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Abstract

Phonocardiogram (PCG) signal represents recording of sounds and murmurs resulting from heart auscultation.
Analysis of these PCG signals is critical in diagnosis of different heart diseases. Over the years, a variety of methods
have been proposed for automatic analysis of PCG signals in time, frequency, and time-frequency domains. This paper
presents a comprehensive survey of different methods proposed for automatic analysis of PCG signals with the
objective to evaluate the current state-of-the-art and to determine the potential domains of effective analysis. An
important aspect of our contribution is that the review is carried out as a function of domains of analysis rather than
simply discussing different methods. Our method further splits analysis into pre-processing, localization, and classification,
and details are presented in terms of techniques and classifiers used during these phases. Finally, results are summarized
for normal heart beat, noisy heart beat, and different pathologies using metrices like accuracy and detection rate. In
addition to time and frequency domain, time-frequency basedmethods includingwavelet, empirical mode decomposition
(EMD) and time-frequency representation (TFR) are selected for detailed analysis. The review concludes that the
time-frequency representations like EMD and wavelets represent areas of exploration in future along with perspective
of using different time-frequency techniques together.
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1 Introduction

Human heart is the most important organ in the body

that provides blood to all parts of the body using a pump-

like action. During the pumping action, electrical and

mechanical activities are carried out resulting in the flow

of blood. Healthy heart is very important for the nor-

mal day to day working of human body as blood carries

important nutrients to the organs. Heart-related diseases,

known as cardiovascular diseases (CVD), are responsible

for a major proportion of deaths all around the world.

According to surveys conducted by the World Health

Organization (WHO), 33% of all deaths are the result of

CVDs [1]. Different modalities are known to exist to mon-

itor the health of heart. The most popular of these is the

electrocardiogram or ECG. The electrical activity of heart
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is recorded in the form of electrocardiogram which is

composed of three main waves, ‘P’ wave, ‘QRS’ complex,

and ‘T’ wave. The middle wave of ECG is known as ‘QRS’

complex that, in general, comprises three deflections ‘Q’

(the first negative deflection) ‘R’ (the first positive deflec-

tion), and ‘S’ (the negative deflection following the ‘R’

wave). Another important modality is photoplethysmog-

raphy (PPG) that employs light-based sensors to estimate

the rate of flow of blood by measuring the changes in the

reflected/transmitted light. Like ECG, PPG can also be

used to monitor various cardiac conditions. Figure 1 illus-

trates an example each of ECG and PPG signals [2]. A wide

range of computerized systems have been proposed over

the years for automatic analysis of ECG [3, 4] and PPG

[5] signals as well as the combination of these and other

modalities [6].

In addition to ECG and PPG, phonocardiogram (PCG),

the recording of the sounds and murmurs made by heart

during a cardiac cycle, can be effectively employed to

study and monitor the activities of heart. Such sounds
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Fig. 1 Examples of ECG and PPG signals

are typically recorded using a device called phonocardio-

graph. The mechanical activity of heart due to its physical

movement produces four distinct sounds or beats which

are named as first normal heart sound (S1), second normal

heart sound (S2), third abnormal heart sound (S3), and

fourth abnormal heart sound (S4). S1 and S2 are normal

sounds while S3, S4, murmurs, and certain other sounds

usually refer to some disease or anomaly. Murmur is a

noisy heart sound that can be heard when the heart valve

is shut but the blood continues to flow. S1 is usually low

frequency and high-amplitude signal while S2 has high

frequency and low amplitude. In some cases, it is also pos-

sible to encounter S1 having low amplitude than S2 as

elaborated in [7].

ECG, PPG, and PCG, all represent a cyclostationary

signal, i.e., a signal in which the statistics of the signal

vary but are repetitive with a period. ECG and PCG are

highly correlated signals [8] and are known to contain

more information than the PPG signal. PCG, however,

enjoys a distinct advantage over ECG and PPG signals as it

records the acoustic properties of the signal. These prop-

erties are better suited for murmur detection which repre-

sents abnormal heart sound [9]. Furthermore, PCG signal

also has an excellent starting trigger in the form of S1

wave [10, 11].

The mechanical activity of the heart can be heard using

a traditional or an electronic stethoscope. Auscultation

or listening to heart is an old but very effective method

of diagnosis for a number cardiovascular diseases. The

recording of these sounds (PCG signal) has the same

spectrum as that of audio signals. The recording process,

however, also picks noisy sound signals from the envi-

ronment which distort the periodicity of the PCG signal

making its analysis a challenging task. A sample PCG sig-

nal is shown in Fig. 2 where it can be seen that the first

heart sound S1 has lower amplitude than the second heart

sound S2. Moreover, the amplitudes of S1 and S2 are both

varying. The time duration from S1 to S2 is known as sys-

tole and the one between S2 and S1 is known as diastole.

Systole and diastole shown as t12 and t21, respectively, in

Fig. 2 serve as important beat classification features. The

time durations t12 and t21 are also varying.

PCG, though a very complex signal, divides the nor-

mal heart sound signals into two beats (S1 and S2) and

offers important details about a number of heart-related

diseases [12–14]. With the advancements in technology

as well as different areas of pattern classification and

machine learning, efforts have been made to automate the

analysis of PCG signals. The automatic analysis of these

signals involves two primary challenges, localization and

classification. In localization, the objective is to correctly

detect the positioning of beats in the signal while classi-

fication deals with the categorizing the beats into S1 and

S2 in case of normal heart sounds and into S3, S4, and

murmurs etc. in case of abnormal sounds.

Localization algorithms are generally peak-based algo-

rithms where candidate peaks are localized in a signal and

windows are constructed around these potential peaks.

Features are then calculated from each window, and the

peaks are classified. Another approach is not to precisely

localize the peaks for classification. Springer et al. [15] for

instance, divides the signal into a sequence of segments
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Fig. 2 An example of a PCG signal

which are classified and later processed for a precise local-

ization. Heart beat is a repetitive or cyclic process (Fig. 2)

and a normal PCG signal can be divided into four seg-

ments. These include the time window containing S1,

the silence window, the segment containing S2, and again

the silence window. A normal heart beat can hence be

modeled using these states. However, since the sequence

and duration of each state within the cycle can vary,

probabilistic modeling is better suited for such scenarios

as opposed to deterministic approaches. Hidden Markov

model (HMM), for instance, has been employed for such

modeling in [15–17]. The same idea can be extended

to include the abnormal beats S3 and S4 (and different

other pathologies) as illustrated in Fig. 3. Such techniques

allow pre-classifying these segments into one of the states

while the exact location of beats within these segments are

localized subsequently.

The initial developments and findings in digital pro-

cessing of PCG signals have been summarized in works

by [18, 19]. In a relatively recent survey, Meziani et al.

[20] discussed computerized analysis of PCG signals but

limit their discussion to wavelet transforms-based meth-

ods only. In another short review [21], authors present

a comparative study of EMD and wavelet-based meth-

ods for analysis of PCG signals. The study concludes that

EMD is better suited for PCG as compared to wavelet,

Fig. 3 HMMmodeling of human heart cycle

specially, when dealing with noisy signals. Authors high-

lighted the use of machine learning tools for better

classification and suggested that the use of hybrid classi-

fiers serves to enhance the performance. Nabih et al. [22]

review the denoising, segmentation, and classification

techniques for automated analysis of PCG signals. The key

focus of their study is the comparison of different clas-

sifiers (artificial neural network (ANN), support vector

machine (SVM), self-organizing map (SOM), and hybrid

classifiers with the conclusion that while each of the pro-

cessing steps is important, the choice of classifier is the

most critical parameter in enhancing the overall system

performance.

As discussed earlier, the present study is organized as

function of time, frequency, and time-frequency meth-

ods. In time domain, the signal is sampled on time axis

(Fig. 4a) and features (like amplitude, mean, and energy)

are directly computed from signal. In spectral or fre-

quency domain, signal spectra is divided into various

spectral bands (Fig. 4b) and features (for example, spec-

tral flux) are calculated from these bands. Unlike time

and frequency methods, the time-frequency methods rely

on simultaneous sampling on time and frequency axis.

The general representations of time-frequency domain for

fixed and variable time/frequency windows are illustrated

in Fig. 4c, d, respectively. In our discussion, we con-

sidered time-frequency representations (like Wigner-Ville

and its variants, short-time frequency transform (STFT))

and techniques based on EMD and wavelets under the

category of time-frequency methods.

We first introduce the standard datasets commonly

employed by researchers (to evaluate the localization and

classification algorithms) in Section 2. Section 3 details

the time, frequency, and time-frequency methods for

analysis of PCG signals along with a critical discussion

on the presented methods. Finally, Section 5 concludes

the paper.
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Fig. 4 Signal analysis in time, frequency, and time-frequency domain. a Signal/time domain. b Frequency/spectral domain. c Time and spectral
domain (Gabor transform). d Time and spectral domain (wavelet transform)

2 Data sets

While many of the initial PCG localization and classi-

fication techniques reported results on private datasets,

a number of publicly available datasets have also been

developed allowing researchers meaningfully compare

their developed systems using similar experimental

protocols.

These public datasets include E-General Medical [23],

PASCAL Heart Sound Challenge (HSC) dataset [24], the

PhysioNet CinC Challenge dataset [25], and the Heart

Sound and Murmur Library [26]. In the following, we

present the key characteristics of these datasets for a bet-

ter interpretation of the quantitative results reported by

different studies (presented later in paper).

PASCAL HSC dataset was first made available in 2011

for two challenges, segmentation (localization), and classi-

fication. The database is divided into two subsets, dataset

‘A’ and dataset ‘B’. Dataset ‘A’ has been collected using the

iStethoscope Pro iPhone app while dataset ‘B’ has been

gathered in a clinical setting using the digital stethoscope,

DigiScope. The two datasets have 176 and 656 total aus-

cultations, respectively. Files in both the datasets contain

normal heart beats, murmurs, and extra systoles. In addi-

tion to these, dataset ‘B’ also contains files with artifacts

and extra sounds and is more challenging.

The 2016 PhysioNet CinC database was also devel-

oped as a part of a challenge. Heart sounds in the

dataset are gathered from clinical as well as non-clinical

sources. Healthy individuals as well as those with different

pathologies contributed to data collection. The sound

classes in the challenge include ‘normal,’ ‘uncertain,’ and

‘abnormal.’ The training set labeled from ‘A’ to ‘E’ has a

total of 3126 files while the validation set comprises 300

recordings. The durations of the files vary from 5 to 120 s.

The test set has not been made publicly available and was

only used to score the participants of challenge.

E-General Medical is a well-known vendor of medical

equipment and datasets. Among other datasets, a part

of the dataset with heart sounds has been freely made

available by E-General Medical. The dataset comprises

64 recordings with normal beats, S3, S4, and different

pathologies. Majority of pathologies are systolic and dias-

tolic in nature. In many cases, only one sample per signal

type is available. Examples of such one sample per sig-

nal type include late systolic, early systolic, normal split,

open snap, pan systolic, late systolic aortic stenosis, severe

systolic aortic stenosis, critical systolic aortic stenosis,

and systolic aortic valve replacement. Other sounds like

diastolic-fixed S2 split, diastolic wide S2 split, systolic

mitral regurgitation, systolic mitral prolapse, systolic split,

and diastolic-fixed S2 split have more than one sample.

Complete details on the dataset can be found in [23].

Heart sound and Murmur Library, University of

Michigan Health Systems, is another public dataset that

comprises normal heart sounds, normal split S1, systolic

click, S4 gallop, S3 gallop, single S2, split S2 persistent, split S2
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transient, and various type of murmurs [26]. A summary

of the databases presented above can be found in Table 1.

3 Methods

As mentioned previously, the techniques proposed for

automatic analysis of PCG signals can be categorized

into time domain, frequency domain, and time-frequency

domain. In the following, we discuss the time and fre-

quency domains followed by the time-frequency domain.

3.1 Time and frequency analysis

The most general method of analysis is based on the time

domain. In time domain, analysis is carried out on the sig-

nal itself. Statistics like peak value, mean, mode, median,

and peak to peak duration of signal are typically employed

for analysis. As indicated in Fig. 5, P1 and P2 are the peak

values of the signal, A1 and A2 are peak to peak values,

and △1 and △2 are time periods which may represent fea-

tures of S1 and S2. These and similar features are extracted

either globally from the complete signal or locally from

different segments of the signal. The general representa-

tion of a signal in time domain is presented in Eq. 1; f (t)

represents the signal which is modeled by amplitude A,

frequencyω, and phase θ . Each of these parameters as well

as different statistics derived from these parameters have

been used as features for localization and classification.

f (t) = Asin(ω ∗ t + θ); (1)

For frequency domain analysis, the signal is first con-

verted from time to frequency domain using fast Fourier

transform (FFT) elaborated in Eq. 2.

F(ω) =

∞
∫

−∞

f (t)e−jwtdt; f (t) =
1

2π

∞
∫

−∞

F(w)ejwtdw (2)

Where f (t) is the signal and F(w) is the fast Fourier

transform of f (t). After analysis of the frequency spec-

trum, any appropriate spectrum operation (for instance

filtering) is applied, and the signal is converted back to

time domain using the inverse fast Fourier transform

(IFFT). Bandpass filtering is usually employed in heart

beat analysis to remove the low and high frequency noise

from stethoscope signals. Figure 6a illustrates a sample

signal before and after filtering. Figure 6b shows the spec-

trum of the signal, filter response, and the frequency

contents after filtering. Since the frequency contents of

various heart signals are different, the frequency spectra

can be exploited for classification of heart beats. Finding

the optimal set of filters (along with cutoff frequencies),

however, can be challenging especially for noisy signals.

Consequently, a number of researchers investigated Mel-

Frequency Cepstral Coefficients (MFCCs) [27] for fre-

quency domain analysis of PCG signals. InMFCC calcula-

tion, pre-emphasis is first applied on the signal to enhance

the high-frequency components of signal. The signal

is then divided into windows (generally rectangular),

and FFT is applied to each window. The Mel filter bank

is then applied and logarithm of all filter bank energies is

computed. The acoustic response of human ear is not lin-

ear to all frequencies. Mel scale uses this non-linearity and

maps frequencies (f ) linearly below 1000 Hz and logarith-

mically above 1000Hz. Conversion from frequency toMel

scale is given in Eq. 3.

mel(f ) = 1127ln

(

1 +
f

700

)

(3)

Finally, discrete cosine transform (DCT) is applied to

get the MFCCs [28]. An overview of the steps involved

in MFCC calculation is presented in Fig. 7. The pre-

emphases, windowing, and FFT calculation in MFCC

computation act as pre-processing steps; hence, a separate

pre-processing is generally not required.

Time and frequency analysis have been widely investi-

gated to localize and classify normal as well as abnormal

heart beats like third and fourth heart sound, clicks and

murmurs. With a few exceptions [29, 30], analysis in the

Table 1 A summary of PCG datasets

Dataset Reference Total auscultations Sound categories

PASCAL heart sound challenge
dataset 2011

[24] Dataset ‘A’, iStethoscope,
samples: 176
dataset ‘B’, Digiscope,
samples:656

Dataset ‘A’: normal
beats, murmurs, and
extra systoles
dataset ‘B’: normal
beats, murmurs, extra
systoles, extra heart
sounds, and artifacts

PhysioNet CinC challenge
dataset 2016

[25] 3126 Normal, uncertain,
and abnormal

E-General Medical [23] 64 Normal beats and
different pathologies

Heart sound and Murmur
Library, University of Michigan
Health systems

[26] 23 Normal and
abnormal sounds
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Fig. 5 Analysis of PCG signal in the time domain

time domain usually starts with pre-processing which

generally comprises decimation followed by a low pass

filter with a cut-off frequency of around 200 Hz. The dec-

imation decreases the computational load on the analysis

module. Low pass filtering is used as pre-processing step

as heart beat has characteristics of low frequency signal.

Liang et al. [31] and Potes et al. [32] first decimate the

signal and pass it through low pass and band pass filters,

respectively. Chauhan et al. [16] employed low pass and

median filtering alongwithHammingwindow for removal

of noise, ripples, and ringing effects. Likewise, Ari et al.

[33] pass the signal through a low pass filter after decima-

tion while Hussnain et al. [34] simply used the low pass

filtering without decimation. Signal from the decimation

and filtering stages is next fed to the normalization stage.

Normalization removes the amplitude variation for

inter and intra signal classification. The signal is then

converted to a form that is best suitable for localiza-

tion and classification. Shannon energy envelop is most

widely employed method investigated in most of the

time-based techniques [16, 31, 34]. In short, researchers

have mostly employed combinations of decimation, filter-

ing, and Shannon energy for pre-processing in the time

domain.

The signal after pre-processing has peaks at regular and

non-regular intervals. Candidate peaks can be used for

Fig. 6 Signal analysis in frequency domain. a Signal before and after filtering. b Signal spectrum before and after filtering
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Fig. 7 Calculation of MFCC

individual beat localization which in turn can be used for

heart rate detection. The time duration between S1 and

S2 (systole) and the one between S2 and S1 (diastole) are

usually exploited for the localization and classification of

candidate peaks [16, 31, 33].

Another common approach is to employ machine

learning-based techniques for localization and classifica-

tion. Signals represented in an appropriate feature space

are used to train a learning algorithm.

Authors in [35], for instance, use support vector

machine with a modified cuckoo search (MCS) opti-

mizer using features extracted from linear predictive

coding (LPC) for classification. Similarly, Chen et al.

[36] investigated deep neural networks for recognition of

heart sounds S1 and S2. In another study, Potes et al.

[32] applied AdaBoost-abstain (modified version of con-

ventional AdaBoost) and convolutional neural networks

(CNN) to detect abnormal heart sounds.

As discussed previously, MFCC is usually used in the

frequency-based methods and is found to be effective

in speech processing including speech recognition and

speaker identification [36]. MFCC has been used in the

feature extraction process in [36] and [32] for localization

and classification. Likewise, MFCC-based features were

used to train HMM classifiers in [16] and reported high

classification rates.

As discussed earlier, heart beat signal is a time series

data composed of different events (occurrence of S1, S2,

etc.). The sequence of these events varies in case of

abnormal signals. Human heart beat has therefore been

modeled using HMM (Fig. 3) in a number of studies

[15–17] where each state represents an event (silence, S1,

S2, murmur, etc.). Although HMMs exploit this tempo-

ral dependency, the features fed to these HMMs can be

extracted in the frequency domain.MFCC-based features,

for instance, have been employed to train HMMs [17].

Such modeling has been applied to simple two class prob-

lem (normal and abnormal heart sound) as well as for the

detection of different pathologies like ventricular septal

defect (VSD), mitral regurgitation (MR), aortic stenosis

(AS), aortic regurgitation (AR), patent suctus arterio-

sus (PDA), pulmonary regurgitation (PR), and pulmonary

stenosis (PS) [17].

Ajit et al. [37] used simple FFT for localization and

classification without any further processing as frequency

contents of different heart sounds have different spec-

trum contents. Authors in [29] used both frequency- and

energy-based features for classification while Mandeep

and Cheema [30] used time, frequency, cepstrum, and

statistical features for localization as well as for classifica-

tion. Features were evaluated using Ranker and Info Gain

Attribute Evaluation algorithm, and multiple classifiers

were investigated to recognize the beats. Among other

notable studies, Samit et al. [33] after pre-processing, used

wavelet decomposition for localization and least square

SVM with least mean square (LMS) for classification. In

another study, Nogueira et al. [38] exploited MFCC with

time features of systole and diastole durations, and the

relationship between ECG and PCG signal for heart sound

classification. Ortiz et al. [39] employed dynamic time

warping (DTW) along with MFCC for heart sound classi-

fication realizing a test score of 84% using SVM classifier.

Tang et al. [40] proposed an ensemble of 324 features pri-

marily composed of time, frequency, kurtosis, energy, and

other features to classify a sound as normal or abnor-

mal using ANN. Rubin et al. [41] converted PCG signal

to heat map using MFCC for abnormal sound detec-

tion using convolutional neural network (CNN). It can

be noticed from the discussion of the presented tech-

niques that classifiers like ANN, SVM, and HMM have

been commonly employed in time- and frequency-based

methods. While HMM exploits the temporal dependen-

cies in the signal, classifiers like ANN and SVM cate-

gories individual beats into one of the beat classes under

study.

From the view point of heart sounds, S1 and S2 are con-

sidered in [30, 31, 36, 37] while [35] and [16], in addition to

S1 and S2, also consider split S1, split S2, S3, S4, murmurs,

clicks, and snaps. The work in [34] is focused on discrimi-

nation between normal heart sounds and murmurs. Like-

wise, authors in [32, 39–41] primarily distinguish between

the two broad categories, normal (S1, S2) and abnormal

heart sounds. Similarly, noise or spike detection is stud-

ied in [29] while the work in [33] considers normal heart

conditions as well as pathological problems including aor-

tic insufficiency, aortic stenosis, atrial septal defect, mitral

regurgitation, and mitral stenosis.

Table 2 summarizes the research in explicit time

[29–31, 33–35, 38–41] and frequency [16, 17, 32, 36, 37]

domains. All studies except [30, 32, 34, 38–41] consider
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private datasets for evaluation of the proposed techniques.

These private datasets were recorded at various settings,

for instance, authors in [29] and [33] used clinical set-

tings while 3M Poland microphone samples are employed

in [35]. Likewise, for public datasets, different subsets

have been employed by different authors making a direct

comparison of these techniques difficult.

The evaluation protocol in different studies also varies

. Techni-ques proposed in [16, 17, 30–32, 35, 37–41]

considered signals, [33] used cycles while [36] used beats.

The general evaluation metrics include accuracy, speci-

ficity, sensitivity, and positive predictive value (PPV) as

elaborated in the following:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Specificity =
TN

TN + FP
(5)

Sensitivity =
TP

TP + FN
(6)

PPV =
TP

TP + FP
(7)

Where ‘TP’ represents true positives or correctly iden-

tified, ‘TN’ represents true negatives or correctly rejected,

‘FP’ for false positives or incorrectly identified, and ‘FN’

represents false negatives or incorrectly rejected. Most of

the studies [17, 29, 30, 32, 35, 36, 38–41] used these mea-

sures; authors in [16, 31] employed correct and incorrect

cycle detection while [33] employed classification rate for

quantifying the results.

Comparing different time-based methods, it can be

observed from Table 2 that a number of studies achieved

an overall score of above 90% on public datasets [24, 25].

On private datasets, classification accuracies of as high

as 100% have also been reported [33, 35]. Springer algo-

rithm [15] has been employed for localization in most of

studies [38, 40, 41]. For classification, peak to peak time

duration has shown to be a discriminative feature [31, 34].

A similar trend is observed for frequency based methods

which report, on the average, accuracies of more than 80%

on the public PASCAL challenge dataset while a classifi-

cation rate of 100% is claimed on a private dataset [16].

Features based on MFCC have been commonly employed

in combination with variety of classifiers. In some cases,

time- and frequency-based features have been combined

[16, 30, 32] to further enhance the localization and classi-

fication performance. Furthermore, it is also common to

employ time domain for classification frequency domain

for classification [38–41].

3.2 Time-frequency analysis

Due to cyclostationary nature of PCG, a signal cannot

be localized both in time and frequency due to uncer-

tainty principle limitation. Consequently, time-frequency

analysis of PCG signals is investigated in a number of

studies. Such methods generally employ short-time fre-

quency transform (STFT), time-frequency representa-

tions like Wigner-Ville, wavelet transform, and empirical

mode decomposition (EMD).

3.2.1 Time-frequency representation

These methods rely on taking the Fourier transform of

auto-correlation of signal as indicated in Eq. 8 [42].

WD(t,w) =

∞
∫

−∞

x
(

t +
τ

2

)

x∗
(

t +
τ

2

)

e−jwτ dτ (8)

Where WD stands for Wigner distribution, x is the

signal, x∗ represents the conjugate of x while τ is the

time delay and w is the frequency. For a mono compo-

nent signal, Eq. 8 produces a frequency component that is

representative of signal frequency. However, for multiple-

component signal, this autocorrelation produces extra

components known as ‘cross-terms.’ As an example, we

consider a two-component signal x(t) = x1(t)+x2(t). The

autocorrelation of signal x(t) will be composed of terms

x(t)∗x(t) = x1(t)∗x1(t)+x2(t)∗x2(t)+x1(t)∗x2(t). While

the first two terms represent the power components of

signal under study, the third term is an additional undesir-

able component (cross-term). SinceWD computes FFT of

the autocorrelation of signal, the contribution from cross-

terms also appears; hence, corrupting the spectrum. To

minimize the impact of cross-terms, a windowed version

of above equation is normally used as presented in Eq. 9.

PWD(t,w) =

∞
∫

−∞

w(τ )x
(

t +
τ

2

)

x∗
(

t +
τ

2

)

e−jwτ dτ

(9)

Where w(τ ) represents the smoothing window.

Equation 9 is known as pseudo Wigner-Ville distribution

[43]. Figure 8 shows the output of the pseudo Wigner-

Ville representation of heart beat signal from a sample

file in the Pascal DigiScope dataset (Table 1). The peak

at 1000th sample represents S1, and the one at 2000th

sample represents S2. All other structures represent

noise resulting from cross terms due the TFR manipu-

lation. The noise samples result from autocorrelation of

multi-spectral signals.

Vargas et al. [44] demonstrated that time-frequency

methods can be used for analysis of non-stationary signal

like EEG and PCG. Zhang et al. [45] usedmatching pursuit

(MP) that works both in time and frequency domains, for

PCG signal decomposition. For time scaling, the signal is



Ismail et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:26 Page 11 of 27

Fig. 8 Pseudo Wigner-Ville representation (time-frequency) of PCG signal

expanded in a way that the frequency components remain

the same. Likewise, for frequency scaling, the frequency

contents are compressed and expanded while keeping the

temporal contents intact. In frequency scaling, the fre-

quency band may be shifted towards higher frequencies

or towards lower spectrum. Despite the shift, the contents

in time remain the same. It is not uncommon to use both

time and frequency scaling. The MP method converts

the signal into time-frequency atoms with time and fre-

quency parameters. The summation of atoms gives back

the original signal with error. Making use of these param-

eters, the signal can be transformed. This transformation

results in a modified version of the signal which cannot be

directly compared with original signal. An inverse scaling

is therefore used for comparison. The time-frequency rep-

resentations (TFR) can be calculated from original, scaled,

and inversed versions. The sum of Wigner distribution

of all atoms of a signal is termed as MP-based Wigner

distribution. MP-based Wigner distribution has the dis-

tinct advantage of automatic removal of cross terms over

conventional Wigner distribution when applied to signal.

Also,MP-basedWigner distribution givesmuch clear pre-

sentation than the spectrogram. The time and frequency

resolution of both spectrogram and MP-WV distribution

is higher than original, and components are much clear in

case of normal heart sound as well as aortic regurgitation.

In another study [46], authors employed spectrogram

along with Renyi entropy for localization and classifi-

cation. First, TFR using spectrogram is calculated, the

optimal value for window length is then calculated using

Renyi Entropy Measure (RME). The RME (Eq. 10) is also

used for localization of the end of normal heart sound and

start of any pathological sound based on a threshold. The

method was tested for normal PCG, early aortic stenosis,

late aortic stenosis, and pulmonary stenosis.

Rα =
1

1 − α
log2

∫ ∫

Cα
x (t, f )dtdf (10)

Debbal and Bereksi-Reguig [47] compared time-

frequency methods of STFT (short-time frequency

transform), CWT (continuous wavelet transform), and

Wigner-Ville (WV) distribution primarily for the analy-

sis of second heart sound. Analysis was also carried out

for normal and pathological cases of early stenosis aor-

tic analysis, late aortic stenosis, and pulmonary stenosis,

etc. Authors concluded that for second heart sound, WV

suffers from cross-term limitation while STFT joins the

split. CW outperforms the other two techniques both

in terms of localization and split. Gavrovska et al. [48]

used affine PWVD along with Shannon envelope, ACF,

and Haar wavelet lifting for S1 and S2 localization and

classification. The basic difference between the normal

TFR (time frequency distribution) and affine distribution

(time-scale distribution or TSD) is that TFR is covariant to

time and frequency of signal while TSD is covariant with

time and scale of the signal [49]. The developed technique

relies on three main steps. The signal is first down sam-

pled, and coarse detection is performed using PWVD fol-

lowed by fine detection using Haar wavelet lifting scheme

and normalized average Shannon energy (NASE) algo-

rithm. The Haar wavelet-based lifting scheme emphasizes

more on low frequency components of the PCG signal

under consideration. Finally, identification of S1 and S2 is

carried out.
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Singh and Dutta [50] used time, probability, and spec-

trogram for automatic analysis of PCG for cardiac dis-

orders. Barma [51] considered decomposition method

called Hilbert Vibration Decomposition (HVD) along

with time-frequency representation of smoothed pseudo

Wigner-Ville distribution (SPWVD) for detection of third

heart sound. HVD was proposed to overcome the limi-

tations associated with Hilbert-Huang transform (HHT).

HHT is unable to separate low-energy noise from heart

sound which hasmajor energy in low frequency spectrum.

It also generates low amplitudes at low frequency which

has no physical interpretation. In another work, Zhang

et al. [52] proposed a method based on spectrogram and

partial least squares regression to classify heart sound

into normal, murmur, extra heart sound, extra systole,

and artifacts. In an extension of this work [53], authors

employed a number of machine learning algorithms for

classification of heart sounds.

A summary of TFR-based localization and classifica-

tion techniques is presented in Table 3. It should be noted

that the evaluation datasets considered in [45, 48, 50]

are private datasets comprising 11, 70, and 90 signals,

respectively. The technique proposed in [46] is evalu-

ated on the E-general Medical dataset with six signals,

while no explicit details about the signals used for eval-

uations is given in [47]. Public datasets PASCAL CHSC

2011, 2016 PhysioNet Challenege, E-General, and Michi-

gan Library data have been employed for evaluations in

[51–53]. Gavrovska et al. [48], Zhang et al. [53], and Barma

et al. [51] employed precision, efficiency, and recall to

quantify the system performance. Among notable contri-

butions, recall of more than 90% and precision of 96.39%

is reported in [48]. Likewise, Barm et al. [51] realize an

efficiency of 93.9% while Zhang et al. [52, 53] report a

varying sensitivity of 50–100% depending upon the num-

ber and types of heart sound classes considered in the

experiments.

3.2.2 Wavelet transform

Wavelet is a popular method of choice in many fields

because of the flexibility it provides in terms of choice of

kernel selection which in turn reflects different time and

frequency resolutions. Wavelet transform divides the sig-

nal into wavelet and scale factor. The formation is given in

Eq. 11 [54].

f (x) =

∑

k

cj0(k)ϕj0,k (x) +

∞
∑

j=j0

∑

k

dj(k)ψj,k(k) (11)

cj0 and dj are coefficients while ϕj0,k and ψj,k are scal-

ing andwavelet functions, respectively. Haar,Mexican hat,

Morlet, Daubechies, and Symlet wavelets are a few of

the well-known functions from a very long list of wavelet

functions. The different time and frequency resolutions

are usually achieved by using filter banks, an example

illustrated in Fig. 9 for S1 beat selected from the PASCAL

dataset. In Fig. 9a, first the beat S1 data was converted to

Hamming data which was then fed to wavelet transform

converting it into one scale and 12 coefficients. The aver-

age signal is presented in Fig. 9a while Fig. 9b–d present

the low-band, mid-band, and high-frequency band of the

beat.

Wavelet transform is a powerful tool that has been

employed for pre-processing, localization, and classifica-

tion. Song et al. [55] denoised the signals in two phases.

Environment noise in the heart sounds was removed using

the LMS algorithm, while a second step of denoising was

carried out using db3 wavelet. Wavelet analysis using db6

order 4 filter was performed for signal reconstruction.

The authors concluded that the reconstructed signal gives

better characteristics for classification between normal

heart sound and murmurs. Features were computed using

NASE algorithm, and fuzzy neural network with structure

learning classifier was employed for classification [55].

In another study, Sepideh and Geranmayeh [56] consid-

eredmodeling of the normal heart sound and three patho-

logical disorders, namely, aortic insufficiency, the aortic

stenosis, and the pulmonary stenosis sounds. Wavelet

db4, order 5 analysis was then carried out on the signals

producing statistical features of mean and standard devi-

ation to train an ANN. Features were modified, and the

inverse wavelet analysis using the same db4, order 5 was

performed which produced the modeled sound [56].

Liang and Hartimo [57] segmented the PCG signal into

four parts, i.e., systole, diastole, first heart sound, and

second heart sound using wavelet decomposition and

reconstruction. Feature vector is then constructed from

the original PCG as well as from the third, fourth, and

fifth coefficient of db6 order 5. The feature vector based

on systole and diastole duration is normalized and fed to

ANN classifier for classification of innocent murmur and

pathological murmurs [57]. The study was later extended

to consider wavelet packet decomposition for heart beat

classification [58].

Tu et al. [59] denoised the signal using soft and hard

thresholding method with the aim to remove the murmur

and environmental noise. The signal was then recon-

structed using wavelet db6 and channels 5, 6, and 7. Sound

envelop was then extracted using Hilbert transform, and

featuresmainly based on time duration of systole and dias-

tole were used for classification. Gupta et al. [60] proposed

a segmentation algorithm based on homomorphic filter-

ing and K-means clustering. The signal was first passed

through pre-processing stages comprising normalization

and low pass filtering. Segmentation was performed for

complete and missed cycle using db2. Features extracted

from the segmented signal were then used for classifica-

tion of normal, systolic, and diastolic murmur.
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Fig. 9 Low-, mid-band, and high-frequency band extraction of S1 using wavelet transform. a S1 beat extracted using rectangular and hamming
window with approximation. b S1 beat: high-frequency component extracted using wavelet transform. c S1 beat: mid-band frequency component
extracted using wavelet transform. d S1 beat: low-frequency component extracted using wavelet transform

Among other wavelet based contributions, Naseri and

Homaeinezhad [61] proposed a framework for classifi-

cation of heart sounds S1, S2, S3, S4, murmurs, and

scuffles. The authors first carry out signal normaliza-

tion followed by wavelet packet decomposition for noise

removal and finally bias removal using Gaussian smooth-

ing filter. Frequency- and amplitude-based features were

employed for the detection of different heart sounds.

Pedrosa et al. [62] divide their work into two parts, first

is to segment the signal into periodic and non-periodic

(noisy) parts, and second is to classify the segmented

parts into murmurs or normal beats. Morlet-based pre-

processing is used in the segmentation stage and autocor-

relation function (ACF) is used for detection of periodic

and noisy parts. Any periodic parts are then classified as

S1 or S2 using time and time-frequency features. Murmur

detection is based on features extracted from Shannon

energy, CWT, DWT, singular value decomposition (SVD),

MFCC, bispectrum, variance fractal dimension, and Lya-

punove exponents. Zheng et al. [63] carried out patholog-

ical signal detection based on DWT, MFCC, and dynamic

time warping (DTW). First, DWT is used for envelo-

gram segmentation followed by feature extraction using

MFCC. Finally, DTW is employed to measure the dis-

tance between the signal under test and signal with known

pathologies. In another work, Marques et al. [64] investi-

gated stationary wavelet transform followed by hierarchi-

cal clustering for localization S1, S2, systole, and diastole.

Deng and Bentley [65] aimed segmentation of normal

heart sounds and detection of murmurs. The signal is first

down sampled and db4 order 6 is used to extract the beats.

Peaks are identified based on the time between the identi-

fied systole and diastole periods. The identified peaks are

then classified using the time duration between peaks as
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feature. Gupta et al. [66] preprocess the signal using nor-

malization and low pass filtering. Segmentation is carried

out using homomorphic filtering and K-means cluster-

ing. Once segmented, wavelet coefficients using db2 are

computed to serve as features. The dimensionality of the

feature vector is reduced using PCA. Classification for

normal, systolic murmur, and diastolic murmur is carried

out using multilayer perceptron-back propagation neural

network (MLP-BP).

Abo-Zahhad et al. [67] proposed a human authenti-

cation algorithm based on discrete wavelet transform

(DWT) for PCG signals. Jain and Tiwari [68] used adap-

tive thresholding method for denoising of PCG signals.

Later, in an extension [69] to this work, adaptive algo-

rithm was used for shrinking of wavelet coefficients for

PCG denoising. Goda et al. [70] combined DWT, time fea-

tures, and other features for classification of heart sounds.

Abdollahpur et al. [71] used DWT with MFCC for heart

sound classification while Boussaa et al. [72] compared

MFCC with DWT for PCG classification. Likewise, Kay

and Agarwal [73] used MFCC and continuous wavelet

transform (DWT being the discrete counterpart) for heart

sound classification.

There is a growing trend towards using wavelet in com-

bination with other operators like Teager energy opera-

tor (TEO) and non-negative matrix factorization (NMF).

Sattar et al. [74] used NMF for PCG segmentation.

Ramovic et al. proposed a system for human authenti-

cation based on wavelet and TEO [75] while fetal heart

sound detection is carried out by Koutsiana using wavelet

and fractal dimensions [76].

A summarized overview of the wavelet based meth-

ods discussed in this section is presented in Table 4.

Among the studies discussed, classification of normal

(S1 and S2) and abnormal heart sounds is considered in

[55, 61, 62, 68, 69, 71, 73, 77]. Murmurs were focused in

[57, 58, 60–62, 64, 65, 67, 72], while special heart

sounds like heart pathologies, scuffles, and artifacts

are considered in [56, 63, 65]. Both private and pub-

lic datasets have been employed for evaluations. Sys-

tems presented in [55–61, 66] have been evaluated on

private datasets, while works reported in [63, 69] con-

sidered a major proportion of the E-General Medical

PASCAL 11, 2016 PhysioNet challenge, Egeneral, MIT

BIH, and BIOSec public datasets. Likewise, studies pre-

sented in [62, 64, 65, 67, 71, 73, 77] employed differ-

ent subsets of the PHSC 2011 dataset and 2016 Phy-

sioNet challenge. Among evaluation metrics, classical

measures including accuracy, PPV, specificity, sensitivity,

precision, and classification rate have been mostly used

[55–58, 60–62, 65, 71, 73, 77]. Varying results have been

reported in these studies ranging from as low as 50% to

as high as 100%. Techniques based on wavelets report

quantified results even in the earlier studies like [57, 58]

where accuracies of 74.4 and 85% are reported (respec-

tively) on private datasets. On public datasets, accuracies

of 85 and 98% are reported in [71, 73] respectively on the

PhysioNet database. Among other studies, Jain et al. [68,

69] realize a 100% accuracy on E-General and a private

dataset while the work presented in [72] also reports an

accuracy of 100% on the MIT BIH dataset. In general, in

terms of performance, wavelet-based techniques exhibit a

trend similar to that of other techniques where high accu-

racies are reported on private datasets while the publicly

available and more difficult datasets still offer a number of

challenges.

3.2.3 EMD and Hilbert-Huang transform

EMD has been a popular choice for the time-frequency

analysis in many fields. Unlike other time-frequency algo-

rithms, EMD operates in time domain and operates

directly on the signal.

EMD was introduced by Huang et al. [78] along with

2D graphical representation known as Hilbert spectrum

for non-linear and non-stationary time series analysis.

The algorithm is based on the assumption that each data

series is primarily composed of a finite set of simple oscil-

lations which are AM/FM components called intrinsic

mode functions (IMF) by sifting process [79, 80]. An IMF

must follow the following properties:

• The mean value of an IMF is zero.
• The difference between the number of zero crossings

and the number of extrema is at most one.

The first condition implies that IMF should be a narrow

band signal, and the second refers to IMF being a mono-

component signal [78]. EMD comes in many flavors like

bivariate EMD, complex EMD, and multivariable EMD. In

our discussion, we will focus only on the standard EMD

algorithm [81, 82] which is outlined in the following.

The signal x(t) decomposed by EMD can be represented

as follows:

x(t) =

N
∑

i=1

ci(t) + r(t) (12)

Where ci(t) are IMF and r(t) is the residue. Since ci(t)

is monocomponent, by taking its Hilbert transform, it

can be converted to an analytical signal. The derivation is

given in the following:

X(t) =

N
∑

i=1

Xi(t) + r(t) =

N
∑

i=1

ci(t) + jH[ci(t)] (13)

Xi(t) can be represented with amplitude and phase as

given below:

Xi(t) = ai(t).e
jθi (14)
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Algorithm 1: Standard EMD algorithm

1 function Standard EMD algorithm(x(t));

Input : x(t)

Output: IMF
2 Let x(t) is original signal and equalize it to x1(t). Identify all

local minima and all maxima of x(t).

3 Construct a lower envelop el(t) and upper envelope eu(t)

using interpolation.

4 Calculate the local meanm(t) = (el(t) +eu(t)) /2.

5 Subtract the local mean from x1(t) and obtain the IMF

(ci(t) = x1(t)−m(t)). Where ‘i’ is the order of IMF.

6 If ci(t) is not an IMF, then x1(t)= ci(t) and go to Step 2 and

till ci(t) becomes an IMF.

7 If an IMF is obtained, then calculate residue r(t)=

x1(t)−ci(t) . If r(t) meets the criteria, then signal is

decomposed into IMFs and residue else put x1(t)= r(t) and

go to Step 2.

Where

θi = arctan

(

H[ci(t)]

ci(t)

)

and

ai(t) =

√

c2i (t) + H
[

c2i (t)
]

If phase θi is differentiated with the respect to time t,

the result is instantaneous frequency ωi. The plot of θi
vs ωi is the graphical representation known as Hilbert-

Huang transform [78–80]. Figure 10 shows an actual S1

beat selected from a data file in the iStethoscope dataset.

Two plots are shown, one for the actual rectangular data

and other from hamming-based data of the same rect-

angular window. b–d present the low-band, mid-band,

and high-frequency band of the beat using standard EMD

algorithm.

Among EMD-based techniques, Salman et al. [83] first

filter the signal using low pass filter followed by EMD-

based denoising. Authors claim that EMD offers better

values for a number of noise measures including signal-

to-noise ratio (SNR), root mean square error (RMSE),

and percent root mean square difference (PRD). Cardiac

cycle was calculated using autocorrelation of normalized

Hilbert transformed signal, and segmentation was car-

ried out using Shannon energy. Finally, the time duration

between peaks was used for systole and diastole identifi-

cation from which different beats like S1, S2, S3, and S4

were classified [83].

In another work, Zhao et al. [84] employ two meth-

ods for instantaneous frequency calculation. One based

on Hilbert transform, and the other based on TFD (EMD).

The Hilbert-based approach fails for wide band signals

while EMD reports satisfactory results. Authors claim to

make use of EMD in its basic form to detect coronary

artery disease based on the instantaneous frequency cal-

culated from diastolic murmurs using EMD and SVM.

In another study [85] by the same authors, signal was

denoised using db5 and, ensemble EMD (E-EMD) was

then applied. EEMD removes the mode mixing problem

in traditional EMD. Marginal spectrum was calculated on

the Hilbert-Huang spectrum of EEMD output followed

by DCT quantization and normalization of the marginal

spectrum. Vector quantizer (VQ)was trained using Linde-

Buzo-Gray algorithm, and classification was carried out

using Euclidean distance.

One of the early attempts to analyze biomedical sig-

nals (including PCG) using EMD was made by Sun

et al. [86]. The authors argued that EMD is a powerful yet

little explored tool for analysis of different biomedical sig-

nals. Later, the authors investigated EMD decomposition

for instantaneous frequency estimation of PCG signals

and concluded that EMD being a physical decomposi-

tion is more useful than mathematical decompositions

like wavelet transform [87]. Likewise, Gavrovska et al. [88]

employed EMD with wavelet for PCG denoising.

Among other contributions, Moukhadem et al. [89] and

Sun et al. [90] proposed algorithms for the classification

of first and second heart sounds. In [90], Sun et al. used a

combination of wavelet and EMD for classification. Signal

is first decomposed using EMD, and the highest frequency

IMF is denoised using db7 wavelet. The output signal is

then reconstructed using denoised channels, and all other

IMFs and NASE algorithm is applied on the resultant sig-

nal. In addition, cross correlation is calculated between

the original signal and all IMFs. The IMF reporting maxi-

mum correlation is chosen and NASE is again calculated.

Using separate thresholds, endpoints of S1 and S2 are

detected from both denoised NASE and maximum corre-

lation NASE signals. In [89], after pre-processing, SVD is

used for feature extraction from the output of EMD and S-

transform. SVD is also applied to the S-Matrix calculated

from S-transform followed by k-NN for classification.

Boutana et al. [91] exploited EMD for heart sound

segmentation and used it for clinical cases of late aor-

tic stenosis, early aortic stenosis, and mitral regurgi-

tation. The method for selection of IMFs is based on

noise-only model which assumes that if the noise is

additive white Gaussian noise, the logarithm-variance of

each IMF varies but the variation is linear and with

a parameter called the Hurst exponent. Papadaniil and

Hadjileontiadis [92] employed ensemble EMD along with

kurtosis for heart sound segmentation. Low pass and

median filtering is first used for noise removal. After-

wards, EEMD-based IMFs are calculated. The IMFs which

do not meet any of the energy criteria, instantaneous

frequency criteria, and bootstrap kurtosis-based criteria

are removed. S1 and S2 are then classified based on the

Kurtosis measure.



Ismail et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:26 Page 19 of 27

Fig. 10 EMD-based low-, mid-band, and high-frequency extraction of a sample S1 beat .a S1 heart beat signal extracted using rectangular and
hamming window.b S1 heart beat: high-frequency component extracted using EMD transform. c S1 heart beat: mid-band frequency component
extracted using EMD transform.d S1 heart beat: low-frequency component extracted using EMD transform

Authors in [93] suggested that translated EMD outper-

forms the traditional EMD. Translated EMD takes the

signal, modulates it, applies EMD, and then demodulates

all IMFs. The results are presented for simulated as well as

real PCG data. In a relatively recent study, Jimenez et al.

[94] first normalize and resample the PCG signals. Three

different types of EMD analysis, namely, EMD, EEMD,

and adaptive EEMD are then carried out. Afterwards,

S_MFCC obtained from the signal, ST_MFCC calculated

from energy operator in the frequency domain, SW_MFCC

from frequency bands of the spectral energy distribu-

tion, and SWT_MFCC from combination of all previous are

calculated from two signals which are sum of the even

and odd IMFs. Fuzzy rough set (FRS) algorithm is then

employed to reduce statistical moments obtained from

HHT. At the end, classification is carried out using ergodic

HMM.

Banerjee et al. [95] used variational mode decomposi-

tion along with Shannon energy feature for heart sound

localization. Variational mode decomposition was devel-

oped by Dragomiretskiy and Zosso [96] to remove noise

sensitivity and sampling problems that accompany stan-

dard EMD. Salman et al. [97] used EMD for removal

of white, colored, exponential, and alpha-stable noise

and showed that EMD is superior when compared with

wavelet and total variation denoising methods. Heart

murmurs were detected by Jusak et al. [98] using com-

plete ensemble empirical mode decomposition (CEEMD,

another variant of standard EMD) and the Pearson dis-

tance metric. Authors concluded that CEEMD is com-

putationally more complex as it extracts more modes in

comparison to EMD.

Research efforts are being continuously made to

enhance the EMD algorithm and proposition of new
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filtering techniques for EMD. A number of variants have

been proposed to handle the overshoot and undershoot

end effects related to the classical EMD algorithm. These

effects are demonstrated in Fig. 11. The figure shows that

upper envelop is well above while the lower envelop is

fairly below the original signal. Both of these introduce

errors in the mean envelop. Another problem in EMD-

based techniques is associated with the stopping criteria.

If the algorithm stops premature, it will not reveal all the

details in signal, and if it continues for toomany iterations,

the physically meaningless IMF would appear. The third

major problem with EMD is its decomposition sequence.

EMDdecomposes from high frequency towards lower fre-

quency but not from high energy towards lower energy.

This effect can be minimized by using HHT transform

along with EMD [99].

A summary of the methods discussed in this section

is presented in Table 5. It should be noted that

all types of heart beat have been considered in the

EMD-based research. Normal heart beats of class

S1 and S2 are considered in most of the studies

[83–87, 89, 90, 92–95, 97, 100]. Additionally, S3 and S4

sounds are considered in [83] while S3 an S4 with gallop

are considered in [101]. Studies in [86, 87] focus on abnor-

mal heart sounds whereas various pathological states like

regurgitation and stenosis are investigated in [91, 92, 100].

Likewise, murmurs have been taken into account in [94,

98, 100].

Techniques proposed in most of the aforementioned

studies have been evaluated on private datasets. Only

the works presented in [91, 100] are evaluated on the

publicly available E-General Medical dataset. Likewise,

systems reported in [83, 97, 98, 101] employed the

University of Michigan dataset while PASCAL CHSC

2011 dataset is considered in [95]. Standard metrics of

accuracy, specificity, sensitivity, etc. have been employed

in most cases. Specific measures like mean prediction

power and mean accuracy [92], correct recognition rate

(CRR) [85], correct and incorrect diagnosis [84], and

SNR and ratio R [88] have also been reported. EMD

algorithm is compared with other time-frequency algo-

rithms like wavelet and DWT in [87, 88, 101]. Studies

reported in [97, 98] used SNR and 	SNR while [95]

employed the average detection rate. Gavrovska et al. [88]

compared DWT, EMD, and EEMD, and concluded that

EEMD reports the best performance among the three.

Similarly, authors in [101] compared EMD with other

denoising techniques and argued that EMD outperforms

other methods. For E-General Medical public dataset,

Varghees and Ramachandaran [100] reported average sen-

sitivity and positive predictivity of more than 90% while

for private datasets, accuracies of as high as 99% are also

reported [90].

3.2.4 Application ofmultiple time-frequencymethods.

A recent trend in automated analysis of PCG signals is

investigation of multiple time-frequency representations

for effective classification and localization. Gavrovska

et al. [48], for example, combined time-frequency rep-

resentation of Wigner-Ville with Haar wavelet for nor-

mal heart beat detection in pediatric patients. Authors

report a precision and recall of more 90% for 90 heart

beat signals collected from 55 patients and 35 healthy

subjects. The idea of multiple time-frequency meth-

ods was also exploited by Sun and Gong [90], and

Gong and Nie [102] where the authors who employ

EMD with wavelets for separation of S1 and S2 from

noisy heart sounds. Both the studies [90, 102] report

high accuracies of more than 99% and demonstrate

the effectiveness of combining multiple time-frequency

methods over single representation. It should however

be noted that although these multiple time-frequency

methods realize high accuracies, they are computation-

ally expensive and hence, could not gain significant

research attention of research community. Furthermore,

the choice of different time-frequency methods and

Fig. 11 Demonstration of overshoot and undershoot problems related with EMD algorithm
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their sequence of application also remains a challenging

problem.

Comparing different time-frequency representations, it

can be observed from Table 3, SPWVD outperforms other

representations like spectrogram. Among wavelet-based

techniques, a large number of comprehensive investiga-

tions have been carried out using a variety of wavelet

filters. DWT, CWT, and Db filters have been most pop-

ular choices reporting high localization and classifica-

tion accuracies. Likewise, EMD along with its various

enhanced variants has remained an attractive choice for

researchers for this problem. Lately, techniques based

on combination of EMD and wavelets have also been

explored and are known to report higher accuracies as

compared to EMD or wavelet-based methods. Further

discussion on comparison of different techniques is pre-

sented later in the next section.

4 Review

This section presents an analysis of time, frequency,

and time-frequency methods discussed in the previous

sections. Time-based methods have been used extensively

in the past and have still maintained their popularity

because of ease with which information can be extracted.

They can provide, in theory, the best localization for beats

in the signal under observation. These methods need pre-

processing steps to make the signal fit for subsequent

steps of localization and classification. With the develop-

ment of machine learning techniques, time domain meth-

ods enjoy a renewed interest which is expected to continue

in the near future. This trend is very well demonstrated by

the recent research worked presented in Table 2. Quan-

titative comparison of results also shows that time-based

methods, in general, are able to localize and classify beats

with more than 70% specificity.

The frequency-based methods for localization and

classification usually start withMFCCwhich employs pre-

emphasis, windowing and FFT to make the signal appro-

priate for classification and localization. An analysis of

the quantitative results reported in Table 2 shows that on

the average, the performance of frequency-based meth-

ods is more or less similar to that of time-based methods.

It should however be noted that frequency-based meth-

ods are best suited for frequency band localization but

fail to extract the time location of the frequency band

under observation. Time-based methods, on the other

hand, provide beat location in the signal but are limited

in the sense that they do not provide explicit information

about the frequency content of the signal.

The time-frequency methods decompose signals into

different time and frequency resolutions and aim to over-

come the limitations of time- and frequency-based meth-

ods. The time-frequency methods investigated in the

literature include wavelets, EMD, and TFR. Although TFR

in its basic form suffers from noise due to cross terms,

a number of effective techniques based on TFR are pro-

posed for heart beat analysis. These methods attempt to

suppress the cross terms while keeping as much frequency

resolution as possible. The recent popularity of TFRmeth-

ods is generally attributed to pseudo WV distribution

and HHT which serve to reduce the noise due to cross

terms and allow a better representation of the signal under

study. A comparison from Table 3 shows that the results

reported for TFR methods exhibit high variation, mainly

as a function of the database employed for evaluation.

Among other time-frequency methods, EMD and

wavelets have been mostly employed for PCG analy-

sis. EMD is a data driven decomposition technique that

decomposes a signal from high to low frequencies by

generating lower and upper envelops using spline interpo-

lation. EMD-based techniques suffer from end-effects of

undershoot and overshoot, the modeling errors inherited

in the EMD algorithm. The stopping criteria for EMD are

being continuously researched to extract IMFs which are

of physical significance. EMD has witnessed a number of

variations over the years. In addition to the standard EMD,

noise-assisted EMD, ensemble EMD,multi-variable EMD,

and EMD complemented by HHT have also been investi-

gated. It can be observed fromTable 5 that in general, high

accuracies are reported by EMD-based techniques. The

results however are not directly comparable as diverse

datasets have been employed by different researchers.

In addition to EMD, wavelets and their variants have

been a popular as well as an effective choice of researchers

for analysis of PCG signals. Wavelet is a goal-driven algo-

rithm which decomposes a signal using dyadic filter bank.

This decomposition method is limited in the sense as

it does not take into account the parameters of the sig-

nal under decomposition. Despite this limitation, wavelets

have been employed in all stages from pre-processing to

classification.

It can be seen from Table 4 that wavelet-based tech-

niques have been comprehensively studied and evaluated

on wide variety of datasets including all three public

datasets presented in this paper. These methods consis-

tently report high localization and classification accura-

cies on multiple datasets.

Summarizing the key findings of our analysis, the ini-

tial attraction of employing time-frequency based meth-

ods like EMD and wavelets was their ability to represent

the signal at multiple resolutions unlike time and fre-

quency analysis. The complexity of PCG signal, however,

forced the researchers to borrow techniques and features

from the time and frequency domains. Features like sys-

tole and diastole time duration, beat amplitude, and beat

frequency, for instance, are in common use. In general,

all techniques have evolved to an extent where they are

able to successfully model human heart beat under clean



Ismail et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:26 Page 24 of 27

environment. Nevertheless, automatic analysis of noisy

heart beats still remains a challenging problem. Time

and frequency methods, in most cases, are dependent on

machine learning algorithms to enhance the localization

and classification performance. Features extracted in the

time or frequency domain are typically fed to a learn-

ing algorithm and the choice of the learning algorithm

also influences the overall system performance. The time-

frequency methods (especially EMD and wavelets), on the

other hand, are not too sensitive to the choice of the learn-

ing algorithm. Furthermore, time and frequency methods

have been mostly limited to the two-class problem of

classifying the heart beats as normal or abnormal while

wavelets and EMD present more sophisticated solutions

detecting not only the abnormality but also classifying the

pathology.

Studying the quantitative performance of time, fre-

quency, and time-frequency methods (presented in the

respective tables), it can be seen that a direct comparison

of these methods is difficult due to the different types of

challenges offered by each dataset. A general observation

is that for small datasets and clean signals, time, fre-

quency, and time-frequency-based methods report sim-

ilar accuracies. For larger datasets and noisy signals,

however, the performance of time-frequency methods,

especially wavelets, remains relatively stable once com-

pared to other methods. The PASCAL 2011 dataset

A, for instance, is considered to be a very challenging

set of noisy signals. Only a limited number of studies

[30, 52, 53, 62, 67, 77, 95] have been evaluated on this

set and among these wavelets-based techniques report the

highest accuracies.

Time-frequency representations like Wigner-Ville and

pseudo WV have remained relatively less explored pri-

marily due to the problem of cross terms. Reducing the

cross terms while keeping the maximum possible infor-

mation in signal needs to be further investigated. EMD

and wavelet-based techniques enjoy the advantage over

other techniques in the sense that they decompose the

signal at multiple resolutions hence removing the high-

frequency noise and reducing the energy contribution

from low frequencies. These noise handling capabilities

make such techniques an attractive choice, especially,

when dealing with noisy signals. Despite these charac-

teristics, the problem of computerized analysis of PCG

signals still remains very challenging for noisy environ-

ments. A clear evidence is the performance of different

systems on the noisy signals of the PASCAL 2011 datasets

which offer a great margin for enhancement. Another

interesting direction could be to investigate the combi-

nation of EMD and wavelets, for instance, techniques

like empirical-wavelet decomposition can be employed

for analysis of noisy signals. Likewise, combination of

algorithms and features from time, frequency, and time-

frequency domains can also be investigated to propose

robust localization and classification techniques which

can deal with different types of signals (clean, noisy,

various pathologies etc.). In our present work, we are

exploring such a combination where EMD or wavelets

(time-frequency domain) are being employed for noise

removal while localization is carried out using Springer

algorithm [15] (time domain). Furthermore, a combina-

tion of features extracted from the three representations

is intended to be fed to different machine learning algo-

rithms for classification. Such rich representations are

likely to enhance the localization and classification accu-

racies of the system.

It is also worth mentioning that the primary focus of

most of the research on automatic analysis of PCG signals

has been on enhancing the localization and classification

accuracies. From the view point of practical applications,

development of computationally efficient solutions which

may work in real time is also a challenging problem

that needs further exploration. In addition, the presently

available PCG datasets comprise a limited number of sam-

ples and do not cover the complete range of pathologies

which are likely to be encountered in clinical settings. This

necessitates the development and labeling of a compre-

hensive dataset of PCG signals encompassing a variety of

signals and covering all major pathologies. Considering

the complexity of the problem, modeling the heart beats

and various pathologies is likely to offer more robust solu-

tions as opposed to the conventional techniques relying

on localization and classification. To the best of authors’

knowledge, very limited efforts have been made in this

direction. Morlet wavelet filter, for instance, has been

investigated to model the heart beat. However, modeling

of such complex signals brings along its own challenges

and requires significant amount of data for each pathol-

ogy, a requirement that is hard to meet in the currently

available datasets.

5 Conclusions

This paper presented an overview of the techniques pro-

posed for computerized analysis of PCG signals which

represent recordings of heart sound. Localization and

classification of beats have been the key research areas

with the objective to discriminate between normal and

abnormal heart sounds. The variation in amplitude,

frequency, and duration of beats makes PCG a very com-

plex signal for automatic analysis. The domain has wit-

nessed more than three decades of research, and this

paper is an attempt to provide an overview of the current

state-of-the-art on this subject. We organized the notable

contributions to automatic analysis of PCG signals as

function of domains of analysis, namely, time, frequency,

and time-frequency methods. An analysis of the review

techniques revealed that, in general, the performance of
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time, frequency, and time-frequency is similar for small

datasets and clean signals. The more challenging sce-

nario is analysis of noisy signals where time-frequency

specially EMD and wavelets has been popular choice of

researchers. These methods, however, bring with them

the additional computational cost and algorithmic com-

plexity. Consequently, simple features like amplitude,

energy, beat duration, and spectral flux extracted from

tine and frequency domain continue to sustain. These

time and frequency methods have been complemented

by using sophisticated machine learning to enhance the

localization and classification performance.
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