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Abstract. Let G be a finite extension of a torus. Working with highly
structured ring and module spectra, let M be any module over MU ; ex-
amples include all of the standard homotopical MU-modules, such as the
Brown-Peterson and Morava K-theory spectra. We shall prove localization
and completion theorems for the computation of M∗(BG) and M∗(BG). The
G-spectrum MUG that represents stabilized equivariant complex cobordism is
an algebra over the equivariant sphere spectrum SG, and there is an MUG-
module MG whose underlying MU-module is M . This allows the use of topo-
logical analogues of constructions in commutative algebra. The computation
of M∗(BG) and M∗(BG) is expressed in terms of spectral sequences whose
respective E2 terms are computable in terms of local cohomology and local
homology groups that are constructed from the coefficient ring MUG∗ and its
module MG∗ . The central feature of the proof is a new norm map in equivariant
stable homotopy theory, the construction of which involves the new concept of
a global I∗-functor with smash product.
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1. Introduction and statements of results

Completion theorems relate the nonequivariant cohomology of classifying spaces
to algebraic completions of associated equivariant cohomology theories. They are at
the heart of equivariant stable homotopy theory and its nonequivariant applications.
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The most celebrated result of this kind is the Atiyah-Segal completion theorem
[1]. For any compact Lie group G, it computes K(BG) as the completion of the
representation ring R(G) at its augmentation ideal. A more recent such result is the
Segal conjecture [3]. For any finite group G, it computes the cohomotopy π∗(BG)
as the completion of the equivariant cohomotopy π∗G at the augmentation ideal of
the Burnside ring A(G). Unlike the Atiyah-Segal completion theorem, in which the
representation ring is under good algebraic control, the Segal conjecture relates two
sequences of groups that are largely unknown and difficult to compute.

Shortly after the Atiyah-Segal completion theorem appeared, Landweber [31] and
others raised the problem of whether an analog might hold for complex cobordism.
It was seen almost immediately that the appropriate equivariant form of complex
cobordism to consider was the stabilized version, MU∗

G, introduced by tom Dieck
[8]. Shortly after the question was raised, Löffler [36] sketched a proof of the
following result. A complete argument has been given by Comezaña and May [6].

Theorem 1.1 (Löffler). If G is a compact Abelian Lie group, then

(MU∗
G)ĴG

∼= MU∗(BG),

where JG is the augmentation ideal of MU∗
G.

Here MU∗(BG) is completely understood [30, 35, 36], and the result is not
difficult because the Euler classes of the irreducible complex representations of G,
which of course are all 1-dimensional, are under good control. There has been no
further progress in over twenty years. In fact, in his 1992 survey of equivariant
stable homotopy theory [4], Carlsson stated the problem as follows:

“Formulate a conjecture about MU∗(BG), for G a finite group.”
Landweber [31] had noted that the problem of studying MU∗(BG) seemed to be
even harder than the problem of studying MU∗(BG).

In [15], the first author introduced a new approach to the Atiyah-Segal com-
pletion theorem (for finite groups), in which he deduced it from what we now
understand to be a kind of localization theorem giving a computation of K∗(BG)
in terms of local cohomology. When such a localization theorem holds in homol-
ogy, it is a considerably stronger result than the implied completion theorem in
cohomology. For example, the localization theorem for stable homotopy theory is
false, although the completion theorem for stable cohomotopy is true. We refer
the reader to [21, §§6-8] and [22] for a general discussion of localization theorems
in equivariant homology and completion theorems in equivariant cohomology. We
shall here prove theorems of this kind for stabilized equivariant complex cobordism.
Our results were announced in [9], and an outline of the proofs has appeared in
[23].

To make sense of the approach of [15], one must work in a sufficiently precise
context of highly structured ring and module spectra that one can mimic construc-
tions in commutative algebra topologically. The theory developed by Elmendorf,
Kriz, Mandell, and the second author [11] provides these essential foundations.
That paper was written nonequivariantly but, as stated in a metatheorem in its
introduction and explained in more detail in [12], all of its theory applies verbatim
to G-spectra for any compact Lie group G; see also [10, 21, 13]. In the language
of [11], stabilized equivariant cobordism is represented by a commutative algebra
MUG over the equivariant sphere G-spectrum SG. The underlying nonequivari-
ant S-algebra of MUG is MU . In earlier language, this means that MUG is an
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E∞ ring G-spectrum with underlying nonequivariant E∞ ring spectrum MU . We
understand SG-algebras to be commutative from now on.

A considerable virtue of the kind of localization theorem that we have in mind
is that, when it applies to an SG-algebra RG with underlying nonequivariant S-
algebra R, it automatically implies localization and completion theorems for the
computation of M∗(BG) and M∗(BG) for the underlying R-module M of any split
RG-module MG. (The notion of a split G-spectrum is defined and discussed in [34,
II.84], [19, §0], and [21, §3].) This is an especially happy feature of our work since
MUG is split and every MU -module M is the underlying nonequivariant spectrum
of a certain split MUG-module MG = MUG ∧MU M [38]. Therefore, by [11, V§4],
our work applies to all of the standard MU -modules that are constructed from
MU by quotienting out the ideal generated by a regular sequence of elements of
MU∗ and localizing by inverting some other elements. In particular, it applies
to the Brown-Peterson spectra BP , the Morava K-theory spectra K(n), and the
Johnson-Wilson spectra E(n). There is a long and extensive history of explicit
calculations of groups M∗(BG) and M∗(BG) in special cases. Some of the relevant
authors are: Landweber; Johnson, Wilson, and Yan; Tezuka and Yagita; Bahri,
Bendersky, Davis, and Gilkey; Hopkins, Kuhn, and Ravenel; Hunton; and Kriz.
See [31, 30, 32, 2] for MU , [28, 29, 40, 41, 42, 43] for BP , and [26, 27, 25] for K(n).
Our theorem gives a general conceptual framework into which all such computations
must fit.

As we shall make precise shortly, the theorem shows that these nonequivari-
ant homology and cohomology groups are isomorphic to the equivariant homotopy
groups of certain homotopical JG-power torsion MUG-modules ΓJG

(MG) and ho-
motopical completion MUG-modules (MG)∧JG

, where JG is the augmentation ideal
of MUG

∗ . There result spectral sequences for the computation of these homotopy
groups in terms of “local cohomology groups” and “local homology groups” that
can be computed from knowledge of the ring MUG

∗ and its module MG
∗ . Thus the

theorem establishes a close connection between the geometrically defined equivari-
ant cobordism groups and the homology and cohomology of classifying spaces with
coefficients in MU -modules.

This is entirely satisfactory on a conceptual level. However, like the Segal con-
jecture, our theorem relates two sequences of groups that are largely unknown and
difficult to compute. Thus, on the computational level, it merely points the direc-
tion towards further study. Explicit computations will require better understanding
of MUG

∗ than is now available. We recall an old and probably false conjecture.

Conjecture 1.2. MUG
∗ is MU∗-free on generators of even degree.

The conjecture is true when G is Abelian, as was announced by Löffler [35, 36]
and proven in detail by Comezaña [5]. Little is known for non-Abelian groups.

Since our work is based on the importation of techniques of commutative algebra
into equivariant stable homotopy theory, we briefly recall the relevant algebraic
constructions; see [20] for details and discussion. Let R be a graded commutative
ring and let I = (α1, . . . , αn) be a finitely generated ideal in R. Define K•(I) to be
the tensor product of the graded cochain complexes

K•(αi) = (R → R[1/αi]),
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where R and R[1/αi] lie in homological degrees 0 and 1. Up to quasi-isomorphism,
K•(I) depends only on the radical of I. For a graded R-module M , define

Hs,t
I (R; M) = Hs,t(K•(I)⊗M),

where s indicates the homological degree and t the internal grading. Such “local
cohomology groups” were first defined by Grothendieck [24]. It is easy to see that
H0

I (R;M) is the submodule

ΓI(M) = {m ∈ M |INm = 0 for some N}
of I-power torsion elements of M . If R is Noetherian it is not hard to prove directly
that the functor H∗

I (R;−) is effaceable and hence that local cohomology calculates
the right derived functors of ΓI(−) [24]. It is clear that the local cohomology
groups vanish above degree n, but in the Noetherian case Grothendieck’s vanishing
theorem shows the powerful fact that they are zero above the Krull dimension of
R. One key fact that we shall use is that if β ∈ I then H∗

I (R; M)[1/β] = 0; this
is a restatement of the easily proven fact that K•(I)[1/β] is exact [20, 1.1]. We
abbreviate

H∗
I (R) = H∗

I (R; R).
These algebraic local cohomology groups are relevant to topological homology
groups.

There are dual “local homology groups” which, to the best of our knowledge,
were first introduced in [17, 18]. Replacing K•(I) by a quasi-isomorphic R-free
chain complex K ′•(I), define

HI
s,t(R; M) = Hs,t(Hom(K ′•(R),M)).

There is a tri-graded universal coefficient spectral sequence that converges to these
groups; ignoring the internal grading t, which is unchanged by the differentials, it
converges in total degree s = −(p + q) and satisfies

Ep,q
2 = ExtpR(H−q

I (R),M) and dr : Ep,q
r → Ep+r,q−r+1

r .

There is a natural epimorphism HI
0 (R;M) → M Î whose kernel is a certain lim1

group. It is not hard to check from the definition that if R is Noetherian and M
is free or finitely generated then HI

0 (R; M) ∼= M∧
I , and one may also prove that

in these cases the higher local homology groups are zero. It follows that, at least
when R is Noetherian, HI

∗ (R; M) calculates the left derived functors of the (not
necessarily right exact) I-adic completion functor. These algebraic local homology
groups are relevant to topological cohomology groups.

Now, returning to topology, let RG be an SG-algebra and MG be an RG-module;
we always understand algebras and modules in the highly structured sense of [11].
We understand G-spectra to be indexed on a complete G-universe U , which im-
plies that our equivariant homology and cohomology theories are RO(G)-graded.
However, we restrict attention to integer degrees except where explicitly stated oth-
erwise. We write EG

n = E−n
G for the nth homotopy group πG

n (E) = [SG, EG]Gn of a
G-spectrum EG.

For α ∈ RG
k , let RG[1/α] be the telescope of iterates

RG → Σ−kRG → Σ−2kRG → · · ·
of multiplication by α and let K(α) be the fiber of the canonical map RG →
RG[1/α]. For a finitely generated ideal I = (α1, . . . , αn) in RG

∗ , let K(I) be



LOCALIZATION AND COMPLETION THEOREMS FOR MU-MODULE SPECTRA 5

the smash product over RG of the RG-modules K(αi). Up to equivalence of RG-
modules, K(I) depends only on the radical of I. Define

ΓI(MG) = K(I) ∧RG
MG

and
(MG)∧I = FRG

(K(I),MG).

There is a spectral sequence converging to ΓI(MG)G
∗ (in total degree p+q), with

E2
p,q = H−p,−q

I (RG
∗ ; MG

∗ ) and dr : Er
p,q → Er

p−r,q+r−1,

and there is a spectral sequence converging to ((MG)∧I )∗G (in total degree p + q)
with

Ep,q
2 = HI

−p,−q(R
∗
G; M∗

G) and dr : Ep,q
r → Ep+r,q−r+1

r .

Now take I to be a finitely generated ideal contained in the augmentation ideal
JG = Ker(RG

∗ → R∗). Note that the ring RG
∗ need not be Noetherian and the

augmentation ideal need not be finitely generated. In particular, MUG
∗ is not

Noetherian and its augmentation ideal is not finitely generated, even when G is
finite.

Since R[1/α] is nonequivariantly contractible for α ∈ JG, the canonical map
K(I) → RG is an equivalence of underlying spectra and so induces an equivalence
upon smashing with EG+, where EG+ is the union of EG and a G-fixed disjoint
basepoint. Inverting this equivalence and using the projection EG+ −→ S0, we
obtain a canonical map of RG-modules

κ : EG+ ∧RG → K(I).

For an RG-module MG, κ induces maps of RG-modules

EG+ ∧MG ' EG+ ∧RG ∧RG
MG → K(I) ∧RG

MG = ΓI(MG)

and

(MG)∧I = FRG(K(I), MG) → FRG(EG+ ∧RG,MG) ' F (EG+,MG),

both of which will be equivalences for all RG-modules MG if κ is an equivalence.
We can now state our completion theorem for modules over MUG.

Theorem 1.3. Let G be finite or a finite extension of a torus. Then, for any
sufficiently large finitely generated ideal I ⊂ JG, κ : EG+ ∧ MUG → K(I) is an
equivalence. Therefore,

EG+ ∧MG → ΓI(MG) and (MG)∧I → F (EG+,MG)

are equivalences for any MUG-module MG.

It is reasonable to define K(JG) to be K(I) for any sufficiently large I and to
define ΓJG(MG) and (MG)∧JG

similarly. The theorem implies that these MUG-
modules are independent of the choice of I.

Our main interest is in finite groups. However, the fact that the result holds for
a finite extension of a torus and therefore for the normalizer of a maximal torus in
an arbitrary compact Lie group suggests the following generalization. There should
be an appropriate transfer argument, but we have not succeeded in finding one.

Conjecture 1.4. The theorem remains true for any compact Lie group G.
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It is valuable to obtain a completion theorem about EG+ ∧G X for a general
based G-space X, obtaining the motivating result about BG (which referred to
unreduced homology and cohomology) by taking X to be S0. For this purpose, we
replace MG by MG ∧ X in the first equivalence and by F (X,MG) in the second.
We write M∗ and M∗ for the reduced homology and cohomology of based spaces.
If MG is split with underlying nonequivariant MU -module M , then

M∗(EG+ ∧G X) ∼= πG
∗ ((EG+ ∧X) ∧ Σ−Ad(G)MG)

and
M∗(EG+ ∧G X) ∼= πG

−∗(F (EG+ ∧X,MG)),
where Ad(G) is the adjoint representation of G [34, II.8.4]. Thus the theorem has
the following immediate consequence.

Theorem 1.5. Assume the hypotheses of the theorem and assume that MG is split.
Then

M∗(EG+ ∧G X) ∼= ΓI(Σ−Ad(G)MG ∧X)G
∗

and
M∗(EG+ ∧G X) ∼= (F (X, MG))∧I )∗G

for any based G-space X.

Implicitly replacing X by its suspension G-spectrum, we are entitled to the
following spectral sequences.

Corollary 1.6. There is a homological spectral sequence that converges from

E2
p,q = H−p,−q

I (MUG
∗ ; MG

∗ (Σ−Ad(G)X))

to M∗(EG+ ∧G X). There is a cohomological spectral sequence that converges from

Ep,q
2 = HI

−p,−q(MU∗
G; M∗

G(X))

to M∗(EG+ ∧G X).

Combining Löffler’s theorem with ours, we see that the topology forces the fol-
lowing algebraic conclusion. A direct proof would be out of reach at present.

Corollary 1.7. If G is a compact Abelian Lie group and I is sufficiently large,
then

HI
0 (MU∗

G) ∼= ((MUG)Î)∗G ∼= (MU∗
G)Î

and
HI

p (MU∗
G) = 0 if p 6= 0.

2. The strategy of proof

For clarity, we shall emphasize the general strategy of proof, focusing on MUG

only where necessary. Let G be a compact Lie group and let SG be the sphere
G-spectrum. We assume given a commutative SG-algebra RG with underlying
nonequivariant commutative S-algebra R.

For a (closed) subgroup H of G, let resG
H denote the restriction

R∗G = R∗G(S0) −→ R∗G(G/H+) = R∗H ;

it is induced by the projection G/H+ −→ S0. Let JH denote the augmentation
ideal in R∗H , namely the kernel of resH

1 : R∗H −→ R∗. In [21, 7.5], we explained a
general localization and completion theorem for the calculation of MG

∗ (EG+ ∧X)
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and M∗
G(EG+ ∧ X) for any split RG-module MG and G-spectrum X. In that

theorem, we assumed that G is finite, each RO(G)-graded theory R#
H has Thom

isomorphisms, and each R∗H is Noetherian and satisfies
√

resG
H(JG) =

√
JH .

In fact, we did not discuss the verification of this last property in [21], and we
remarked that its verification “can be the the main technical obstruction to the
implementation of our strategy when we work more generally with compact Lie
groups and non-Noetherian coefficient rings”. See [16] for a discussion of this point
in the Noetherian case. The algebraic and topological constructions in our general
approach demand that we work with finitely generated subideals of JG, and the last
property then makes little sense. Thus we need to modify our strategy of proof.
We begin work by describing our modified strategy.

Thom isomorphisms and Euler classes are essential to the strategy, and we begin
with these. Here we must consider RO(G)-graded cohomology groups, and we
use the notation R#

G(X) for the RO(G)-graded cohomology of a G-spectrum X to
distinguish it from the Z-graded part R∗G(X). In particular, we write R#

G for the
RO(G)-graded coefficient ring. For a real representation V of G. The inclusion

eV : S0 −→ SV

induces a map
e#
V : R#

G(SV ) −→ R#
G(S0) = R#

G .

Let 1 ∈ R0
G be the identity element; it is represented by the unit η : SG −→ RG.

Its suspension ΣV 1 is an element of RV
G(SV ), and we define

e(V ) = e#
V (ΣV 1) ∈ RV

G(S0) = RV
G.

We need to be able to shift these classes into integer degrees.

Definition 2.1. The theory R#
G has Thom isomorphisms if, for each complex

representation V of G, there is a natural isomorphism

φV : R#
G(X ∧ S|V |) −→ R#

G(X ∧ SV )

of R#
G-modules, where |V | is the real dimension of V . We may view φV as giving

isomorphisms
φV : R

W−|V |
G (X) −→ RW−V

G (X)
for W ∈ RO(G). Taking W = V + |V | and X = S0, we define

χ(V ) = φV (e(V )) ∈ R
|V |
G .

Remark 2.2. Let µ(V ) = φV (1) ∈ R
|V |−V
G . Since φV is an isomorphism of R#

G-
modules, µ(V ) is a unit in R#

G , and we may as well insist that φV (x) = x·µ(V ) for all
x ∈ R#(X∧S|V |) and all G-spectra X. That is, we take our Thom isomorphisms to
be given by right multiplication by Thom classes. In particular, χ(V ) = e(V )µ(V ).

Remark 2.3. If V contains a trivial representation, so that V G 6= 0, then eV is null
homotopic and therefore e(V ) = 0 and χ(V ) = 0.

Now let I be a given finitely generated subideal of JG. For H ⊆ G, let rG
H(I)

denote the resulting subideal resG
H(I) ·R∗H of JH .
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Definition 2.4. Assume that each R#
H has Thom isomorphisms. The ideal I in

R∗G is sufficiently large at H if there is a non-zero complex representation V of H

such that V H = 0 and the Euler class χ(V ) ∈ R
|V |
H is in the radical

√
rG
H(I). The

ideal I is sufficiently large if it is sufficiently large at all H ⊆ G.

As explained in the introduction, we have a canonical map of RG-modules

κ : EG+ ∧RG −→ K(I),

and our goal is to prove that it is an equivalence. The essential point of our
strategy is the following result, which reduces the problem to the construction of a
sufficiently large finitely generated subideal I of JG.

Theorem 2.5. Assume that R#
H has Thom isomorphisms for all H ⊆ G. If I is a

sufficiently large finitely generated subideal of JG, then

κ : EG+ ∧RG −→ K(I)

is an equivalence. Therefore,

EG+ ∧MG → ΓI(MG) and (MG)∧I → F (EG+, MG)

are equivalences for any RG-module MG.

Proof. Let ẼG be the cofiber of the projection EG+ −→ S0. Then the cofiber of κ

is equivalent to ẼG∧K(I), and we must prove that this is contractible. Using the
transitivity of restriction maps to see that rG

H(I) is a large enough subideal of R∗H ,
we see that the hypotheses of the theorem are inherited by any subgroup. Using
the fact that there is no infinite descending chain of compact Lie groups, we see
that we may assume that the theorem holds for H ∈ P, where P is the family
of proper subgroups of G. Thus ẼH ∧ K(rG

H(I)) is contractible for H ∈ P, and
clearly

(ẼG ∧K(I))|H = ẼH ∧K(rG
H(I)).

From here, the proof is just like that of [20, 7.5]. We have that

G/H+ ∧ ẼG ∧K(I)

is contractible for H ∈ P. We take ẼP to be the colimit of spheres SV , where
V runs through the complex representations such that V G = {0} in a complete
complex universe U . Since ẼP/S0 is triangulable as a G-CW complex whose cells
have proper orbit type, the induction hypothesis implies that

(ẼP/S0) ∧ ẼG ∧K(I)

is contractible. By the cofiber sequence S0 −→ ẼP −→ ẼP/S0 and the fact that
ẼP ∧ S0 −→ ẼP ∧ ẼG is an equivalence, it suffices to show that ẼP ∧K(I) is
contractible. For any RG-module MG, the construction of ẼP and our translation
of Euler classes to integer gradings imply directly that πG

∗ (ẼP ∧MG) is the local-
ization πG

∗ (MG)[
{
χ(V )−1

}
] obtained by inverting the Euler classes χ(V ) (see [20,

3.20]). With MG = K(I), we have a spectral sequence that converges from the lo-
cal cohomology groups H∗

I (RG
∗ ) to πG

∗ (K(I)). Localizing by inverting the χ(V ), we
obtain a spectral sequence that converges from the localization H∗

I (RG
∗ )[

{
χ(V )−1

}
]

to πG
∗ (ẼP ∧K(I)). As we pointed out earlier, the local cohomology of a ring at

an ideal vanishes when it is localized by inverting an element in that ideal. Thus
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our assumption that I is sufficiently large at G ensures that the E2-term of our
spectral sequence is zero. ¤

3. Constructing sufficiently large finitely generated ideals

The idea is to obtain enough elements of JG to give a good approximation
to it. For those groups G that act freely on a finite product of unit spheres of
representations, such as the finite p-groups, there are enough representations that
we can simply use finitely many Euler classes χ(V ). However, even for general finite
groups, the ideal generated by the χ(V ) is usually not sufficiently large. We need
to add in other elements, and we shall do so by exploiting norm, or “multiplicative
transfer”, maps that are analogous to Evens’ norm maps in the cohomology of
groups [14, Ch. 5]. This is a new construction in equivariant stable homotopy
theory and should have other applications.

However, we shall state three theorems and two lemmas that explain our strategy
of proof before specifying in Definition 3.6 what it means for a theory to have norm
maps. Similarly, the theorems are stated in terms of “natural” Thom isomorphisms,
and we shall specify the relevant naturality conditions in Definition 3.7.

We assume given a toral group G, namely an extension of the form

1 −→ T −→ G −→ F −→ 1,

where T is a torus and F is a finite group. Most of our work will be necessary even
when T is trivial and we are dealing only with the finite group F .

Theorem 3.1. Let G be toral. If, for each H ⊆ G, R#
H has natural Thom iso-

morphisms and R∗H has norm maps, then JG contains a sufficiently large finitely
generated subideal.

We shall define the notion of a global I∗ functor with smash product, abbrevi-
ated G I∗-FSP, in Section 5. A G I∗-FSP T has an associated SG-algebra R(T )G

for every compact Lie group G; regarded as an SH -algebra for H ⊆ G, R(T )G is
canonically isomorphic to R(T )H . The real work in this paper is the proof of the
following theorem, which is the subject of Sections 6–9.

Theorem 3.2. Let T be a G I∗-FSP T such that R(T )#G has natural Thom iso-
morphisms for every compact Lie group G. Then every R(T )∗G has norm maps.

The application to Thom spectra is justified by the following result, which is
proven in Example 5.8 and Section 10.

Theorem 3.3. There is a G I∗-FSP TU such that R(TU)G = MUG for every
compact Lie group G, and every MU#

G has natural Thom isomorphisms.

The previous two results show that Theorem 3.1 applies to MUG.
The proof of Theorem 3.1 depends on two lemmas. The first, whose proof will

be deferred to Section 11, is an exercise in the representation theory of Lie groups
that has nothing to do with the hypotheses on our theories. For H ⊆ G, we write

resG
H : R(G) −→ R(H)

for the restriction homomorphism. When H has finite index in G, we write

indG
H : R(H) −→ R(G)

for the induction homomorphism. Recall that indG
HV = C[G]⊗C[H] V .
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Lemma 3.4. There are non-zero complex representations V1, · · · , Vs of T such that
T acts freely on the product of the unit spheres of the representations resG

T indG
T Vi.

Lemma 3.5. Assume the hypotheses of Theorem 3.1 and let F ′ be a subgroup of
F with inverse image G′ in G. Then there is an element ξ(F ′) of JG such that

resG
G′(ξ(F

′)) = χ(V ′)w′ ,

where V ′ is the reduced regular complex representation of F ′ regarded by pullback
as a representation of G′ and w′ is the order of WG′ = NG′/G′.

The proof will be given at the end of the section.

Proof of Theorem 3.1. We claim that the ideal

I = (χ(indG
T V1), · · · , χ(indG

T Vs)) + (ξ(F ′)|F ′ ⊆ F )

is sufficiently large.
If H is a subgroup of G that intersects T non-trivially, then, by Lemma 3.4,

(resG
T indG

T Vi)H∩T = {0} for some i and therefore (indG
T Vi)H = {0}. Since

χ(resG
HindG

T Vi) = resG
H(χ(indG

T Vi)) ∈ rG
H(I),

this shows that I is sufficiently large at H in this case.
If H is a subgroup of G that intersects T trivially, as is always the case when G is

finite, then H maps isomorphically to its image F ′ in F . If G′ is the inverse image
of F ′ in G and V ′ is the reduced regular complex representation of F ′ regarded as a
representation of G′, then resG′

H (V ′) is the reduced regular complex representation
of H and (resG′

H (V ′))H = 0. By Lemma 3.5, we have resG
G′(ξ(F

′)) = χ(V ′)w′ and
therefore

χ(resG′
H (V ′))w′ = resG′

H (χ(V ′)w′) = resG′
H resG

G′(ξ(F
′)) = resG

H(ξ(F ′)) ∈ rG
H(I).

This shows that I is sufficiently large at H in this case. ¤

We need conjugation isomorphisms to describe the properties of norm maps and
to prove the lemmas. For g ∈ G and H ⊆ G, let gH = gHg−1 and cg : gH −→ H be
the conjugation isomorphism. For a representation V of H, let gV be the pullback
of V along cg. For H ⊆ G, we have a natural restriction homomorphism

resG
H : RG

∗ (X) −→ RH
∗ (X)

on based G-spaces X. For g ∈ G, we also have a natural isomorphism

cg : RH
∗ (X) −→ R

gH
∗ (gX),

where X is a based H-space and gX denotes X regarded as a gH-space by pullback
along cg. To give content to the proof of Lemma 3.5, we must explain our hypothesis
that RG

∗ also has norm maps. We give a crude and perhaps unilluminating definition
that prescribes exactly what we shall use in the proof. A description closer to the
motivating example of group cohomology will be given in the next section.

Definition 3.6. We say that RG
∗ has norm maps if, for a subgroup H of finite

index n in G and an element y ∈ RH
−r, where r ≥ 0 is even, there is an element

normG
H(1 + y) ∈

n∑

i=0

RG
−ri
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that satisfies the following properties; here 1 = 1H ∈ RH
0 denotes the identity

element.
(i) normG

G(1 + y) = 1 + y.
(ii) normG

H(1) = 1.
(iii) [The double coset formula]

resG
K normG

H (1 + y) =
∏
g

normK
gH∩K res

gH
gH∩K cg(1 + y),

where K is any subgroup of G and g runs through a set of double coset
representatives for K\G/H.

We must also explain what it means for Thom isomorphisms to be “natural”.

Definition 3.7. Let R#
H have Thom isomorphisms φVH

given by right multiplica-
tion by Thom classes µ(VH) for all H ⊂ G and all complex representations VH of H.
We say that the Thom isomorphisms are natural if the following three conditions
hold.

(i) Compatibility under restriction: µ(VG)|H = µ(VG|H).
(ii) Compatibility under conjugation: µ(gVH) = cg(µ(VH)) in R

|VH |−gVH

H for
g ∈ G.

(iii) Multiplicativity: µ(VH)µ(V ′
H) = µ(VH ⊕ V ′

H).

Proof of Lemma 3.5. Since the restriction of the reduced regular representation
of F ′ to any proper subgroup contains a trivial representation, the restriction of
χ(V ′) ∈ R∗G′ to a subgroup that maps to a proper subgroup of F ′ is zero. In R∗G′ ,
the double coset formula gives

(3.8) resG
G′ normG

G′ (1 + χ(V ′)) =
∏
g

normG′
gG′∩G′ res

gG′
gG′∩G′ cg(1 + χ(V ′)),

where g runs through a set of double coset representatives for G′\G/G′. Taking V ′

as in the statement of the lemma, compatibility under conjugation gives that

cg(1 + χ(V ′)) = 1 + χ(gV ′).

Here gV ′ is the reduced regular representation of gG′. Clearly gG′∩G′ is the inverse
image in G of gF ′ ∩ F ′. If gF ′ ∩ F ′ is a proper subgroup of F ′, then the restriction
of χ(V ′) to gG′ ∩ G′ is zero. Therefore all terms in the product on the right side
of (3.8) are 1 except for those that are indexed on elements g ∈ NG′. There is one
such g for each element of WG′ = NG′/G′, and the term in the product that is
indexed by each such g is just 1 + χ(V ′). Therefore (3.8) reduces to

(3.9) resG
G′ normG

G′(1 + χ(V ′)) = (1 + χ(V ′))w′ .

If V ′ has real dimension r, then the summand of (1 + χ(V ′))w′ in degree rw′ is
χ(V ′)w′ . Since resG

G′ preserves the grading, we may take ξ(F ′) to be the summand
of degree rw′ in normG

G′(1 + χ(V ′)). ¤

4. The idea and properties of norm maps

We give an intuitive idea of the construction, leaving details and rigor to later
sections. Let H be a subgroup of finite index n in a compact Lie group G. For
based H-spaces X, we can give the smash power Xn an action of G. Intuitively,
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this is done in exactly the same way that one induces up a representation of H to
a representation of G, and the analogy will guide much of our work.

To begin with, the norm map will be a natural function

(4.1) normG
H : RH

0 (X) −→ RG
0 (Xn).

Norm maps normG
H in the sense of Definition 3.6 will be obtained by taking X to

be the wedge S0 ∨ Sr, studying the decomposition of Xn into wedge summands
of G-spaces described in terms of representations, and using Thom isomorphisms
to translate the result to integer gradings. The norm map normG

H will satisfy the
following properties.

(4.2) normG
G is the identity function.

(4.3) normG
H(1H) = 1G, where 1H ∈ RH

0 (S0) is the identity element.

(4.4) normG
H(xy) = normG

H(x)normG
H(y) if x ∈ RH

0 (X) and y ∈ RH
0 (Y ).

Here the product xy on the left is defined by use of the evident map

(4.5) RH
0 (X)⊗RH

0 (Y ) −→ RH
0 (X ∧ Y )

and similarly on the right, where we must also use the isomorphism

RG
0 (Xn ∧ Y n) ∼= RG

0 ((X ∧ Y )n).

The most important property of the norm map will be the double coset formula

(4.6) resG
K normG

H(x) =
∏
g

normK
gH∩K res

gH
gH∩K cg(x),

where K is any subgroup of G and g runs through a set of double coset represen-
tatives for K\G/H. Here, if gH ∩K has index n(g) in gH, then n =

∑
n(g) and

the product on the right is defined by use of the evident map

(4.7)
⊗

g

RK
0 (Xn(g)) −→ RK

0 (Xn).

An element of RH
0 (X) is represented by an H-map x : SG −→ RG ∧X. There is

no difficulty in using the product on RG to produce an H-map

SG
∼= (SG)n xn

−−→ (RG ∧X)n ∼= (RG)n ∧Xn −→ RG ∧Xn.

The essential point of our construction is that this may be done in such a way
as to produce a G-map: this will be normG

H(x). Here and later, all powers are
understood to be smash powers.

This is the basic idea, but carrying it out entails several difficulties. Since our
group actions involve permutations of smash powers, we cannot hope to control
equivariance unless we are using a smash product that is strictly associative and
commutative and a multiplication on RG that is strictly associative and commu-
tative. Moreover, our G-actions come by restriction of actions of wreath products
Σn

∫
H, and it turns out to be essential to work with (Σn

∫
H)-spectra. If we start

just with a G-spectrum RG, then it is not clear how to proceed. Similarly, to make
our spectra precise, we must specify appropriate universes on which to index them,
and we find that the norm map acts nontrivially on universes.
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We explain why the last phenomenon occurs and at the same time explain the
perhaps surprising restriction of our initial description of the norm map to degree
zero. The point is that, for q ≥ 0 at least, the norm gives a map

RH
−q(X) = RH

0 (X ∧ Sq) −→ RG
0 ((X ∧ Sq)n) ∼= RG

0 (Xn ∧ (Sq)n).

However, the sphere (Sq)n is twisted: in fact, it is the sphere SV associated to the
representation V = indG

H(q), where q denotes the q-dimensional trivial representa-
tion of H. Thus the target is RG

−V (Xn), which is not in the integer graded part of
the theory. Of course, if q is even and R∗G has Thom isomorphisms, then we can use
them to translate to integer degrees and thus to obtain the translated norm map

RH
−q(X) −→ RG

−nq(X
n).

An elaboration of this idea to sums of elements will give the modified norm maps
normG

H . We shall explain this elaboration of the definition after making sense of
the geometric construction of the norm map normG

H and proving its double coset
formula.

5. Global I∗-functors with smash product

To deal with the difficulties that we have indicated, we shall assume that RG

arises from a GI∗-FSP, where FSP stands for functor with smash product. This
is a global version of the notion of an I∗-prefunctor that was introduced in [37,
IV.2.1]. The earlier notion was defined nonequivariantly but transcribes directly to
a definition in which we restrict attention to a given compact Lie group G acting on
everything in sight. The adjective “global” means that we allow G to range through
all compact Lie groups G (or through all G in some suitably restricted class). Let
G denote the category of compact Lie groups and their homomorphisms; for the
purposes of the present theory, it would suffice to restrict attention to injective
homomorphisms, but our examples are defined on the larger category.

Definition 5.1. Define the global category GT of equivariant based spaces to have
objects (G,X), where G is a compact Lie group and X is a based G-space. The
morphisms are the pairs

(α, f) : (G,X) −→ (G′, X ′)

where α : G −→ G′ is a homomorphism of Lie groups and f : X −→ X ′ is an
α-equivariant map, in the sense that f(gx) = α(g)f(x) for all x ∈ X and g ∈ G.
Topologize the set of maps (G,X) −→ (G′, X ′) as a subspace of the evident product
of mapping spaces and observe that composition is continuous.

Definition 5.2. Define the global category GI∗ of finite dimensional equivariant
inner product spaces to have objects (G,V ), where G is a compact Lie group and
V is a finite dimensional inner product space with an action of G through linear
isometries. The morphisms are the pairs

(α, f) : (G,V ) −→ (G′, V ′)

where α : G −→ G′ is a homomorphism and f : V −→ V ′ is an α-equivariant linear
isomorphism.

We often find it convenient to work with complex rather than real inner product
spaces. Our definitions apply equally well under either interpretation.
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Observe that each morphism (α, f) in GI∗ factors as a composite

(G,V )
(id,f)−−−→ (G,W )

(α,id)−−−−→ (H,W ),

where G acts through α on W . We have a similar factorization of morphisms in GT .
Observe too that we have forgetful functors GI∗ −→ G and GT −→ G . We shall
be interested in functors GI∗ −→ GT over G , that is, functors that preserve the
group coordinate. For example, one-point compactification of inner product spaces
gives such a functor, which we shall denote by S•. As in this example, the space
coordinate of our functors will be the identity on morphisms of the form (α, id).
For these reasons, we shall usually omit the group coordinate from the notation for
functors.

Definition 5.3. A GI∗-functor is a continuous functor T : GI∗ −→ GT over G ,
written (G,TV ) on objects (G,V ), such that

T (α, id) = (α, id) : (G,TW ) −→ (H, TW )

for a representation W of H and a homomorphism α : G −→ H.

The following observation will be the germ of the definition of the norm map.

Lemma 5.4. Let A = Aut(G,V ) be the group of automorphisms of (G, V ) in the
category GI∗. For any GI∗-functor T , the group AnG acts on the space TV .

Proof. An element of A is a map (α, f) : (G,V ) −→ (G,V ) such that f(gv) = α(g)v
for all v ∈ V and g ∈ G and α is an isomorphism. The semi-direct product AnG
is the set A×G with the multiplication

((α, f), g)((β, `), h) = ((αβ, f`), β−1(g)h),

and G is contained in AnG as the normal subgroup of elements (id, g). The action
of AnG on TV is specified by

((α, f), g)x = T (α, f)(gx).

This does define an action since functoriality and equivariance imply that

T (α, f)(gT (β, `)(hx)) = α(g)αβ(h)T (αβ, f`)(x) = T (αβ, f`)(β−1(g)hx). ¤

Define the direct sum functor ⊕ : GI∗ × GI∗ −→ GI∗ by

(G,V )⊕ (H, W ) = (G×H, V ⊕W ).

Define the smash product functor ∧ : GT × GT −→ GT by

(G,X) ∧ (H, Y ) = (G×H, X ∧ Y ).

These functors lie over the functor × : G × G −→ G .

Definition 5.5. A GI∗-FSP is a GI∗-functor together with a continuous natural
unit transformation η : S• −→ T of functors GI∗ −→ GT and a continuous natural
product transformation ω : T ∧ T −→ T ◦ ⊕ of functors GI∗ × GI∗ −→ GT such
that the composite

TV ∼= TV ∧ S0 id∧η−−−→ TV ∧ T (0) ω−→ T (V ⊕ 0) ∼= TV
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is the identity map and the following unity, associativity, and commutativity dia-
grams commute:

SV ∧ SW

∼=
²²

η∧η // TV ∧ TW

ω

²²
SV⊕W

η
// T (V ⊕W ),

TV ∧ TW ∧ TZ

id∧ω

²²

ω∧id // T (V ⊕W ) ∧ TZ

ω

²²
TV ∧ T (W ⊕ Z)

ω
// T (V ⊕W ⊕ Z),

and
TV ∧ TW

ω //

τ

²²

T (V ⊕W )

T (τ)

²²
TW ∧ TV ω

// T (W ⊕ V ).

Actually, the notion that we have just defined is that of a commutative GI∗-FSP;
For the more general non-commutative notion, the commutativity diagram must be
replaced by a weaker centrality of unit diagram. Observe that the space coordinate
of each map T (α, f) is necessarily a homeomorphism since (α, f) = (α, id) ◦ (id, f)
and f is an isomorphism. We record the following observation for later use.

Remark 5.6. For objects (Hi, Vi) of GI∗, 1 ≤ i ≤ n, and a permutation σ ∈ Σn,
the associativity and commutativity diagrams imply the following commutative
diagram:

TV1 ∧ · · · ∧ TVn

σ

²²

ω // T (V1 ⊕ · · · ⊕ Vn)

T (σ)

²²
TVσ−1(1) ∧ · · · ∧ TVσ−1(n) ω

// T (Vσ−1(1) ⊕ · · · ⊕ Vσ−1(n)).

Here and in the commutativity axiom, we have suppressed the group coordinate
from the notation and T (σ) means T (σ, σ): we must permute the groups in the
same way that we permute the inner product spaces.

Example 5.7. The sphere functor S• is a GI∗-FSP with unit given by the identity
maps of the SV and product given by the isomorphisms SV ∧ SW ∼= SV⊕W . For
any GI∗-FSP T , the unit η : S• −→ T is a map of GI∗-FSP’s.

Example 5.8. Let dim V = n and define TV to be the one-point compactification
of the canonical n-plane bundle EV over the Grassmann manifold Grn(V ⊕V ). An
action of G on V induces an action of G that makes EV a G-bundle and TV a based
G-space. Take V = V ⊕{0} as a canonical basepoint in Grn(V ⊕V ). The inclusion
of the fiber over the basepoint induces a map η : SV −→ TV . The canonical bundle
map EV ⊕EW −→ E(V ⊕W ) induces a map ω : TV ∧ TW −→ T (V ⊕W ). With
the evident definition of T on morphisms, T is a GI∗-functor. Actually, there are
two variants: we write TO when dealing with real inner product spaces and TU
when dealing with complex inner product spaces.
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6. The passage to spectra

It is useful to regard a GI∗-FSP as a GI∗-prespectrum with additional structure.

Definition 6.1. A GI∗-prespectrum is a GI∗-functor T : GI∗ −→ GT together
with a continuous natural transformation σ : T ∧ S• −→ T ◦ ⊕ of functors GI∗ ×
GI∗ −→ T such that the composites

TV ∼= TV ∧ S0 σ−→ T (V ⊕ 0) ∼= TV

are identity maps and each of the following diagrams commutes:

TV ∧ SW ∧ SZ

∼=
²²

σ∧id // T (V ⊕W ) ∧ SZ

σ

²²
TV ∧ SW⊕Z

σ
// T (V ⊕W ⊕ Z).

We say that a GI∗-prespectrum is an inclusion GI∗-prespectrum if each adjoint
map

σ̃ : TV −→ F (SW , T (V ⊕W ))

is an inclusion.

Lemma 6.2. If T is a GI∗-FSP, then T is a GI∗-prespectrum with respect to the
composite maps

σ : TV ∧ SW id∧η−−−→ TV ∧ TW
ω−→ T (V ⊕W ).

Now fix a group G and a G-universe U , namely a countably infinite dimensional
inner product space that contains a trivial representation and contains each of its
finite dimensional representations infinitely often. We say that the universe U is
complete if it contains all irreducible representations of G. A G-prespectrum in-
dexed on U consists of based G-spaces TV for finite dimensional inner product
spaces V ⊂ U and a transitive system of structure G-maps σ : ΣW−V TV −→ TW
for V ⊂ W , where W − V is the orthogonal complement of V in W . A spectrum
E is a prespectrum whose adjoint structure maps EV −→ ΩW−V EW are homeo-
morphisms. There is a spectrification functor L from prespectra to spectra that is
left adjoint to the evident forgetful functor. See [34, 21, 39] for the development of
equivariant stable homotopy theory from this starting point. It is evident that a
GI∗-prespectrum restricts to a G-prespectrum indexed on U for every G and U .

Notations 6.3. Let T(G,U) denote the G-prespectrum indexed on U associated to
a GI∗-FSP T . Write R(T )(G,U) for the spectrum LT(G,U) associated to T(G,U).

Let L (j) be the G-space of linear isometries U j −→ U , with G acting by con-
jugation. As discussed in the cited sources and [10], L is a G-operad and is an
E∞ G-operad when U is complete. There is a notion of an L -prespectrum [37,
IV.1.1] (amended slightly in [34, VII.2.4-2.6]). Exactly as in [37, IV.2.2], T(G,U) is
an L -prespectrum. The essential point is that if f : U j −→ U is a linear isometry
and Vi are indexing spaces in U , then we have maps

ξj(f) : TV1 ∧ · · ·TVj
ω−→ T (V1 ⊕ · · · ⊕ Vj)

Tf−−→ Tf(V1 ⊕ · · · ⊕ Vj).

The notion of an L -prespectrum is defined in terms of just such maps.
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The notion of an L -spectrum E is defined more conceptually in terms of maps

L (j)n Ej −→ E.

(In fact, the twisted half-smash product n was not known when [37] was written.)
However, by [37, IV.1.6] and, in current terms, [34, VII§2], the functor L converts
L -prespectra to L -spectra. We conclude that, for every G and every complete G-
universe U , R(T )(G,U) is an L -spectrum and thus an E∞ ring G-spectrum. More-
over, as explained in [11, 10], L -spectra functorially determine weakly equivalent
commutative SG-algebras.

While the constructions of [20, 21] on which our work is based depend on the
fact that the G-spectra we are working with admit SG-algebra structures, we will
not need to make explicit use of these structures in our study of the norm map.

Remark 6.4. Let T be a global G I∗-functor, choose a complete G-universe UG

for each G, and consider the G-spectra R(T )(G,UG) as G varies. It is a routine
exercise to verify that the collection

{
R(T )(G,UG)

}
defines a G -spectrum, in the

sense defined in [34, II.8.5]. In particular, it follows immediately from [34, II.8.6
and II.8.7] that R(T )(G,UG) is a split G-spectrum for each G. This shows that our
Thom G-spectra are split, as stated in the introduction.

Remark 6.5. If U is a complete complex G-universe, we may regard it as a complete
real G-universe by neglect of structure. This gives two variants of all definitions in
sight, one in which we restrict attention to complex finite dimensional inner product
spaces V in U and the other in which we allow all real finite dimensional inner
product spaces. The resulting categories of G-spectra are canonically equivalent
[34, I.2.4] because the adjoint structure maps of G-spectra are homeomorphisms
and complex inner product spaces are cofinal among real ones.

7. Wreath products and the definition of the norm map

Recall that the wreath product Σn

∫
H is the semi-direct product Σn n Hn,

where Σn acts by permutations on Hn; explicitly, Σn

∫
H is the set Σn ×Hn with

the product

(7.1) (σ, h1, . . . , hn)(τ, k1, . . . , kn) = (στ, hτ1k1, · · · , hτnkn).

We have the following evident actions of this group. We display them explicitly
because of their centrality in our work.

Lemma 7.2. If V is a representation of H, then the sum V n of n copies of V is
a representation of Σn

∫
H with action given by

(σ, h1, . . . , hn)(v1, . . . , vn) = (hσ−1(1)vσ−1(1), . . . , hσ−1(n)vσ−1(n)).

Lemma 7.3. If X is a based H-space, then the smash power Xn is a (Σn

∫
H)-

space with action given by

(σ, h1, . . . , hn)(x1 ∧ . . . ∧ xn) = hσ−1(1)xσ−1(1) ∧ . . . ∧ hσ−1(n)xσ−1(n).

This leads to the following crucial observation.

Proposition 7.4. Let T be a GI∗-FSP. For an H-representation V , (TV )n and
T (V n) are Σn

∫
H-spaces and the map

ω : (TV )n −→ T (V n)
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is (Σn

∫
H)-equivariant. If U is an H-universe, then Un is a (Σn

∫
H)-universe

and the maps ω define a map of (Σn

∫
H)-prespectra indexed on Un

ω : (T(H,U))n −→ T(Σn

R
H,Un),

where (T(H,U))n is the nth external smash power of T(H,U). If T = S•, then ω is
an isomorphism of prespectra. If n =

∑
n(i), where n(i) ≥ 1 and 1 ≤ i ≤ m, then

the following diagram of prespectra commutes:
∧m

i=1(T(H,U))n(i) ∧iω //
∧m

i=1 T(Σn(i)
R

H,Un(i))

ω

²²
(T(H,U))n

ω
// T(Σn

R
H,Un).

Proof. For σ ∈ Σn, (σ, σ) is an automorphism of (Hn, V n) and thus Σn maps to
A = Aut(Hn, V n). This induces a map from Σn

∫
H to A n Hn (which is an

injection unless V = {0}). Now Lemma 5.4 restricts to give the action of Σn

∫
H

on T (V n). We see that ω is (Σn

∫
H)-equivariant by taking each (Hi, Vi) to be

(H, V ) in the diagram of Remark 5.6. We may index our prespectra on the cofinal
family of indexing spaces of the form V n in Un , and the external smash product
has V nth space (TV )n. The prespectrum level statements are now easily verified
from the definition of a GI∗-FSP. ¤

We shall use the proposition to define the norm map, but we first need a bit of
algebra. For the rest of the section, assume given a subgroup H of finite index n
in a compact Lie group G. Choose coset representatives t1, t2, · · · , tn for H in G,
taking t1 = e, and define the monomial representation

(7.5) α : G −→ Σn

∫
H

by the formula

(7.6) α(γ) = (σ(γ), h1(γ), . . . , hn(γ)),

where σ(γ) and hi(γ) are defined implicitly by the formula

(7.7) γti = tσ(γ)(i)hi(γ).

Lemma 7.8. The map α is a homomorphism of groups. If α′ is defined with
respect to a second choice of coset representatives {t′i}, then α and α′ differ by a
conjugation in Σn

∫
H.

Proof. The first statement holds by the definition (7.1) of the product in Σn

∫
H

and the observation that

(γδ)ti = γtσ(δ)(i)hi(δ) = tσ(γ)(σ(δ)(i))hσ(δ)(i)(γ)hi(δ).

For the second statement, if t′i = tiki, then

γt′i = tσ(γ)(i)hi(γ)ki = t′σ(γ)(i)k
−1
σ(γ)(i)hi(γ)ki

and therefore

α′(γ) = (1, k1, . . . , kn)−1α(γ)(1, k1, . . . , kn). ¤

The homomorphism α is implicitly central to induction in representation theory,
as the following lemma explains. Write α∗W for a representation W of Σn

∫
H

regarded as a representation of G by pullback along α.
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Lemma 7.9. If V is a representation of H, then α∗V n ∼= indG
HV .

Proof. Recall that indG
HV = C[G]⊗C[H] V . The isomorphism is given by mapping

ti ⊗ v on the left to v in the ith summand on the right, as is dictated by the case
i = 1 and equivariance. ¤

Analogously, for a based Σn

∫
H-space Y , write α∗Y for Y regarded as a G-space

by pullback along α. In particular, α∗((SV )n) ∼= SindG
HV .

Here, finally, is the definition of the norm map. Recall Notations 6.3.

Definition 7.10. Let T be a GI∗-FSP, let X be a based H-space, and let U
be a complete H-universe. An element x ∈ R(T )H

0 (X) is given by a map of H-
spectra x : S(H,U) −→ R(T )(H,U) ∧ X. Define the norm of x to be the element
of R(T )G

0 (α∗Xn) given by the pullback along α of the composite map of Σn

∫
H-

spectra indexed on Un displayed in the commutative diagram:

S
(Σn

∫
H,Un)

ω−1
//

²²

(S(H,U))n xn
// (R(T )(H,U) ∧X)n

∼=
²²

R(T )
(Σn

∫
H,Un)

∧Xn (R(T )(H,U))n ∧Xn.
ω∧id

oo

If we take it as understood that G acts on Un through α, then the composite
defining normG

H(x) may be rewritten more simply as

(7.11)

S(G,Un)
ω−1

//

normG
H(x)

²²

(S(H,U))n xn
// (R(T )(H,U) ∧X)n

∼=
²²

R(T )(G,Un) ∧Xn (R(T )(H,U))n ∧Xn.
ω∧id

oo

Observe that the G-universe Un is complete; for example, if G is finite, this holds
because the regular representation of H induces up to the regular representation
of G. Strictly speaking, if we start with H-spectra defined in fixed complete H-
universes UH for all H, then we must choose an isomorphism UG

∼= Un
H to transfer

the norm to a map of spectra indexed on UG. This is a standard procedure that
must be applied to various of the maps that we shall construct; compare Remark
6.4.

Property (4.2) of the norm is obvious. Property (4.3) is an easy consequence of
the unity and associativity diagrams in the definition of a GI∗-FSP. Property (4.4)
also follows easily from the definition of a GI∗-FSP, once we make precise how to
interpret the product (4.5). Thus suppose given H-universes U and U ′ and maps
x : S(H,U) −→ R(T )(H,U) and y : S(H,U ′) −→ R(T )(H,U ′). For the present purpose,
U and U ′ could be the same, but we will want to allow them to be different in the
next section. We then define xy to be the composite displayed in the diagram
(7.12)

S(G,U⊕U ′)
ω−1

//

xy

²²

S(G,U) ∧ S(G,U ′)
x∧y // R(T )(G,U) ∧X ∧R(T )(G,U ′) ∧ Y

∼=
²²

R(T )(G,U⊕U ′) ∧X ∧ Y R(T )(G,U) ∧R(T )(G,U ′) ∧X ∧ Y
ω∧id

oo
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Of course, when U = U ′, we can internalize this external multiplication by use
of a linear isometry f : U ⊕ U −→ U ; it is then obvious that it agrees with the
standard homotopical definition of such a product. The external form makes the
verification of (4.4) transparent.

8. The proof of the double coset formula

The proof of the double coset formula requires a precise combinatorial discussion
of double cosets. We again suppose given a subgroup H of finite index n in a
compact Lie group G. We fix coset representatives tj and use them to define the
monomial representation α, as in the previous section. We suppose given a second
subgroup K of G and we choose representatives g1, · · · , gm for the double cosets
K\G/H. We shall choose the gi’s from among the tj ’s, in a manner to be specified.

The gi give a decomposition of the finite K-set G/H as
m∐

i=1

K/giH ∩K
∼=−→

m∐

i=1

KgiH = K\G/H.

Explicitly, the ith component is the isomorphism

K/giH ∩K
∼=−→ KgiH

that sends k(giH ∩K) to kgiH. Let the ith double coset have n(i) elements, define
q(i) = n(1) + · · · + n(i − 1), and label the gi and tj so that gi = tq(i)+1 and the
tq(i)+r, 1 ≤ r ≤ n(i), run through the coset representatives of G/H that are in the
ith double coset KgiH. Thus

KgiH =
n(i)∐
r=1

tq(i)+rH.

Define

(8.1) si,r = tq(i)+rg
−1
i ∈ K.

Thus the si,r are coset representatives for K/giH ∩K that map to our chosen coset
representatives tq(i)+r in KgiH. With this choice, we define homomorphisms

(8.2) βi : K −→ Σn(i)

∫
giH ∩K

by the formula

(8.3) βi(κ) = (τi(κ), `1(κ), . . . , `n(i)(κ)),

where τi(κ) and `r(κ) are defined implicitly by the formula

(8.4) κsi,r = si,τi(κ)(r)`r(κ).

Lemma 8.5. With these choices of α and the βi, the permutations σ(κ) for κ ∈ K
decompose as block sums σ1(κ)⊕ · · · ⊕ σm(κ) with σi(κ) ∈ Σn(i), and

σi(κ) = τi(κ) and hq(i)+r(κ) = g−1
i `r(κ)gi.

Proof. The first statement holds since κ must permute the tq(i)+1, · · · , tq(i)+n(i)

among themselves. For the second statement, we obtain

κtq(i)+rg
−1
i = tq(i)+τi(κ)(r)g

−1
i `r(κ)

by inserting the formula (8.1) into (8.4), while (7.7) gives

κtq(i)+r = tq(i)+σi(κ)(r)hq(i)+r(κ). ¤
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The lemma can be rewritten in terms of homomorphisms, giving a description
of the restriction of α to K in terms of the βi.

Lemma 8.6. The restriction of α to K maps into
∏

i Σn(i)

∫
H, and the following

diagram commutes:

G
α // Σn

∫
H

K

OO

(α1,...,αm) //

(β1,...,βm) &&NNNNNNNNNNNN
∏

i Σn(i)

∫
H

OO

∏
i Σn(i)

∫
giH ∩K,

Q
i id
R

cgi

66lllllllllllll

where αi(κ) = (σi(κ), hq(i)+1(κ), . . . , hq(i)+n(i)(κ)) and cgi
(gihg−1

i ) = h.

We can now prove (4.6). For a map x : S(H,U) −→ R(T )(H,U)∧X, resG
KnormG

H(x)
is the composite map of K-spectra indexed on Un that is displayed in the following
diagram, where K acts on Un and Xn through the restriction of α to K:

S(K,Un)
ω−1

//

²²

Sn
(H,U)

xn
// (R(T )(H,U) ∧X)n

∼=
²²

R(T )(K,Un) ∧Xn (R(T )(H,U))n ∧Xn.ω∧idoo

Define νi(x) to be the composite displayed in the following diagram, in which K
acts through αi on Un(i) and Xn(i):

(8.7)

S(K,Un(i))
ω−1

//

νi(x)

²²

(S(H,U))n(i) xn(i)
// (R(T )(H,U) ∧X)n(i)

∼=
²²

R(T )(K,Un(i)) ∧Xn(i) (R(T )(H,U))n(i) ∧Xn(i).
ω∧id

oo

In view of the transitivity diagram for ω given in Proposition 7.4, applied to both
R(T ) = LT and S, we see immediately that the following diagram commutes:

S(K,Un)
ω−1

//

resG
KnormG

H(x)

²²

∧m
i=1 S(K,Un(i))

∧iνi(x) // ∧m
i=1(R(T )(K,Un(i)) ∧Xn(i))

∼=
²²

R(T )(K,Un) ∧Xn (
∧m

i=1 R(T )(K,Un(i))) ∧ (
∧m

i=1 Xn(i)).ω∧idoo

Comparing with (7.12), we see that precisely such a diagram makes sense of the
iterated product (4.7), and we conclude that resG

KnormG
H(x) is the product of the

νi(x). Abbreviating notation (as in (4.6)), let g = gi. To complete the proof of
(4.6), we need only show that

νi(x) = normK
gH∩K res

gH
gH∩K cg(x).

This means that νi(x) coincides with the composite displayed in the following di-
agram, in which gX denotes the H-space X regarded as a gH-space by pullback
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along cg : gH −→ H, gU denotes the H-universe U regarded as a gH-universe by
pullback along cg, and K acts through βi on gUn(i) and gXn(i):
(8.8)

S(K,gUn(i))
ω−1

//

²²

(S(gH∩K,gU))n(i)
cg(x)n(i)

// (R(T )(gH∩K,gU) ∧ gX)n(i)

∼=
²²

R(T )(K,gUn(i)) ∧ gXn(i) R(T )n(i)
(gH∩K,gU) ∧ gXn(i).

ω∧id
oo

It is immediate from the definition of a GI∗-functor that

R(T )(gH,gU) = gR(T )(H,U),

where gR(T )(H,U) denotes R(T )(H,U) regarded as a gH-spectrum by pullback along
cg. The same is true for S, and cg(x) = gx is just the map x regarded as a gH-map
by pullback along cg. By Lemma 8.6,

αi = cg ◦ βi : K −→ Σn(i)

∫
H.

Therefore Xn(i) regarded as a K-space via αi is identical to gXn(i) regarded as a
K-space via βi and Un(i) regarded as a K-universe via αi is identical to gUn(i)

regarded as a K-universe via βi. Except that we have used that βi takes values in
Σn(i)

∫
gH ∩ K to restrict the group action in some of the terms of (8.8), we see

that the diagrams (8.7) and (8.8) display one and the same map.

9. The norm map on sums and its double coset formula

Consider normG
H(x + y), where x ∈ R(T )H

−q and y ∈ R(T )H
−r for even integers

q ≥ 0 and r ≥ 0. Here we are considering the case X = Sq ∨ Sr of the norm map
that we defined in Definition 7.10. For based H-spaces X and Y , we have

(9.1) (X ∨ Y )n ∼= ∨n
i=0(Σn

∫
H)n(Σi×Σn−i)

R
H Xi ∧ Y n−i

as Σn

∫
H-spaces. For any subgroup K ⊆ G, we therefore have

(9.2) (X ∨ Y )n ∼=
n∨

i=0

∨
γ

K nγ((Σi×Σn−i)
R

H)∩K
γ(Xi ∧ Y n−i)

as K-spaces, where γ runs through a set of double coset representatives for

K \ (Σn

∫
H) / ((Σi × Σn−i)

∫
H).

Taking K = G, we see that, in general, the norm of the sum of elements of
R(T )H

0 (X) and R(T )H
0 (Y ) is an element of

(9.3) R(T )G
0 ((X ∨ Y )n) =

∑n
i=0

∑
γ R(T )

γ((Σi×Σn−i)
R

H)∩G
0 (γ(Xi ∧ Y n−i)).

Now return to our elements x ∈ R(T )H
−q and y ∈ R(T )H

−r. We are thinking
of x = 1. In order to obtain the norm of Definition 3.6, we must transform the
element normG

H(x + y) to an element of R(T )G
∗ , and we must do so in a fashion

that makes sense of and validates the double coset formula of Definition 3.6. This
is where we use the assumption in Theorem 3.2 that each R(T )#G has natural Thom
isomorphisms. By working on the level of Σn

∫
H as long as possible, we shall
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circumvent any need to deal with the complexities displayed in formulas (9.2) and
(9.3).

Let Vn denote Rn with its permutation action by Σn and regard Vn as a Σn

∫
H-

representation with trivial action by H. Thus α∗Vn
∼= indG

HR. Writing V q for the
sum of q copies of V , we have (Sq)n = SV q

n as a Σn

∫
H-space. Therefore (9.1)

gives

(9.4) (Sq ∨ Sr)n ∼= ∨n
i=0(Σn

∫
H)n(Σi×Σn−i)

R
H SV q

i ⊕V r
n−i

as Σn

∫
H-spaces. Define a translated induction map

ψi : R(T )Σn

R
H

∗ ((Σn

∫
H)n(Σi×Σn−i)

R
H SV q

i ⊕V r
n−i) −→ R(T )Σn

R
H

∗ (Sqi+r(n−i))

by commutativity of the following diagram:
(9.5)

R(T )Σn

R
H

∗ ((Σn

∫
H)n(Σi×Σn−i)

R
H SV q

i ⊕V r
n−i)

∼= //

ψi

²²

R(T )(Σi×Σn−i)
R

H
∗ (SV q

i ⊕V r
n−i)

φV
q
i
⊕V r

n−i

²²

R(T )Σn

R
H

∗ (Sqi+r(n−i)) R(T )(Σi×Σn−i)
R

H
∗ (Sqi+r(n−i)),

ind
Σn

R
H

(Σi×Σn−i)
R

H

oo

where we have written indG
H for the ordinary transfer homomorphism associated to

H ⊆ G. In particular, restricting to degree zero, this gives

ψi : R(T )Σn

R
H

0 ((Σn

∫
H)n(Σi×Σn−i)

R
H SV q

i ⊕V r
n−i) −→ R(T )Σn

R
H

−qi−r(n−i).

We also write ψi for the corresponding map of G-equivariant homology groups ob-
tained by pullback along α. Observe that V q

i and V r
n−i are not representations of G,

so that we must start with (9.1) and not (9.2) in order for the Thom isomorphisms
that we use here to make sense. Note too that we require Thom isomorphisms for
Σn

∫
H and its subgroups, not just for G and its subgroups.

Use of the ψi allows us to redefine the norm of sums in a Z-graded form. We
have

normG
H(x + y) ∈ R(T )G

0 (α∗(Sq ∨ Sr)n).
It is the restriction to G of an element of

R(T )Σn

R
H

0 ((Sq ∨ Sr)n) ∼= ∑n
i=0 R(T )Σn

R
H

0 ((Σn

∫
H)n(Σi×Σn−i)

R
H SV q

i ⊕V r
n−i).

We write normG
H(x + y)i for the component in the ith summand and define

(9.6) normG
H(x + y) =

n∑

i=0

ψi(normG
H(x + y)i).

The double coset formula is still valid for these modified norm maps.

Proposition 9.7. For elements x ∈ R(T )H
−q and y ∈ R(T )H

−r,

resG
K normG

H(x + y) =
∏

g normK
gH∩K res

gH
gH∩K cg(x + y),

where K is any subgroup of G and {g} runs through a set of double coset represen-
tatives for K\G/H.
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Proof. To simplify the notation, we restrict attention to the case q = 0, which is
the case of interest. Since V 0

i = {0}, Σi acts trivially on S0 = SV 0
i . Reverse the

roles of i and n − i in the notations above and let Σ′i ⊂ Σn be the subgroup of
permutations that fix the first n − i letters. Recall that if gH ∩K has index n(g)
in gH, then n =

∑
n(g). Fix an ordering of the g’s and write Σ{n(g)} for

∏
g Σn(g)

regarded as a subgroup of Σn. The left side of the equation in the statement is the
restriction to K of an element of

n∑

i=0

R(T )Σn

R
H

−ri .

The right side is the product over {g} of the restrictions to K of elements of
n(g)∑

a(g)=0

R(T )Σn(g)
R

H

−ra(g) .

In view of Lemma 8.6, we see that the relevant products are obtained by adding
up restrictions to K of products

⊗
g R(T )Σn(g)

R
H

0 (Sra(g)) // R(T )Σ{n(g)}
R

H
0 (Sri),

where 0 ≤ a(g) ≤ n(g) and
∑

a(g) = i. For such a sequence {a(g)}, let Σ′{a(g)} =∏
g Σ′a(g) regarded as a subgroup of Σ′i. The original double coset formula (4.6)

made use of the restriction to K of the product
⊗

g R(T )Σn(g)
R

H
0 ((S0 ∨ Sr)n(g)) // R(T )Σ{n(g)}

R
H

0 ((S0 ∨ Sr)n).

Under the wedge decomposition (9.1) and change of groups isomorphisms like those
in the top line of (9.5), this product agrees with the sum over sequences {a(G)} of
the product maps

⊗
g R(T )

Σ′a(g)

R
H

0 (SV r
a(g)) // R(T )

Σ′{a(g)}
R

H

0 (SV r
i ).

We claim that the following diagram commutes for each such sequence {a(g)},
where the left horizontal arrows are products and the right horizontal arrows are
restrictions:

⊗
g R(T )

Σ′a(g)

R
H

0 (SV r
a(g)) //

N
φV r

a(g)

²²

R(T )
Σ′{a(g)}

R
H

0 (SV r
i )

φV r
i

²²

R(T )Σ
′
i

R
H

0 (SV r
i )oo

φV r
i

²²⊗
g R(T )

Σ′a(g)

R
H

0 (Sra(g)) //

N
ind

Σn(g)
R

H

Σ′
a(g)

R
H

²²

R(T )
Σ′{a(g)}

R
H

0 (Sri)

ind
Σ{n(g)}

R
H

Σ′{a(g)}
R

H

²²

R(T )Σ
′
i

R
H

0 (Sri)oo

ind
Σn

R
H

Σ′
i

R
H

²²⊗
g R(T )Σn(g)

R
H

0 (Sra(g)) // R(T )Σ{n(g)}
R

H
0 (Sri) R(T )Σn

R
H

0 (Sri)oo

The top two squares commute since our Thom isomorphisms are multiplicative
and compatible under restriction. The bottom two squares commute since transfer
commutes with products and restriction by [34, IV.4.4 and IV.5.2]. It follows di-
rectly that the present version of the double coset formula follows from the original
version. ¤
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Taking x = 1, we obtain norm maps as specified in Definition 3.6.

10. The Thom classes of Thom spectra

In this section, we write T for the Thom G I∗-functor TU of Example 5.8. It de-
termines a G -prespectrum by neglect of structure. The structure maps σ specified
in Lemma 6.2 are cofibrations between CW complexes, hence their adjoints are cofi-
brations and therefore inclusions [33]. We restrict attention to complex G-universes
U and complex inner product spaces, and we think of R∞ as the underlying real in-
ner product space of UG ∼= C∞; compare Remark 6.5. For each compact Lie group
G and G-universe U , we obtain an inclusion G-prespectrum T(G,U) indexed on U .
We write MU(G,U) for its associated G-spectrum. We have seen in Section 6 that
these are E∞ ring G-spectra and so determine weakly equivalent S(G,U)-algebras.
All that remains to complete the proof of Theorem 3.3 and thus of Theorem 1.3 is
to construct Thom classes

(10.1) µ(V ) ∈ MU2n−V
(G,U)

∼= MU2n
(G,U)(S

V ),

where V is a complex representation of complex dimension n, and prove their
naturality. We take U to be a complete complex G-universe, and we may assume
that V is a finite dimensional subspace of U .

Let T ′(G,U)(V ) be the Thom complex associated to the canonical complex n-plane
G-bundle over the Grassmannian Grn(V ⊕ U) of n-planes in V ⊕ U . For V ⊆ W ,
let

σ′ : T ′(G,U)V ∧ SW−V −→ T ′(G,U)W

be the map of Thom complexes induced by the evident map from the sum of the
canonical n-plane bundle over Grn(V ⊕ U) and the trivial bundle W − V over the
point {W − V } to the canonical q-plane bundle over Grn(W⊕U), where dim(W ) =
q. The inclusion V ⊕ V −→ V ⊕ U induces a G-map TV −→ T ′(G,U)V , and these
maps together define a map of inclusion G-prespectra

i : T(G,U) −→ T ′(G,U).

A standard and easy comparison of colimits of homotopy groups shows that the
associated map

MU(G,U) −→ MU ′
(G,U)

of G-spectra is a spacewise G-equivalence and thus a weak equivalence. We also
have evident unit and product maps

η′ : SV −→ T ′(G,U)V

and
ω′ : T ′(G,U)V ∧ T ′(G,U)W −→ T ′(G,U⊕U)(V ⊕W )

that are compatible with the unit and product maps of T . Of course, the advan-
tage of T ′(G,U) and its associated G-spectrum MU ′

(G,U) is that the Grassmannians
Grn(V ⊕ U) are classifying spaces for complex n-plane G-bundles.

The inclusion of V in U may be viewed as a map of G-bundles from the trivial
bundle over a point to the universal n-plane bundle over Grn(Cn⊕U). On passage
to Thom complexes, it gives a map

t(V ) : SV −→ T ′(G,U)C
n.
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Composing with the natural map to MU ′
(G,U)C

n, we see that t(V ) represents an
element µ(V ) as in (10.1). It is a Thom class, as is standard (e.g. [8] or [7, 2.1])
and can be verified in various ways. Perhaps the simplest is to define

t−1(V ) : S2n −→ T ′(G,U)V

by reversing the roles of V and Cn. Composing with the natural map to MU ′
(G,U)V ,

we see that t−1(V ) represents an element µ−1(V ) ∈ MUV−2n
(G,U) . Via ω′, the smash

product of t(V ) and t−1(V ) induces a G-map

SV +2n −→ T ′(G,U⊕U)(V ⊕ Cn)

that is homotopic to the map obtained by including V ⊕Cn as the base plane. The
latter map is part of the unit map η′, and a standard unravelling of definitions shows
that µ(V ) and µ−1(V ) are inverse units of the RO(G)-graded ring MU ′∗

G
∼= MU∗

G.
This completes the verification that each MU#

G has Thom classes. To show their
compatibility under restriction, consider a G-space V in a G-universe U and observe
that

(10.2) t(V )|H = t(V |H) : SV −→ T ′(H,U)C
n, hence µ(V )|H = µ(V |H).

To show their compatibility under conjugation, consider an H-space V in an H-
universe U and an element g ∈ G, write gU for the universe U regarded as a gH
universe by pullback along cg : gH −→ H, and observe that

(10.3) t(gV ) = c∗g(t(V )) : S
gV −→ T ′(gH,gU)C

n, hence µ(gV ) = cg(µ(V )).

To prove their multiplicativity, recall the external form of our basic products dis-
played in (7.12). The following immediate observation gives an external multiplica-
tivity formula from which the internal one of Definition 3.7 follows.

Lemma 10.4. Let U be a G-universe and U ′ be a G′-universe, and let V ⊂ U and
V ′ ⊂ U ′. Then the following diagram commutes:

SV ∧ SV ′
t(V )∧t(V ′) //

∼=
²²

T ′(G,U)V ∧ T ′(G′,U ′)V
′

ω′

²²

SV⊕V ′

t(V⊕V ′)
// T ′(G×G′,U⊕U ′)(V ⊕ V ′).

Therefore µ(V )µ(V ′) = µ(V ⊕ V ′).

11. The proof of Lemma 3.4

Let us say that a representation V of G detects a subgroup H if V 6= 0 but
V H = 0. Then Lemma 3.4 can be interpreted as stating that there are finitely many
complex representations Vi of the T such that every subgroup of T is detected by
one of the induced representations indG

T Vi. Recall that F denotes the finite quotient
group G/T .

Consider the irreducible representations V of T . They may be viewed as elements
of T ∗ = Hom(T, S1). Clearly V detects H unless H ⊆ ker(V ). It is clear from the
definition of induction that

resG
T indG

T V =
⊕

f∈F

fV .
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Thus H is detected by indG
T V if and only if it is detected by all of the conjugate

representations fV , that is, if and only if, for all f ∈ F , H is not in the kernel of
fV . Note that ker(fV ) = f (kerV ).

Thus, for any list of irreducible representations V1, · · · , Vq, if Ki is the kernel of
Vi, then each subgroup not detected by the Vi is a subgroup of

f1K1 ∩ · · · ∩ fqKq

for some list of elements fi of F .
Let T have rank r. Proceeding inductively, we choose irreducible representations

V1, · · · , Vr such that, for 1 ≤ q ≤ r, each displayed intersection of conjugated kernels
has rank r − q. We begin the induction by choosing any V1. Certainly each f1K1

has rank r − 1. Assume that V1, · · · , Vq have been chosen, where q < r. Thinking
on the Lie algebra level, and noting that conjugations induce translations of Lie
algebras, we see that it suffices to choose the kernel Kq+1 of Vq+1 so that none of
the (r − q)-dimensional subspaces

f1(LK1) ∩ · · · ∩ fq(LKq)

of LT is contained in any fq+1(LKq+1). Translating by f−1
q+1, we see that each such

condition excludes an (r − q)-dimensional subspace of LT from lying in LKq+1.
Dually, consider the finitely many q-dimensional subspaces

{α |α(f−1
q+1(f1(LK1) ∩ · · · ∩ fq(LKq))) = 0} ⊂ (LT )∗.

Since q < r, the set theoretic union of these subspaces cannot be dense in (LT )∗.
Therefore we can choose β ∈ (LT )∗ such that β is in none of these subspaces and
such that the kernel of β has rational basis with respect to the lattice on LT given
by the kernel of the exponential. The rationality condition ensures that this kernel
is the Lie algebra of the kernel Kq+1 of a representation Vq+1 : T −→ S1 whose
induced map LT −→ R of Lie algebras is β. At the rth stage, all of the intersections

f1K1 ∩ · · · ∩ frKr

have dimension zero and are therefore finite. To detect the finitely many subgroups
in these finitely many intersections, we need only detect their nonidentity elements
g. However, if Vg is a representation whose kernel Kg does not contain all of the
conjugates fg, then indG

T Vg detects g, so this is easily done.
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