of such theories.

– We analyze conditions which ensure that similar results can be obtained if we
relax some assumptions about the absolute freeness of the underlying theory
of data types, and illustrate the ideas on an example from cryptography.

The locality results we establish allow us to reduce the task of reasoning about
the class of recursive functions we consider to reasoning in the underlying the-
ory of data structures (possibly combined with the theories associated with the
co-domains of the recursive functions).

Structure of the paper. In Section 2 we present the results on local theory exten-
sions and hierarchical reasoning in local theory extensions needed in the paper.
We start Section 3 by considering theories of absolutely free data structures, and
extensions of such theories with selectors. We then consider additional functions
defined using a certain type of recursion axioms (possibly having values in a
different – e.g. numeric – domain). We show that in these cases locality results
can be established. In Section 4 we show that similar results can be obtained if
we relax some assumptions about the absolute freeness of the underlying theory
of data types, and illustrate the results on a simple example from cryptography.

2 Preliminaries

We will consider theories over possibly many-sorted signatures Π = (S, Σ, Pred),
where S is a set of sorts, Σ a set of function symbols, and Pred a set of predicate
symbols. For each function f ∈ Σ (resp. predicate P ∈ Pred), we denote by
a(f) = s1, . . . , sn → s (resp. a(P ) = s1, . . . , sn) its arity, where s1, . . . , sn, s ∈ S,
and n ≥ 0. In the one-sorted case we will simply write a(f) = n (resp. a(P ) = n).

First-order theories are sets of formulae (closed under logical consequence),
typically the set of all consequences of a set of axioms. When referring to a theory,
we can also consider the set of all its models. We here consider theories specified
by their sets of axioms, but – usually when talking about local extensions of a
theory – we will refer to a theory, and mean the set of all its models.

The notion of local theory was introduced by Givan and McAllester [9,10].
They studied sets K of Horn clauses with the property that, for any ground
Horn clause C, K |= C only if already K[C] |= C (where K[C] is the set of
instances of K in which all terms are subterms of ground terms in K or C).
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Theory Extensions. We here also consider extensions of theories, in which the
signature is extended by new function symbols (i.e. we assume that the set of
predicate symbols remains unchanged in the extension). Let T0 be an arbitrary
theory with signature Π0 = (S, Σ0, Pred). We consider extensions T1 of T0 with
signature Π = (S, Σ, Pred), where the set of function symbols is Σ = Σ0∪Σ1. We
assume that T1 is obtained from T0 by adding a set K of (universally quantified)
clauses in the signature Π .

Partial Models. Let Π = (S, Σ, Pred). A partial Π-structure is a structure
({As}s∈S , {fA}f∈Σ, {PA}P∈Pred) in which for every f∈Σ, with a(f)=s1, . . .,
sn→s, fA is a (possibly partially defined) function from As1 × · · · × Asn

to As,
and for every P ∈ Pred with arity a(P ) = s1 . . . sn, PA ⊆ As1 ×· · ·×Asn

. A weak
Π-embedding between partial structures A = ({As}s∈S, {fA}f∈Σ, {PA}P∈Pred)
and B = ({Bs}s∈S , {fB}f∈Σ, {PB}P∈Pred) is an S-sorted family i = (is)s∈S

of injective maps is : As → Bs which is an embedding w.r.t. Pred, s.t. if
a(f) = s1, . . . , sn → s and fA(a1, . . . , an) is defined then fB(is1(a1), . . . , isn

(an))
is defined and is(fA(a1, . . ., an))=fB(is1(a1), . . ., isn

(an)).
We now define truth and satisfiability in partial structures of Π-literals and

(sets of) clauses with variables in a set X . If A is a partial structure, β : X → A
is a valuation1 and L = (¬)P (t1, . . . , tn) is a literal (with P ∈ Pred∪{=}) we say
that (A, β) |=w L if (i) either β(ti) are all defined and (¬)PA(β(t1), . . . , β(tn)) is
true in A, or (ii) β(ti) is not defined for some argument ti of P . Weak satisfaction
of clauses ((A, β) |=w C) is defined in the usual way. A is a weak partial model
of a set K of clauses if (A, β)|=wC for every β : X→A and every clause C ∈ K.
A weak partial model of T0 ∪K is a weak partial model of K whose reduct to Π0

is a total model of T0.

Local Theory Extensions. Consider the following condition (in what follows
we refer to sets G of ground clauses and assume that they are in the signature
Πc = (S, Σ ∪ Σc, Pred), where Σc is a set of new constants):

(Loc) For every finite set G of ground clauses T1∪G |=⊥ iff T0∪K[G]∪G
has no weak partial model with all terms in st(K, G) defined

where if T is a set of terms, K[T ] is the set of instances of K in which all terms
starting with a symbol in Σ1 are in T , and K[G] := K[st(K, G)], where st(K, G)
is the family of all subterms of ground terms in K or G.

We say that an extension T0 ⊆ T1 is local if it satisfies condition (Loc). We say
that it is local for clauses with a property P if it satisfies the locality conditions for
all ground clauses G with property P . A more general locality condition (ELoc)
refers to situations when K consists of formulae (Φ(x1, . . . , xn)∨C(x1, . . . , xn)),
where Φ(x1, . . . , xn) is a first-order Π0-formula with free variables x1, . . . , xn,
and C(x1, . . . , xn) is a clause in the signature Π . The free variables x1, . . . , xn

of such an axiom are considered to be universally quantified [14].

1 We denote the canonical extension to terms of a valuation β : X→A again by β.
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(ELoc) For every formula Γ = Γ0 ∪ G, where Γ0 is a Πc
0-sentence and G is

a finite set of ground Πc-clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[G] ∪ Γ has
no weak partial model in which all terms in st(K, G) are defined.

A more general notion, namely Ψ -locality of a theory extension (in which the
instances to be considered are described by a closure operation Ψ) is introduced
in [11]. Let K be a set of clauses. Let ΨK be a closure operation associating with
any set T of ground terms a set ΨK(T ) of ground terms such that all ground
subterms in K and T are in ΨK(T ). Let ΨK(G) := ΨK(st(K, G)). We say that the
extension T0 ⊆ T0 ∪ K is Ψ -local if it satisfies:

(LocΨ ) for every finite set G of ground clauses, T0∪K∪G|=⊥ iff T0∪K[ΨK(G)]∪G
has no weak partial model in which all terms in ΨK(G) are defined.

(ELocΨ ) is defined analogously. In (Ψ -)local theories and extensions satisfying
(ELocΨ ), hierarchical reasoning is possible.

Theorem 1 ([14,11]). Let K be a set of clauses. Assume that T0 ⊆ T1 = T0∪K
is a Ψ -local theory extension, and that for every finite set T of terms ΨK(T ) is
finite. For any set G of ground clauses, let K0 ∪ G0 ∪ Def be obtained from
K[ΨK(G)]∪G by flattening and purification2. Then the following are equivalent:

(1) G is satisfiable w.r.t. T1.
(2) T0∪K[ΨK(G)]∪G has a partial model with all terms in st(K, G) defined.
(3) T0 ∪ K0 ∪ G0 ∪ Con[G]0 has a (total) model, where

Con[G]0 = {
n
∧

i=1

ci = di → c = d | f(c1, . . . , cn) = c, f(d1, . . . , dn)=d ∈ Def}.

Theorem 1 allows us to transfer decidability and complexity results from the
theory T0 to the theory T1:

Theorem 2 ([14]). Assume that the extension T0 ⊆ T1 satisfies condition
(LocΨ) – where Ψ has the property that Ψ(T ) is finite for every finite T – and
that every variable in any clause of K occurs below some function symbol from
Σ1. If testing satisfiability of ground clauses in T0 is decidable, then so is testing
satisfiability of ground clauses in T1. Assume that the complexity of testing the
satisfiability w.r.t. T0 of a set of ground clauses of size m can be described by a
function g(m). Let G be a set of T1-clauses such that ΨK(G) has size n. Then the
complexity of checking the satisfiability of G w.r.t. T1 is of order g(nk), where k
is the maximum number of free variables in a clause in K (but at least 2).

2
K[ΨK(G)]∪G can be flattened and purified by introducing, in a bottom-up manner,
new constants ct for subterms t = f(g1, . . . , gn) with f ∈ Σ1, gi ground Σ0∪Σc-terms
(where Σc is a set of constants which contains the constants introduced by flattening,
resp. purification), together with corresponding definitions ct = t. We obtain a set
of clauses K0 ∪ G0 ∪ Def, where Def consists of ground unit clauses of the form
f(g1, . . . , gn) = c, where f ∈ Σ1, c is a constant, g1, . . . , gn are ground Σ0∪Σc-terms,
and K0 and G0 are Σ0∪Σc-clauses. Flattening and purification preserve satisfiability
and unsatisfiability w.r.t. total algebras, and w.r.t. partial algebras in which all
ground subterms which are flattened are defined [14]. In what follows, we explicitly
indicate the sorts of the constraints in Def by using indices, i.e. Def=

⋃

s∈S Defs.
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Examples of Local Extensions. The locality of an extension can either be
proved directly, or by proving embeddability of partial into total models.

Theorem 3 ([14,16,11,17]). The following theory extensions are local:

(1) Any extension of a theory with free function symbols;
(2) Extensions of any base theory T0 with functions satisfying axioms of the form

GBounded(f)
∧n

i=1(φi(x) → si ≤ f(x) ≤ ti)

where Π0 contains a sort s for which a reflexive binary relation ≤ exists, si, ti
are Σ0-terms of sort s and φi are Π0-formulae s.t. for i �= j, φi ∧ φj |=T0⊥,
and T0 |= ∀x(φi(x) → si(x) ≤ ti(x)).

3 Functions on Absolutely Free Data Structures

Let AbsFreeΣ0 = (
⋃

c∈Σ0
(Injc) ∪ (Acycc)) ∪

⋃

c,d∈Σ

c �=d
Disjoint(c, d), where:

(Injc) c(x1, . . . , xn) = c(y1, . . . , yn) →
n
∧

i=1

xi = yi

(Acycc) c(t1, . . . , tn) �= x if x occurs in some ti

Disjoint(c, d) c(x1, . . . , xn) �= d(y1, . . . , yk) if c �= d

Note that (Acycc) is an axiom schema (representing an infinite set of axioms).

Theorem 4. The following theories are local:

(a) The theory AbsFreeΣ0 of absolutely free constructors in Σ0.
(b) Any theory AbsFreeΣ0\Σ obtained from AbsFreeΣ0 by dropping the acyclicity

condition for a set Σ ⊆ Σ0 of constructors.
(c) T ∪ Sel(Σ′), where T is one of the theories in (a) or (b), and Sel(Σ′) =

⋃

c∈Σ′

⋃n

i=1 Sel(sc
i , c) axiomatizes a family of selectors sc

1, . . . , s
c
n, where n =

a(c), corresponding to constructors c ∈ Σ′ ⊆ Σ0. Here,

Sel(si, c) ∀x, x1, . . . , xn x = c(x1, . . . , xn) → si(x) = xi.

In addition, K = AbsFreeΣ0 ∪ Sel(Σ0) ∪ IsC, where

(IsC) ∀x
∨

c∈Σ0

x = c(sc
1(x), . . . , sc

a(c)(x))

has the property that for every set G of ground Σ0 ∪ Sel ∪ Σc-clauses (where
Σc is a set of additional constants), K ∧ G |=⊥ iff K[Ψ(G)] ∧ G |=⊥, where
Ψ(G) = st(G) ∪

⋃

a∈Σc∩st(G)

⋃

c∈Σ0
({sc

i(a) | 1≤i≤a(c)}∪{c(sc
1(a), . . . , sc

n(a))}).

Proof : This is proved by showing that every weak partial model of the axioms
for (a)–(c) weakly embeds into a total model of the axioms. The locality then
follows from the link between embeddability and locality established in [7]. ✷

The reduction to the pure theory of equality made possible by Theorem 4 is very
similar to Oppen’s method [13] for deciding satisfiability of ground formulae for
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free recursive data structures by bi-directional closure. Quantifier elimination
(cf. [13]) followed by the reduction enabled by Theorem 4 can be used to obtain
a decision procedure for the first-order theory of absolutely free constructors
axiomatized by AbsFreeΣ0 ∪ Sel(Σ0) ∪ IsC.

We consider extensions of AbsFreeΣ0 with new function symbols, possibly with
codomain of a different sort, i.e. theories over the signature S={d, s1, . . ., sn},
where d is the “data” sort; we do not impose any restriction on the nature of
the sorts in si (some may be equal to d). The function symbols are:

– constructors c∈Σ (arity dn→d), and corresponding selectors sc
i (arity d→d);

– all functions Σsi
in the signature of the theory of sort si, for i = 1, . . . , n;

– for every 1 ≤ i ≤ n, a set Σi of functions of sort d → si.

In what follows we will analyze certain such extensions for which decision proce-
dures for ground satisfiability exist3. We assume for simplicity that S = {d, s}.

3.1 A Class of Recursively Defined Functions

Let S = {d, s}, where d is the “data” sort and s is a different sort (output sort
for some of the recursively defined functions).

Let Ts be a theory of sort s. We consider extensions of the disjoint combination
of AbsFreeΣ0 and Ts with functions in a set Σ = Σ1 ∪ Σ2, where the functions
in Σ1 have arity d → d and those in Σ2 have arity d → s. If f has sort d → b,
with b ∈ S, we denote its output sort b by o(f). Let Σo(f) be Σ0 if o(f) = d, or
Σs if o(f) = s, and To(f) be the theory AbsFreeΣ0 if o(f) = d, or Ts if o(f) = s.
For every f ∈ Σ we assume that a subset Σr(f) ⊆ Σ0 is specified (a set of
constructors for which recursion axioms for f exist).

We consider theories of the form T = AbsFreeΣ0 ∪ Ts ∪ RecΣ , where RecΣ =
⋃

f∈Σ Recf is a set of axioms of the form:

Recf

{

f(k) = kf

f(c(x1, . . . , xn)) = gc,f(f(x1), . . . , f(xn))

where k, c range over all constructors in Σr(f) ⊆ Σ0, with a(k) = 0, a(c) = n,
kf are ground Σo(f)-terms and the functions gc,f are expressible by Σo(f)-terms.

We also consider extensions with a new set of functions satisfying definitions
by guarded recursion of the form Rec

g
Σ =

⋃

f∈Σ Rec
g
f :

Rec
g
f

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f(k) = kf

f(c(x1, . . . , xn)) =

⎧

⎨

⎩

gc,f
1 (f(x1), . . . , f(xn)) if φ1(f(x1), . . . , f(xn))

. . .

gc,f
k (f(x1), . . . , f(xn)) if φk(f(x1), . . . , f(xn))

3 In this paper we only focus on the problem of checking the satisfiability of sets of
ground clauses, although it appears that when adding axiom IsC decision procedures
for larger fragments can be obtained using arguments similar to those used in [18].
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where k, c range over all constructors in Σr(f) ⊆ Σ0, with a(k) = 0, a(c) = n,

kf are ground Σo(f)-terms and the functions gc,f
i are expressible by Σo(f)-terms,

and φi(x1, . . . , xn) are Σo(f)-formulae with free variables x1, . . . , xn, where φi ∧
φj |=To(f)

⊥ for i �= j.

Definition 1. A definition of type Recf is exhaustive if Σr(f) = Σ0 (i.e. Recf

contains recursive definitions for terms starting with any c∈Σ0). A definition of
type Rec

g
f is exhaustive if Σr(f)=Σ0 and for every definition, the disjoint guards

φ1, . . ., φn are exhaustive, i.e. To(f)|=∀xφ1(x)∨. . .∨φn(x). Quasi-exhaustive defi-
nitions are defined similarly, by allowing that Σ0\Σr(f) may consist of constants.

Example 5. Let Σ0 = {c0, c} with a(c0) = 0, a(c) = n. Let T0 = AbsFreeΣ0 ∪Ts

be the disjoint, many-sorted combination of the theory AbsFreeΣ0 (sort d) and
Tnum, the theory of natural numbers with addition (sort num).

(1) A size function can be axiomatized by Recsize:
{

size(c0) = 1
size(c(x1, . . . , xn)) = 1 + size(x1) + · · · + size(xn)

(2) A depth function can be axiomatized by the following definition Rec
g
depth (of

type Recg due to max):
{

depth(c0) = 1
depth(c(x1, . . . , xn)) = 1 + max{depth(x1), . . . , depth(xn)}

Example 6. Let Σ0={c0, d0, c} with a(c0) = a(d0) = 0, a(c) = n, and let T0 =
AbsFreeΣ0 ∪ Bool be the disjoint combination of the theories AbsFreeΣ0 (sort d)
and Bool, having as model the two-element Boolean algebra B2=({t, f},⊓,⊔,¬)
(sort bool) with a function hasc0 with output of sort bool, defined by Rechasc0

:
⎧

⎨

⎩

hasc0
(c0) = t

hasc0
(d0) = f

hasc0
(c(x1, . . . , xn)) =

⊔n
i=1 hasc0

(xi) (
⊔

is the supremum operation in B2).

Problem. We analyze the problem of testing satisfiability of conjunctions G of
ground unit Σ0∪Σ1∪Σ2∪Σc-clauses, where Σc is a set of new constants:

(AbsFreeΣ0 ∪ Ts ∪ Rec
[g]
Σ1

∪ Rec
[g]
Σ2

) ∧ G |=⊥

(If Σ2=∅, Ts can be omitted.) In what follows we use the abbreviations Σ =
Σ1∪Σ2, Rec

g
Σ = Rec

g
Σ1

∪Rec
g
Σ2

, and RecΣ = RecΣ1∪RecΣ2 .

The form of the ground formulae to be considered can be simplified as follows:

Lemma 7. For every set G of ground unit Σ0 ∪ Σ ∪ Σc-clauses there exists a
set G′ of Σ-flat ground unit Σ0 ∪ Σ ∪ Σ′

c-clauses (where Σc ⊆ Σ′
c) of the form

G′ = Cs ∧ CΣ0 ∧ CΣ ∧ NCΣ′
c
,

where Cs is a set of (unit) Σs-clauses (if Σ2 �= ∅) and CΣ0 , CΣ , NCΣ′
c

are
(possibly empty) conjunctions of literals of the form:



74 V. Sofronie-Stokkermans

CΣ0: c = c′ and c �= c, where c, c′ ∈ Σ0, nullary;
CΣ: (¬)f(td)= t′, where f∈Σ1∪Σ2, td is a Σ0∪Σ′

c-term, t′ a Σo(f)∪Σ′
c-term;

(¬)f(td)= f ′(t′d), where f, g ∈ Σ2, and td, t
′
d are Σ0 ∪ Σ′

c-terms;
NCΣ′

c
: td �= t′d, where td, t

′
d are Σ0 ∪ Σ′

c-terms;

such that G and G′ are equisatisfiable w.r.t. AbsFreeΣ0 ∪ Ts ∪ K for any set of
clauses K axiomatizing the properties of the functions in Σ.

Remark 8. If K=RecΣ we can ensure that, for every literal in CΣ , td (t′d) either
starts with a constructor c �∈ Σr(f) (resp. c �∈ Σr(f

′)) or is equal to some a ∈ Σ′
c.

If the definition of f ∈ Σ is exhaustive (resp. quasi-exhaustive), we can ensure
that the only occurrence of f in G′ is at the root of a term, in terms of the form
f(a), where a ∈ Σc (resp., if Recf is quasi-exhaustive, a ∈ Σc∪(Σ0\Σr(f))). We
can ensure that each such f(a) occurs in at most one positive clause by replacing
any conjunction f(a)= t1∧f(a)= t2 with f(a)= t1∧t1 = t2. f(a)= t1∧f(a) �= t2
can also be replaced with the (equisatisfiable) conjunction: f(a)= t1 ∧ t1 �= t2.

We make the following assumptions:

Assumption 1: Either Σ1 = ∅, or else Σ1 �= ∅ and RecΣ1 is quasi-exhaustive.
Assumption 2: G is a set of ground unit clauses with the property that any

occurrence of a function symbol in Σ1 is in positive unit clauses of G of
the form f(a) = t, with a ∈ Σc ∪ (Σ0\Σr(f)), and G does not contain any
equalities between Σ0 ∪ Σc-terms. (By Remark 8, we can assume w.l.o.g.
that for all f ∈ Σ1 and a ∈ Σc ∪ (Σ0\Σr(f)), f(a) occurs in at most one
positive unit clause of G of the form f(a) = t.)

Theorem 9. If Assumption 1 holds, then:

(1) AbsFreeΣ0 ∪ Ts ∪ RecΣ2 is a Ψ -local extension of AbsFreeΣ0 ∪ Ts;
(2) If RecΣ1 is quasi-exhaustive, then AbsFreeΣ0 ∪ Ts ∪ RecΣ1 ∪ RecΣ2 satisfies

the Ψ -locality conditions of an extension of AbsFreeΣ0 ∪ Ts for every set G
of unit clauses which satisfy Assumption 2;

where Ψ associates with any set T of ground terms the smallest set which contains
T and if f(c(t1, . . . , tn))∈Ψ(T ) and c∈Σr(f) then f(ti)∈Ψ(T ) for i = 1, . . . , n.

Similar results hold for extensions with Rec
g
Σ (under similar assumptions) pro-

vided the guards φi in the recursive definitions of functions in Σ1 are positive.

The results can even be extended to recursive definitions of the form ERec
[g]
f :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f(k, x) = kf (x)

f(c(x1, . . . , xn), x) =

⎧

⎨

⎩

gc,f
1 (f(x1, x), . . . , f(xn, x), x) if φ1(f(x1), . . . , f(xn))

. . .

gc,f
k (f(x1, x), . . . , f(xn, x), x) if φk(f(x1), . . . , f(xn))

where k, c range over Σr(f), a(k) = 0, a(c) = n, kf (x) are Σo(f)-terms with free

variable x, gc,f
i are functions expressible as Σo(f)-terms, and φi(x1, . . . , xn) are

Σo(f)-formulae with free variables x1, . . . , xn, s.t. φi ∧ φj |=To(f)
⊥ for i �= j.
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Note: We can actually prove a variant of ELocΨ , in which we can allow first-
order Σs-constraints in (E)Rec

g

Σ and in G.

Example 10. Let Σ0 = {c0, d0, c}, where c is a binary constructor and c0, d0

are nullary. Consider the recursive definition Rechasc0
of the function hasc0

in
Example 6. We want to show that AbsFreeΣ0 ∪ Bool ∪ Rechasc0

|= G1 where

G1 = ∀x(hasc0
(x)=t ∧ z1=c(y1, c(x1, x)) ∧ z1=c(y2, y3) → hasc0

(y3)=t)

G = ¬G1 = (hasc0
(a)=t ∧ c1=c(b1, c(a1, a)) ∧ c1=c(b2, b3) ∧ hasc0

(b3)=f),

where Σc = {a, a1, b1, b2, b3, c1}. We transform G as explained in Lemma 7 by
inferring all equalities entailed by the equalities between constructor terms in G;
if ai = aj (resp. ai = c(a1, . . . , an)) is entailed we replace ai with aj (resp. with
c(a1, . . . , an)). We obtain the equisatisfiable set of ground clauses:

G′ = (hasc0
(a)=t ∧ hasc0

(c(a1, a))=f).

(AbsFreeΣ0 ∪Bool∪Rechasc0
)∪G′ |=⊥ iff (AbsFreeΣ0 ∪Bool)∪Rechasc0

[Ψ(G′)]∪
G′ |=⊥, where Ψ(G′) = {hasc0(c(a1, a)), hasc0

(a1), hasc0
(a)} by Theorem 9. After

purification we obtain:

Defbool G0 ∧ Rechasc0
[Ψ(G)]0

hasc0(a1)= h1 ∧ hasc0(a)= h2 ∧ hasc0(c(a1, a))= h3 h2 = t ∧ h3 = f ∧ h3 =h1 ⊔ h2

We immediately obtain a contradiction in Bool, without needing to consider Con0

or a further reduction to a satisfiability test w.r.t. AbsFreeΣ0 .

Combining Recursive Definitions with Boundedness. We analyze the

locality of combinations of Rec
[g]
Σ with boundedness axioms, of the type:

Bounded(f) ∀x(t1 ≤ f(x) ≤ t2)

Theorem 11. Assume that ≤ is a partial order in all models of Ts, a(f) =

d → s, t1, t2 are Σs-terms with Ts |= t1 ≤ t2, and all functions gc,f
i used in the

definition of f have the property:

∀x1, . . . , xn(

n
∧

i=1

t1 ≤ xi ≤ t2 → t1 ≤ gc,f
i (x1, . . . , xn) ≤ t2), where n = a(c).

If Assumption 1 holds then AbsFreeΣ0∪Ts∪Rec
[g]
f ∪Bounded is a Ψ -local extension

of AbsFreeΣ0 ∪ Ts, where Ψ is defined as in Theorem 9.

Proof : The conditions on the functions gc,f
i ensure that in the completion process

used in Theorem 9 the corresponding properties of f can be guaranteed. ✷

Example 12. (1) We want to check whether AbsFreeΣ0 ∪ Z ∪ Recdepth entails

G1 =∀x1, x2, x3, x4 (depth(x1) ≤ depth(x2) ∧ depth(x4) ≤ depth(x3) ∧ x4 =c(x2)

→ depth(d(x1, e(x2, c
′))) ≤ depth(e(x4, x3))),
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where Σ0 contains the constructors c′ (nullary), c (unary), and d, e (binary).
By Ψ -locality, this can be reduced to testing the satisfiability of the following
conjunction of ground clauses containing the additional constants:

Σc = {a1, a2, a3, a4, d1, d2, d3, d4, e1, e2, e3, g1, g2, g3, c
′
2, d

′
2}

(below we present the flattened and purified form), where G = ¬G1:

Defd Defnum G0d G0num Recdepth[Ψ(G)]0
d(a1, e2) = e1 depth(ai) = di(i = 1 − 4) a4 = c′2 d1 ≤ d2 g1 = 1 + max{d1, g2}
e(a2, c

′) = e2 depth(ei) = gi(i = 1, 2, 3) d4 ≤ d3 g2 = 1 + max{d2, 1}
e(a4, a3) = e3 depth(c′2) = d′2 g1 �≤ g3 g3 = 1 + max{d4, d3}
c(a2) = c′2 d′2 = 1 + d2

Let Con0 consist of all the instances of congruence axioms for c, d, e and depth.
G0∪Recdepth[Ψ(G)]0∪Con0 is satisfiable in AbsFreeΣ0∪Z. A satisfying assignment
is: d1 = d2 = 0 and d′2 = d4 = d3 = 1 (d′2 and d4 need to be equal due to Con0

because c′2 = a4; and d4 ≤ d3). g2 = 1+max{0, 1} = 2, g1 = 1+max{d1, g2} = 3
and g3 = 1 + max{d4, d3} = 1 + d4 = 2. Thus, AbsFreeΣ0 ∪ Z ∪ Recdepth �|= G1.

(2) We now show that AbsFreeΣ0 ∪ Z ∪ Recdepth ∪ Bounded(depth) |= G1, where

Bounded(depth) ∀x(depth(x) ≥ 1).

By Theorem 11, we only need to consider the instances of Bounded(depth) con-
taining terms in Defnum, i.e. the constraints di ≥ 1 for i ∈ {1, . . . , 4}; gi ≥ 1 for
i ∈ {1, . . . , 3} and d′2 ≥ 1. Con0 can be used to derive d4 = d′2. We obtain:

g1 = 1+max{d1, g2} = 1+max{d1, 1+max{d2, 1}} = 1+max{d1, 1+d2} = 2+d2

g3 = 1+max{d4, d3} = 1+d3 ≥ 1 + d4 = 1 + d′2 = 2 + d2.

which together with g1 �≤ g3 yields a contradiction.

3.2 Restricting to Term-Generated Algebras

The apparent paradox in the first part of Example 12 is due to the fact that
the axiomatization of AbsFreeΣ0 makes it possible to consider models in which
the constants in Σc are not interpreted as ground Σ0-terms. We would like to
consider only models for which the support Ad of sort d is the set TΣ0(∅) of
ground Σ0-terms (we will refer to them as term generated models)4. We will
assume that the axiomatization of the recursive functions contains a family of
constraints {C(a) | a ∈ Σc} expressed in first order logic on the values the
function needs to take on any element in Σc with the property:

(TG) C(a) iff there exists t ∈ TΣ0(∅) such that for all f ∈ Σ2, f(a) = f(t).

4 For expressing this, we can use axiom IsC (cf. Theorem 4) or the axiom used in [18]:
(IsConstr)∀x

∨

c∈Σ0
Isc(x) where Isc(x) = ∃x1, . . . , xn : x = c(x1, . . . , xn).
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Example 13. Some examples are presented below:

(1) Assume Σ2 = {size} (the size function over absolutely free algebras with
set of constructors {ci | 1 ≤ i ≤ n} with arities a(ci)). The following size
constraints have the desired property (cf. also [18]):

C(a) = ∃x1, . . . , xn(size(a) = (

n
∑

i=1

a(ci) ∗ xi) + 1).

To prove this, note that for every term t, size(t) = (
∑n

i=1 a(ci)∗n(ci, t)+1),
where n(ci, t) is the number of times ci occurs in t. Thus, if there exists t
such that size(t) = size(a), then C(a) is true. Conversely, if C(a) is true
size(a) = size(t) for every term with xi occurrences of the constructor ci for
i = 1, ..., n.

(2) Consider the depth function (with output sort int) over absolutely free alge-
bras with set of constructors {ci | 1 ≤ i ≤ n}. Then C(a) := depth(a) ≥ 1.

In what follows we will assume that Σ1 = ∅.

Theorem 14. Assume that for every a ∈ Σc, a set C(a) of constraints satisfying

condition (TG) exists. Then AbsFreeΣ0 ∪ Ts ∪ Rec
[g]
Σ2

∪
⋃

a∈Σc
C(a) is a Ψ -local

extension of AbsFreec ∪ Ts, where Ψ is defined as in Theorem 9.

Note: As in Theorem 9, we can prove, in fact, ELocΨ -locality. Hence, the pos-
sibility that C(a) may be a first-order formula of sort s is not a problem.

In order to guarantee that we test satisfiability w.r.t. term generated models, in
general we have to add, in addition to the constraints C(a), for every function
symbol f ∈ Σ2, additional counting constraints describing, for every x ∈ As,
the maximal number of distinct terms t in TΣ0(∅) with f(t) = x. If Σ0 contains
infinitely many nullary constructors the number of distinct terms t in TΣ0(∅)
with f(t) = x is infinite, so no counting constraints need to be imposed.

Counting constraints are important if Σ0 contains only finitely many nullary
constructors and if the set G of ground unit clauses we consider contains negative
(unit) Σ0 ∪ Σc-clauses. For the sake of simplicity, we here only consider sets G
of unit ground clauses which contain only negative (unit) clauses of sort s.

Lemma 15. Assume that Σ1=∅ and for every a∈Σc there exists a set C(a) of
constraints such that condition (TG) holds. The following are equivalent for any
set G of unit Σ0∪Σ2∪Σc-clauses in which all negative literals have all sort s.

(1) There exists a term-generated model A = (TΣ0(∅), As, {fA}f∈Σ2, {aA}a∈Σc
)

of AbsFreeΣ0 ∪ Ts ∪ Rec
[g]
Σ2

and G.
(2) There exists a model F = (TΣ0(Σc), As, {fF}f∈Σ2, {aF }a∈Σc

) of AbsFreeΣ0∪

Ts ∪ Rec
[g]
Σ2

∪
⋃

a∈Σc
C(a) and G, where for every a ∈ Σc, aF = a.

(3) There exists a model A = (Ad, As, {fA}f∈Σ2, {aA}a∈Σc
) of AbsFreeΣ0 ∪ Ts ∪

Rec
[g]
Σ2

∪
⋃

a∈Σc
C(a) and G.
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From Theorem 14 and Lemma 15 it follows that for every set G of ground unit
clauses in which all negative (unit) clauses consist of literals of sort s, testing

whether there exists a term-generated model of AbsFreeΣ0∪Ts∪Rec
[g]
Σ2

and G can

be done by computing Rec
[g]
Σ2

[Ψ(G)] and then reducing the problem hierarchically
to a satisfiability test w.r.t. AbsFreeΣ0 ∪ Ts.

Example 16. Example 12 provides an example of a ground clause G for which
AbsFreeΣ0∪Z∪Recdepth �|= G, and AbsFreeΣ0∪Z∪Recdepth∧Bounded(depth) |= G.
Example 12(2) shows that AbsFreeΣ0∪Z∪Recdepth∪

⋃

a∈Const(G) C(a)|=G, i.e. (by

Lemma 15), G is true in every term-generated model of AbsFreeΣ0∪Z∪Recdepth.

Similar results can be obtained if we relax the restriction on occurrences of
negative clauses in G. If the set of nullary constructors in Σ0 is infinite the
extension is easy; otherwise we need to use equality completion and add counting
constraints as done e.g. in [18] (assuming that there exist counting constraints
expressible in first-order logic for the recursive definitions we consider).

4 More General Data Structures

We will now extend the results above to more general data structures. Consider a
signature consisting of a set Σ0 of constructors (including a set C of constants).
Let E be an additional set of identities between Σ0-terms.

Example 17. Let Σ0 = {c, c0}, where c is a binary constructor and c0 is a
constant. We can impose that E includes one or more of the following equations:

(A) c(c(x, y), z) = c(x, c(y, z)) (associativity)
(C) c(x, y) = c(y, x) (commutativity)
(I) c(x, x) = x (idempotence)
(N) c(x, x) = c0 (nilpotence)

We consider many-sorted extensions of the theory defined by E with functions
in Σ = Σ1∪Σ2, and sorts S = {d, s}, where the functions in Σ1 have sort d → d,
those in Σ2 have sort d → s, and the functions in Σ satisfy additional axioms
of the form RecΣ and ERecΣ as defined in Section 3.1.5 We therefore consider
two-sorted theories of the form E ∪Ts ∪ (E)RecΣ, where Ts is a theory of sort s.
We make the following assumptions:

Assumption 3: We assume that:
(a) The equations in E only contain constructors c with c ∈

⋂

f∈Σ Σr(f).
(b) For every ∀x t(x) = s(x) ∈ E and every f ∈ Σ1 ∪ Σ2 let t′(x) (resp.

s′(x)) be the Σo(f)-term obtained by replacing every constructor c ∈ Σ0

with the term-generated function6 gc,f . Then for every f ∈ Σ1, E |=
∀x t′(x) = s′(x), and for every f ∈ Σ2, Ts |= ∀x t′(x) = s′(x).

5 We restrict to unguarded recursive definitions of type RecΣ and ERecΣ to simplify
the presentation. Similar results can be obtained for definitions of the type Rec

g
Σ

and ERec
g
Σ , with minor changes in Assumption 3.

6 gc,f is the function (expressible as a Σo(f)-term) from the definition
f(c(x1, . . . , xn)) = gc,f (f(x1), . . . , f(xn)) in Recf .
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Example 18. Consider the extension of the theory of one binary associative
and/or commutative function c with the size function defined as in Example 5(1).
Then

size(c(x, y)) = gc
size(size(x), size(y)), where gc

size(x, y) = 1 + x + y.

Note that gc
size is associative and commutative, so Assumption 3 holds.

gc
size(g

c
size(x, y), z) = 1+(1+x+y)+z = 1+x+(1+y+z) = gc

size(x, gc
size(y, z));

gc
size(x, y) = 1+x+y = 1+y+x = gc

size(y, x).

Example 19. Assume that Σ0 only contains the binary constructor c satisfying
a set E of axioms containing some of the axioms {(A), (C), (I)} in Example 17.
Let enck be a new function symbol (modeling encoding with key k) satisfying

Recenc enck(c(x, y)) = c(enck(x), enck(y)).

It is easy to see that gc
enc = c and hence Assumption 3 is satisfied.

In what follows we assume that Assumption 3 holds, and that RecΣ1 is quasi-
exhaustive. Note that in the presence of axioms such as associativity, the univer-
sal (Horn) theory of E itself may be undecidable. We will therefore only consider
the simpler proof task of checking whether

E ∪ [E]Rec[g]
Σ1

∪ [E]Rec[g]
Σ2

|= G1,

where G1 is a ground Σ ∪ Σ1 ∪ Σ2-clause of the form

l
∧

k=1

gk(ck) = tdk ∧
n
∧

i=1

fi(t
d
i ) = tsi ∧

m
∧

j=1

fj(t
d
j ) = f ′

j(t
′d
j ) → f(td) = ts (1)

where gk ∈ Σ1, ck ∈ Σ0\Σr(gk), fi, f
′
i , f are functions in Σ2 (with output sort s

different from d), tdk, t′dk , td are ground Σ0-terms, and tsk, t′sk , ts are Σs-terms. We
additionally assume that for every g ∈ Σ1 and every c ∈ Σ0\Σr(g), g(c) occurs
at most once in the premise of G.

Remark. If RecΣ2 is quasi-exhaustive, G is equisatisfiable with a clause in which
every occurrence of f ∈ Σ2 is in a term of the form f(c), with c ∈ Σ0\Σr(f).

Theorem 20. Assume that RecΣ1 , RecΣ2 are quasi-exhaustive and Assumption
3 holds. The following are equivalent for any set G of Σ0∪Σ-clauses of form (1):

(1) E ∪ RecΣ1 ∪ Ts ∪ RecΣ2 |= G.
(2) G is true in all models A = (Ad, As, {fA}f∈Σ) of E ∪ RecΣ1 ∪ Ts ∪ RecΣ2 .
(3) G is true in allmodelsF = (TΣ0(∅)/≡E, As, {fA}f∈Σ)ofE∪Ts∪RecΣ1∪RecΣ2 .
(4) G is true in all weak partial models F = (TΣ0(∅)/≡E, As, {fA}f∈Σ) of

E∪Ts∪(RecΣ1∪RecΣ1)[Ψ(G)] in which all terms in Ψ(G) are defined.

Similar results can also be obtained for definitions of type Rec
g
Σ or ERec

[g]
Σ .
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Note: We can impose boundedness conditions on the recursively defined
functions without affecting locality (as for absolutely free constructors). 7

4.1 An Example Inspired from Cryptography

In this section we illustrate the ideas on an example inspired by the treatment
of a Dolev-Yao security protocol considered in [4] (cf. also Examples 17 and 19).
Let Σ0 = {c} ∪ C, where c is a binary constructor, and let enc be a binary
function. We analyze the following situations:

(1) c satisfies a set E of axioms and enc is a free binary function. By Theorem 3,
the extension of E with the free function enc is a local extension of E.

(2) c is an absolutely free constructor, and enc satisfies the recursive definition:

(ERecenc) ∀x, y, z enc(c(x, y), z) = c(enc(x, z), enc(y, z)).

By Theorem 9, the extension AbsFreec⊆AbsFreec∪ERecenc satisfies the Ψ -
locality condition for all clauses satisfying Assumption 2 (with Ψ as in The-
orem 9).

(3) If c is associative (resp. commutative) and enc satisfies axiom ERecenc then
Assumption 3 is satisfied, so, by Theorem 20, E ∪ ERecenc satisfies the con-
dition of a Ψ -local extension of E for all clauses of type (1).

Formalizing the Intruder Deduction Problem. We now formalize the ver-
sion of the deduction system of the Dolev and Yao protocol given in [4]. Let E
be the set of identities which specify the properties of the constructors in Σ0.
We use the following chain of successive theory extensions:

E ⊆ E ∪ ERecenc ⊆ E ∪ ERecenc ∪ Bool ∪ Rec
g
known,

where known has sort d → bool and Rec
g
known consists of the following axioms:

∀x, y known(c(x, y)) = known(x) ⊓ known(y)
∀x, y known(y) = t → known(enc(x, y)) = known(x)

Intruder deduction problem. The general statement of the intruder deduction
problem is: “Given a finite set T of messages and a message m, is it possible to
retrieve m from T ?”.

Encoding the intruder deduction problem. The finite set of known messages, T =
{t1, . . . , tn}, where ti are groundΣ0∪{enc}-terms, is encoded as

∧n
i=1 known(ti)=t.

With this encoding, the intruder deduction problem becomes:

“Test whether E∪Recenc∪Bool∪Recknown |=
∧n

i=1 known(ti)=t → known(m)=t.”

7 We can also consider axioms which link the values of functions f2 ∈ Σ2 and f1 ∈ Σ1

on the constants, such as e.g. “f2(f1(c))=ts” if we consider clauses G in which if
f1(c)=t occurs then t=c′, where c′ is a constant constructor not in Σr(f2). In the
case of Σ1-functions defined by ERec we can consider additional axioms of the form:
φ(f2(x))→f2(f1(c, x))=t′s, where t′s is a ground term of sort s either containing f2

(and of the form f2(c
′)) or a pure Σs-term.
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Example 21. We illustrate the hierarchical reasoning method we propose on the
following example: Assume that E = {(C)} and the intruder knows the messages
c(a, b) and enc(c(c(e, f), e), c(b, a)). We check if he can retrieve c(f, e), i.e. if

G : (known(c(a, b))=t)∧(known(enc(c(c(e, f), e), c(b, a)))=t)∧(known(c(f, e))=f)

is unsatisfiable w.r.t. E∪Bool∪ERecenc∪Rec
g
known. G is equisatisfiable with a set

G′ of clauses obtained by applying all the definitions in ERecenc and Rec
g
known:

G′ : (known(enc(e, c(b, a))) ⊓ known(enc(f, c(b, a))) ⊓ known(enc(e, c(b, a)))=t)
∧ (known(a) ⊓ known(b)=t) ∧ (known(f) ⊓ known(e)=f).

By Theorem 20, we know that E ∪ Recenc ∪ Bool ∪ Recknown ∧ G′ |=⊥ iff E ∪
Recenc ∪ Bool ∪ Recknown[Ψ(G′)] ∧ G′ |=⊥ . The reduction is illustrated below:

Defbool G′
0 ∧ Recknown[Ψ(G′)]0

k1 = known(a) k5 = known(enc(e, c(b, a))) k1 ⊓ k2 = t k7 = k2 ⊓ k1

k2 = known(b) k6 = known(enc(f, c(b, a))) k3 ⊓ k4 = f k7 = t → k5 = k3

k3 = known(e) k7 = known(c(b, a)) k5 ⊓ k6 ⊓ k5 = t k7 = t → k6 = k4

k4 = known(f)

(We ignored Con0.) The contradiction in Bool can be detected immediately.

5 Conclusion

We showed that many extensions with recursive definitions (which can be seen
as generalized homomorphism properties) satisfy locality conditions. This allows
us to reduce the task of reasoning about the class of recursive functions we con-
sider to reasoning in the underlying theory of data structures (possibly combined
with the theories attached to the co-domains of the additional functions). We
illustrated the ideas on several examples (including one inspired from cryptogra-
phy). The main advantage of the method we use consists in the fact that it has
the potential of completely separating the task of reasoning about the recursive
definitions from the task of reasoning about the underlying data structures. We
believe that these ideas will make the automatic verification of certain prop-
erties of recursive programs or of cryptographic protocols much easier, and we
plan to make a detailed study of applications to cryptography in future work.
An implementation of the method for hierarchical reasoning in local theory ex-
tensions is available at www.mpi-inf.mpg.de/∼ihlemann/software/index.html (cf.
also [12]). In various test runs it turned out to be extremely efficient, and can
be used as a decision procedure for local theory extensions. We plan to extend
the program to handle the theory extensions considered in this paper; we expect
that this will not pose any problems. There are other classes of bridging func-
tions – such as, for instance, cardinality functions for finite sets and measure
functions for subsets of R (for instance intervals) – which turn out to satisfy
similar locality properties. We plan to present such phenomena in a separate
paper.
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