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Abstract—We model and study the problem of localizing a set
of sparse forcing inputs for linear dynamical systems from noisy
measurements when the initial state is unknown. This problem is
of particular relevance to detecting forced oscillations in electric
power networks. We express measurements as an additive model
comprising the initial state and inputs grouped over time, both
expanded in terms of the basis functions (i.e., impulse response
coefficients). Using this model, with probabilistic guarantees, we
recover the locations and simultaneously estimate the initial state
and forcing inputs using a variant of the group LASSO (linear
absolute shrinkage and selection operator) method. Specifically,
we provide a tight upper bound on: (i) the probability that the
group LASSO estimator wrongly identifies the source locations,
and (ii) the `2-norm of the estimation error. Our bounds explicitly
depend upon the length of the measurement horizon, the noise
statistics, the number of inputs and sensors, and the singular
values of impulse response matrices. Our theoretical analysis is
one of the first to provide a complete treatment for the group
LASSO estimator for linear dynamical systems under input-to-
output delay assumptions. Finally, we validate our results on
synthetic models and the IEEE 68-bus, 16-machine system.

Index Terms—Forced oscillations, unknown input, group
LASSO, invariant zeros, source localization, sparse estimation.

I. INTRODUCTION

Low-frequency oscillations in the electric transmission grid
are indicative of the type of disturbance afflicting the system.
Natural oscillations, with frequencies in between 0.1–0.2 Hz,
are triggered by random load fluctuations and sudden network
switching. In contrast, forced oscillations (FOs), with frequen-
cies in between 0.1–15 Hz, result from external inputs injected
by malfunctioned or compromised devices, such as power
system stabilizers (PSS), generator controllers and exciters,
and cyclic loads etc. [1]. FOs remain undamped for longer
periods of time, and if not mitigated, they pose a greater risk
to the power systems operation, potentially causing blackouts.

A popular and inexpensive method to mitigate FOs in
power systems is to remove the source triggering these os-
cillations [1]–[3]. This amounts to accurately locating the FO
sources. As installing sensors at each potential source is expen-
sive, recent research suggests using phasor measurement unit
(PMU) measurements based source localization algorithms.
These algorithms range from physics-based energy approaches
to completely data-driven approaches [1]; the latter, albeit
their impressive performance on test cases, lack theoretical
guarantees. This deficiency makes it harder to quantify the
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performance and limitations of measurement-based methods
on what is and is not possible.

We address the lack of guarantees of existing data-driven
approaches by posing the localization problem as a regular-
ized optimization problem—referred to as the group LASSO
estimator. The regularization term imposes sparsity constraints
on the number of source locations, which is often the case in
many practical systems, including power systems [2], [4]. The
input to our optimization problem are the noisy measurements
and dynamical system matrices. It returns the source locations
and estimates of unknown initial state and inputs (oscillatory
or not) injected by these sources. Formally, we consider[

x̂0

û

]
︸ ︷︷ ︸

β̂

∈ argmin
x0,{uj}mj=1

∥∥∥∥∥∥y−Ox0−
m∑
j=1

Jjuj

∥∥∥∥∥∥
2

2

+λ

m∑
j=1

‖ui‖2 , (1)

where uj = [uj [0], . . . , uj [N ]]T is a vector of inputs injected
by the jth source, j ∈ {1, . . . ,m}, over a discrete time horizon
D , {0, . . . , N}; y is the noisy batch measurements collected
over D from multiple sensors; O and Jj are the observability
and forced impulse response matrices, resp; and λ ≥ 0 is the
tuning parameter. Let β∗ = (x∗0,u

∗
1, . . . ,u

∗
m) be the unknown

ground truth and S , {j : u∗j 6= 0} ⊂ {1, . . . ,m} be the
set of active sources. By sparse number of sources, we mean
|S| = m∗ � m. Defining Ŝ , {j : ûj 6= 0}, where û as the
estimate, we show that Ŝ = S∗ and ‖β̂ − β∗‖2 ≤ ε, for any
ε > 0, hold with high probability.

In the context of regression models, including linear, logis-
tic, and functional models, a rich literature exists on quantify-
ing the theoretical performance of the group LASSO estimator
and its variants; see [5]–[7]. However, these works assume Jj
and O to be random or to satisfy rather restrictive assumptions,
either of them may not hold for Jj and O obtained from linear
dynamical systems. Further, Jj associated with the non-zero
input u∗j could be rank deficient, especially if the underlying
linear dynamical system is only d-delay left invertible1 [8]; this
in turn eliminates the strict convexity property of the objective
in (1). As a result, there may exist multiple optimal solutions
(β̂); hence, it is not clear if Ŝ is common for all these solutions.
We address all these issues by imposing physically meaningful
assumptions on O and Ji.

Going beyond the motivating example of forced oscillations
in electric power systems, the problem setup in (1) is general
and the formal results in this paper can be used to localize and

1A dynamical system is said to be d-delay left invertible if uj [k] can be
uniquely determined from noise-less measurements {y[k], y[k+1], , y[k+d]}.
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reconstruct sparse inputs for a variety of practical engineering
systems modeled as linear dynamical systems.

Paper Contributions: The problem we introduce in (1) is
distinct from state of the art regularized based optimization
methods in seeking to localize inputs and estimate initial state
using sufficiently delayed measurements over a block of time.
For this model, our main contributions as follows.

1) Our first result is in deriving sufficient conditions under
which the following hold with high probability: (i) the
estimation error in the `2-sense is bounded, and (ii) the lo-
calized sources match the true sources. A key contribution
is that despite the rank deficiency of model matrices, we
guarantee that the group LASSO can localize the sources
correctly. For rank deficient matrices Ji, we provide
estimation guarantees for the delayed inputs (see Section
III). Our result hinges on introducing and thresholding a
mutual incoherence condition (MIC) on the augmented
O and Ji matrices.

2) The time-domain MIC condition we introduce requires
computing correlations among O and Ji. This operation
is computationally hard especially for large system di-
mension and estimation horizon N . To tackle this hurdle,
we upper bound the time-domain MIC with a frequency-
domain MIC. Interestingly, the latter MIC is a sufficient
condition if we were to consider a LASSO estimator in
the frequency-domain. We also establish a relationship
between the performance of the proposed group LASSO
approach and the absence of invariant zeros for the sub-
system excited by non-zero inputs, and thresholding the
frequency domain MIC.

3) We validate the group LASSO estimator’s performance
on synthetic data and the IEEE 68-bus, 16-machine sys-
tem. We implement our estimator using the Alternating
Direction Method Multipliers (ADMM) method [9].

Related Literature: In the context of power systems, model
based-approaches, e.g., energy dissipation methods based on
frequency domain data and statistical signal processing meth-
ods based on AR and ARMA models, are commonly used
to localize unknown forced oscillatory inputs. Reference [10]
proposes a Bayesian approach to localize sources based on the
generators frequency response functions. In [11], the pseudo-
inverse of a set of system transfer functions are multiplied by
a vector of PMU measurements to yield an FO solution vector.
In [12], the authors leverage the properties of magnitude and
phase responses of transfer functions between different buses
to identify possible oscillation sources. Instead, completely
data-driven methods include the use of novel machine learning
methods on the multivariate PMU time series data in [13] and
the robust PCA method in [2], which exploits the low-rank
nature of PMU data and also the sparsity of the locations.

More broadly, there is a growing research on source local-
ization and unknown state and sparse input reconstruction in
dynamical systems based on sparsity constrained optimization
methods. The problem of source location in the context of
attacks on inputs and sensors is studied in [14] and [15].
However, these works work with noise-free measurements and
do not focus on unknown input estimation. In [16], [17], by

assuming the knowledge of inputs and using randomly sam-
pled measurements, the authors obtained sample complexity
(bounds on the number of measurements) results for recon-
structing the initial state with sparsity constraints. Instead, the
authors in [18] and [19], consider sparse input and non-sparse
state reconstruction using batch wise noise-less measurements
and sequential noisy measurements, respectively. However,
these works do not address location recovery guarantees for the
unknown sources and the initial state. Finally, we acknowledge
works in [20], [21], where the authors used banks of input
observers based residual generation methods to identify source
locations in noise-free systems—albeit with strong assump-
tions, as they do not consider sparse inputs.

In contrast to these works, we consider a unified framework,
based on a LASSO method, to jointly locate the sources, and
estimate the sparse inputs along with the unknown initial state.
As highlighted in several other non-sparsity based input iden-
tification methods [20], [22], [23], our results also highlight
the role of invariant zeros for sparse input recovery.

Mathematical Notation: We denote the vectors and matrices
are by boldface lower case and upper case letters. Denote the
d × d identity matrix by Id. Denote the pseudoinverse of X
by X†. The rangespace of X is defined by R(X) = {Xz :
z ∈ Rm}. Given S ⊂ {1, . . . ,m} and x ∈ Rm, we write xS
for the sub-vector of x formed from the entries of x indexed
by S. Similarly, we write MS for the submatrix of M formed
from the columns of M indexed by S. For 1 ≤ p < ∞ and
the vector x = [x1, . . . , xm], denote ‖x‖p = (

∑m
i=1 |xi|p)1/p.

Instead, ‖u‖∞ = maxl |ul|. The `a,b-mixed-norm, with a, b ≥
0, of z = [zT1 , . . . , z

T
r ]

T is given by ‖z‖ba,b =
∑r
j=1 ‖zj‖ba. By

convention, ‖z‖a,0 ,
∑r
j=1 I(‖zj‖a 6= 0), where I(·) is the

indicator function, counts the number of non-zero vectors. For
a positive integer m, we denote [m] = {1, . . . ,m}.

II. PROBLEM SETUP AND PRELIMINARIES

For a sampled system, we obtain a linear relation between
the batch measurements and the initial state and forced inputs.
We then formulate a group LASSO optimization problem for
the above model to estimate the initial state and inputs, and
to locate the unknown sources.

A. Linear dynamics under sparse forced inputs

Consider the following continuous-time linear system sub-
jected to external inputs:

ẋc(t) = Acxc(t) + Bcu
∗
c [t], t ∈ R, (2)

where ∆xc(t) ∈ Rn and u∗c [t] ∈ Rm is the state and input. We
assume the input to be sparse, that is ‖u∗c(t)‖0 ≤ m∗ << m
for all t ∈ R. In the context of power systems, the state ∆xc(t)
consists of the dynamical states of generators and their control
systems, including rotor angles, speed deviations, field exci-
tation voltage, etc. Instead, u∗c(t) = [u∗c,1(t), . . . , u

∗
c,m(t)]T is

the vector of inputs triggered by the sources of FOs, among
which only m∗ locations are active. However, our model in (2),
except for sparsity constraints, is general and allows for multi-
dimensional un-modeled exogenous stochastic or deterministic
disturbances, benign faults, or adversarial attacks.
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We consider the discrete-time dynamics of (2) together with
a measurement equation:

x[k + 1] = Ax[k] + Bu∗[k], (3)
y[k] = Cx[k] + v[k], k = 0, 1, . . . , (4)

where A = eAcδt, B = (
∫ δt
0
eAcτdτ)Bc, and δt is the

sampling time period, and u∗[k] = [u1[k], . . . , um[k]]T. Fur-
ther, y[k] = [y1[k], . . . , yp[k]]

T ∈ Rp is the measurement,
v[k]

iid∼ N (0, σ2I) is noise, and C∈Rp×n is the sensor matrix.
In Section IV, we consider dynamics in (3) with process noise,
and also relax the diagonal covariance assumption on v[k].

Let S = {j : uj [k] 6= 0 for at least one k ≥ 0} ⊂ [m] and
Sc = [m] \S. We refer S and Sc to as the active and inactive
set. Partition B as B = [BS BSc ] and u[k] = [uT

S [k] uT
Sc [k]]T,

with u∗Sc [k] = [u∗i1 [k], . . . , u
∗
ir
[k]] and BSc = [bi1 , . . . ,bir ],

where ir ∈ Sc and r = |Sc| = m − m∗. Similarly, define
u∗S [k] and BS . Then, the input term in (3) can be written as

Bu∗[k] =

m∑
j=1

bju
∗
j [k] =

∑
j∈S

bju
∗
j [k] +

∑
j∈Sc

bju
∗
j [k]

= BSu∗S [k] + BScu∗Sc [k].

(5)

The above representations will play a key role in formulating
our group LASSO problem in Section II-B.

Using (3)-(4), we express the batch measurements y (see
below) as a linear model with added noise. Define the vectors

y=

 y[0]
...

y[N ]

 ,v=

 v[0]
...

v[N ]

 , and u∗j =

 u
∗
j [0]
...

u∗j [N ]

 , (6)

where y, v ∈ Rp(N+1) and u∗j ∈ RN+1, for all j ∈ Sc. Here,
N + 1, with N > 0 is the length of the estimation horizon.
We also define the observability matrix O ∈ Rp(N+1)×n and
the impulse response matrix Jj ∈ Rp(N+1)×N+1 as

O=


C

CA
CA2

...
CAN

 ;Jj=


H

(j)
0 0 0 . . . 0

H
(j)
1 H

(j)
0 0 . . . 0

H
(j)
2 H

(j)
1 H

(j)
0 . . . 0

...
...

. . . . . .
...

H
(j)
N H

(j)
N−1 . . . H

(j)
1 H

(j)
0

 ,
(7)

where j ∈ S ∪ Sc, and the l-th impulse response (Markov)
parameter, H

(j)
l ∈ Rp×1, at the j-th location is defined as

H
(j)
l :=

{
0 if l = 0,
CAl−1bj if l ≥ 1.

(8)

Let x[0] = x∗0 be the unknown initial state. From (3)-(4)
and the fact that Bu∗[k] =

∑m
j=1 bju

∗
j [k], we observe that

y = Ox∗0 +

m∑
j=1

Jju
∗
j + v, (9)

where v ∼ N (0, σ2Ip(N+1)), u∗j is in (6) and Jj is in (7).

B. Initial State and Unknown Input Estimation under Sparsity
Constraints: A Group LASSO for Approach

Based the measurement model in (9), we introduce the
group LASSO estimator to estimate (x∗0,u

∗
1, . . . ,u

∗
m) and also

the active set S. Let J = [JT
1 , . . . ,J

T
m] and u = [uT

1 , . . . ,u
T
m],

where uj ∈ RN+1. Recall the definition of `p,0-norm from the
notation section, and consider[
x̂0

û

]
= argmin

x0,u

{
1

2T
‖y −Ox0 − Ju‖22+λT ‖u‖p,0

}
, (10)

where the regularization parameter λT ≥0 and T = p(N+1) is
the dimension of y in (9). The above problem is called subset
(or block-column) selection problem because the optimization
problem amounts to finding Jj that contributes to y in (9).

Unfortunately, (10) is a combinatorial optimization problem
and its computationally complexity is exponential in m. We
circumvent this difficulty by replacing the ‖u‖p,0 with the
‖u‖p,1-norm. This is a common relaxation technique widely
used in the literature of compressed sensing and statistics; see
[24], [25]. Thus, we end up with the group LASSO problem:[

x̂0

û

]
∈argmin

x0,u

{
1

2T
‖y −Ox0 − Ju‖22+λT ‖u‖p,1

}
. (11)

For definiteness, we set p = 2, although our analysis extends
to the case p 6= 2. In the literature, ‖u‖2,1 =

∑m
j=1 ‖uj‖2

is referred to as the block or group norm. Our optimization
problem in (11) differs from the traditional group LASSO [6]
because we do not penalize x0. This is subtle yet important
distinction because in many applications, including power
systems, initial state is rarely sparse. In Section VI, we provide
details on how to numerically solve (11). Instead, in Section
III, for a specific range of λT , we show that the group-norm
based regularizer promotes group sparsity in û and that Ŝ = S
holds with high probability, where Ŝ , {j : ûj 6= 0}.

Due to the presence of additive noise in the measurement
vector y in (9), neither the estimate β̂ = (x̂0, û) in (11) need
to identically match β∗ = (x∗0,u

∗) nor does Ŝ = S. Thus, we
evaluate the quality of our estimates (i.e., the hatted quantities)
in a probabilistic sense using the error metrics:
• β̂ is said to be `2-consistent if ‖β̂ − β∗‖2 ≤ o(T ) with

probability at least 1−c1 exp (−c2T ), for some c1, c2>0.
• û is said to be location recovery consistent if Ŝ=S with

probability at least 1− c3 exp(−c4T ), for c3, c4 > 0.
Here o(T ) implies that the upper bound on the error tends to
zero as T →∞. The `2-error bound ensures that the estimate
β̂ ≈ β∗ by increasing T = p(N + 1). Instead, the location
selection consistency ensures that as as long as T is sufficiently
large, Ŝ correctly identifies the true sources of FOs.

III. DELAYED ESTIMATION AND INVARIANT ZEROS

In this section we cull recent results on the initial state and
delayed input recovery using finite number of measurements
[26], by assuming the knowledge set S. These results provide
a starting point to prove our main results in Section IV.

We begin by expressing y in (9) in a slightly different way.
From (5), we have Bu∗[k] = BSu∗S [k] +

∑
j∈Sc bju

∗
j [k].
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Substituting this fact in (3) and recursively expanding y[k] in
(4) yields us the following model for y defined in (6).

y =
[
O JS

]︸ ︷︷ ︸
,ΨS

[
x∗0
u∗S

]
︸ ︷︷ ︸
,β∗S

+
∑
j∈Sc

Jju
∗
j + v,

(12)

where u∗S and JS ∈ Rp(N+1)×m∗(N+1) are defined as

u∗S=


u∗S [0]
u∗S [1]
u∗S [2]

...
u∗S [N ]

 ;JS=


H

(S)
0 0 0 . . . 0

H
(S)
1 H

(S)
0 0 . . . 0

H
(S)
2 H

(S)
1 H

(S)
0 . . . 0

...
...

. . . . . .
...

H
(S)
N H

(S)
N−1 . . . H

(S)
1 H

(S)
0

 , (13)

with H
(S)
0 = 0p×m∗ and H

(S)
l = CAl−1BS , for all l ≥ 1.

Note that y in (9) and (12) are exactly the same. Importantly,
u∗S in (13) is a concatenation of inputs u∗S [k] associated with
S from k = 0 (top) to N (bottom), but not a concatenation of
u∗j in (6), for all j ∈ S.

To show that the group LASSO is location recovery consis-
tent, or Ŝ = S holds with high probability, ΨS =

[
O JS

]
in

(12) should be of full column rank. To see this, suppose that
σ2 ≈ 0 and that we know S. Then, by substituting u∗j = 0,
for all j ∈ Sc, and v = 0 in y in (12), it follows that

y = ΨSβ
∗
S . (14)

Thus for a rank deficient ΨS , we cannot perfectly recover
β∗S = (x∗0,u

∗
S [0], . . . ,u

∗
S [N ]) even with noise-free measure-

ments and with the knowledge of S. However, unfortunately,
unlike the model matrices, such as random design and Fourier
basis matrices, considered in signal processing and statistics
applications, ΨS could be rank deficient. This is so because
system in (3)-(4) may not be initial state and input observable
[8]; that is, either O or JS is rank deficient, or both O and
JS have full ranks, but [O JS ] is rank deficient.

From the foregoing discussion, it is clear that recovering β∗S
and full rank of ΨS are intimately connected. Interestingly,
for d-delay invertible linear systems, even when β∗S is not
recoverable, a portion of it is perfectly recoverable [8], [26]. In
fact, we can recover β∗S,[0:N−d] = (x∗0,u

∗
S [0], . . . ,uS,[N−d]),

where N ≥ d, from yT = [yT[0], . . . ,yT[N ]] Here, d ≥ 0 is
called delay and we refer β∗S,[0:N−d] to as the delayed input.
As a result, we show that a specific sub-matrix of ΨS has full
column rank even when ΨS is rank deficient.

We formalize the notion of d-delay. Let x0=0 to note that
ΨS=JS and β∗S=u∗S . Substituting JS (13) in (14), yields

y[0]
y[1]

...
y[N ]


︸ ︷︷ ︸

yN

=


H

(S)
0 0 . . . 0

H
(S)
1 H

(S)
0 . . . 0

...
. . . . . .

...
H

(S)
N H

(S)
N−1 . . . H

(S)
0


︸ ︷︷ ︸

,JS,[N:0]


u∗S [0]
u∗S [1]

...
u∗S [N ]


︸ ︷︷ ︸

u∗
S,[0:N]

. (15)

Notice that JS = JS,[N :0] and u∗S = u∗S,[0:N ]. Define

JS,[N :0] =
[

M
(S)
N M

(S)
N−1 . . . M

(S)
0

]
, (16)

where M
(S)
l denotes the lth block column of JS,[N :0] labeled

right (l = 0) to left (l = N). By construction JS,[N :0] is rank
deficient because H

(S)
0 = 0 in (15). Thus, we cannot recover

u∗S [N ] using yN . Further, in several practical applications,
H

(S)
1 = CBS = 0 (or has non-full column rank). This is

because sensors may not be located at the inputs. For e.g., in
power systems, bus level PMUs do not directly measure PSS’s
output. Thus it is impossible to recover u∗S [N − 1] using yN .

Definition 1. (System delay) For a non-negative integer d ≥
0, let JS,[d:0] be defined as in (15). System in (3)-(4), with
x∗0 = 0, u∗Sc = 0 and σ2 = 0, is d-delay left invertible if

Rank(JS,[d:0])− Rank(JS,[d−1:0]) = m∗, (17)

for JS,[d:0] defined in (15) and m∗ is the dimension of u∗S [k].
The smallest d that satisfies (17) is denoted as ηS . �

Throughout we assume d = ηS and set d , ∞ if (17)
does not hold for any d ≥ 0. Suppose that ηS < ∞. Then,
from the rank properties of partitioned matrices [26], it follows
that M

(S)
d in (15) is full column rank. Thus, there exists a

matrix S such that Syd = u∗S [0]. We may recover u∗S [1] using
the residual ŷd+1 , yd+1 −M

(S)
d+1u

∗
S [0]. In fact, Sŷd+1 =

u∗S [1]. By iterating this procedure, we can recover inputs in
u∗S,[0:N−d] , [(u∗S [0])

T, . . . , (u∗S [N − d])T]T using yN .

We relax x∗0 = 0 assumption and extend the rank condition
in (17) to recover jointly β∗S,[0:N−d] = (x∗0,u

∗
S,[0:N−d]), as a

whole rather than sequentially, using yN . First, we define the
smallest delay for recovering x∗0 in the presence of input:

µS,min{d ≥ 0 : Rank([Od JS,[d:0]])−Rank(JS,[d:0])=n},
(18)

where Od = [CT (CA)T . . . , (CAd)T], and n is the dimen-
sion of A. The rank condition in (18) says that Od has full
column rank (= n) and that the columns in Od are linearly
independent of columns in JS,[d:0]. This condition is stronger
than system in (3)-(4) being observable, as shown below:

Example 1. Let A =
[
1 2; 0 3

]
, BS =

[
2 3

]T
, and C =[

1 0
]
. Then ηS = 1 and RankOl = 2, for any ` ≥ 2; that

is, the system is observable. However, µS = ∞ because the
rank condition in (18) does not hold. This is to be expected
because the second column of A is identical to BS . �

Let M
(S)
l be as in (16). For N ≥ d ≥ 0, consider[

O JS
]︸ ︷︷ ︸

ΨS

=
[
O M

(S)
N . . . M

(S)
d︸ ︷︷ ︸

ΨS,[N:d]

M
(S)
d−1 . . . M

(S)
0︸ ︷︷ ︸

ΨS,[d−1:0]

]
.

(19)

Let Ψ+
S be the pseudo inverse of ΨS . The proposition below

states conditions under which we can recover (x∗0,u
∗
S,[0:N−d]).

Proposition 1. Suppose that ηS in (17) and µS in (18) are
finite. Then, for N ≥ max{ηS , µS} with d ≥ ηS , we have

1) ΨS,[N :d] defined in (19) has full column rank.
2) R(ΨS,[N :d]) ∩R(ΨS,[d−1:0]) = {0}.
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Moreover, for tS , (N − d+ 1)m∗ and m∗ = |S|, we have[
x∗0

ũ∗S,[0:N−d]

]
=
[
In+tS 0(n+tS)×dm∗

]︸ ︷︷ ︸
Π̃S,[0:N−d]

Ψ+
Sy. (20)

The proof of this fact is given in [26, Theorem 7]. Part (1)
of proposition states that the sub-matrix ΨS,[N :d] has full rank
even when ΨS,[N :0] is rank deficient. This fact plays a vital
role in the performance analysis of the group LASSO estimate.

For Proposition 1 to hold, we require ηS , µS < ∞. Using
the notion of zeros and rank of the system matrix (see below),
we state verifiable conditions to check if ηS , µS <∞. For all
z ∈ C, define the system and transfer matrix:

ZS [z] ,
[
zI−A −BS

C 0

]
and (21)

GS [z] , C(zI−A)−1BS , z /∈ spec(A), (22)

where spec(A) is the multiset of eigenvalues of A. Define the
normal ranks of ZS [z] and GS [z], respectively, as nRankZS ,
maxz∈C RankZS [z] and nRankGS , maxz∈C RankGS [z]. A
number z0 ∈ C is called the invariant zero of (A,BS ,C) if
RankZS [z0] < nRankZS . If (A,BS ,C) has invariant zeros,
there exists u∗S 6= 0 and x0 6= 0 such that (noise-free) y[k] =
0, for all k ≥ 0 [27]. (Thus, we cannot distinguish between
non-zero and zero inputs from yN alone.) Hence, ηS , µS =∞.

Lemma 2. Let (A,BS ,C) has no invariant zeros. Then, (i)
µS < ∞ and, for N ≥ µS , system in (3)-(4) is initial state
observable; and (ii) if nRankZS = n+m∗, ηS <∞.

A proof for the statement (i) can be found in [26, Proposi-
tion 5]. Instead, the statement (ii) follows from [8, Theorem 1,
pp. 227]. Thus, if (A,BS ,C) satisfies conditions in Lemma 2,
the assumptions in Proposition 1 hold. Hence, the sub-matrix
ΨS,[N :d] has full rank and we can recover (x∗0,u

∗
S:[0:N−d]).

IV. LOCATION RECOVERY AND ESTIMATION
CONSISTENCY OF THE GROUP LASSO ESTIMATOR

We theoretically investigate the performance of the group
LASSO estimator in (11) using the previously stated results
for the delayed input estimation. Our results generalize the ex-
isting group LASSO’s guarantees for static (or non-dynamical)
systems [5], [28] to the dynamical systems with delay d ≥ 0.

Recall that the estimate in (11) is (x̂0, û1, . . . , ûm), where
ûj = [ûj [0], . . . , ûj [N ]]T. For any R ⊂ {1, . . . ,m}, we define
ûR[k] = [ûr1 [k], . . . , ûr|R| [k]], for all k ≥ 0 and rj ∈ R. In
words, we group the estimated inputs associated with the set
R. Further, define ûT

R = [ûT
R[0], . . . , û

T
R[N ]]. Thus, we can

compare β̂S = (x̂0, ûS) and β∗S = (x∗0,u
∗
S) in (12).

Recall that S = {j : u∗j 6= 0} and Ŝ = {j : ûj 6= 0}. We
derive conditions under which (i) Ŝ = S and (ii) ‖β∗S,[0:N−d]−
β̂S,[0:N−d]‖2 ≤ ε, for any ε > 0, hold with high probability.
To this aim, we make a few assumptions. If d = 0 and x∗0 =
0, these assumptions reduce to the standard group LASSO’s
assumptions [25].

Assumption 3. (Identifiability and mutual incoherence con-
ditions) Consider the following conditions:

(A1) Group normalization: The column block matrices O and
Ji in (7) satisfy the group normalization condition:

max {‖O‖2, ‖J1‖2, . . . , ‖Jm‖2} ≤ C
√
T <∞. (23)

(A2) Least singular value: Let ΨS,[N :d] and ΨS,[d−1:0] be as
in (19), and define M = [I−ΨS,[d−1:0]Ψ

+
S,[d−1:0]]. Then∥∥∥∥∥∥

(
ΨT
S,[N :d]MΨS,[N :d]

T

)†∥∥∥∥∥∥
2

≤ 1

cmin
<∞. (24)

(A3) Mutual incoherence: There exists some α ∈ [0, 1), re-
ferred to as ”mutual incoherence” parameter, such that

MIC , max
j∈Sc

∥∥∥JT
j ΨS(Ψ

T
SΨS)

+
∥∥∥
2
≤ α/m∗. (25)

Assumption (A1) holds for asymptotically stable systems;
that is, the eigenvalues of A completely lie inside a complex
unit circle. Assumption (A2) enforces conditions on the model
identifiability; that is, the uniqueness of the delayed estimate
ûS,[0:N−d] but not necessarily on ûS,[0:N ] as we shall see
later. Assumption (A2) is satisfied for d-delay systems because
ΨS,[N :d] has full column rank if N ≥ d (see Section III).

Assumption (A3) is satisfied if ΨS and Jj are orthogonal
(JT
j ΨS = 0, for all j ∈ Sc). Orthogonality is restrictive as

number of inputs can be more than outputs, or any column
of BS in (3) can be a linear combination of bj , for j ∈ Sc.
Nonetheless, (A6) imposes a type of ”approximate” orthog-
onality between Jj , where j ∈ Sc, and ΨS . We quantify
this approximation using the parameter α. The `2-norm bound
in (25) could be conservative as the bound depends on m∗.
This dependence can be avoided by working with the `1-norm
bound; that is, maxj∈Sc

∥∥∥JT
j ΨS(Ψ

T
SΨS)

+
∥∥∥
1
≤ α. However,

we stick with (25) as it is useful to derive an upper bound on
MIC in (25) using the system transfer function. In simulations,
we study the conservatism incurred due to `2-norm based MIC.

Theorem 4. (Location recovery consistency) Consider the
model (12) satisfying assumptions (A1)-(A3) with the active
set S = {1, . . . ,m∗}. For some δ > 0 suppose that we select

λT =

√
32Cσ

1− α

{√
(N + 1)c1 + log(m−m0)

T
+
δ

2

}
, (26)

where c1 = log(5). Then, the following hold with probability
at least 1− 4 exp(−Tδ2/2).
(a) (Non-uniqueness): For d > 0, there are infinitely many

solutions of (11); however, if d = 0, β̂ in (11) is unique.
(b) (No false inclusion): For all d ≥ 0, the support set of any

optimal estimate β̂ is contained with in the true support
set; that is, Ŝ ⊂ S.

(c) (`∞ bounds): The delayed inputs satisfy the following
bound: maxj∈S ‖ûj,[0:N−d]−u∗j,[0:N−d]‖∞ ≤ βmin, where

βmin=
σ

√
cmin

{√
2 log((N − d+ 1)m∗)

T
+ δ

}

+ λT

∥∥∥∥∥∥ΠS,[0:N−d]

(
ΨT
SΨS

T

)+
∥∥∥∥∥∥
∞

, (27)
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ΠS,[0:N−d] = [0tS×n ItS×dm∗ 0tSc×tSc ] and tS = (N −
d+ 1)m∗.

(d) (Minimum input magnitude and no false exclusion): If
minj∈S ‖u∗j,[0:N−d]‖∞ ≥ βmin, we have Ŝ = S.

Proof. See Appendix.

Corollary 5. Consider β̂S,[0:N−d] = (x̂0, ûS,[0:N−d]) and
β∗S,[0:N−d] = (x∗0,u

∗
S,[0:N−d]). Let c1 = log(5) and tS =

(N − d + 1)m∗. Under the assumptions of Theorem 4, with
probability at least 1− exp(−δ2T/2), we have∥∥∥β∗S,[0:N−d] − β̂S,[0:N−d]

∥∥∥
2
≤

2σ
√
cmin

{√
2c1(n+ tS)

T
+ δ

}
+ λT

√
m∗

Tcmin
,

(28)

We use the primal-dual witness technique of Wainwright
[25], [28], [29] to prove Theorem 4.

Part (a) in Theorem 4 states that the group LASSO estimate
β is non-unique unless the sub-system realized by (A,BS ,C)
has zero delay. This is because, for N > d > 0, the sub-matrix
ΨS,[N :d] in (19) has full rank, but not ΨS . However, Part (b)
in Theorem 4 states that Ŝ ⊆ S, for any optimal estimate β in
(11). Thus, the estimated inputs restricted to the complement
set are zero: ûjc = 0, for all j ∈ Sc. Thus, the non-uniqueness
of the optimal solution does not effect the location consistency
of the group LASSO estimator.

Part (d) in Theorem 4 (d)—a consequence of the `∞ norm
bound in part (b)—says that for Ŝ = S to hold (i.e., to detect
true inputs correctly) , the true non-zero input signal strength
should not be too small, precisely, smaller than βmin in (27).
The probabilistic result in Theorem 4 also helps determine
the number of measurements (N ) or sensors (p) required to
achieve certain amount of performance. Let us simplify λT in
(26) to comment on its scaling. By substituting T = p(N +1)
and assuming that log(m−m∗)/(N + 1) >> c1, we have

λT = O

(√
log(m−m∗)
p(N + 1)

+
δ

2

)
. (29)

For p = 1, λT in (29) reduces to that of λT for the traditional
LASSO problem [25]. Thus, the term c1(N + 1)/T in (26)
takes into consideration the number of unknowns in u∗j , and
p in p(N + 1) accounts for the number of sensors.

The choice of λT plays an important role in determining if
Theorem 4 (c) (that is, Ŝ = S) holds. In fact, the smaller the
λT , the smaller the minimum threshold βmin. Interestingly, for
λT = 0, which happens, say, when σ = 0, the optimization
problem in (11) reduces to the standard ordinary least squares
(OLS) problem. Thus, there is no shrinkage of input estimates
toward zero. Further, λT does not depend on cmin in (24) but
depends on the group normalization constant C in (23) and
the mutual incoherence parameter α in (25).

To understand the role of C on λT , and ultimately on βmin,
let d = 0 and note that ΨS full rank. Assuming (A1) holds
with equality, from the standard norm inequalities, we have

κ1 + λT
√
κ2/C

2 ≥ βmin ≥ κ1 + λT /(C
2√κ2),

where κ1 is the first term on the right side of the equality in
(27) and κ2 = (N+1)m∗ is the dimension of u∗S . Noting that
λT is proportional to C, we see that βmin = κ1+O(

√
κ2/C).

As expected, larger values of C results in smaller βmin because
the effective signal strength of ΨSu∗S is large. Instead, smaller
values of C results in higher βmin, thereby requiring u∗S to be
large. If not, the strength of ΨSu∗S decreases. Finally, from
(26), we observe that λT is an increasing function of α ∈
[0, 1); thus, higher the α larger is the βmin. Recall that α is
large if Jj , for j ∈ Sc, is highly correlated with ΨS .

We now comment on the `2-error bound between β∗S,[0:N−d]
and β̂S,[0:N−d] given in Corollary 4. First, the error bound
depends on the number of unknown parameters n + tS =
n+(N −d+1)m∗, i.e., the dimension of the initial state and
delayed input. Letting T = p(N+1)� n, we observe that the
first term of the bound in (28) scales as O(c̃(

√
m∗/p + δ)),

where c̃ = 2σ/
√
cmin. Thus, more PMUs result in less error.

However, the bound is loose for large values of λT . To remedy
this shortcoming, we consider the following OLS estimate:

β̂
(OLS)

Ŝ,[0:N−d] , Π̃Ŝ,[0:N−d](Ψ
+

Ŝ
y), (30)

where Π̃Ŝ,0:N−d is defined similar to Π̃S,0:N−d in (20). We
present the second main result of this section: an oracle bound
on the error ‖β∗S,[0:N−d] − β̂

(OLS)

Ŝ,[0:N−d]
‖2.

Theorem 6. (`2-consistency: oracle bounds) Suppose that the
hypotheses in Theorem 4 hold. Then, for any δ, δ1 > 0, with
probability at least 1− 4 exp(−Tδ2/2)− δ1,∥∥∥∥β∗S,[0:N−d] − β̂

(OLS)

Ŝ,[0:N−d]

∥∥∥∥
2

≤ 4σ
√
cmin

{√
(n+ tS)

T

}

+
2σ
√
cmin

{√
1

T
log

(
1

δ1

)}
, (31)

The proof is in Appendix. Similar to the bound in Corollary
5, the first term in (31) is O(c̃(

√
m∗/p)); however, the second

term in (31) does not depend on λT and it approaches zero
as T →∞. Thus, the overall error is dictated by m ∗ /p. We
call the bound in (31) as the oracle because the bound holds
for β̂

(OLS)

S,[0:N−d], albeit with probability 1− δ1.

A. Extensions of group LASSO guarantees to noisy dynamics

We extend our results in Theorems 4 and 6 to the setting
where system in (3)-(4) is affected by both state and measure-
ment noises. We also relax the diagonal covariance structure
of the measurement noise. Consider the following dynamics:

x[k + 1] = Ax[k] + BSu∗S [k] +
∑
j∈Sc

bju
∗
j [k] + w[k]

y[k] = Cx[k] + v[k],

(32)

where the noise random vectors w[k]
iid∼ N (0,Q) and v[k]

iid∼
N (0,R), with Q � 0 and R � 0, are uncorrelated. Let
y = [y[0]T . . .y[N ]T]T, and from (32), note that

y =Ox∗0 + JSu∗S +
∑
j∈Sc

Jju
∗
j + Jww + v, (33)
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where w , [w[0]T . . .w[N ]T]T and v = [v[0]T . . .v[N ]T]T.
The noise response matrix Jw is obtained by replacing H

(1)
k in

J1, given by (7), with CAk−1, for all k ≥ 0. Because w and
v are Gaussian, it follows that Jww + v ∼ N (0,Σṽ), where
Σṽ = [Jww + v][Jww + v]T. Finally, define σ̃2 = ‖Σṽ‖2.

Suppose that we solve the group LASSO problem in (11)
for the model in (33). Then, Theorems in 4 and 6 hold true
for σ2 = σ̃2. However, the modified noise variance (σ̃2) could
be large depending on the system matrices in (32).

B. Mutual Incoherence: Frequency Domain

Thus far we discussed the location recovery- and estimation-
consistency of the group LASSO estimator in (11) assuming
that assumptions in (A1)-(A3) hold of which the first two are
satisfied by stable dynamical systems with (A,BS ,C) having
no invariant zeros2. However, (A3) might not hold for arbitrary
systems, and moreover, verifying (25) can be computationally
demanding when either N (the measurement horizon) or n
(dimension of system matrix A) is large. In what follows, we
bound maxj∈Sc ‖JT

j ΨS(Ψ
T
SΨS)

+‖2 in (25) using a quantity
that depends on the transfer function matrices associated with
(A,BS ,C) and (A,bj ,C), for j ∈ Sc. The advantage is that
this upper bound can computed efficiently, as it depends only
on the lower dimensional system matrices but not on N .

To simplify the exposition, we assume x0 = 0; thus, ΨS =
JS . Similar to the transfer matrix GS [z] in (22), define Gj [z] =
C(zI−A)−1bj and GSc [z] = C(zI−A)−1BSc , where BSc

is the matrix composed of columns bj , with j ∈ Sc.

Theorem 7. Assumption (A6) holds if nRankZS=n+m∗ and

max
j∈Sc

max
{z∈C:|z|=1}

∥∥G+S [z]Gj [z]∥∥2 ≤ α/m∗ < 1. (34)

Proof. See Appendix.

We refer to the expression in (34) as the frequency domain
mutual incoherence condition. Thus to verify Assumption
(A6), we need to check if the worst case gain of the transfer
matrix G+S [z]Gj [z] is bounded above by α/m∗; see Fig. 1. If
computing (34) is prohibitive for each j ∈ Sc, we can resort
to the weaker condition: max{z∈C:|z|=1}

∥∥G+S [z]GSc [z]
∥∥
2
≤

α/m∗ < 1. To appreciate the condition in (34), we take Z-
transform of system in (3)-(4), and then note that

y[z] = GS [z]uS [z] +
∑
j∈Sc

Gj [z]uj [z], ∀z /∈ spec(A).

By pre-multiplying the above identity with G+S [z], we have

G+S [z]y[z] = uS [z] +
∑
j∈Sc

G+S [z]Gj [z]uj [z] ∀z /∈ spec(A)

= uS [z] + G+S [z]GSc [z]uSc [z],

Thus to recover uS [z] accurately, the gain ‖G+S [z]Gj [z]‖2 or
‖G+S [z]GSc [z]‖2 needs to be small.

We conclude this section by highlighting three special cases
where (34) holds: (i) R(GSc [z]) ⊆ R⊥(G+S [z]) = R⊥(GTS [z]),
for all |z| = 1. In other words, the columns of GSc [z] lie in the

2Systems having invariant zeros lie in a zero measure set [27].
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Fig. 1. Illustration of Theorem 7 for system matrices generated using drss
command in MATLAB. The number of possible sources m = 10. In both
panels, the y-axis, FDMIC−TDMIC, is the error between frequency- and time-
domain mutual incoherences. (Left panel) We fix n = 20 and plot FDMIC−
TDMIC for several values of m∗. (Right panel) For a large dimensional matrix
A, we fix m∗ and p, and plot FDMIC−TDMIC for several values of system
dimension n. In both the panels, the error is positive and is monotone in N
implying that FDMIC ≥ TDMIC, as predicted by Theorem 7.

left nullspace of GS [z]; (ii) G[z] = [GS [z] GSc [z]] is all-pass3;
and (iii) GSc [z] = αGS [z]. The first two cases are rather strong
and does not allow columns of GSc [z] to be in the range space
of GS [z]. Instead, (ii) models another extreme where the range
spaces of GS [z] and GSc [z] are aligned with each, modulo the
factor α ∈ [0, 1). The latter case in the compressed sensing
literature is referred to as overcomplete dictionaries [30].

V. SIMULATIONS

We illustrate the performance of the group LASSO estimator
on a large-scale power network and a random system. The
following proposition states that the unknown input and initial
state can be estimated in two stages. Consequently, we use off-
the-shelf ADMM [9] to estimate the input first and then use
this estimate to compute the initial state.

Proposition 8. Suppose that system in (3)-(4) is observable.
The optimization problem (11) is equivalent to

û = argmin
u∈RmT

1

2T
‖Π(y − Ju)‖22 + λT

m∑
j=1

‖uj‖2 , (35)

x̂0 = O+(y − Jû), (36)

where O+ = (OTO)−1OT and Π = I−OO+.

The proof follows from the KKT conditions [31]. The inputs
to the ADMM [9] are the system matrices (A,B,C), the
measurement y, and the tuning parameter λT ≥ 0. Finally,
we note that the two-stage estimation method is one way to
implement the group LASSO numerically. One may also use
other numerical algorithms to estimate (x∗0,u

∗) in one shot.
We evaluate the group LASSO estimator’s localization per-

formance using the false-positive rate (FPR):= |Sc ∩ Ŝ|/|Sc|,
the false-negative rate (FNR):= |S ∩ Ŝc|/|S|, and the exact
recovery rate (ERR):= (|S ∩ Ŝ| + |Sc ∩ Ŝc|)/m. Recall
that FPR and FNR, respectively, measure the proportion of
inputs that are falsely identified and left out. Instead, we
quantify the estimation performance using the error metrics:

3A real rational transfer function matrix G[z] is all-pass if G[z]G[1/z] = I.
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Fig. 2. IEEE 16 machine 68 bus system [33]. Circles, arrows, and curly windings,
respectively, denote generator buses, load buses, and transformers. The FO input enters
through set points of AVRs associated with the generators at buses {1, 6, 13} (red
circles). Sensors are located at buses {8, 34, 50, 56}.

‖x∗0 − x̂0‖2/‖x∗0‖2 and ‖u∗ − û‖2/‖u‖2. For the test cases
below, the results are averaged over 50 runs.

(Power system) We apply our estimator in (35) to localize
the sources of forced oscillatory (FO) inputs in the IEEE 68
bus system 16 machine system (see Fig. 2). Each machine
(or generator) consists of ten states, including rotor angle,
speed, and the states of the AVR (automatic voltage regulator)
and PSS. We model FOs as inputs injected by the AVRs
and use bus voltage magnitudes as measurements. For the
sampling time δt = 0.1, we obtained the system matrices A ∈
R160×160, B ∈ R160×16, and C ∈ Rp×160, where p ≤ 68, us-
ing the Power System Toolbox [32]. Among m = 16 possible
inputs, we assume m∗ = 3 with the following inputs: u∗1[k] =
0.5 sin[(2πfδt) k] + w[k], u∗6[k] = 0.6 sin[(2πfδt) k] + w[k],
and u∗13[k] = 0.7 sin[(2πfδt) k]+w[k], where f = 1.5U(0, 1)
and w[k] ∼ N (0, 0.052). We set p = 4 and choose sensor
locations arbitrarily with the only exception that these are non-
collocated with inputs (shown in Fig. 2). Let x0 = 0 (the
non-zero case is considered in the subsequent case). Finally,
we let N = 100 and the noise variance σ2 = 0.01.

In Fig. 3, we plot the FPR, FNR, and ERR with respect
to λT . As expected, the FNR increases with λT whereas the
FPR decreases with λT , although not monotonically. From the
bottom left panel, we can infer that values of λT ∈ (0.3, 0.4)
yield maximum ERR. In the bottom right panel, note that for
λT = 0.288, the group LASSO estimator accurately localized
inputs among 40 out of 50 runs. In Fig. 4, for a measurement
realization where the group LASSO estimator identified true
locations, we plot the inputs estimated by the group LASSO
and the reduced model based OLS estimators.

(Large-scale random system) Following [19], we generate
matrices as follows: Aij

iid∼ N (0, 1/n); Cij
iid∼ N (0, 1); and

BT =
[
ITm 0T

]
. We let x0 ∼ N (0, In) and the measurement

noise variance parameter σ = 0.01. We set n = 50, m = 30,
and m∗ = 5. The active set S = {1, 2, 3, 4, 5} and uj [k] is
sampled uniformly on [−2, 2], for all j ∈ S and k ∈ [N ]. The
sensors measures the first p(≤ n) states. In Fig. 5, for p = 15,
we plot the average estimation error metrics as a function of
the measurement horizon (N ). In both the panels, estimation
errors remain uniform across N because the number of (to be
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Fig. 3. False negative rate (FNR), false positive rate (FPR), exact recovery rate (ERR),
and the number of exactly recovered instances among 50 runs of the IEEE 16 machine
68 bus system data using the group LASSO.
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Fig. 4. FO inputs recovered by the group LASSO and OLS estimators. We used (30)
to compute the OLS estimate using the locations recovered by the group LASSO. (Left
panel) As predicted by Theorem 6, the OLS provides a better estimate than the LASSO
estimator. (Right panel) zoomed plot of the group LASSO estimate.

estimated) inputs also increase with N . Given the relation in
(36), the estimation error of x∗0 is slightly higher than that of
the unknown input. Finally, for greater estimation accuracy,
one can always use the reduced model-based OLS estimator.

In Fig. 6, we show the average mutual incoherence (MIC)
in (25) as a function of p, for two cases: x0 = 0 and x0 6= 0.
We computed both `1- and `2-norm based MICs. As pointed
out in Section IV, and confirmed by our plots in the left panel
of Fig. 6, `2-norm based MIC assumption is stronger than the
`1-norm. Further, when x0 = 0, the MIC is satisfied (that
is, less than one) for as few as p = 6 sensors. Here, p =
m∗ + 1. Instead, when x0 6= 0, we need at least p = 18
sensors to ensure that MIC is below one. Given m∗, theoretical
relationships between p and MIC is left for future research.

VI. CONCLUSIONS

We study a group LASSO estimator for locating the sources
of unknown forced inputs as well as estimating these inputs
along with the initial state from noisy measurements. We
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Fig. 5. Relative estimation error. Left panel: unknown inputs. Right panel: initial state.
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Fig. 6. Mutual incoherence vs. number of sensors. Left: x∗0 = 0. Right: x∗0 6= 0

derive sufficient conditions under which the group LASSO
estimate is location- and estimation-recovery consistent. In
doing so, we have extended the existing theory of the group
LASSO estimator for static regression models to linear models
generated by d-delay (left) invertible linear dynamical systems
with unknown initial state. Our results establish a relationship
between time- and frequency-domain mutual incoherence con-
ditions. The latter condition provides insight into the structural
aspects of transfer matrices associated with the zero and non-
zero inputs. Finally, we have validated the performance of our
proposed group LASSO estimator via simulations.

Possible future work includes extending the group LASSO
framework for linear and non-linear systems with additive state
noise. As pointed out in Section IV-A, in the presence of state
noise, whitening the measurements can be detrimental to the
performance of group LASSO. Two directions seem promising
to tackle this issue: (i) to use the puffer-transformation method
in [34] and (ii) to consider the group LASSO estimator for
predictor or innovation form of the state-space model.
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VII. APPENDIX

A. KKT conditions and PDW Construction

Proposition 9. (Karush-Kuhn-Tucker (KKT) conditions) A
necessary and sufficient condition for (x̂0, û), with ûT =
[ûT

1 , . . . , û
T
m], to be a solution of (11) is

− 1

T
OT[y −Ox̂0 −

m∑
j=1

Jjûj ] = 0 (37)

− 1

T
JT
i [y −Ox̂0 −

m∑
j=1

Jjûj ] + λT ẑj = 0 (38)

for all j ∈ {1, . . . ,m}. Here, ẑj is the subgradient of ‖ûj‖2;
that is, ẑj = ûj/‖ûj‖2 if ûj 6= 0, else ẑj ∈ {q : ‖q‖2 ≤ 1}.

The proof is given in [31]. Without loss of generality let
S = {1, . . . ,m∗} and Sc = {m∗ + 1, . . . ,m}. Let ûT

S [k] =
[û1[k] . . . , ûm∗ [k]], for all k ∈ {0, . . . , N}, where ûj [k] is the
k-th entry of ûj . Define ûT

S = [ûT
S [0], . . . , û

T
S [N ]].Thus,

[ûT
1 , . . . , û

T
m∗ ]

T = PûS , (39)

for some permutation matrix P. Further, we can verify that
[J1 . . . ,Jm∗ ]P = JS (as in (13)). Let β̂S , [x̂T

0 ûT
S ]

T Then,

Ox̂0 +
∑
j∈S

Jjûj =
[
O JS

]︸ ︷︷ ︸
ΨS

β̂S (40)

Using these facts, expressions in (37)-(38) can be written as

− 1

T

[
ΨT
S

J̃T
Sc

]
[y −Ox̂0 −

m∑
j=1

Jjûj ]+λT

 0
PTẑS
ẑSc

=
0

0
0

 , (41)

where J̃Sc = [Jm∗+1, . . . ,Jm], ẑTS = [ẑT1 , . . . , ẑ
T
m∗ ], and

ẑTSc = [ẑTm∗+1, . . . , ẑ
T
m].

Primal-dual witness (PDW) construction: We prove Theo-
rems 6 and 4 using the PDW construction technique4 [29]:
(a) Set ûj = 0, for all j ∈ Sc.
(b) Let (x̂0, û1 . . . , ûm∗) be the solution of the sub-problem:

min
x0;

u1,...,um∗

1

2T

∥∥∥∥∥∥y−Ox0−
m∗∑
j=1

Jjuj

∥∥∥∥∥∥
2

2

+λT

m∗∑
j=1

‖uj‖2. (42)

4The PDW construction is not an algorithm for solving the group LASSO
problem in (11): This is because to solve the sub-problem in step (b) of PDW,
we need to know the active set S. However, PDW construction technique helps
to prove consistency results for the LASSO type problems.

Choose the sub-gradient ẑS = [ẑT1 , . . . , ẑ
T
m∗ ]

T such that

− 1

T
ΨT
S

[
y −Ox̂0 −

∑m∗

j=1 Jjûj

]
+ λT

[
0

PTẑS

]
= 0.

(43)
(c) Solve ẑSc = [ẑTm∗+1, . . . , ẑ

T
m]T using (41), and check if

‖ẑj‖2 ≤ 1, for all j ∈ Sc = {m∗ + 1, . . . ,m}.
By construction, (x̂0, û1 . . . , ûm∗), ẑS , and ẑSc that we

determined in steps (a), and (b) satisfy conditions in (41). The
PDW construction is said to be successful if ẑSc satisfies the
strict dual feasibility condition: ‖ẑj‖2 ≤ 1, for all j ∈ Sc.

B. Proofs of Theorems in Section IV

For the estimate in (42), define

β̂PDW = (x̂0, û1, . . . , ûm∗ ,0(N+1), . . . ,0(N+1)︸ ︷︷ ︸
m−m∗

). (44)

Lemma 10. Suppose that the PDW construction succeeds. If
delay d > 0, β̂ = β̂PDW is an optimal solution of (11). If
d = 0, β̂ = β̂PDW is the ”unique” optimal solution.

Proof. We follow the proof technique in [29, Lemma 7.23].
Let d ≥ 0. Because the PDW construction succeeds, β̂PDW

is an optimal solution of (11) with subgradient vector ẑT =
[ẑT0 , ẑ

T
1 , . . . , ẑ

T
m] satisfying ẑ0 = 0, ‖ẑj‖2 = 1 for j ∈ S, and

‖ẑj‖2 < 1 for j ∈ Sc. We now show that any optimal solution
of (11) is supported on the set S.

With a slight abuse of notation, let uT = [xT
0 ,u

T
1 , . . . ,u

T
m]

and denote F (u) = 1
2T ‖y−Ox0+

∑m
j=1 Jjuj‖22. Let ∇F (u)

be the gradient of F (u) with respect to u. Then, for any
other optimal solution ũ of (11), we have F (û) + λT ẑTû =
F (ũ) + λT

∑m
j=1 ‖ũj‖2 The last equality follows because∑m

j=1 ẑTj ûj =
∑m
j=1 ‖ûj‖2. Hence, F (û)− λT ẑT(ũ− û) =

F (ũ) + λT
∑m
j=1 ‖ũj‖2 − λT ẑTũ. Instead, from the zero-

subgradient conditions in (37)-(38), we have λT ẑ = −∇F (û).
Putting the pieces together, we have

F (û) +∇F (û)T(ũ− û)− F (ũ) = λT (

m∑
j=1

‖ũj‖2 − ẑTũ).

By convexity of F , the left-hand side is negative. As a result,∑m
j=1 ‖ũj‖2 ≤ ẑTũ =

∑m
j=1 ẑTj ũj , where ẑ0 = 0. Since we

also have
∑m
j=1 ẑTj ũj ≤

∑m
j=1 ‖ẑj‖2‖ũj‖2 ≤

∑m
j=1 ‖ũj‖2,

we must have
∑m
j=1 ‖ũj‖2=

∑m
j=1 ẑTj ũj . Because ‖ẑj‖2 < 1

for j ∈ Sc, the above equality can only occur if ũj = 0, for
all j ∈ Sc. To see this notice that

∑m
j=1 ẑTj ũj=

∑
j∈S ẑTj ũj+∑

j∈Sc ‖ẑj‖2‖ũj‖2 cos(θj), where θj is the angle between
ẑj and ũj , and ‖ẑj‖2 cos(θj) ∈ (−1, 1). Thus, all optimal
solutions β̂ are such that β̂j = 0 for all j ∈ Sc. These
solutions can be obtained by solving (42). Finally, for d = 0,
the assumption in (A2) ensures that (42) is strictly convex,
and hence, β̂ is a unique minimizer.

Proof of Theorem 4: Suppose the PDW construction succeeds.
The proof of part (a) is given in Lemma 10. Further, in view of
Lemma 10, β̂ = β̂PDW is an optimal solution of (11). Thus,
all the optimal input vectors are supported on the set S, i.e.,
Ŝ ⊂ S, where Ŝ = {j : ûj 6= 0}; thus, part (b) holds.

We show that the PDW construction succeeds with proba-
bility at least 1− 2 exp(−Tδ2/2) by showing that ‖ẑj‖2 ≤ 1,

http://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Scribed_Lectures/Feb21_Shenghao.pdf
http://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Scribed_Lectures/Feb21_Shenghao.pdf
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for all j ∈ Sc. Here, ẑj is determined in the step (c) of PDW
construction. Let β̂S be as in (40). By substituting y (given
in (12)) and ûSc = 0 in (41), we obtain

1

T

[
ΨT
SΨS ΨT

SJ̃Sc

J̃T
ScΨS J̃T

ScJSc

] [
β∗S − β̂S

0

]
+

1

T

[
ΨT
S

J̃T
Sc

]
v=λT

 0
PTẑS
ẑSc

 .
(45)

Using the second block equation of (45), solve for ẑSc as

ẑSc = J̃T
ScΨS

[
Ψ†SΨS

λTT
(β∗S − β̂S)

]
+ J̃T

Sc

(
v

λTT

)
, (46)

where we used the fact ΨS = ΨSΨ†SΨS . On the other hand,
from the top block equation in (45), we have

1

T
ΨT
SΨS(β

∗
S − β̂S) +

1

T
ΨT
Sv = λT

[
0

PTẑS

]
. (47)

Pre-multiply both sides of the equality in (47) with (ΨT
SΨS)

†.
Then, use the identities (ΨT

SΨS)
†(ΨT

SΨS)
† = Ψ†SΨS and

Ψ†S = (ΨT
SΨS)

†ΨT
S (see [35]) to get the following:

Ψ†SΨS(β
∗
S − β̂S) = −Ψ†Sv + TλT (Ψ

T
SΨS)

†
[

0
PTẑS

]
. (48)

Let ΓS = [I− (ΨSΨ†S)]. By substituting (48) in the first term
of the second equality in (46), we can simplify ẑSc as

ẑSc = J̃T
Sc(Ψ

†
S)

T

[
0

PTẑS

]
+ J̃T

ScΓS

(
v

λTT

)
, (49)

where we used the fact (Ψ†S)
T = ΨS(Ψ

T
SΨS)

†. Thus,

ẑj = JT
j (Ψ

†
S)

T

[
0

PTẑS

]
+ JT

j ΓS

(
v

λTT

)
, ∀j ∈ Sc (50)

By the sub-multiplicative property of norms, for any j ∈ Sc,∥∥∥∥JT
j (Ψ

+
S )

T

[
0

PTẑS

]∥∥∥∥
2

≤ max
j∈Sc

‖JT
j (Ψ

+
S )

T‖2
∥∥∥∥[ 0

PTẑS

]∥∥∥∥
2

≤ α

m∗
‖PTẑS‖2 ≤

α

m∗

∑
j∈S
‖ẑj‖2 ≤ α.

where α ≤ 1 is given in (25) and we used the fact that ‖ẑj‖2 ≤
1 (see Proposition 9), for j ∈ S, and ‖PT‖2 ≤ 1. As a result,
from (50) and the preceding inequality, we have

max
j∈Sc

‖ẑj‖2 ≤ α+max
j∈Sc

∥∥∥∥JT
j ΓS

(
v

λTT

)∥∥∥∥
2

= α+ κ2. (51)

On the other hand, in light of Lemma 11, κ2 ≤ 0.5(1 − α)
with probability at least 1−2 exp(−δ2T/2), for δ > 0. Putting
together the pieces, we have maxj∈Sc ‖ẑj‖2 ≤ 0.5(1+α) < 1,
thereby establishing the strict dual feasibility condition.

Part (c): From Assumption (A2) and Proposition 1, we have

Ψ†SΨS = Blkdiag(In, ItS ,Ψ
†
S,[d−1:0]ΨS,[d−1:0]), (52)

where tS = (N − d+ 1)m∗. Thus, we have

u∗S,[0:N−d]−ûS,[0:N−d] = ΠS,[0:N−d]Ψ
†
SΨS(β

∗
S − β̂S), (53)

where ΠS,[0:N−d] = [0tS×n ItS×tS 0tS×dm∗ ] and

β∗S−β̂S=

 x∗0 − x̂0

u∗S,[0:N−d] − ûS,[0:N−d]
u∗S,[N−d+1:0] − ûS,[N−d+1:0]

 . (54)

For brevity, let Π = ΠS,[0:N−d]. From (53) and (48), and the
sub-multiplicative property of norms, we have

‖u∗S,[0:N−d]−ûS,[0:N−d]‖∞ ≤ ‖ΠΨ†Sv‖∞

+ λT

∥∥∥Π(ΨT
SΨS/T )

†
∥∥∥
∞
, (55)

where we used the fact ‖ẑS‖∞ ≤ 1. The second term is deter-
ministic. Instead, the first term is random, and, from Lemma 3,
it is upper bounded by σ/

√
cmin(

√
2 log(tS)/T+δ) with prob-

ability at least 1− 2 exp(−Tδ2/2). Finally, the left-hand side
of (55) can be written as maxj∈S ‖u∗j,[0:N−d]−ûj,[0:N−d]‖∞.
Putting the pieces together, we have the inequality in (27).

Part (d): By the triangle inequality, for all j ∈ S, we have

‖u∗j:[0:N−d]‖∞ = ‖u∗j:[0:N−d] − ûj:[0:N−d] + ûj:[0:N−d]‖∞
≤ ‖u∗j:[0:N−d] − ûj:[0:N−d]‖∞ + ‖ûj:[0:N−d]‖∞
(i)

≤ βmin + ‖ûj:[0:N−d]‖∞,

where (i) follows from part (c). Thus, ‖ûj:[0:N−d]‖∞ > 0 if
‖u∗j:[0:N−d]‖∞ > βmin. This observation together with Ŝ ⊆ S
in part (a) implies that Ŝ = S.

Finally, the probability stated in the theorem is obtained by
taking the union bound of the event where the dual feasibility
holds and the event where `∞ bounds hold. �

Proof of Theorem (7): Consider the auxiliary system x[k+
1] = Ax[k] + bju

∗
j [k], where j ∈ Sc and u∗j [k] = 0, k ≥ N .

Let x[0] = 0. Thus, y = Jju
∗
j , where Jj is given by (7) and

y and u∗j as in (6). Let ΨS be as in (12), and consider ỹ[0]
...

ỹ[N ]

 , Ψ†S

 y[0]
...

y[N ]

 = Ψ†SJju
∗
j = Ψ†SJj

 u
∗
j [0]
...

u∗j [N ]

 , (56)

By assumption we have nRankZS = n + m∗. Thus, for
all z 6∈ spec(A), GS [z] has full column rank and G+S [z] =
[GS [z]TGS [z]]−1GS [z]T and G+S [z]GS [z] = z−dI; see [8, The-
orem 1]. Let ỹ[z] be the Z-transform of {ỹ[k]}∞k=0. Then by
using the construction given in [36, pp. 49-50] and the unique-
ness of pseudo inverse [26], we have ỹ[z] = z−dH[z]u∗j [z],
where Hj [z] = G+S [z]Gj [z], for all z 6∈ spec(A).

From Parsevel’s theorem, we have the following bound:√√√√ ∞∑
k=0

‖ỹ[k]‖22 =

√
1

2π

∫ π

−π
‖ỹ[ejω]‖22dω

=

√
1

2π

∫ π

−π
‖e−djωHj [ejω]u∗j [ejω]‖22dω

≤ sup
{ω∈[−π,π]}

‖Hj [ejω]‖2

√
1

2π

∫ π

−π
|u∗j [ejω]|22dω

= sup
{z∈C:|z|=1}

‖Hj [z]‖2‖u∗j‖2. (57)
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For the final inequality, we once again used Parsevel’s theorem
and the fact that u∗[k] = 0, for all k > N .

On the other hand, from (56) and (57), we have

‖Ψ†SJj‖2 = sup
‖u∗j ‖2=1

‖Ψ†SJju
∗
j‖2 = sup

‖u∗j ‖2=1

√√√√ N∑
k=0

‖ỹ[k]‖22

≤ sup
‖u∗j ‖2=1

√√√√ ∞∑
k=0

‖ỹ[k]‖22 ≤ sup
{z∈C:|z|=1}

‖Hj [z]‖2.

Thus max{j∈Sc} sup{z∈C:|z|=1} ‖H[z]‖2 ≤ α/m∗ implies that
‖Ψ†SJj‖2 ≤ α/m∗. The proof is now complete. �

Proof of Theorem (6): From Theorem 4, S = Ŝ holds with
probability at least 1−4 exp(−Tδ2/2). Thus, from (30), with
the same probability, we have

β̂
(OLS)

Ŝ,[0:N−d] = β̂
(OLS)

S,[0:N−d] = Π̃S,[0:N−d]Ψ
†y, (58)

where Π̃S , Π̃S,[0:N−d] = [In+tS 0(n+tS)×dm∗ ].
Since y ∼ N (β∗S,[0:N−d], σ

2I), it follows that

β̂
(OLS)

S,[0:N−d] − β∗S,[0:N−d] ∼ N (0, σ2Π̃S(Ψ
T
SΨS)

†Π̃
T

S︸ ︷︷ ︸
,Σ∈Rn+tS×n+tS

). (59)

We now upper bound ‖Σ‖2. Recall from (19) and Proposition
1 (ii) that ΨS = [ΨS,[N :d] ΨS,[d−1:0]] and R(ΨS,[N :d]) ∩
R(ΨS,[d−1:0]) = {0}. Let M = [I − ΨS,[d−1:0]Ψ

†
S,[d−1:0]].

Then, by invoking [26, Lemma D], we have

Π̃S(Ψ
T
SΨS)

†Π̃
T

S = [(MΨS,[N :d])
†(MΨS,[N :d])]

T. (60)

Since M∗ = M = M2, from Assumption (A2), it follows that
‖Σ‖2 ≤ σ2/(Tcmin).

From the second concentration result in Lemma 13, we have∥∥∥∥β∗S,[0:N−d] − β̂
(OLS)

S,[0:N−d]

∥∥∥∥
2

≤ 4σ
√
cmin

{√
(n+ tS)

T

}

+
2σ
√
cmin

{√
1

T
log

(
1

δ1

)}
, (61)

with probability at least 1− δ1 for δ1(0, 1). The statement of
the theorem follows by taking an union bound over the events
where (61) and (58) hold. �

Lemma 11. With the notation and assumptions stated in
Theorem 4, we have P[maxj∈Sc

∥∥JT
j ΓS (v/λTT )

∥∥
2
≥0.5(1−

α)] ≤ 2 exp(−Tδ2/2), where ΓS=[I−ΨSΨ†S ] and α ∈ [0, 1).

Proof. Let α̃ = 0.5(1− α) and take the union bound to get

P
[
max
j∈Sc

∥∥∥∥JT
j ΓS

(
v

λTT

)∥∥∥∥
2

≥ α̃
]

≤
∑
j∈Sc

P
[∥∥∥∥JT

j ΓS

(
v

λTT

)∥∥∥∥
2

≥ α̃
]
. (62)

Since v ∼ N (0, σ2I), we have JT
j ΓS (v/λTT ) ∼ N (0,Σj)

with Σj = JT
j ΓSΓT

SJj/(λ
2
TT

2). Furthermore, from the iden-
tity that ‖XXT‖2 = ‖X‖22, the following is trivial.

‖Σj‖2 =
1

λ2TT
2
‖JT

j ΓS‖22 ≤
1

λ2TT
2
‖JT

j ‖22 ≤
C2T

λ2TT
2
. (63)

The first inequality follows because ΓS is a projection matrix
and for the last inequality from the normalization assumption
(A1). Invoking Lemma 13, we bound the inequality in (62) as∑
j∈Sc

P
[∥∥∥∥JT

j ΓS

(
v

λTT

)∥∥∥∥
2

≥ α̃
]
≤
∑
j∈Sc

cN exp

(
− α̃

2λ2TT

8σ2C2

)
,

where cN = 5N+1. Since each term in the summand is the
same, the right-hand side can be expressed as

exp

(
(N + 1) log(5) + log(m−m0)−

α̃2λ2TT

8σ2C2

)
(64)

Substituting λT (see (26)) and α̃ = 0.5(1 − α) in (64), and
simplifying it gives us the required bound.

Lemma 12. With the notation and assumptions stated in
Theorem 4, for δ ∈ [0, 1), we have P[‖ΠS,[0:N−d]Ψ

†
Sv‖∞ ≥

σ/
√
cmin(

√
2 log(tS)/T + δ)] ≤ 2 exp(−Tδ2/2).

Proof. Recall that ΠS,[0:N−d] = [0tS×n ItS×tS 0tS×dm∗ ] and
tS = (N−d+1)m∗. We drop the sub-script notation [0 : N−d]
in ΠS,[0:N−d]. Let zl = eT

l ΠSΨ†Sv be the lth entry of the
vector ΠSΨ†Sv, where el is the lth canonical basis vector
in RtS . Thus ‖ΠS,[0:N−d]Ψ

†
Sv‖∞ = maxl∈1...tS |zl| and for

κ ≥ 0 by invoking union bound we have

P[ max
l∈1...tS

|zl| ≥ κ] ≤
tS∑
l=1

P[|zl| ≥ κ]. (65)

We bound terms on the right-hand side by invoking standard
concentration results. We first characterize the distribution of
zl. Since v ∼ N (0, σ2I), we have zl ∼ N (0, σ2

l ), where

σ2
l = σ2eT

l ΠSΨ†S(ΠSΨ†S)
Tel ≤ σ2λmax(ΠSΨ†S(ΠSΨ†S)

T)

= σ2‖ΠS(Ψ
T
SΨS)

†ΠT
S‖2

≤ σ2‖Π̃S(Ψ
T
SΨS)

†Π̃
T

S‖2
≤ σ2/(Tcmin). (66)

where Π̃S = [In+tS 0(n+tS)×dm∗ ]. The second inequality
follows from interlacing property of singular values. The final
inequality is showed in the proof of Theorem 6.

Since zl is Gaussian, from [29, page 22] and (66), we have
P[|zl| ≥ κ] ≤ exp(−κ2/(2σ2

l )) ≤ exp(−κ2Tcmin/(2σ
2)).

Substituting this inequality in (67), we find that

P[ max
l∈1...tS

|zl| ≥ κ] ≤ exp

(
log(tS)−

κ2Tcmin

2σ2

)
. (67)

The result follows by letting κ = σ/
√
cmin(

√
2 log(tS)/T+δ)

and simplifying terms in the exponential term.

Lemma 13. Let p ∼ N (0,Σ), where Σ ∈ Rl×l is a positive
definite matrix. Then, P[‖p‖2 ≥ t] ≤ 5l exp(−t2/(8‖Σ‖2)).
Furthermore, ‖p‖2 ≤ 4

√
‖Σ‖2l + 2

√
‖Σ‖2 log(1/δ) with

probability at least 1− δ for δ(0, 1).

Proof. Follows from Lemma 8.2 and Theorem 8.3 in [37].
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