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Abstract

When the volume of data grows big, some simple tasks could become a significant concern. Nearest neighbor search is
such a task which finds from a data set the k nearest data points to queries. Locality-sensitive hashing techniques have
been developed for approximate but fast nearest neighbor search. This paper introduces the notion of locality-sensitive
hashing and surveys the locality-sensitive hashing techniques. It categories them based on several criteria, presents their

characteristics, and compares their performance.
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1. Introduction

Many sectors in business, government, science, and en-
gineering have been collecting data and archiving them as
they realize their data as valuable assets. As the volume
of data grows big, the simple operations that work well for
moderate-sized data set can cause a significant burden. One
of such operations is the nearest neighbor search task which
searches for k nearest data points with respect to given data
point. It just requires to compare the query with all data
points one by one. Its time complexity is O(n) where n
is the number of data points in the database. A similar but
more expensive task is the similar pair identification to find
the pairs of close data points from the database, in which
all pairwise computations of data points are required to get
the close ones. When straightforward techniques is applied
to the task, its time complexity becomes O(n?). It is not
rare to have millions or billions number of data records in
real applications.

The nearest neighbor search and similar pair identifi-
cation problems occur in various application domains[20,
41]. Torralba et al.[53] built an image database with
about 80 million images, which were collected by query-
ing Web pages with WordNet[35] words and were labeled
with query words comparable to the categories of the im-
age contents. Their system enables an image classifica-
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tion service which finds similar images for a query im-
age and labels the query image with reference to the la-
bels for the retrieved similar images. Duplicate search
task is to find near duplicate pages from a collection
of documents[32, 42]. The task can be applied in de-
tecting duplicate web pages[14, 51], matched newspaper
articles syndicated by the same source, and plagiarized
documents[48]. To support those tasks, similar pair iden-
tification operations need to be carried out in an efficient
way. Hays and Efros[12] developed an interesting scene
completion service in which when an image is partially
occluded by some unpleasant objects, the service makes
the occluded objects taken out from the image. To real-
ize this task, the service system retrieves similar images
from its image database, then cuts out the occluded parts
from the image and blends the corresponding parts of re-
trieved similar images into the cut-out parts. Baluja and
Covell[2] proposed a technique which allows from a snip-
pet of song to retrieve the complete score of the song. To
handle this task, a music database is assumed to be con-
structed which archives acoustic features of songs and their
complete score. Their technique enables to retrieve par-
tial matches of acoustic signals from large volume of song
database. McFeel and Lanckret[34] also proposed a simi-
larity search technique for music retrieval.

With ever increasing volume of data, much research ef-
fort has been exerted to efficiently conduct nearest neigh-
bor search for the last decade. When exactness of search
results is not crucial, some approximate approaches can be
adopted which work faster by orders of magnitude with
some tolerance to inexactness. Locality-sensitive hashing
(LSH) techniques are such an approximate approach to
nearest neighbor search.
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The objective of this paper is to represent the no-
tion of locality-sensitive hashing, survey the recent LSH-
based techniques and conduct meta-analysis on their per-
formance. The paper is organized as follows: Section 2
presents the conventional techniques to give exact results.
Section 3 describes the notion of locality-sensitive hashing
and how to categorize them. Section 4 surveys the LSH
techniques and shows a meta-analysis results for their per-
formance. In final, Section 5 draws the conclusions.

2. The Conventional Approaches to Nearest
Neighbor Search

In the literature there have been various indexing data
structure developed for efficiently locating data. The
Voronoi diagram is a typical data structure for nearest
neighbor search which decomposes a metric space, in
which boundaries are determined at the equi-distances
from adjacent points. The Vorionoi diagram-based meth-
ods work well in low-dimensional space, but their perfor-
mance tends to deteriorate to brute-force search in high-
dimensional space.

There are some tree-based indexing structures to sup-
port nearest neighbor search: kd-tree, R-tree, hierarchical
k-means, ball tree, spatial tree, and spill tree. The kd-tree
method[3] constructs for a collection of data a binary tree
for which every node is a k-dimensional point and the split-
ting boundaries are axis-parallel. The R-tree method[11]
organizes a tree structure by grouping nearby data points
and representing them with their minimum bounding rect-
angles in the next higher level of the tree. R-trees are
generally used in 2 or 3 dimensional data like geograph-
ical information system. The hierarchical k-means tree
method[37] builds a search tree by first applying the k-
means algorithm to the whole data set and branching child
nodes for partitioned groups, then recursively applying the
same procedure to each group of the previous level until
a maximum level reaches. Ball tree[40] is a binary tree
where each node, called a ball, represents a subspace of the
d-dimensional Euclidean space bound by a hyper-sphere,
where data live in the d-dimensional space. The radius of
a ball node is as large as to contain the child node balls.
Spatial tree[54] is a generalization of kd-trees. While a kd-
tree partitions the space in an axis-parallel way, a spatial
tree recursively partitions a data set by projecting onto an
arbitrary direction, splitting at the median of projected po-
sitions, and forming two disjoint subgroups. Depending on
how to choose directions, they are categorized into maxi-
mum variance kd-trees, PCA trees, 2-means trees, and ran-
dom projection trees. Spill tree[29] is a variant of spatial
trees in which the children of a node may contain shared
data points in which data are partitioned like spatial trees
but subsets are allowed to overlap.

These tree-based indexing methods are effective for low-

dimensional data and can provide exact results for queries.
Most tree-based methods are known to be poor for high-
dimensional, large volume of data. As an alternative to
tree-based indexing, hash techniques have been employed
to locate data. For huge collection of high dimensional
data, hash-based approximate methods have been actively
studied for the last decade.[1, 9, 16]

3. The Locality-Sensitive Hashing Approaches

Hashing is a technique to enable to directly locate data
points using a special function, called hash function. A
hash function is a sort of algorithm to map a large data
set, called keys, to a smaller index set of a fixed length.
Each index of the index set has its own bucket to which
corresponding keys are mapped. When more than one data
points fall into a bucket together, they are said to collide.
Usually because the size of the index set is much smaller
than that of data set, buckets come to have multiple collid-
ing data. In the conventional hashing, colliding data points
do not imply any similarity between them.

3.1 Locality-Sensitive Hashing

For efficient near neighbor search, the locality-sensitive
hashing(LSH) techniques exploit special hash functions
which make buckets contain similar keys (data), yet do not
guarantee that all data in a bucket are similar each other.
The so-called locality-sensitive hash functions provide high
probability for similar data to be in the same bucket, but
low probability for dissimilar data to be in the same bucket.

The notion of locality-sensitive hashing was first intro-
duced by Indyk et al.[16], in which the locality-sensitive
hash functions are defined as follows: A family of func-
tions H = {h : S — U} is an LSH family when for any
two points p, ¢ € S, any function h from 7, the following
conditions hold:

e if d(p,q) <1, then Pry(h(p) = h(q)) > Pi.

e if d(p, q) > ra, then Pry(h(p) = h(q)) < Ps.

Here d(p, q) denotes the distance between p and ¢, Pry()
indicates the probability, 1 and 75 are constants for dis-
tances (r; < r2), and P, and P, are constants for proba-
bilities (P; > P). A family H of functions satisfying the
above conditions is called (r1, 72, Py, P2)-sensitive.

The hash functions by Indyk et al.[16] are defined as
follows: First, data points are encoded into binary codes
in the Hamming space. To define a hash function A(), a
fixed number of positions are randomly sampled with re-
placement from the set of positions, and the function value
for a data point is constructed by concatenating the binary
values at the selected positions. When the number of se-
lected positions is d, the bucket size for a hash function
becomes 2¢. Multiple hash functions # are constructed in
the same manner. Each data point in the database is hashed
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by hash functions into buckets. When a query d, is given,
it is hashed by each hash function A into the corresponding
bucket. The data points of the buckets to which hash func-
tions map the query become the candidates with which the
query is compared to determine whether they are neigh-
bors.

3.2 Categorization of Locality-Sensitive
Hashing Approaches

There have been proposed many locality-sensitive hash-
ing techniques for nearest neighbor search. They can be
categorized in the various criteria such as types of data un-
der consideration, the number of installed bucket sets, the
shape of hash functions, how to use data, what information
is available for data, and how to quantize.

3.2.1 The Types of Data Attributes

Data can be categorized into numeric data, set-valued
data data, categorical data, and mixed data. Numeric data
consist of all continuous or ordinal attributes, and hence the
distance between data can be easy defined, e.g., Euclidean
distance. Set-valued data allow to have multiple values at
a time. Such a typical example is textual data. Categorical
data have categorical values like student, book, car. The
distances for categorical values are not so easily defined.
Many business data happen in mixed data form which con-
tains multiple attributes of which types can be either nu-
meric, set-valued, or categorical. Most LSH methods have
been developed for numeric data and they assume that data
are somehow embedded into the Euclidean space. For set-
valued data like textual data, minhash-based method[5, 6]
can be used for quickly estimating how similar two sets
are, e.g., Jaccard distance. In case of textual documents,
it first transforms them into bags of words, generates per-
mutations used to select words from the bags, constructs a
signature for each document with the selected words, and
uses as hash codes some bands of the constructed signa-
tures. It is proved that the minhash-based method approx-
imates Jaccord distance. Lee et al.[26] proposed an LSH
method for data sets with only categorical attributes, even
though it is hard to define distance between categorical val-
ues. The method first partitions the categorical values into
disjoint clusters using similarity information obtained by
data-driven similarity measures[4]. Then it defines for each
attribute a mapping component which maps attribute val-
ues into their cluster ID, and constructs a hash function by
combining the mapping components.

3.2.2 The Number of Bucket Sets

In locality-sensitive hashing, multiple hash functions are
used at a time. In some methods[5, 16, 26, 33, 58], each
hash function has its own bucket set. When there are n
hash functions and each hash function has m buckets. Then
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there are nm buckets in total. A data point is mapped by
each hash function to a bucket, and hence it appears n times
in the bucket stes, i.e., once at each bucket set. When
a query is given, the candidates to be compared are the
union of data points from the buckets to which the query
is mapped by the hash functions. As we increase the num-
ber of hash functions and the number of buckets for each
hash function, the probability to find the nearest neighbors
increases, but the storage overhead also increases.

In the other methods, the hash functions all together par-
ticipate in generating a single hash code for a data point.
Therefore, there is only one bucket set in which a data point
falls into a bucket. When a query is given, its hash code de-
termines which bucket to be searched for nearest neighbors.
Usually the neighborhood relationship among buckets are
available in the methods. Hence, neighboring buckets are
further examined for nearest neighbors. The hash codes
are here binary codes, the buckets are labeled by the binary
hash codes, and Hamming distances between buckets re-
flect the similarity of data from the buckets. We call these
methods the binary code LSH techniques.

3.2.3 The Shape of Hash Functions

Some hash functions are expressed in explicit form on
the data space, whereas some methods like Restricted
Boltzmann Machine-based method[45] is not because its
behaviors are probabilistic. Some hash functions[9, 28, 56]
are expressed by hyperplanes on the data space. To get non-
linear decision boundaries, some methods[13, 22, 30] de-
fine hyperplanes on the feature space by using kernel trick
which allows the dot product operations of feature space
data in the data space. There are methods[43, 57] to use
analytic periodic functions like sine function. There is a
method[15] to use hyperspheres instead of hyperplanes.

3.2.4 How to Use Data

Depending on whether the data are used in construct-
ing hashing functions, the techniques are divided into data-
independent methods and data-dependent methods. The
data-independent methods[9, 43] do not take care of data
distribution. In the data-dependent methods, the data distri-
bution affects the formation of hash functions, where some
objective functions are defined to characterize the quality
of hash codes for given data set and their parameters are
determined by optimization techniques. Hence these meth-
ods are sometimes called machine learning-based methods
because hash functions are learned from data.

3.2.5 What Information is Available for Data

When hash functions are learned from data, i.e., data-
dependent methods, the LSH methods can be grouped
into three categories: unsupervised, supervised, and semi-
supervised methods. In unsupervised methods[22, 29, 43,
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45, 57], it is assumed that no labels are available for data
concerning which pairs are similar or dissimilar. The
supervised methods[2, 36, 47, 49, 55, 58] use only la-
beled data in learning hash functions. The semi-supervised
methods[17, 56] use both labeled data and unlabeled data.

3.2.6 How to Quantize

In binary code LSH techniques, hash codes are ex-
pressed in binary code. Depending on how many bits a
hash function produces, the techniques can be categorized
into single-bit quantization (SQ) and multi-bits quantiza-
tion (MQ) methods. Most methods take the SQ approach
in which a hash function produces a single bit that indicates
on which side of the corresponding projection plane a data
point lies. A few techniques[18, 19, 29] allow a hash func-
tion to produce multiple bits. The MQ methods include
hierarchical quantization and Manhattan quantization[19].

4. The Locality-Sensitive Hashing Techniques

Most Locality-Sensitive Hashing Techniques belong to
the binary code LSH techniques, in which each hash func-
tion produces bit value(s) and the hash codes are con-
structed by concatenating the bit outputs of all hash func-
tions. The following shows some LSH techniques, not ex-
haustive. This section briefly presents their characteristics.

o LSH Hashing for Binary Codes (LSH) [1, 9]

e Boost Similarity Sensitive Hashing (BoostSSC) [47]

e Restricted Boltzmann Machine Hashing (RBM) [45]

e Spectral Hashing (SH) [57]

e Forgiving Hashing (FH) [2]

e Kernelized Locality-Sensitive Hashing (KLSH) [22]

o Shift-Invariant Kernel Hashing (SIKH) [43]

e Binary Reconstructive Embedding Hashing (BRE)
[23]

e Optimized Kernel Hashing (OKH) [13]

o Self-Taught Hashing (STH) [59]

e Semi-Supervised Hashing (SSH) [56]

e Unsupervised Sequential Projection Learning for
Hashing (USPLH) [55]

e Label-regularized max-margin partition (LAMP) [36]

e LHS for Learned Metrics(LHS-LM) [24]

e Laplacian co-Hashing (LCH) [60]

e Anchor Graph Hashing (AGH) [29]

e Minimum Loss Hashing (MLH) [38]

e Semi-Supervised SimHash (S3H) [17]

o Kernel-based Supervised Hashing (KSH) [30]

e PCA-based Hashing (PCAH) [56]

e DA Hashing (LDAHash) [49]

e [terative Quantization (ITQ)[10]

o Isotropic Hashing (IsoHash) [18]

e Manhattan Hashing (MH) [19]

e Spherical Hashing (SHD) [15]

o Density Sensitive Hashing (DSH) [28]
e Multi-Valued Hashing (MVH) [50]
e Complementary Hashing (CH) [58]

4.1 The Characteristics of the Binary Code
LSH Techniques

LSH Hashing for Binary Codes[1, 7] uses random pro-
jection vectors to define hyperplanes. Each hyperplane
plays the role of a hash function which produces a single
bit, 1 for one side of the hyperplane and O for the other
side.

Boost Similarity Sensitive Hashing method[47] is a su-
pervised method which first samples a subset of data and
determines similar and dissimilar pairs from them, then
treats similar pairs as positive examples, dissimilar pairs as
negative examples, after that learns weak classifiers to sep-
arate positives from negatives with AdaBoost[46], a ma-
chine learning algorithm.

Restricted Boltzmann Machine Hashing (RBM) is a
Markov random field which has connections only between
visible layer and hidden layer, and their nodes are stochas-
tic binary units. RBM can be learned so as to maxi-
mize the probability to reconstruct original input at visi-
ble layer from activation of hidden layer using the con-
trastive divergence sampling-based update rule. The RBM-
based method[45] uses a stacked RBM with multiple lay-
ers of which upper layers gradually have smaller number of
nodes. The output of the topmost layer becomes the binary
hash codes for the data fed into the bottommost layer as the
input.

Spectral Hashing[57] is related to the spectral decom-
position of graphs, uses the property that the uniform dis-
tribution with Gaussian distance has an analytic form of
eigenfunctions for Laplace-Betrami operator approximat-
ing eigenvectors of Graph Laplacian[31]. It first finds the
principled axes of the data set and adjusts the data along
the axes. Then it chooses the k smallest single dimension
eigenfunctions with which it produces binary codes for data
by thresholding the eigenfunction values for data at zero
level.

Forgiving Hashing[2] learns multiple strong classifiers
using AdaBoost and builds multiple hash tables by combin-
ing some of the strong classifiers. When a query is given,
the data points in the hashed buckets, one bucket from each
hash table, become the candidates to be compared for sim-
ilarity.

Kernelized Locality-Sensitive Hashing[22] defines hash
functions in a feature space using the kernel trick. It ran-
domly selects a small number of samples from the data set
and constructs a hash function h(z) with linear combina-
tion of kernel value of = with the selected points.

Shift-Invariant Kernel Hashing[43] is a distribution free
encoding method based on random projections, such that
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the expected Hamming distance between the binary codes
of two data points is related to the value of a shift-invariant
kernel, like Gaussian kernel or Laplacian kernel, between
the data points. It uses the random Fourier features and
thresholds the values to get binary codes for data.

Binary Reconstructive Embedding Hashing[23] defines
hash functions as a linear combination of kernel functions
over a selected sample set. The weights of the hash func-
tions are determined so as to minimize the difference be-
tween the metric distances, in the original data space, and
the reconstructed distances, in binary codes, for the sample
set. They are updated iteratively using a coordinate descent
method, an optimization technique for parameters.

Optimized Kernel Hashing[13] finds kernel hash func-
tions by explicitly representing and learning them with
spectral decomposition[31]. This method allows the sim-
ilarities between data points to be flexibly defined, and
hence there are no constraints such as symmetry and posi-
tiveness, on the similarities.

Self-Taught Hashing[59] is two staged hashing tech-
nique. It first maps data points into binary codes using
graph Laplacian spectral decomposition by constructing
the k-nearest neighbor graph, computing eigenvectors for
graph Laplacian, and thresholding the eigenvectors at a
level and then taking the binary codes as hash codes. The
next stage is to train an SVM classifier for each bit of the
hash code using the data labeled with hash codes to handle
the out-of-sample extension. The SVMs are used to assign
hash codes for new data points.

Semi-Supervised Hashing[55, 56] uses both labeled data
pairs and unlabeled data to determine projection vectors in
a way to minimize the empirical error on the labeled data
while maximizing the entropy of generated hash bits over
the unlabeled data. It provides an efficient algorithm to
solve optimization problem by eigendecomposing a KxK
matrix, where K is the number of hash functions.

Unsupervised Sequential Projection Learning for
Hashing[55] learns hash functions sequentially as it
generates pseudo-labels at each iteration. The subsequent
hash functions are determined so that they correct the
errors made by previous hash functions. The pseudo-labels
are assigned to the pairs of close data points, residing
on the opposite sides of the hyperplane, and those of far
data points on the same side of the hyperplane. Once
pseudo-labels are given, the method works in the same
way with the semi-supervised hashing[56].

Label-regularized Max-Margin Partition[36] generates
hash functions in supervised setting, where a small portion
of sample pairs are manually labeled to be either similar
or dissimilar. As the hash functions, it searches max mar-
gin hyperplanes in which it selects randomly some data as
support vectors for the objective function.

LHS for Learned Metrics[24] first finds a learned metric
which makes similarity and dissimilarity constraints hold,
and generates randomized hash functions using the learned
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metric.

Laplacian co-Hashing[60] is used for nearest neighbor
search of textual documents. It hashes both documents and
terms simultaneously according to their semantic similari-
ties, and directly optimizes the Hamming distance. It re-
gards the document collection as an undirected bipartite
graph.

Anchor Graph Hashing[29] uses a small set, called an-
chor set, of the data set to approximate the adjacency ma-
trix of the whole data set. It efficiently performs spectral
clustering to get hash codes because it enables to compute
the graph Laplacian eigenvectors of the original data set
from the graph Laplacian eigenvectors of the anchar graph
for the anchor set. The hash functions compute hash codes
for data based on Nystrom theorem.

Minimum Loss Hashing[38] is based on structured pre-
diction with latent variables and a hinge-like loss function.
It is efficient to train for large datasets, scales well to large
code lengths, learns weights for the hyperplanes that mini-
mize empirical loss over training pairs.

Semi-Supervised SimHash[17] learns the optimal fea-
ture weights from prior knowledge to relocate the data set
such that similar data have similar hash codes. It uses both
labeled data and unlabeled data.

Kernel-based Supervised Hashing [30] uses a limited
amount of information, i.e., similar and dissimilar data
pairs. It sequentially trains the hash functions one bit at
a time. It gets the hash functions coefficients by spectral
relaxation or by introducing smooth surrogate function in-
stead of sign function and then applying gradient method
to determine the hash function coefficients

PCA-based Hashing[56] defines hash functions by prin-
cipal axes which are obtained using principal component
analysis (PCA) on the data. It uses the top m eigenvectors
which are orthogonal each other.

LDA Hashing[49] is a supervised method to use both
positive pairs of similar data and negative pairs of dissim-
ilar data. It finds the projection mappings which minimize
the expectation of the Hamming distances on the positive
pairs while maximizing it on the set of negative pairs. It
uses an LDA(Linear Discrimiant Analysis)-like method or
covariance difference method to determine projection map-
pings, i.e., hash functions.

Iterative Quantization[ 10] first quantizes the PCA results
to get some binary codes, and then learns an orthogonal
rotation matrix based on the resulting binary codes so that
the quantization error of mapping the data to the vertices of
binary hypercube is minimized.

Isotropic Hashing[18] is a hashing technique in which a
hash function generates different number of bits to guar-
antee the equal variances. Most other binary code hash-
ing techniques assign the same number of bits to each hash
function.

Manhattan Hashing[19] encodes each projected dimen-
sion with multiple bits of natural binary code. Instead of
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Hamming distance, the Manhattan distance between points
in the hash code space is calculated for nearest neighbor
search. It uses an existing technique to choose projection
planes.

Spherical Hashing[15] uses hyperspheres to partition the
space and spherical Hamming distance tailored to the hy-
persphere based binary coding scheme. It provides an ef-
ficient iterative optimization process to achieve balanced
partitioning of data points for each hash function and inde-
pendence between hashing functions.

Density Sensitive Hashing[28] produces hash functions
which best agree with the distribution of the data set. It first
applies k-means algorithm to the data set to generate small
groups, and determines pairs of adjacent groups. Then, it
finds the median planes to separate the adjacent groups and
evaluates them with their entropy. As the hash functions, it
chooses top-ranked median planes by high entropy scores.

Multi-Valued Hashing[50] uses the multiple hash tables
based on projection-based LSH, and assigns the L; dis-
tance to neighboring buckets on the same projection vector.
It computes the distance sum of assigned L; distances and
selects the neighboring buckets to be examined by the L
distance sum.

Complementary Hashing[58] employs multiple comple-
mentary hash tables, learned sequentially in a boosting
manner. In the hashing technique, for a given query, missed
true neighbors are likely to be found in the active bucket of
the next hash table.

4.2 Benchmark Data Sets

In the performance study, several benchmark data sets
have been used. As the labeled data sets, there are
Caltech101, MNIST, and CIFAR. Caltech-101[27] is a
database of images with 101 distinct cateogries and one
background category. Each category contains tens of im-
ages of about 300x200 pixels in dimension. MNIST[25] is
a database of handwritten digits which consist of a train-
ing set of 60,000 examples, and a test of 10,000 exam-
ples.There are 7,000 images of 28x28 pixels for each digit
in 0 to 9. CIFAR-10 and CIFAR-100 datasets[21] are la-
beled subset of the 80 milion Tiny images database[52].
CIFAR-10 consists of 32x32 pixels images in 10 classes
and is divided into 5 training sets and one test set, each with
10,000 images. CIFAR-100 is just like CIFAR-10, except
it has 100 classes each of which has 600 images.

Some unlabeled datasets have been used in performance
evaluation of LSH techniques. LabelMe database[44] is an
image database with about 187,000 images, about 62,000
annotated images, and about 659,000 labeled objects. Tiny
image database[52] contains about 80 million images of
32x32 pixels which are subsampled.

Small images are sometimes regarded as data points by
matrix-vector transformation. Large images are reduced
into lower dimensional data by feature extraction methods

like GIST[39] and SIFT[8]. GIST is an abstract represen-
tation of a scene to capture global features and SIFT is a
widely used technique to extract local features on a scene.
The performance is evaluated in terms of precision, re-
call, and execution time. Precision is the ratio of the num-
ber of retrieved relevant points to the number of all re-
trieved points, and recall is the ratio of the number of re-
trieved relevant points to the number of relevant points.

4.3 Performance Comparison of Binary
Code LSH Techniques

To see the relative performance of the LSH techniques,
a simple meta-analysis was conducted in terms of preci-
sion and recall. Their performances vary depending on the
test data sets, the number of bits used to encode the data.
The developers compared their own method with some of
existing methods, under the different experiment settings.
In the comparisons, the developers’ claims are recognized
as is. The relative superiority among the LSH techniques
has been analyzed and we obtained the summarized results
shown in Figure 1. The superiority of performance is ex-
pressed by the relative positions on the X axis of the plot,
where the right-hand side ones are superior to the-hand side
ones when there is a path between them. For a pair of tech-
niques which does not have a path going straingt from one
technique to the other, there is no information about supe-
riority between them, e.g., there is no straight going path
between STH and OKL and thus it does not say anything
about which one is better. The performance evaluation re-
sults conducted by the same research group are shown by
linking the bars for the corresponding techniques.

SSH = [ SPiH
! | IsoHash |~
EKHF-{BRE [ m™iH ]
¥ o SHD
PCAR ][ TS ] [REM I SH k.
~[%sn ~[ose [ Ao [ osH ]
(=T .
Warse Better

Figure 1: Performance Comparison of LSH Techniques

5. Conclusions

The locality-sensitive hashing techniques are very use-
ful in nearest neighbor search and similar pair identifcation
tasks for large volume of data. For the last decade, many
LSH techniques have been developed and applied to many
real applications including near-duplicate detection, image
similarity identification, gene expression similarity identi-
fication, and audio/video similarity identification. They are
very effective in handling high dimensional data like im-
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ages, audio files, textual documents, and video files. Most
techniques have been developed under the assumption that
data are embedded in Euclidean space despite the data do
not always live in the space. Further studies remains for
LSH techniques of non-Euclidean spaces. Semantic infor-
mation on objects might give different similarity between
objects depending on the context. Semantic-based LSH
studies are also an issue.
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