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ABSTRACT

A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer
Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098
and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates
of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio,
optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we
describe the low-latency analysis of the GW data and present the sky localization of the first observed compact
binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray
Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization
coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger,
there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband
campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad
capabilities of the transient astronomy community and the observing strategies that have been developed to pursue
neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up
campaign are being disseminated in papers by the individual teams.

Key words: gravitational waves – methods: observational

1. INTRODUCTION

In 2015 September, the Advanced Laser Interferometer

Gravitational-wave Observatory (LIGO; Aasi et al. 2015) made

the first direct detection of an astrophysical gravitational-wave

(GW) signal that turned out to be from a binary black hole

(BBH) merger. The LIGO Hanford and Livingston sites are

the first two nodes of a growing global network of highly

sensitive GW facilities, soon to include Advanced Virgo

(Acernese et al. 2015), KAGRA, and LIGO–India. Some of

the most promising astrophysical sources of GWs are also

expected to produce broadband electromagnetic (EM) emis-

sion and neutrinos. This has created exciting new opportu-

nities for joint broadband EM observations and multi-

messenger astronomy.
In a compact binary coalescence (CBC) event, a tight binary

comprised of two neutron stars (NSs), two black holes (BHs),

or a NS and a BH experiences a runaway orbital decay due to

gravitational radiation. In a binary including at least one NS—a

binary neutron star (BNS) or neutron star–black hole (NSBH)

merger—we expect EM signatures due to energetic outflows at

different timescales and wavelengths. If a relativistic jet forms,

we may observe a prompt short gamma-ray burst (GRB) lasting
on the order of one second or less, followed by X-ray, optical,
and radio afterglows of hours to days duration (e.g., Eichler
et al. 1989; Narayan et al. 1992; Nakar 2007; Berger 2014;
Fong et al. 2015). Rapid neutron capture in the sub-relativistic
ejecta (e.g., Lattimer & Schramm 1976) is hypothesized to
produce a kilonova or macronova, an optical and near-infrared
signal lasting hours to weeks (e.g., Li & Paczyński 1998).
Eventually, we may observe a radio blast wave from this
sub-relativistic outflow, detectable for months to years (e.g.,
Nakar & Piran 2011). Furthermore, several seconds prior to
or tens of minutes after merger, we may see a coherent radio
burst lasting milliseconds (e.g., Hansen & Lyutikov 2001;
Zhang 2014). In short, a NS binary can produce EM
radiation over a wide range of wavelengths and timescales.
On the other hand, in the case of a stellar-mass BBH, the
current consensus is that no significant EM counterpart
emission is expected except for those in highly improbable
environments pervaded by large ambient magnetic fields or
baryon densities.
The first campaign to find EM counterparts triggered by low-

latency GW event candidates was carried out with the initial
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LIGO and Virgo detectors and several EM astronomy facilities
in 2009 and 2010 (Abadie et al. 2012a, 2012b; Evans et al.
2012; Aasi et al. 2014). In preparing for Advanced detector
operations, the LIGO and Virgo collaborations worked with the
broader astronomy community to set up an evolved and greatly
expanded EM follow-up program.381 Seventy-four groups with
access to ground- and space-based facilities joined, of which 63
were operational during Advanced LIGOʼs first observing run
(O1). Details of the 2009 to 2010 EM follow campaign and
changes for O1 are given in Section 1 of the Supplement
(Abbott et al. 2016b).

After years of construction and commissioning, the Advanced
LIGO detectors at Livingston, Louisiana, and Hanford,
Washington, began observing in 2015 September with about
3.5 times the distance reach (<40 times the sensitive volume) of
the earlier detectors. A strong GW event was identified shortly
after the pre-run calibration process was completed. Deep
analysis of this event, initially called G184098 and later given
the name GW150914, is presented in Abbott et al. (2016e) and
companion papers referenced therein. In this paper we describe
the initial low-latency analysis and event candidate selection
(Section 2), the rapid determination of likely sky localization
(Section 3), and the follow-up EM observations carried out by
partner facilities (Sections 4 and 5). For analyses of those
observations, we refer the reader to the now-public Gamma-ray
Coordinates Network (GCN) circulars382 and to a number of
recent papers. We end with a brief discussion of EM counterpart
detection prospects for future events.

2. DATA ANALYSIS AND DISCOVERY

As configured for O1, four low-latency pipelines continually
search for transient signals that are coincident in the two
detectors within the 10 ms light travel time separating them.
Coherent WaveBurst (cWB; Klimenko et al. 2016) and
Omicron+LALInference Burst (oLIB; Lynch et al. 2015) both
search for unmodeled GW bursts (Abbott et al. 2016f).
GSTLAL (Cannon et al. 2012; Messick et al. 2016) and

Multi-Band Template Analysis (MBTA; Adams et al. 2015)
search specifically for NS binary mergers using matched
filtering. Because CBC waveforms can be precisely computed
from general relativity, GSTLAL and MBTA are more
sensitive to CBC signals than the burst search pipelines are.
All four detection pipelines report candidates within a few
minutes of data acquisition.
LIGO conducted a series of engineering runs throughout

Advanced LIGOʼs construction and commissioning to prepare
to collect and analyze data in a stable configuration. The eighth
engineering run (ER8) began on 2015 August 17 at 15:00 and
critical software was frozen by August 30.383 The rest of ER8
was to be used to calibrate the detectors, to carry out diagnostic
studies, to practice maintaining a high coincident duty cycle,
and to train and tune the data analysis pipelines. Calibration
was complete by September 12 and O1 was scheduled to begin
on September 18. On 2015 September 14, cWB reported a
burst candidate to have occurred at 09:50:45 with a network
signal-to-noise ratio (S/N) of 23.45 and an estimated false
alarm rate (FAR) < 0.371 yr−1 based on the available (limited
at that time) data statistics. Also, oLIB reported a candidate
with consistent timing and S/N. No candidates were reported at
this time by the low-latency GSTLAL and MBTA pipelines,
ruling out a BNS or NSBH merger.
Although the candidate occurred before O1 officially

began, the LIGO and Virgo collaborations decided to send
an alert to partner facilites because the preliminary FAR
estimate satisfied our planned alert threshold of 1 month−1.
Although we had not planned to disseminate real-time GCN
notices before the formal start of O1, most of the computing
infrastructure was in place. Basic data quality checks were
done within hours of GW150914; both interferometers were
stable and the data stream was free of artifacts (Abbott et al.
2016c). A cWB sky map was available 17 minutes after the
data were recorded and a LALInference Burst (LIB) sky map
was available after 14 hr. After extra data integrity checks and
an update to the GCN server software, these two sky maps
were communicated to observing partners in a GCN circular
nearly two days after the event occurred (GCN 18330). Mass
estimates were not released in this initial circular,

Figure 1. Timeline of observations of GW150914, separated by band and relative to the time of the GW trigger. The top row shows GW information releases. The
bottom four rows show high-energy, optical, near-infrared, and radio observations, respectively. Optical spectroscopy and narrow-field radio observations are
indicated with darker tick marks and boldface text. Table 1 reports more detailed information on the times of observations made with each instrument.

381
See program description and participation information at http://www.ligo.

org/scientists/GWEMalerts.php.
382

All circulars related to GW150914 are collected at http://gcn.gsfc.nasa.
gov/other/GW150914.gcn3. 383

All dates and times are in UT.
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and observers may have assumed the event was associated
with a BNS system or a GW burst (e.g., from a nearby core-
collapse supernova; SN). The knowledge that GW150914
was consistent with a BBH inspiral and merger was only
shared later on October 3 (GCN 18388). Figure 1 shows the
chronology of the GW detection alerts and follow-up
observations.

The data were re-analyzed offline with two independent
matched-filter searches using a template bank that includes
both NS binary and BBH mergers. The waveform was
confirmed to be consistent with a BBH merger and this
information was shared with observers about three weeks after
the event (GCN 18388). The FAR was evaluated with the data
collected through 20 October, reported to be less than 1 in 100
years (GCN 18851; Abbott et al. 2016d), and ultimately
determined to be much lower. The final results of the offline
search are reported in Abbott et al. (2016e).

3. SKY MAPS

We produce and disseminate probability sky maps using a
sequence of algorithms with increasing accuracy and

computational cost. Here, we compare four location estimates:
the prompt cWB and LIB localizations that were initially
shared with observing partners, plus the rapid BAYESTAR
localization and the final localization from LALInference. All
four are shown in Figure 2.
cWB performs a constrained maximum likelihood estimate

of the reconstructed signal on a sky grid (Klimenko et al. 2016)
weighted by the detectors’ antenna patterns (Essick et al. 2015)
and makes minimal assumptions about the waveform morph-
ology. With two detectors, this amounts to restricting the signal
to only one of two orthogonal GW polarizations throughout
most of the sky. LIB performs Bayesian inference assuming the
signal is a sinusoidally modulated Gaussian (Lynch
et al. 2015). While this assumption may not perfectly match
the data, it is flexible enough to produce reliable localizations
for a wide variety of waveforms, including BBH inspiral-
merger-ringdown signals (Essick et al. 2015). BAYESTAR
produces sky maps by triangulating the times, amplitudes, and
phases on arrival supplied by all the CBC pipelines (Singer &
Price 2016). BAYESTAR was not available promptly because
the low-latency CBC searches were not configured for BBHs;
the localization presented here is derived from the offline CBC

Figure 2. Comparison of different GW sky maps, showing the 90% credible level contours for each algorithm. This is an orthographic projection centered on the
centroid of the LIB localization. The inset shows the distribution of the polar angle θHL (equivalently, the arrival time difference ΔtHL).
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search. LALInference performs full forward modeling of the
data using a parameterized CBC waveform which allows for
BH spins and detector calibration uncertainties (Veitch
et al. 2015). It is the most accurate method for CBC signals
but takes the most time due to the high dimensionality. We
present the same LALInference map as Abbott et al. (2016g),
with a spline interpolation procedure to include the potential
effects of calibration uncertainties. The BAYESTAR and
LALInference maps were shared with observers on 2016
January 13 (GCN 18858), at the conclusion of the O1 run.
Since GW150914 is a CBC event, we consider the LALInfer-
ence map to be the most accurate, authoritative, and final
localization for this event. This map has a 90% credible region
with area 630 deg2.

All of the sky maps agree qualitatively, favoring a broad,
long section of arc in the southern hemisphere and to a lesser
extent a shorter section of nearly the same arc near the equator.
While the majority of LIBʼs probability is concentrated in the

Southern hemisphere, a non-trivial fraction of the 90%
confidence region extends into the northern hemisphere. The
LALInference sky map shows much less support in the
northern hemisphere which is likely associated with the
stronger constraints available with full CBC waveforms. The
cWB localization also supports an isolated hot spot near α ∼

9h, δ ∼ 5°, where the detector responses make it possible to
independently measure two polarization components. In this
region, cWB considers signals not constrained to have the
elliptical polarization expected from a compact binary merger.
Quantitative comparisons of the four sky maps can be found

in Section 2 of the Supplement (Abbott et al. 2016b). The main
feature in all of the maps is an annulus with polar angle θHL
determined by the arrival time differenceΔtHL between the two
detectors. However, refinements are possible due to phase as
well as amplitude consistency and the mildly directional
antenna patterns of the LIGO detectors (Kasliwal & Nissanke
2014; Singer et al. 2014). In particular, the detectors’ antenna

Figure 3. Footprints of observations in comparison with the 50% and 90% credible levels of the initially distributed GW localization maps. Radio fields are shaded in
red, optical/infrared fields are in green, and the XRT fields are indicated by the blue circles. The all-sky Fermi GBM, LAT, INTEGRAL SPI-ACS, and MAXI
observations are not shown. Where fields overlap, the shading is darker. The initial cWB localization is shown as thin black contour lines and the LIB localization as
thick black lines. The inset highlights the Swift observations consisting of a hexagonal grid and a selection of the a posteriori most highly ranked galaxies. The
Schlegel et al. (1998) reddening map is shown in the background to represent the Galactic plane. The projection is the same as in Figure 2.
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patterns dominate the modulation around the ring for
unmodeled reconstructions through a correlation with the
inferred distance of the source (Essick et al. 2015). As shown in
Figure 2, the algorithms all infer polar angles that are consistent
at the 1σ level.

4. FOLLOW-UP OBSERVATIONS

Twenty-five participating teams of observers responded to
the GW alert to mobilize satellites and ground-based telescopes
spanning 19 orders of magnitude in EM wavelength. Observa-
tions and archival analysis started shortly after the candidate
was announced, two days after the event was recorded. Most
facilities followed tiling strategies based on the cWB and LIB

sky maps. Some groups, considering the possibility of a NS

merger or core-collapse SN, selected fields based on the areal

density of nearby galaxies or targeted the Large Magellanic

Cloud (LMC) (e.g., Annis et al. 2016). Had the BBH nature of

the signal been promptly available, most groups would not

have favored local galaxies because LIGOʼs range for BBH

mergers is many times larger than that for BNSs. Figure 3

displays the footprints of all reported observations. The

campaign is summarized in Table 1 in terms of instruments,

depth, time, and sky coverage. Some optical candidate

counterparts were followed up spectroscopically and in the

radio band as summarized in Table 2. The overall EM follow-

up of GW150914 consisting of broadband tiled observations

Table 1

Summary of Tiled Observations

Facility/ Area
Contained Probability (%)

Instrument Banda Depthb Timec (deg2) cWB LIB BSTRd LALInf GCN

Gamma-ray

Fermi LAT 20 MeV–

300 GeV

1.7 × 10−9 (every

3 hr)

L 100 100 100 100 18709

Fermi GBM 8 keV–40 MeV 0.7–5 × 10−7

(0.1–1 MeV)

(archival) L 100 100 100 100 18339

INTEGRAL 75 keV–1 MeV 1.3 × 10−7 (archival) L 100 100 100 100 18354

IPN 15 keV–10 MeV 1 × 10−7 (archival) L 100 100 100 100 L

X-ray

MAXI/GSC 2–20 keV 1 × 10−9 (archival) 17900 95 89 92 84 19013

Swift XRT 0.3–10 keV 5 × 10−13 (gal.) 2.3, 1, 1 0.6 0.03 0.18 0.04 0.05 18331

2–4 × 10−12 (LMC) 3.4, 1, 1 4.1 1.2 1.9 0.16 0.26 18346

Opticale

DECam i, z i < 22.5, z < 21.5 3.9, 5, 22 100 38 14 14 11 18344, 18350

iPTF R R < 20.4 3.1, 3, 1 130 2.8 2.5 0.0 0.2 18337

KWFC i i < 18.8 3.4, 1, 1 24 0.0 1.2 0.0 0.1 18361

MASTER C < 19.9 −1.1, 7, 7 710 50 36 55 50 18333, 18390, 18903, 19021

Pan-STARRS1 i i < 19.2 − 20.8 3.2, 21, 42 430 28 29 2.0 4.2 18335, 18343, 18362, 18394

La Silla–

QUEST

g, r r < 21 3.8, 5, 0.1 80 23 16 6.2 5.7 18347

SkyMapper i, v i < 19.1, v < 17.1 2.4, 2, 3 30 9.1 7.9 1.5 1.9 18349

Swift UVOT u u < 19.8 (gal.) 2.3, 1, 1 3 0.7 1.0 0.1 0.1 18331

u u < 18.8 (LMC) 3.4, 1, 1 18346

TAROT C R < 18 2.8, 5, 14 30 15 3.5 1.6 1.9 18332, 18348

TOROS C r < 21 2.5, 7, 90 0.6 0.03 0.0 0.0 0.0 18338

VST@ESO r r < 22.4 2.9, 6, 50 90 29 10 14 10 18336, 18397

Near Infrared

VISTA@ESO Y, J, KS J < 20.7 4.8, 1, 7 70 15 6.4 10 8.0 18353

Radio

ASKAP 863.5 MHz 5–15 mJy 7.5, 2, 6 270 82 28 44 27 18363, 18655

LOFAR 145 MHz 12.5 mJy 6.8, 3, 90 100 27 1.3 0.0 0.1 18364, 18424, 18690

MWA 118 MHz 200 mJy 3.5, 2, 8 2800 97 72 86 86 18345

Notes.
a
Band: photon energy, optical or near-infrared filter (or C for clear unfiltered light), wavelength range, or central frequency.

b
Depth: gamma/X-ray limiting flux in erg cm−2 s−1; 5σ optical/IR limiting magnitude (AB); and 5σ radio limiting spectral flux density in mJy. The reported values

correspond to the faintest flux/magnitude of detectable sources in the images.
c
Elapsed time in days between start of observations and the time of GW150914 (2015 September 14 09:50:45), number of repeated observations of the same area, and

total observation period in days.
d
BAYESTAR.

e
Searches for bright optical transients were also done by BOOTES-3 and Pi of the Sky. Details are given in the Supplement (Abbott et al. 2016b).
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and observations to characterize candidate counterparts are
described in detail in Sections 3 through 5 of the Supplement
(Abbott et al. 2016b).

Findings from these follow-up observations have been
reported in several papers. A weak transient signal was found
in Fermi GBM data 0.4 s after the time of GW150914
(Connaughton et al. 2016), but no corresponding signal was
found in the INTEGRAL SPI–ACS instrument (Savchenko
et al. 2016) or AGILE (Tavani et al. 2016). No GRB-like
afterglow was found in X-rays with Swift XRT (Evans
et al. 2016) or MAXI (N. Kawai et al., in preparation), in
UV/optical with Swift UVOT (Evans et al. 2016), or at GeV
energies with Fermi LAT (Fermi-LAT Collaboration 2016).
Tiled observations with wide-field optical instruments listed in
Table 1 found many transients, but spectroscopy with the
instruments listed in Table 2 along with further photometry
showed that none of them were associated with GW150914
(Kasliwal et al. 2016; Smartt et al. 2016; Soares-Santos et al.
2016; Morokuma et al. 2016). Annis et al. (2016) used DECam
to search for a missing supergiant in the LMC, which would
have been evidence for the collapse of a massive star that could
have produced GWs, but failed to produce a typical core-
collapse SN.

5. COVERAGE

Using the GW data alone, we can only constrain the position
of the source on the sky to an area of ≈600 deg2 (90%
confidence). The inferred redshift is = -

+
z 0.09 0.04

0.03, corresp-

onding to a luminosity distance of -
+

410 180

160 Mpc (Abbott et al.
2016g).

Table 1 lists the area tiled by each facility and the probability
contained within those tiles, calculated with respect to the
localization methods described in Section 3.

By far the most complete coverage of the area is at the
highest energies. The INTEGRAL SPI–ACS provided the
largest effective area in the 75 keV–1MeV range, albeit with
significantly varying detection efficiency. Owing to its nearly
omnidirectional response, it had a full coverage of the GW
probability map (GCN 18354; Savchenko et al. 2016). Fermi
GBM captured 75% of the localization at the time of the GW
trigger and the entire area by 25 minutes after (GCN 18339).
Fermi LAT observations started 4200 s after the trigger and the
entire localization continued to be observed every three hours.

Coverage in X-rays is complete down to 10−9 erg cm−2 s−1

with the MAXI observations, but relatively sparse at fainter

flux, with the Swift XRT tiles spanning about 5 deg2 and

enclosing a probability of ∼0.3% in the energy range

0.3–10 keV to a depth of 10−13–10−11 erg cm−2 s−1 (GCNs

18331, 18346).
Optical facilities together tiled about 900 deg2 and captured a

containment probability of over 50% of the initial LIB sky map

and slightly less for the final LALInference sky map that was

available after the observations were completed. The

depth varies widely among these facilities. MASTER and

Pan-STARRS1 covered the most area with their observations,

while large areas also were covered by the intermediate

Palomar Transient Factory (iPTF), Dark Energy Camera

(DECam), VLT Survey Telescope (VST@ESO; E. Brocato

et al. 2016, in preparation), and La Silla–QUEST. The

contained probability of the initial sky maps is dominated by

MASTER, DECam, Pan-STARRS1, La Silla–QUEST, and

VST@ESO, while the final sky map is contained best by

MASTER, DECam, and VST@ESO. Relatively small area and

contained probability were covered by facilities that targeted

nearby galaxies. The only wide-field near-infrared facility, the

Visible and Infrared Survey Telescope (VISTA@ESO),

covered 70 deg2 and captured a containment probability of

8% of the final LALInference sky map.
The radio coverage is also extensive, with a contained

probability of 86%, dominated by Murchison Widefield Array

(MWA) in the 118MHz band (GCN 18345).
Table 2 lists the observations done by large telescope

spectrographs and a radio facility to follow-up candidate

optical counterparts. Deep photometry, broadband observa-

tions, and spectroscopy identified the majority of the candidates

to be normal population type Ia and type II SN, with a few

dwarf novae and active galactic nuclei (AGNs) that are all very

likely unrelated to GW150914. Candidate classification,

comparison of redshift with the GW distance, and use of

source age are crucial constraints to rule candidates in and out.

Detailed discussions of candidate selection, spectroscopic and

broadband follow-up are presented in survey-specific publica-

tions about iPTF candidates (Kasliwal et al. 2016) and about

PESSTO follow-up of Pan-STARRS1 candidates (Smartt

et al. 2016).

Table 2

Summary of Follow-up Observations

Spectroscopic Follow-up

Instrument No. of Candidates Discovery Survey Epochs λ (Å) Δλa (Å) GCN

KeckII+DEIMOS 8 iPTF 1 4650–9600 3.5 18337, 18341

LT+SPRAT 1 Pan-STARRS1 1 4500–7500 18 18370, 18371

NTT+EFOSC2 10 QUEST/Pan-STARRS1 1 3650–9250 18 18359, 18395

P200+DBSP 1 Pan-STARRS1 1 3200–9000 4–8 18372

UH2.2m+SNIFS 9 Pan-STARRS1 1 3200–10000 4–6 L

Radio Follow-up

Instrument No. of Candidates Discovery Survey Epochs Freq. (GHz) Lim. Fluxb (uJy) GCN

VLA 1 iPTF 3 6 50 18420, 18474, 18914

Notes.
a
Full width at half maximum resolution.

b
5σ, 2 GHz nominal bandwidth, ≈20 min on-source.
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6. SENSITIVITY

The third column of Table 1 summarizes the depth of the
follow-up program. We provide limiting flux, flux density, or
magnitude for the different facilities. We emphasize that these
limits only apply to the fraction of the sky contours that have
been followed up. For example, the MWA fields have an 86%
chance of containing the sourceʼs sky location and provide no
constraints on sky locations representing the remaining 14%.

Because the follow-up program was primarily designed to
search for counterparts to BNS and NSBH mergers, it is
interesting to note that the observational campaign would have
provided powerful constraints on such a system. A BNS
coalescence could have been detected by LIGO during O1 at a
distance of ∼70Mpc, averaged over sky position and
orientations (Martynov et al. 2016). A short GRB afterglow
similar to those that have been observed by Swift XRT would
have been detectable at that distance. Re-scaling the observed
X-ray fluxes of short GRBs at 11 hr after the event would yield
fluxes in the range 2 × 10−11 to 6 × 10−8 erg cm−2 s−1 (Berger
2014). Kilonova emission from a BNS merger at that distance
would reach a peak apparent magnitude of 17 to 24 within a
week or two after the merger (e.g., Metzger et al. 2010; Barnes
& Kasen 2013; Tanaka & Hotokezaka 2013; Grossman
et al. 2014). This range overlaps with the depth reached in
the optical and near-IR bands. Finally, this BNS system might
produce radio emission from tens of μJy to tens of mJy (e.g.,
Hotokezaka & Piran 2015) with different timescales spanning
weeks to years. Tables 1 and 2 show that the radio observations
from wide-field facilities were sensitive to mJy flux densities at
low frequencies where fainter sources with longer timescales
are expected, while the narrow-field VLA was sensitive to well
localized radio transients down to μJy flux densities at
frequencies above a few GHz.

7. CONCLUSIONS

GW150914 is consistent with the inspiral and merger of two
BHs of masses -

+
36 4

5 and -
+

M29 4

4 , respectively, resulting in the

formation of a final BH of mass -
+

M62 4

4 (Abbott et al. 2016e).
In classical general relativity, a vacuum BBH merger does not
produce any EM or particle emission whatsoever. Whereas
supermassive BBHs in galactic centers may appear as dual
AGNs or have other distinctive EM signatures due to
interactions with gas or magnetic fields, stellar BBH systems
are not expected to possess detectable EM counterparts. The
background gas densities and magnetic field strengths should
therefore be typical of the interstellar medium, which are many
orders of magnitude smaller than the environments of EM
bright supermassive BBHs. Although GW150914 is loud in
GWs and expected to be absent in all EM bands, thorough
follow-up observations were pursued to check for EM
emission. Future EM follow-ups of GW sources will shed
light on the presence or absence of firm EM counterparts and
astrophysical processes that may trigger EM emission from
these systems.

The EM campaign following GW150914 successfully
demonstrates the capability of the observing partners to cover
large swaths of the sky localization area, to identify candidates,
and to activate larger telescopes for photometric and spectro-
scopic characterization within a few days of an event. We note
that the information about the sourceʼs BBH nature and
updated sky maps were sent out 20 days and four months after

the event, respectively. This resulted in some instruments
covering much less of the probability region or to the required
depth of GW150914 than they may have planned for. We
expect future alerts to be issued within tens of minutes with
more information about the signal type and more rapid updates
of the maps. The follow-up efforts would have been sensitive to
a wide range of emission expected from BNS or NSBH
mergers. However, the widely variable sensitivity reached
across the sky localization area continues to be a challenge for
an EM counterpart search.
The number of galaxies (with luminosities L � 0.1 Lå;

Blanton et al. 2003) within the comoving volume of 10−2Gpc3

corresponding to the 90% credible area of the LALInference
sky map and within the 90% confidence interval distance is
∼105. Such a number makes it impossible to identify the host
galaxy in the absence of an EM counterpart detection. The
presence of a third GW detector such as Virgo would have
improved the sky localization of GW150914 to a few tens of
square degrees both for the unmodeled and CBC searches. The
future addition of more GW detectors to the global network
(Abbott et al. 2016a) will significantly improve the efficiency
of searches for EM counterparts.
In summary, we have described the EM follow-up program

carried out for the first GW source detected by Advanced
LIGO. Within two days of the initial tentative detection of
GW150914, a GCN circular was sent to EM follow-up partners
alerting them to the event and providing them with initial sky
maps. Twenty-five EM observing teams mobilized their
resources, and over the ensuing three months observations
were performed with a diverse array of facilities over a broad
wavelength range (from radio to γ-ray). Findings from those
observations are being disseminated in other papers. The
localization and broadband follow-up of this GW event
constitutes an important first step in a new era of GW multi-
messenger astronomy.

See the Supplement (Abbott et al. 2016b) for a full list of
acknowledgements. This is LIGO document LIGO-
P1500227-v12.
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