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Locality Sensitive Deep Learning for Detection and

Classification of Nuclei in Routine Colon Cancer

Histology Images
Korsuk Sirinukunwattana, Shan E Ahmed Raza, Yee-Wah Tsang, David R. J. Snead, Ian A. Cree

& Nasir M. Rajpoot, Senior Member, IEEE

Abstract—Detection and classification of cell nuclei in
histopathology images of cancerous tissue stained with the stan-
dard hematoxylin and eosin stain is a challenging task due to cel-
lular heterogeneity. Deep learning approaches have been shown
to produce encouraging results on histopathology images in
various studies. In this paper, we propose a Spatially Constrained
Convolutional Neural Network (SC-CNN) to perform nucleus
detection. SC-CNN regresses the likelihood of a pixel being the
center of a nucleus, where high probability values are spatially
constrained to locate in the vicinity of the center of nuclei. For
classification of nuclei, we propose a novel Neighboring Ensemble
Predictor (NEP) coupled with CNN to more accurately predict
the class label of detected cell nuclei. The proposed approaches
for detection and classification do not require segmentation of
nuclei. We have evaluated them on a large dataset of colorectal
adenocarcinoma images, consisting of more than 20,000 anno-
tated nuclei belonging to four different classes. Our results show
that the joint detection and classification of the proposed SC-CNN
and NEP produces the highest average F1 score as compared to
other recently published approaches. Prospectively, the proposed
methods could offer benefit to pathology practice in terms of
quantitative analysis of tissue constituents in whole-slide images,
and could potentially lead to a better understanding of cancer.

Index Terms—Nucleus Detection, Histology Image Analysis,
Deep Learning, Convolutional Neural Network.

I. INTRODUCTION

TUMORS contain a high degree of cellular heterogeneity

due to their ability to elicit varying levels of host inflam-

matory response, angiogenesis and tumor necrosis amongst

other factors involved in tumor development [1], [2]. The

spatial arrangement of these heterogeneous cell types has also

been shown to be related to cancer grades [3], [4]. Therefore,

the qualitative and quantitative analysis of different types

of tumors at cellular level can not only help us in better
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understanding of tumor but also explore various options for

cancer treatment. One way to explore these cell types is to

use multiple protein markers which can mark different cells

in cancer tissues. That will, however, require deep biological

understanding of tumors to identify informative markers and

is costly in terms of laboratory time and the use of tissue

to study cell types [5]. An alternative and more efficient

approach which is taken in this paper is to use morphological

clues in local neighborhoods to develop automated cellular

recognition via image analysis which can then be deployed

for sophisticated tissue morphometry in future [6].

There are several factors that hinder automatic approaches

for detection and classification of cell nuclei. First of all,

the inferior image quality may arise due to poor fixation

and poor staining during the tissue preparation process or

autofocus failure during the digitization of slide. On the

other hand, complex tissue architecture (Fig 1a), clutter of

nuclei, and diversity of nuclear morphology pose a challenging

problem. Particularly, in case of colorectal adenocarcinoma,

dysplastic and malignant epithelial cells often have irregular

chromatin texture and appear highly cluttered together with no

clear boundary, which makes detection of individual nuclei a

challenging task (Fig 1b). Variability in the appearance of the

same type of nuclei, both within and across different sample,

is another factor that makes classification of individual nucleus

equivalently difficult.

In this paper, we present novel locality sensitive deep

learning approaches to detect and classify nuclei in routine

hematoxylin and eosin (H&E) stained histopathology images

of colorectal adenocarcinoma, based on convolutional neural

networks (CNNs). Standard CNN based methods follow a

sliding window approach whereby the sliding window is

centered at the pixel to be labeled or regressed. Our locality

sensitive deep learning approach is based on two premises:

(a) distance from the center of an object (nucleus, in this

case) should be incorporated into the calculation of probability

map for detecting that object, and (b) a weighted ensemble

of local predictions for a class label can yield more accurate

labeling of an object. For detection, we propose a spatially

constrained CNN (SC-CNN), a new variant of CNN that

includes parameter estimation layer and spatially constrained

layer for spatial regression. SC-CNN can be trained to predict

the probability of a pixel being the center of a nucleus. As op-

posed to other approaches [7], [8] that do not enforce the pixels
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Fig. 1. An example of the cancer region in colorectal adenocarcinoma. (a) disarray of intestinal glandular architecture. (b) clutter of malignant epithelial
nuclei due to high proliferation rate.

close to the center of a nucleus to have a higher probability

value than those further away, the predicted probability values

produced by SC-CNN are topologically constrained such that

high probability values are concentrated in the vicinity of the

center of nuclei. For classification, we introduce neighboring

ensemble predictor (NEP) to be used in conjunction with

a standard softmax CNN. This predictor based on spatial

ensembling leverages all relevant patch-based predictions in

the local neighborhood of the nucleus to be classified, which

in turn produces more accurate classification results than

its single-patch based counterpart. Moreover, the proposed

approaches for detection and classification do not require the

difficult step of nucleus segmentation [9] which can be fairly

challenging due to the reasons mentioned above. The proposed

approach for detection and classification uses a sliding window

to train the networks on small patches instead of the whole

image. The use of small patches not only increases the amount

of training data which is crucial for CNNs, but essentially also

localizes our analysis to small nuclei in images [10], [11].

The organization of the paper is as follows. The review of

recent literature on cell and nucleus detection and classification

is given in Section II. We briefly introduce CNNs in Section

III. Sections IV-VI describe the proposed approach in detail,

and experimental results are presented in Section VII. Finally,

we discuss some potential applications of the work, and

conclude in Sections VIII and IX, respectively.

II. RELATED WORK

Most existing methods for cell and nucleus detection can

be classified into one of the following categories: thresholding

followed by morphological operations, region growing, level

sets, k-means, and graph-cuts. Recently proposed techniques

for nucleus detection in routine H&E histology images rely

on morphological features such as symmetry and stability of

the nuclear region to identify nuclei [12]. Cosatto et al. [13]

proposed detection of cell nuclei using difference of Gaussian

(DoG) followed by Hough transform to find radially sym-

metrical shapes. Al Kofahi et al. [14] proposed a graph cut-

based method that is initialized using response of the image to

Laplacian of Gaussian (LoG) filter. Kuse et al. [15] employed

local phase symmetry to detect bilaterally symmetrical nuclei.

Similarly, Veta et al. [16] relied on the direction of gradient to

identify the center of nuclei. These methods may fail to detect

spindle-like nuclei and irregular-shaped malignant epithelial

nuclei. Arteta et al. [17] employed maximally stable extremal

regions for detection, which is likely to fall victim to weakly

stained nuclei or nuclei with irregular chromatin texture. Ali et

al. [18] proposed an active contour-based approach to detect

and segment overlapping nuclei based on shape models, which

is highly variable in the case of tumor nuclei. In a recent study,

Vink et al. [19] employed AdaBoost classifier to train two

detectors, one using pixel-based features and the other based

on Haar-like features, and merged the results of two detectors

to detect the nuclei in immunohistochemistry stained breast

tissue images. The performance of the method was found to

be limited when detecting thin fibroblasts and small nuclei.

Cell and nucleus classification have been applied to diverse

histopathology related applications. Dalle et al. [20] and

Cosatto et al. [13] used shape, texture and size of nuclei

for nuclear pleomorphism grading in breast cancer images.

Malon et al. [21] trained CNN classifier to classify mitotic and

non-mitotic cells using color, texture and shape information.

Nguyen et al. [22] classified nuclei on the basis of their

appearance into cancer and normal nuclei and used the location

of detected nuclei to find cancer glands in prostate cancer.

Yuan et al. [9] classified nuclei into cancer, lymphocyte or

stromal based on the morphological features in H&E stained

breast cancer images. This requires accurate segmentation of

all the nuclei in the tissue including the tumor nuclei which is

not straight forward due to the complex micro-architecture of

tumor. Shape features have also been used in an unsupervised

manifold learning framework [23] to discriminate between

normal and malignant nuclei in prostate histology images.

Recently, Sharma et al. [24] proposed nuclei segmentation

and classification using AdaBoost classifier using intensity,

morphological and texture features. The work was focused

on nuclei segmentation, whereas evaluation on classification
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performance was limited.

Recent studies have shown that deep learning methods

produce promising results on a large number of histopatho-

logical image datasets. Wang et al. [25] proposed a cascaded

classifier which uses a combination of hand-crafted features

and features learned through CNN to detect mitotic cells.

Cruz et al. [26] showed that for detection of basal-cell

carcinoma, features learned using deep learning approaches

produce superior and stable results compared to pre-defined

bag of feature and canonical (discrete cosine transform/wavelet

transform based) representations. For nucleus detection, Xu

et al. [7] used stacked sparse autoencoder to learn a high-

level representation of nuclear and non-nuclear objects in an

unsupervised fashion. The higher level features are classified

as nuclear or non-nuclear regions using a softmax classifier.

Ciresan et al. [8] utilized CNNs for mitotic figure detection in

breast cancer images, where CNNs were trained to regress the

probability of belonging to a mitotic figure for each pixel,

taking a patch centered at the pixel as context. Xie et al.

[27] recently proposed structural regression CNN capable of

learning a proximity map of cell nuclei and was shown by the

authors to provide more accurate detection results. Another

closely related deep learning work is by Xie et al. [28], which

localizes nucleus centroids through a voting scheme.

In summary, most of the cell detection methods rely on

shape of nuclei and stability of features for cell detection

and on texture of the nuclei for classification. Deep learning

approaches have been successfully used in the past for identi-

fication of nuclei in histopathology images, mostly for binary

classification using pixel based approaches. In this paper, we

propose a novel deep learning approach which is sensitive to

local neighborhood and is capable of detecting and assigning

class labels to multiple types of nuclei.

In terms of methodology for nucleus detection, our SC-

CNN is closely related to the methods proposed by Xie et

al. [27], [28]. SC-CNN contains a layer that is specifically

designed to predict the centroid locations of nuclei as well

as the confidence of the locations whether they correspond

to true centroids. These parameters are in essence similar

to the voting offset vectors and voting confidence in Xie

et al. [28]. However, SC-CNN generates a probability mask

for spatial regression based on these parameters rather than

employing them directly for detection as done by Xie et al.

[28]. Although, both Xie et al. [27] and our SC-CNN share the

idea of using spatial regression as a means of localizing the

nucleus centers, the regression in SC-CNN is model-based,

which explicitly constrains the output form of the network.

Thus, high probability values are likely to be assigned to the

pixel locations in the vicinity of nucleus centers.

III. CONVOLUTIONAL NEURAL NETWORK

A convolutional neural network (CNN) f is a composition

of a sequence of L functions or layers (f1, .., fL) that maps

an input vector x to an output vector y, i.e.,

y = f(x;w1, ...,wL)

= fL( · ;wL) ◦ fL−1( · ;wL−1) ◦ ...

◦ f2( · ;w2) ◦ f1(x;w1),

(1)

where wl is the weight and bias vector for the lth layer fl.
Conventionally, fl is defined to perform one of the following

operations: a) convolution with a bank of filters; b) spatial

pooling; and c) non-linear activation. Given a set of N training

data {(x(i),y(i))}Ni=1, we can estimate the vectors w1, ..,wL

by solving the optimization problem

argmin
w1,...,wL

1

N

N
∑

i=1

ℓ(f(x(i);w1, ...,wL),y
(i)), (2)

where ℓ is an appropriately defined loss function. Numerical

optimization of (2) is often performed via backpropagation

and stochastic gradient descent methods.

IV. NUCLEUS DETECTION

A. Spatially Constrained Regression

In regression analysis, given a pair of input x and output

y, the task is to estimate a function g that represents the

relationship between both variables. The output y, however,

may not only depend on the input x alone, but also on the

topological domain (time, spatial domain, etc.) on which it is

residing.

Let Ω be the spatial domain of y, and suppose that the

spatially constrained regression model g is known a priori,

and is of the form y = g(Ω;θ(x)) where θ(x) is an unknown

parameter vector. We can employ CNN to estimate θ(x) by

extending the standard CNN such that the last two layers

(fL−1, fL) of the network are defined as

θ(x) = fL−1(xL−2;wL−1), (3)

y = fL (Ω;θ(x)) ≡ g (Ω;θ(x)) , (4)

where xL−2 is an output of the (L−2)th layer of the network,

(3) is the new parameter estimation layer and (4) is the layer

imposing the spatial constraints.

B. Nucleus Detection Using a Spatially Constrained CNN

Given an image patch x ∈ R
H×W×D with its height H ,

width W , and the number of its features D, our aim is to

detect the center of each nucleus contained in x (Fig. 2a). To

tackle this problem, we first define the training output y ∈
[0, 1]H

′×W ′

as a probability map of size H ′ ×W ′ (Fig. 2b).

Let Ω = {1, ..., H ′}×{1, ...,W ′} be the spatial domain of y.

The jth element of y, j = 1, ..., |Ω|, is defined as

yj =











1
1+(‖zj−z

0
m‖2

2)/2
if
∀m 6= m′, ‖zj − z0m‖2

≤ ‖zj − z0m′‖2 ≤ d,

0 otherwise,

(5)

where zj and z0m denote the coordinates of yj and the

coordinates of the center of the mth nucleus on Ω, respectively,
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W
′
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Fig. 2. An illustration of the proposed spatially constrained CNN. (a) An
input patch x of size H ×W from an image. (b) A training output patch y

of size H
′
× W

′ from a probability map showing the probability of being
the center of nuclei. (c) An illustration of the last three layers of the proposed
spatially constraint CNN. Here, F is the fully connected layer, S1 is the new
parameter estimation layer, S2 is the spatially constrained layer, and L is the
total number of layers in the network.

and d is a constant radius. Pictorially, the probability map

defined by (5) has a high peak in the vicinity of the center of

each nucleus z0m and flat elsewhere.

Next, we define the predicted output y
∧

, generated from the

spatially constrained layer (S2, the Lth layer) of the network

(Fig. 2c). Following the known structure of the probability

map in the training output described in (5), we define the jth

element of the predicted output y
∧

as

y
∧

j = g(zj ; ẑ
0
1, ..., ẑ

0
M , h1, ..., hM )

=







(

1
1+(‖zj−ẑ

0
m‖2

2)/2

)

hm if
∀m 6= m′, ‖zj − ẑ0m‖2
≤ ‖zj − ẑ0m′‖2 ≤ d,

0 otherwise,

(6)

where ẑ0m ∈ Ω is the estimated center and hm ∈ [0, 1] is

the height of the mth probability mask, and M denotes the

maximum number of the probability masks on y
∧

. Note that

y
∧

defined in this way allows the number of predicted nuclei

to vary from 0 to M because of the redundancy provided by

hm = 0 or ẑ0m = ẑ0m′ for m 6= m′. In our experiments, we

set d in (5) and (6) to 4 pixels as to provide enough support

area to the probability mask.

The parameters ẑ0m = (um, vm) and hm are estimated in the

parameter estimation layer (S1, the (L− 1)th layer, as shown

in Fig. 2c). Let xL−2 be the output of the (L− 2)th layer of

the network. We define um, vm, hm as

um = (H ′ − 1) · sigm(WL−1,um
· xL−2 + bum

) + 1, (7)

vm = (W ′ − 1) · sigm(WL−1,vm
· xL−2 + bvm

) + 1, (8)

hm = sigm(WL−1,hm
· xL−2 + bhm

), (9)

where WL−1,um
,WL−1,vm ,WL−1,hm

denote the weight

vectors and bum
, bvm , bhm

denote the bias variables, and

sigm(·) denotes the sigmoid function.

To learn all the variables (i.e., weight vectors and bias

values) in the network, we solve (2) using the following loss

function:

ℓ(y,y
∧

) =
∑

j

(yj + ǫ)H(yj , y
∧

j), (10)

where H(yj , y
∧

j) is the cross-entropy loss [29]–[31] defined

by

H(yj , y
∧

j) = −
[

yj log(y
∧

j)− (1− yj) log(1− y
∧

j)
]

, (11)

and ǫ is a small constant, which is set to be the ratio of the total

number of non-zero probability pixels and zero probability

pixels in the training output data. The first term of the product

in (10) is a weight term that penalizes the loss contributed by

the output pixels with small probability. This is crucial as, in

the training output data, there are a large number of pixels

with zero probability as compared to the non-zero probability

ones.

Finally, to detect the center of nuclei from a big image, we

use the sliding window strategy with overlapping windows.

Since we use full-patch regression, the predicted probability

of being the center of a nucleus is generated for each of the

extracted patches using (6). These results are then aggregated

to form a probability map. That is, for each pixel location, we

average the probability values from all the patches containing

that pixel. The final detection is obtained from the local

maxima found in the probability map. In order to avoid over-

detection, a threshold defined as a fraction of the maximum

probability value found on the probability map is introduced.

All local maxima whose probability values are less than

the threshold are not considered in the detection. In our

experiments, the threshold was empirically determined from

the training data set.

V. NUCLEUS CLASSIFICATION

We treat the problem of nucleus classification as patch-based

multiclass classification. Let x ∈ R
H×W×D be an input patch

containing a nucleus to be classified in the proximity of its

center, and let c ∈ {1, ..., C} denote the corresponding label

of patch x, in which C is the total number of classes.

We train a CNN to produce an output vector y
∧

(x) ∈ R
C in

the last layer of the network such that

c = argmax
j

y
∧

j(x), (12)

where y
∧

j(x) denotes the jth element of y
∧

(x). The following

logarithmic loss is employed to train the network via solving

(2):

ℓ(c,y
∧

(x)) = − log (pc(y
∧

(x))) , (13)
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(a) (b)

Fig. 3. An illustration of the prediction strategies used in conjunction with
softmax CNN: (a) standard single-patch predictor; (b) neighboring ensemble
predictor. An orange dot represents the center of the detected nucleus. The
center of neighboring patches is represented as yellow dots.

and pj(y
∧

(x)) is a softmax function [29]–[31] defined by

pj(y
∧

(x)) =
exp(y

∧

j(x))
∑

k exp(y
∧

k(x))
. (14)

We refer to this classification CNN as softmax CNN. In this

work, we employ two strategies for predicting the class label

as described below.

A. Standard Single-Patch Predictor (SSPP)

Predicted class c
∧

for input patch x with corresponding

output y
∧

(x) from the network is given by

c
∧

= argmax
j

pj(y
∧

(x)), (15)

where y
∧

j(x) denotes the jth element of y
∧

(x). See Fig. 3a for

illustration.

B. Neighboring Ensemble Predictor (NEP)

Let XI ⊂ R
W×H×D denote a set of all W ×H×D patches

of image I, and let ΩI denote a spatial domain of image I. For

each patch x ∈ XI, denote z(x) ∈ ΩI as the location at which

x is centered. We now define a set of neighboring patches of

x as

B(x) =
{

x(i) ∈ XI : ‖z(x
(i))− z(x)‖2 ≤ dβ

}

, (16)

which contains all patches centered in the ball of radius dβ
centered at z(x).

Predicted class c
∧

for an input patch x with corresponding

network output y
∧

is given by

c
∧

= argmax
j

∑

x
(i)∈B(x)

w(z(x(i)))pj(y
∧

(x(i))), (17)

where w : ΩI → R is a function assigning weight to patch

x(i) based on its center position z(x(i)). Ensemble predictor

(17), defined in this way, is essentially a weighted sum of all

relevant predictors (Fig. 3b). It takes into account uncertainty

in detection of the center location, as well as, variability in the

appearance of nuclei. In our experiments (Section VII-C), the

NEP (17) shows higher classification performance than that of

the single-patch predictor (15).

In all experiments, we set dβ = 4 pixels in (16) so as to

allow patches in B(x) to cover the majority area of a nucleus

to be classified, and we set a uniform weight w(z(x(i))) =
1/|B(x)| for all x(i) ∈ B(x) in (17).

VI. NETWORK ARCHITECTURE AND TRAINING DETAILS

A. Architectures

The detailed architectures of the spatially constrained CNN

(SC-CNN) for nucleus detection and the softmax CNN for

nucleus classification are shown in Table I. These architectures

are inspired by [8] and [32]. The networks consisted of con-

ventional layers, including input, convolution, non-overlapping

spatial max-pooling, and fully-connected layers. SC-CNN, in

addition, included parameter estimation and spatially con-

strained layers. In both networks, a rectified linear unit (ReLU)

activation function [32] was used after each convolution layer

and the first two fully-connected layers (1st, 3rd, 5th and 6th

layer). To avoid over-fitting, dropout [33] was implemented in

the first-two fully-connected layers (5th and 6th layer, after

ReLU is applied) with a dropout rate of 0.2. We implemented

both networks using MatConvNet [34].

The input features were selected with respect to the task.

In nucleus detection, we selected hematoxylin intensity as an

input feature to SC-CNN for each patch. Because nucleic acids

inside the nucleus is stained by hematoxylin, this feature is a

reasonably good representation of localization of the nuclei.

The hematoxylin intensity was obtained using a recently

proposed color deconvolution method [35]. In classification,

morphology of nuclei (shape, size, color, and texture) is

necessary to distinguish between different types of them.

Raw RGB color intensities which constitute the overall visual

appearance of nuclei were, thus, chosen as input features to

softmax CNN for each patch. For both networks, we set input

patch size to W × H = 27 × 27 since the majority of the

nuclei in a dataset used in our experiments (Section VII-A)

have their size within this limit. We set the output patch size

for SC-CNN to W ′ × H ′ = 11 × 11. Based on this output

patch size, we found that the number of nuclei contained in

the training output patches is mostly less than or equal to 2.

Thus, the maximum number of predicted nuclei allowed in the

S1 layer of SC-CNN was set to M = 1 or M = 2, accordingly.

B. Training Data Augmentation

For both networks, we arbitrary rotated patches

(0◦, 90◦, 180◦, 270◦) and flipped them along vertical or

horizontal axis to alleviate the rotation-variant problem of the

input features. To make softmax CNN persist to variability

in color distribution, which is commonly found in histology

images, we also arbitrary perturbed the color distribution

of training patches. This was accomplished in HSV space,

where hue (H), saturation (S), and value (V) variables were

separately multiplied by random numbers rH ∈ [0.95, 1.05],



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON MEDICAL IMAGING, FEBRUARY 2016 6

TABLE I
ARCHITECTURES OF THE SPATIALLY CONSTRAINED CNN (SC-CNN) FOR NUCLEUS DETECTION AND SOFTMAX CNN FOR NUCLEUS CLASSIFICATION.

THE NETWORKS CONSIST OF INPUT (I), CONVOLUTION (C), MAX-POOLING (M), FULLY-CONNECTED (F), PARAMETER ESTIMATION (S1), AND

SPATIALLY CONSTRAINED (S2) LAYERS.

Layer
SC-CNN for detection softmax CNN for classification

Type
Filter

Dimensions

Input/Output

Dimensions
Type

Filter

Dimensions

Input/Output

Dimensions

0 I 27× 27× 1 I 27× 27× 1

1 C 4× 4× 1× 36 24× 24× 36 C 4× 4× 1× 36 24× 24× 36

2 M 2× 2 12× 12× 36 M 2× 2 12× 12× 36

3 C 3× 3× 36× 48 10× 10× 48 C 3× 3× 36× 48 10× 10× 48

4 M 2× 2 5× 5× 48 M 2× 2 5× 5× 48

5 F 5× 5× 48× 512 1× 512 F 5× 5× 48× 512 1× 512

6 F 1× 1× 512× 512 1× 512 F 1× 1× 512× 512 1× 512

7 S1 1× 1× 512× 3 1× 3 F 1× 1× 512× 4 1× 4

8 S2 11× 11

rS , rV ∈ [0.9, 1.1], respectively. In addition, we extracted

multiple patches of the same nucleus at different locations to

account for location-variant that could negatively affect the

classification performance of softmax CNN. This over-sample

also allowed us to account for the class unbalance problem

inherited in the dataset.

C. Initialization and Training of the Networks

We initialized all weights with 0 mean and 10−2 standard

deviation Gaussian random numbers. All biases were set to 0.

The networks were trained using stochastic gradient descent

with momentum 0.9 and weight decay 5 × 10−4 for 120
epochs. We annealed the learning rate, starting from 10−2 for

the first 60 epochs, then 10−3 for the next 40 epochs, and

10−4 for the last 20 epochs. We used 20% of training data for

validation. The optimal networks for SC-CNN and softmax

CNN were selected based on the root mean square error and

the classification error on the validation set, respectively.

VII. EXPERIMENTS AND RESULTS

A. The Dataset1

This study involves 100 H&E stained histology images of

colorectal adenocarcinomas. All images have a common size

of 500× 500 pixels, and were cropped from non-overlapping

areas of 10 whole-slide images from 9 patients, at a pixel

resolution of 0.55µm/pixel (20× optical magnification). The

whole-slide images were obtained using an Omnyx VL120
scanner. The cropping areas were selected to represent a

variety of tissue appearance from both normal and malignant

regions of the slides. This also comprises areas with artifacts,

over-staining, and failed autofocussing to represent outliers

normally found in real scenarios.

Manual annotation of nuclei were conducted mostly by an

experienced pathologist (YT) and partly by a graduate student

under supervision of and validation by the same pathologist.

A total number of 29, 756 nuclei were marked at the center

1The dataset is available at http://www.warwick.ac.uk/BIAlab/data/
CRChistoLabeledNucleiHE.

Epithelial

Nuclei

Inflammatory

Nuclei

Fibroblast

Nuclei

Miscellaneous

Nuclei

Fig. 4. Example patches of different types of nuclei found in the dataset:
1st Row - Epithelial nuclei, 2nd Row - Inflammatory nuclei (from left to
right, lymphocyte, plasma nucleus, neutrophil, and eosinophil), 3rd Row -
Fibroblasts, 4th Row - Miscellaneous nuclei (from left to right, adipocyte,
endothelial nucleus, mitotic figure, and necrotic nucleus).

for detection purposes. Out of those, there were 22, 444 nuclei

that also have an associated class label, i.e. epithelial, inflam-

matory, fibroblast, and miscellaneous. The remaining 7, 312
nuclei were unlabeled. The types of nuclei that were labeled

as inflammatory include lymphocyte plasma, neutrophil and

eosinophil. The nuclei that do not fall into the first three

categories (i.e., epithelial, inflammatory, and fibroblast) such

as adipocyte, endothelium, mitotic figure, nucleus of necrotic

(i.e., dead) cell, etc. are labeled as miscellaneous. In total, there

are 7, 722 epithelial, 5, 712 fibroblast, 6, 971 inflammatory, and

2, 039 miscellaneous nuclei. Fig. 4 shows some examples of

the nuclei in the dataset.

B. Detection

The objective of this experiment is to detect all nuclei in

an image by locating their center positions, regardless of their

class labels. Details of the dataset used in this experiment are

as described above in Section VII-A.

1) Evaluation: Precision, Recall, and F1 score were used

to quantitatively assess the detection performance. Here, we

define the region within the radius of 6 pixels from the

annotated center of the nucleus as ground truth. If there are

http://www.warwick.ac.uk/BIAlab/data/CRChistoLabeledNucleiHE
http://www.warwick.ac.uk/BIAlab/data/CRChistoLabeledNucleiHE
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multiple detected points within the same ground truth region,

only the one closest to the annotated center is considered as

true positive. The statistics, including median, 1st quartile, and

3rd quartile were also calculated to summarize the positively

skewed distribution of the Euclidean distance between the

detected points and their nearest annotated center of nucleus.

2) Other Approaches: The following nucleus detection

algorithms were selected for comparison. Firstly, center-of-the-

pixel CNN (CP-CNN) follows conventional method for object

detection, where given a patch, it calculates the probability of

being the center of a nucleus for a pixel at the center of the

patch. Secondly, structural regression (SR-CNN) [27] extends

the concept of a single-pixel regression of CP-CNN into a

full-patch regression. The architectures of both CP-CNN and

SR-CNN were set to resemble that of SC-CNN, except that

the parameter estimation and the spatial constrained layers

were replaced by a regression layer with a single node for

CP-CNN and a regression layer with the number of nodes

equal to the output patch size for SR-CNN. The training

output patches for SR-CNN were the same as those for SC-

CNN (see Fig. 2b for an example), whereas only the center

pixel of those patches were used to train CP-CNN. Thirdly,

stacked sparse autoencoder (SSAE) [7] consists of two sparse

autoencoder layers followed by a softmax classifier which

is trained to distinguish between nuclear and non-nuclear

patches. If classified as a nucleus, all pixels inside the output

patch are assigned the value of 1, or 0 otherwise. We set input

feature, sizes of input and output patches of SSAE to be the

same as those of SC-CNN. Fourthly, local isotropic phase

symmetry measure (LIPSyM) yields high response values

near the center of symmetric nuclei which can be used for

detection. Lastly, CRImage [9] segments all nuclei with help

of thresholding, followed by morphological operation, distance

transform, and watershed. A centroid of individual segmented

nucleus was used as the detected point. Note that for a fair

comparison the detection of the center of nuclei for CP-CNN,

SR-CNN, SSAE, and LIPSyM was done in the same fashion

as that of SC-CNN (see last paragraph of Section IV-B for

details). We implemented CP-CNN using MatConvNet [34],

while CRImage is publicly available as an R package2. The

implementations of SR-CNN and LIPSyM were provided by

the authors, and we used a set of build-in functions in Matlab

to implement SSAE.

3) Comparative Results: We employed 2-fold cross-

validation (50 images/fold) in the experiment. Fig. 5 shows

the precision-recall curve. The curve was generated by varying

the threshold value applied to the predicted probability map

before locating local maxima to avoid false positive detection.

Table II reports the detection results when the threshold value

is empirically chosen to optimize F1 score on the training

fold. Detailed results are shown in Fig. SF1 and Fig. SF2 of

the supplementary material. Here, we include two variants of

SC-CNN; one with the maximum number of predicted nuclei

in an output patch equal to 1 (M = 1) and the other equal to

2 (M = 2).

2http://www.bioconductor.org/packages/CRImage/
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Fig. 5. Precision-recall curve for nucleus detection. Isolines indicate regions
of different F1 scores. The curve is generated by varying the value of threshold
applied to the predicted probability map before locating local maxima. Note
that this thresholding scheme does not apply to CRImage [9].

TABLE II
COMPARATIVE RESULTS FOR NUCLEUS DETECTION.

Method Precision Recall F1 score Median Distance (Q1, Q3)

SC-CNN (M = 1) 0.758 0.827 0.791 2.236 (1.414, 5.099)

SC-CNN (M = 2) 0.781 0.823 0.802 2.236 (1.414, 5)

CP-CNN 0.697 0.687 0.692 3.606 (2.236, 7.616)

SR-CNN [27] 0.783 0.804 0.793 2.236 (1.414, 5)

SSAE [7] 0.617 0.644 0.630 4.123 (2.236, 10)

LIPSyM [15] 0.725 0.517 0.604 2.236 (1.414 , 7.211)

CRImage [9] 0.657 0.461 0.542 3.071 (1.377, 9.022)

Median, Q1 and Q3 refer to the median, 1st quartile and 3rd quartile of the
distribution of the Euclidean distance between the detected points and their
nearest annotated center of nucleus, respectively.

Overall, the comparison is in favor of the algorithms that

learn to predict the probability of being the center of a nucleus,

based on spatial context of the whole patch, i.e. SC-CNN and

SR-CNN. This is consistent with the quantitative results shown

in Fig. 6c and Fig. SF2. Visual inspection of the probability

generated by SC-CNN (Fig. 6b and Fig. SF1a) and SR-CNN

(Fig. SF1c) revealed that the pixels with high probability

values are mostly located in the vicinity of the center of nuclei.

However, SC-CNN, as imposed by spatial constrained in (6),

has a narrower spread of pixels with high probability values.

Probability maps generated by the CP-CNN (Fig. SF1b) and

SSAE (Fig. SF1d), on the other hand, exhibit a wider spread

of pixels with high probabilities away from the center of

nuclei. This results in SC-CNN and SR-CNN yielding a lower

value of median distance between the detected points and the

annotated ground truth, as compared to those values for CP-

CNN and SSAE. LIPSyM heavily relies on bilateral symmetry

of nuclei for detection. For this reason, it could not precisely

detect spindle-like and other irregularly-shaped nuclei such as

fibroblasts and malignant epithelial nuclei (see Fig. SF2e). Due

http://www.bioconductor.org/packages/CRImage/
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(a) (b) (c)

Fig. 6. Qualitative results for nucleus detection. (a) An example image. (b) Probability maps generated by SC-CNN (M = 2). The probability value in the
probability map indicates the likelihood of a pixel being the center of a nucleus. Thus, one can detect the center of an individual nucleus based on the location
of local maxima found in the probability map. (c) Detection results of SC-CNN (M = 2). Here, detected centers of the nuclei are shown as red dots and
the ground truth areas are shown as green shaded circles. Probability maps and detection results of other methods can be seen in Fig. SF1 and Fig. SF2,
respectively in supplementary material.

to the nature of nuclei in the dataset which often appear to have

a weak boundary and/or overlapping boundaries, algorithms

which require segmentation to detect nuclei such as CRImage

are thus likely to fail for those cases. Fig. SF2f reflects this

problem, where CRImage failed to detect malignant epithelial

nuclei (top-left corner).

Given that a single output patch can contain multiple nu-

cleus centers (mostly less than or equal to 2 in our experiment),

SC-CNN (M = 2) thus gives a better performance than SC-

CNN (M = 1). Nonetheless, the improvement mainly comes

from the reduction in the false positive rate rather than the false

negative rate. One of the possible explanations is that SC-CNN

(M = 1) tries to compensate the loss incurred from not being

able to regress the probability of multiple nucleus centers

during the training process by giving a high confidence, i.e.

hm close to 1, to the estimated nuclear center. Thus, it tends

to produce false detection as compared to SC-CNN (M = 2).

SC-CNN and SR-CNN share a closely resembling idea of

using spatial regression to generate the probability map of

nucleus center. In essence, SC-CNN uses a known spatial

structure for regression, whereas SR-CNN directly learns the

structure from the training output data. SR-CNN, hence, is

more flexible in general. However, when the structure for

regression is known and governed by a small number of

parameters such as in this problem, SC-CNN can provide

more advantages. Firstly, it simplifies the learning process of

CNN by imposing the output functional form of the network.

Secondly, the regressed structure is always consistent with

that of the training data. This results in SC-CNN (M = 2)

yielding better performance in terms of F1 score than SR-

CNN. For further discussion about the detection performance

when nuclei are stratified by their class label, see Section

VII-D2.

C. Classification

The setting of this experiment is to classify patches of size

27 × 27 pixels, containing a nucleus at the center, into 4

classes: epithelial, inflammatory, fibroblast, and miscellaneous.

Full details of the dataset can be found in Section VII-A.

1) Evaluation: We calculated the F1 score for each class of

nucleus and their average weighted by the number of nucleus

samples (see Section VII-A for details) to summarize the

overall classification performance. We also considered an area

under the receiver operating characteristic curve for multiclass

classification (multiclass AUC) [36]. Multiclass AUC mea-

sures the probability that given a pair of samples with different

class labels, a classifier will assign a high prediction score for

class, say c, to the sample from class c, as compared to the

sample from the other class. Here, the prediction score for

softmax CNN is given by softmax function (14).

2) Other Approaches: First, superpixel descriptor [37]

combines color and texture information, cumulated in super-

pixels, for classifying areas with different histologic pattern.

This descriptor is used in conjunction with a random forest

classifier. In the experiment, we treated a patch as a single

superpixel. We implemented this method in Matlab according

to the details outlined in [37]. Second, CRImage3 [9] calculates

a list of statistics4 for each segmented nucleus and uses the

support vector machine with radial basis kernel as a classifier.

A successive spatial density smoothing is used to correct false

classification. We implemented this method in Matlab.

3) Comparative Results: Fig. 7 and Table III show the com-

parative classification performance on 2-fold cross-validation

3CRImage is available as an R package (http://www.bioconductor.org/
packages/CRImage/). As of Sep 1st, 2015, the package version 1.16.0 has
a certain compatibility issue with package EBImage 4.10.1 and cannot
reproduce the results on the test samples given in the manual of the package.
We did our best to implement the method, but disclaim a perfect replication.

4See sweave file of [9] for details.

 http://www.bioconductor.org/packages/CRImage/
 http://www.bioconductor.org/packages/CRImage/
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Fig. 7. Comparative results for nucleus classification stratified with respect
to class label.

TABLE III
COMPARATIVE RESULTS FOR NUCLEUS CLASSIFICATION.

Method
Weighted

Average F1 score

Multiclass

AUC

softmax CNN + SSPP 0.748 0.893

softmax CNN + NEP 0.784 0.917

superpixel descriptor [37] 0.687 0.853

CRImage [9] 0.488 0.684

experiment. For detailed results, see Table ST1 of the supple-

mentary material. The comparison is in favor of softmax CNN

with the NEP in every nucleus class. The better performance

of NEP than that of SSPP allows us to hypothesize that NEP

is more resilient to variability in the appearance of nuclei. The

superpixel descriptor [37] is originally devised to distinguish

area with different histologic pattern. This descriptor does

not directly contain features related to visual appearance of

the nucleus, and thus yielded low classification performance

as compared to softmax CNN. CRImage calculates features

based the segmentation of the nuclei. As previously discussed,

a reliable segmentation is difficult to be achieved when the

nuclear boundary is weakly stained or there are overlapping

boundaries. This prevents CRImage to perform well in this

dataset. Another interesting observation is that all considered

approaches including ours suffer from class imbalance prob-

lem. The classification performance declines as the number of

the samples decreases (see Fig. 7 and Table ST1).

D. Combined Detection and Classification

In this experiment, we combine detection and classification

as a single work flow. Nuclei are first detected and then

classified. We consider the combinations of the top-performing

approaches in each task for comparison. These are SC-CNN

and SR-CNN for detection and softmax CNN together with

SSPP and NEP for classification.

1) Evaluation: We calculated F1 score for combined detec-

tion and classification separately for each class label. For in-
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Fig. 8. Combined performance on nucleus detection and classification
stratified according to class label.

TABLE IV
COMBINED PERFORMANCE ON NUCLEUS DETECTION AND

CLASSIFICATION.

Method Weighted

Average F1 scoreDetection Classification

SC-CNN (M = 1)
softmax CNN + SSPP 0.664

softmax CNN + NEP 0.688

SC-CNN (M = 2)
softmax CNN + SSPP 0.670

softmax CNN + NEP 0.692

SR-CNN [27]
softmax CNN + SSPP 0.662

softmax CNN + NEP 0.683

stance, consider class c. Precision is defined as the proportion

between the number of correctly detected and classified class

c nuclei and the total number of class c nuclei in the ground

truth. The definition of Recall is the proportion between the

number of correctly detected and classified class c nuclei and

the total number of all detected objects classified as class c
nuclei. The criterion for true positive for nucleus detection

is outlined in Section VII-B1. Note that, in the dataset, the

number of nuclei that have a class label associated with is

smaller than the total number of annotated nuclei. Therefore,

we only considered the labeled nuclei as ground truth and

restrict the evaluation to the area covering by patches of

size 41 × 41 pixels, centered at each ground truth nucleus

in the image. To summarize the overall performance, we also

calculated the weighted average F1 score, where the weight

term for each nucleus class is defined by the number of data

samples in that class (see Section VII-A for details).

2) Comparative Results: Fig. 8 and Table IV report the

combined performance on detection and classification on a 2-

fold cross validation experiment. See also Table ST2 of the

supplementary material for the detailed results. As expected

from the results in Section VII-C, the combinations that

employ softmax CNN with SSPP performs better than their

counterparts. SC-CNN and SR-CNN when combined with

softmax CNN with SSPP yield similar F1 scores across differ-

ent classes of nuclei, except for epithelial (irregular-shaped)
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and fibroblast (elongated-shaped) where SC-CNN (M = 2)

performs better. The same trend of performance can be seen

for the combinations that employ softmax CNN with NEP.

VIII. DISCUSSION

Histopathological data are often incomplete and contami-

nated with subjectivity, which is also the case for the dataset

used in this study. This is unavoidable due to the sheer number

of cell nuclei and the enormous variation in morphology,

making it difficult to identify all cells with certainty. In fact

most pathologist rely on low power architecture to build the

main picture of what is going on, using high power cellular

morphological details to confirm or reject the initial impres-

sions. Identifying individual cells on high power features alone

without architectural clues will increase their misclassification.

As previously mentioned, immunohistochemistry that stains a

specific type of cell would provide a decisive judgement, yet it

is costly and practically difficult to deal with in the laboratory,

compared with H&E staining. That, nonetheless, could provide

a stronger objective validation for the future work.

The architectures for CNN presented in this work were

empirically chosen on the basis of resources available at

hand. Finding theoretical justification for choosing an opti-

mal network architecture is still an ongoing search. A large

network architecture would allow more variation in high-level

representations of objects, at the expense of training time

and other resources. Yet, with random initialization of large

number of network parameters, a gradient-based optimization

may get stuck in a poor local minima. One could explore dif-

ferent strategies for training the network as described in [31].

There is also an issue of choosing network input features.

For nucleus detection, we found that hematoxylin intensity

could provide better results than standard RGB intensities. On

the other hand, for nucleus classification, RGB did better than

hematoxylin, but there is no significant difference between the

results obtained using RGB and other standard color spaces

such as LAB and HSV. Selecting a set of input features is task

dependent, and suitable features should reduce the complexity

of the task and allow better results.

Inspection of the results from all nucleus classification

methods in Section VII-C revealed that the majority of

misclassified nuclei often appeared isolated and biologically

implausible, considering their spatial positions on the original

images. Yuan et al. [9] proposed the use of hierarchical spatial

smoothing to correct misclassification. However, it should be

pointed out that this type of correction should be used with

caution, as it may falsely eliminate biologically important

phenomena such as tumor budding which consists of a small

number of tumor nuclei [38] or isolated islands of tumor

nuclei appearing at the invasive front of the tumor. In our

experiments, we did not employ any spatial correction.

Automatic approaches for combined nucleus detection and

classification could offer benefits to pathology practice in a

number of ways. One of the potential applications is to locate

and identify all tissue-constituent nuclei in whole-slide images.

Fig. 9 shows the detection and classification results produced

by SC-CNN and softmax CNN with NEP on a whole-slide

image. This could facilitate quantitative analysis, and at the

same time, remove tediousness and reduce subjectivity in

pathological routine. This is an interesting prospect for future

research and yet to be validated in a large-scale study.

Existing distributed computing technologies such as parallel

computing and graphical processing unit (GPU) are important

key factors to scale up the proposed framework for whole-slide

histology images. In our experiment, a whole-slide image is

first divided into small tiles of size 1, 000 × 1, 000 pixels.

On a single 2.5 GHz CPU, the average execution time on an

individual image tile is 47.6s (preprocessing 27.8s, detection

18.4s, and classification 1.4s). For a given whole-slide im-

age captured at 20× optical magnification and consisting of

60, 000× 50, 000 pixel dimensions, there are 750 tiles of size

1, 000× 1, 000 pixels to be processed assuming only 25% of

the slide contains tissue. Theoretically speaking, by using a

12-core processor machine, the average execution time of the

proposed detection and classification framework is around 50
mins per slide. However, it should be noted that the execution

time reported here is for a research-grade implementation of

the framework which has not yet been fully optimized to

increase time efficiency, nor did we employ the computational

power of GPUs which can significantly speed up the execution

time for CNNs.

IX. CONCLUSIONS

In this study, we presented deep learning approaches sen-

sitive to the local neighborhood for nucleus detection and

classification in routine stained histology images of colorectal

adenocarcinomas. The evaluation was conducted on a large

dataset with more than 20, 000 annotated nuclei from samples

of different histologic grades. The comparison is in favor of the

proposed spatially-constrained CNN for nucleus detection and

the softmax CNN with the proposed neighboring ensemble

predictor for nucleus classification. The combination of the

two could potentially offer a systematic quantitative analysis

of tissue morphology, and tissue constituents, lending itself

to be a useful tool for better understanding of the tumor

microenvironment.
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