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ABSTRACT

Location information is very useful in the design of sensor net-
work infrastructures. In this paper, we study the anchor-free 2D
localization problem by using local angle measurements in a sen-
sor network. We prove that given a unit disk graph and the angles
between adjacent edges, it is NP-hard to find a valid embedding in
the plane such that neighboring nodes are within distance 1 from
each other and non-neighboring nodes are at least distance 1 away.
Despite the negative results, however, one can find a planar spanner
of a unit disk graph by using only local angles. The planar span-
ner can be used to generate a set of virtual coordinates that enable
efficient and local routing schemes such as geographical routing
or approximate shortest path routing. We also proposed a prac-
tical anchor-free embedding scheme by solving a linear program.
We show by simulation that not only does it give very good local
embedding, i.e., neighboring nodes are close and non-neighboring
nodes are far away, but it also gives a quite accurate global view
such that geographical routing and approximate shortest path rout-
ing on the embedded graph are almost identical to those on the orig-
inal (true) embedding. The embedding algorithm can be adapted to
other models of wireless sensor networks and is robust to measure-
ment noise.

Categories and Subject Descriptors: E.1 [Data]: Data Struc-
tures—graphs and networks; F.2.2 [Theory of Computation]: anal-
ysis of algorithms and problem complexity—non-numerical algo-
rithms and problems

General Terms:Algorithms, Design, Theory

Keywords: Sensor networks, Wireless networks, Localization, Ge-
ographical routing, Embedding, Planar spanner subgraph
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1 Introduction
The fast development of sensor networks in recent years has at-
tracted a lot of interest in the networking community. Sensor net-
works, with their flexible and scalable nature, have great poten-
tial for a variety of applications such as environment monitoring,
digital battlefield, etc. Unlike other networks with more logical
structures, sensor networks are closely related to the geometric en-
vironment where they are deployed. In particular, location infor-
mation has been proven to be very useful in the design of sensor
network infrastructures. First of all, a sensor network is “data cen-
tric”, where individual sensors are not as interesting as their sensed
data. But the data sensed by sensor networks, such as temperature
or humidity, are meaningless if we don’t know where the data are
from. Location information can also help routing. For example,
geographical routing makes use of the location of sensor nodes as
a routing criterion, where a node sends the message to the neighbor
who is closest to the destination. Under dense sensor deployment,
this greedy routing will successfully deliver the message to the des-
tination in a local and efficient manner.

Location information can be obtained by using global position-
ing systems (GPS) [14]. But GPS is expensive and does not work
indoor. So there has been a lot of study on localization algorithms
that induce the locations of sensor nodes from their local interac-
tions, such as the detection of local neighbors and/or the distances
(angles) between neighbors [28, 29, 22, 23, 24, 27, 30, 31, 2, 20,
13, 8]. Many of them assume the existence of a (sometimes large)
number of anchor nodes whose positions are already known [28,
29, 22, 23, 30, 24, 8]. In this paper we focus on anchor-free meth-
ods that deduct the geometry of the network by only the interactions
of the nodes. Existing anchor-free algorithms can be classified into
two categories based how much information they use. Some of
them use only the connectivity of the communication graph [27,
30]. Others also use the distances between sensor nodes, which
can be estimated by Received Signal Strength Indicator (RSSI)
or Time of Arrival (ToA) techniques. Distance estimation can be
severely affected by the environment and is usually unreliable and
noisy [10]. Another problem with distance information is that when
the localization solution is not unique, the embedded graph may
have incorrect folding, where some pieces of the graph fold on top
of other pieces without violating the distance constraints. Finding
an embedding without incorrect folding is a challenging research
problem.

Interestingly enough, little work has been done on using local
angle information for localization. Angles between adjacent edges
can be measured by using multiple ultrasound receivers [25], in
particular, the Angle of Arrival (AOA), or by using directional an-
tennas. Considering angle information adds one more dimension
to the localization problem. Intuitively the angle information tells
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us how the graph stretches out in different directions and prevents
incorrect folding, thus the localization problem could be made eas-
ier.

In this paper, we study what can and what cannot be done using
the connectivity together with the local angle information. Given
a combinatorial unit disk graphG with the angles between adja-
cent edges specified, we want to find a valid embedding ofG in
the plane. That is, we want to assign Euclidean coordinates to the
vertices ofG such thatG is the induced unit disk graph that meets
the angle constraints. We prove that this problem is hard. Specif-
ically, it’s NP-hard to find a valid embedding where neighboring
nodes are embedded no further than distance 1 from each other and
non-neighboring nodes are embedded at least distance 1 away. And
actually it’s still hard to find a solution to some relaxed problems.
In particular, it’s NP-hard to find a

√
2-approximate embedding

where non-neighboring nodes are embedded at least
√

2/2 away,
or a topologically-equivalent embedding where two edges cross in
the embedded graph if and only if they cross in a valid embedding.

In spite of the difficulty of embedding, with local angle informa-
tion we can find a subgraphG′ of G such that forany valid em-
beddingE of G, the graphE(G′) induced by the same embedding
is a planar spanner ofE(G). Specifically, no two edges cross in
E(G′) and the shortest path distance between two nodes inE(G′)
is at most a constant factor of that inE(G). Spanner subgraphs are
very useful in topology control and geographical routing. In partic-
ular, geographical routing uses face routing on a planar subgraph
to guide a packet out of the local minima. There has been lots of
work on constructing planar spanner subgraphs of unit disk graphs
(please refer to [26] for an overview), but all of them assume that
locations are already known. Here we are the first to show that actu-
ally one does not need as much as the location information to con-
struct a planar spanner, only the local angle information suffices!
Further, a straight line embedding of the combinatorial graphG′ in
the plane gives a set of virtual coordinates for sensor nodes with
which the geographical routing is guaranteed to deliver a packet to
its destination if such a path exists. This shows that just for the pur-
pose of geographical routing, using accurate location information
is unnecessary.

For practical applications, we propose an embedding algorithm
with local angle information that gives surprisingly good results.
We first formulate the embedding problem by a linear program with
relaxed constraints such that any valid embedding must be a feasi-
ble solution to the LP. Through simulations, we show that the LP
finds an almost identical set of locations as the original ones, even
when the graph is sparse. We also show that the method is robust
to both noisy measurements of angles and different models of sen-
sor networks — specifically, the more general quasi-unit disk graph
models. A planar spanner derived based on local angle information
equipped with the virtual coordinates obtained through embedding
enables geographical routing and approximate shortest path routing
with demonstrated performance almost the same as using the real
locations.

2 Related work

2.1 Localization
The localization problem, i.e., determining the global geometry by
using only local information, was studied in many communities
such as computational biology, machine learning, and sensor net-
works. The localization problem can be formulated as a graph em-
bedding problem, i.e., to embed the vertices of a graph in a geomet-
ric space such that the embedded drawing satisfies desired proper-
ties. A sensor network is modelled by aunit disk graph (UDG),

where two nodes are connected by a communication link if and
only if their Euclidean distance is no more than 1. Unit-disk graph
embedding is to find an embedding of the vertices in the Euclidean
plane such that the distance between two nodes is at most1 if there
is an edge, and the distance between two nodes is more than1 if
they don’t have an edge.

By using purely the connectivity information, it’s known that de-
termining whether a combinatorial graph is a unit-disk graph is NP-
hard, and thus finding such an embedding is also hard [5]. In fact,
even a relaxed version of the problem is still hard. It’s shown by
Kuhn et al. that finding an embedding such that non-neighboring
pairs are at least 1 away and neighboring pairs are within

p
3/2 is

NP-hard [16]. There have been a number of heuristics proposed for
localization by mere connectivity [27, 30]. But not much is known
on the worst case bound. So far the only known theoretical result
is an algorithm with an upper boundO(log2.5 n

√
log log n) on the

ratio of the longest distance between neighboring pairs to the short-
est distance between non-neighboring pairs [21]. In the localization
problem with range information, we are also given the distances
between certain node pairs in the graph besides the connectivity.
If only edge lengths are provided, finding a feasible embedding is
NP-hard [1, 7] (also proved by a slight variation of the proof in [5]).
When all pairs of inter sensor distances are known, the solution is
unique and can be solved by the classical Multidimensional Scal-
ing (MDS) method [3]. If the distances between aboutΩ(n2) pairs
of nodes are given and there is a unique solution, the embedding
problem can be formulated as a semi-definite program and solved
in polynomial time [31, 2].

In practice, many localization algorithms assume the existence
of anchor nodes whose locations are known by GPS or other meth-
ods. Then trilateration is used to find the locations of the sensors
progressively [28, 29, 22, 20, 8]. If the distances from a sensorp to
three anchors are known, the location ofp is uniquely determined.
Similar methods can also be done by using angles [23, 24]. These
incremental solutions usually suffer from cascading errors and the
localization result can be beyond tolerable on large-scale networks.

2.2 Geographical routing
Geographical routing is a local and efficient routing algorithm pro-
posed for ad hoc networks. In the traditional geographical routing,
each node knows its own location. A source node knows the loca-
tion of the destination and uses it as the goal of routing. Geograph-
ical routing is composed of two schemes, greedy forwarding and
perimeter routing (also called face routing) [15, 4]. In greedy for-
warding, a message is forwarded to the neighbor whose Euclidean
distance to the destination is the minimum among all neighbors.
When a message gets stuck at a node whose neighbors are all fur-
ther away from the destination, it uses perimeter routing to route
along the faces of a planar subgraph until either the destination is
reached or greedy forwarding can be performed again. Perimeter
routing can also be improved by an ‘early-fallback’ technique to
return to greedy routing as soon as possible [17]. In all these vari-
ations, both the location information and a correctly constructed
planar subgraph are needed.

Due to the hardness of the localization problem, people have pro-
posed various schemes of computing virtual coordinates in replace
of the real coordinates. The most prominent work is done by Rao
et al. [27], where they construct a set of virtual coordinates by us-
ing only the connectivity for geographical routing. But when a
message gets stuck at a local minima, the only way for it to reach
the destination is to be flooded to the whole network. Comparably,
we use more information, the local angle information, and produce



an embedded planar spanner subgraph together with a set of virtual
coordinates such that stuck messages can be routed to the destina-
tion by perimeter routing.

3 Preliminaries
We start with some definitions on unit disk graphs and embeddings.
Throughout the paper we assume that the UDG is connected since
otherwise we’ll work on each connected component separately.

Definition 3.1. A unit-disk graphis a combinatorial (unweighted)
graph induced by a set of points in the Euclidean plane such that
two points have an edge in between if and only if their distance is
no more than 1.

We emphasize here that by the notion of unit-disk graph we mean
the combinatorial graph without the embedding. Such a unit-disk
graph is induced by a set of points in the Euclidean plane but the
configuration of the nodes inR2 is unknown. An embedding of
such a combinatorial graph in the Euclidean plane may or may not
be the same as the original (unknown) configuration. For an embed-
ding E , we denote byE(p) the embedded point of a nodep. The
Euclidean distance between two nodesp, q in an embeddingE is
denoted byd(E(p), E(q)). We will sometimes abuse the notations
and usep to representE(p) when the context is clear.

In this paper we study embedding problems by using local angle
information. Specifically, besides the combinatorial unit disk graph
we are also given the angles between angularly adjacent edges (All
angles are measured counterclockwise). See Figure 1. With the
local angles constrained there is still freedom to choose the lengths
of the edges.

u1

pu2

u3

u4

u5

Figure 1. For each nodep in the unit disk graph, assume thatu1, · · · , uk

arep’s neighbors ordered counterclockwise. In this paper we assume that
the angles between edgespui andpui+1 are given.

Definition 3.2. An α-approximate embeddingE of a graphG with
angle information is an embedding of the vertices such that the dis-
tance between two nodesd(E(u), E(v)) ≤ 1 if u, v have an edge
between them inG, andd(E(u), E(v)) > 1/α if u, v don’t have
an edge between them inG, whereα ≥ 1. The angle between any
two adjacent edgesuv, uw is as specified. Avalid embeddingis an
α-approximate embedding withα = 1.

We observe that by local angle information, we can decide whether
two edges cross in a valid embedding of the unit disk graph. Thus
when we say two edges cross in a unit disk graphG, we actually
mean that they cross in any valid embedding ofG.

Lemma 3.3. If we know the angles between adjacent edges of a
unit disk graph, we can determine all pairs of crossing edges in a
valid embedding.

PROOF. In particular, if two edgesAB, CD intersect with each
other, there must be a node that is connected with all the other three
nodes [5, 11]. SupposeB is connected with the other three nodes.
ThenAB, CD cross each other if and only ifAB is located inside

the cone defined by\CBD < π andA, B are on different sides
of the line defined byCD.

First we can decide ifAB is located inside the cone defined by
\CBD < π easily by the angle information. Further, ifAB is
located inside the cone defined by\CBD and A, B are on the
same side of the line defined byCD, thenA is inside the triangle
BCD. See Figure 2 (ii). ThenA is connected toB, C, D due to
plane geometry. This situation can be identified sinceBA must be
outside the cone defined by\CAD. �

B

C

D

A B

C

D A

D

A

B

C

(i) (ii) (iii)

Figure 2. (i) The edgeAB is not located inside the angle\CBD and
thusAB, CD cannot cross each other; (ii)AB is located inside the cone
defined by\CBD andA, B are on the same side of the line defined by
CD, thenBA must be outside the cone defined by\CAD; (ii) A correct
crossing betweenAB andCD.

The above lemma implies that we can identify all crossing edges
in a valid embedding with local angle information. Thus one re-
laxation of a valid embedding is to require that the topology of the
embedded graph is equivalent with a valid embedding, i.e., only the
edges that cross in a valid embedding are allowed to cross.

Definition 3.4. A topologically equivalent embeddingE of a graph
G with angle information is an embedding of the vertices such that
two edges cross inE if and only if they cross in a valid embedding.
The angle between any two adjacent edgesuv, uw is as specified.

Remark. We notice that without loss of generality we can assume
that in a topologically equivalent embedding the neighboring nodes
are embedded no further than distance 1. This is because we can
always do proper global scaling that doesn’t change the topology
of the embedded graph.

Theorem 3.5. A
√

2-approximate embedding is a topologically
equivalent embedding.

PROOF. Assume that there are two edgesAB, CD that cross
each other in a

√
2-approximate embeddingE . Also assume that

E∗ is a valid embedding. If the following two claims are true, then
E is topologically equivalent withE∗.
Claim 1: If AB, CD cross in a valid embeddingE∗, then they
must also cross in a

√
2-approximate embeddingE .

Proof of claim 1. If AB, CD cross in a valid embeddingE∗, then
one node must be connected to all the three other nodes. There are
three possible cases, as illustrated by Figure 3. For case (ii) and
(iii), if the angles between adjacent edges are fixed as specified, the
configuration of the four nodes is unique up to a global rigid mo-
tion and scaling. ThusAB, CD cross in any embedding preserving
the local angles. For case (i), we argue that in a

√
2-approximate

embeddingAB, CD must also cross each other. In a valid embed-
ding E∗ as in Figure 4 (i),AC must be longer than bothAD and
CD. Thus the angle\CDA > π/3. Similarly \BDC > π/3.
Thus\BDA > 2π/3. If in a

√
2-approximate embeddingE , AB

doesn’t crossCD, thenC is embedded inside the triangleADB, as
shown in Figure 4 (ii). First\BCA > \BDA > 2π/3. On the
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Figure 3. In a valid embedding of the unit disk graphG, if two edgesAB,
CD cross each other, there are only three possible cases.

other hand,d(E(A), E(C)) >
√

2/2, d(E(B), E(C)) >
√

2/2,
d(E(A), E(B)) ≤ 1. Thus,

d(E(A), E(C))2 + d(E(B), E(C))2 > 1 ≥ d(E(A), E(B))2.

So\BCA < π/2. This leads to a contradiction.

C

BA
D

C

BA
D

(i) (ii)

Figure 4. (i) A valid embeddingE∗; (ii) A
√

2-approximate embeddingE .

Claim 2: If AB, CD cross in a
√

2-approximate embeddingE ,
then they must also cross in a valid embeddingE∗.
Proof of claim 2. There are six possible cases based on how the
nodes are connected with each other inG. See Figure 5. We argue
that none of the cases have both properties that

• AB, CD intersect each other inE and

• AB, CD don’t intersect each other inE∗.

D

C

A

B
O

C

A

B

D D

C

A

B

(i) (ii) (iii)
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B

(iv) (v) (vi)

Figure 5. A
√

2-approximate embeddingE . Solid lines are edges inG.

1. For case (i) in Figure 5, let’s take a look at triangle4ACD
under embeddingE . We know thatd(E(A), E(C)) >

√
2/2,

d(E(A), E(D)) >
√

2/2, d(E(C), E(D)) < 1. So the angle
\CAD < π/2. Similarly,\ACB < π/2, \CBD < π/2,
\BDA < π/2. This leads to a contradiction since the sum
of the inner angles of a 4-gon must be2π. So this case can
never happen inE .

2. Case (ii) cannot happen for a
√

2-approximate embeddingE .
The intuition is that if the two edges don’t cross in a valid
embedding, then the angle\COB ≤ π/6. This contradicts
with the fact thatd(E(B), E(C)) >

√
2/2. The details are

in Appendix 8.

3. Case (iii) cannot happen. By the angle constraint, the two
edgesAB, CD must cross in any planar embedding. But in
a valid embedding there must be a node that is connected to
three other nodes. This leads to a contradiction.

4. For cases (iv), (v) and (vi),AB andCD cross in any valid
embedding.

Therefore if two edges don’t cross in a valid embedding, they
cannot cross each other in any

√
2-approximate embedding. This

shows that an
√

2-approximate embedding is a topologically equiv-
alent embedding. �

4 The hardness of UDG embedding with
angles

As shown in the last section, by using local angle information we
can decide on all crossing edges in a valid embedding. However,
local angle information is not sufficient for us to decide a valid em-
bedding. It turns out that the problem of finding a valid embedding
by using the connectivity and the local angle information is still
hard. In fact it’s even NP-hard to find a topologically equivalent
embedding or a

√
2-approximate embedding. In this section we

show a reduction from the 3SAT problem.

A 3SAT problem consists of a set of Boolean variables and clauses
such that each clause is composed of at most 3 literals, which are
either negated or unnegated. The 3SAT problem is to find an as-
signment to the variables such that all the clauses are satisfied. A
3SAT instanceC can be formulated as a graphGC where vertices
are the set of clauses and variables, and there is a path connect-
ing a clause with a variable (or its negated version) if the variable
appears in the clause. Please see Figure 6 for an example. Such
a graph can be drawn on a grid in polynomial time [5]. Breu and

x3

C1

C2

C3

x1 x1 x2 x2 x3

Figure 6. The graphGC of a 3SAT instance(x1∨x2∨x3)∧ (x2∨x3)∧
(x1 ∨ x2 ∨ x3).

Kirkpatrick proved the NP-hardness of unit disk graph embedding
by a reduction from a 3SAT problem [5]. Now we focus on real-
izing the graphGC by a unit-disk graph with the angle constraint
such that there is a topologically equivalent embedding if and only
if the corresponding 3SAT problem is satisfied.

4.1 Basic building blocks
We first present a set of building blocks by using unit disk graphs.



• Spring. A spring is a line segment with length between` and
2`. It can be realized by a set of2` + 1 nodes placed on a
straight line such that there are only edges between adjacent
pairs, as shown in Figure 7 (ii). In particular, each edge in
a unit disk graph has length at most1, so a chain of2` + 1
nodes have length at most2`. For 3 adjacent nodesa, b, c,
sincea cannot communicate withc, their distance must be at
least1 away. Thus the chain is no shorter than`.

A > `

≤ 2`

B A B

2` + 1

(i) (ii)

Figure 7. (i) A spring; (ii) The realization of a spring by unit-disk graphs.

• Amplifier . An amplifier is a triangle with fixed inner an-
gles. Thus the ratio between the edge lengths of the triangle
is fixed. For a number̀ we can use an amplifier to get the
number`′ = c · ` for anyc > 0. An amplifier can be real-
ized by a unit disk graph with pre-specified angles between
adjacent edges.

`

A

B

C`′

B

A C

(i) (ii)

Figure 8. (i) An amplifier; (ii) The realization of an amplifier by unit-disk
graphs.

• Propagator and Crossing Propagator. A propagator is a
rectangle. The lengths of the opposing sides of the rectangle
are the same. It can be implemented by a cycle of nodes with
corresponding angle constraints. A crossing propagator is a
pair of crossing rectangles. See Fig. 9.

a

b

a

b

b

a

b

a

(i) (ii)

Figure 9. (i) Propagator; (ii) Crossing propagator.

• 0/1 block By using the above building blocks, we can con-
struct a 0/1 block that has only two types of valid embedding.
In short, we construct a concave cycle with one top “tooth”
and one bottom “tooth”. If we don’t allow the teeth to over-
lap, there are basically two ways to embed the concave cy-
cle, either by putting the top tooth to the left of the bottom
tooth, or the other way around. Please see Figure 10 for the
two types of embedding. The concave cycle is bounded by
AEFGHDCKLIJB, the top tooth is the part of the cy-
cleEFGH, the bottom tooth is the part of the cycleJILK.
Suppose the length ofAB = CD is `, we use amplifiers and
propagators such that the length ofBC = DA = 11`/6.
There are two squaresEFGH, IJKL inside the rectan-
gle ABCD. Both of them have side length2`/3. The two
squares don’t have edges in between. Thus any embedding
without incorrect crossings will have to embed the graph in

two ways, either by putting the squareEFGH to the left of
IJKL or the other way around. In the first case, the length
of the pathAE is no more thaǹ/2, the length ofHD is at
least2`/3. In the second case, the length of the pathAE is
at least2`/3, and the length ofHD is no more thaǹ/2. The
segmentsAE, HD, BJ , KC are springs, thus their lengths
can be stretched and shrinked by a factor no more than2.

B

2`/3

2`/3

D

C

E H

I L

A

J K

GF

11`/6

≥ 2`/3≤ `/2

`

11`/6

2`/3

2`/3 C

I L

JB K

`

F G

H DEA

≥ 2`/3 ≤ `/2

(i) (ii)

Figure 10. The only two embedding of a concave cycle without incorrect
crossings.

4.2 Realization ofGC by unit disk graphs
Now we are ready to introduce how to realize the graphGC for a
3SAT instanceC by using unit disk graphs with angle constraints.
The graphGC consists of three components: clauses, variables and
wires to connect them.

• Wires The wires are simply propagators. If the width of a
propagator is no more thaǹ/2, this means the variable con-
nected by the wire is assigned ‘1’. If the width of a propa-
gator is at least2`/3, the variable connected by the wire is
assigned ‘0’ inGC .

• Variable componentsA variable is implemented by a 0/1
block. In fact, we use the length ofAE to represent the value
of a variable and the length ofHD to represent its negated
version. A variablev is assigned1 if the length ofAE is
less thaǹ /2, and0 if the length ofAE is at least2`/3.
Correspondingly we use the length ofHD to represent the
negated variablev.

• Clause componentsA clause component puts constraints on
the input variables. In particular, it put a total maximum
length on the concatenation of springs whose lengths rep-
resent the assignments of input variables. See Figure 11 (i)
for an example. If a clause is composed of three variables,
then the outer rectangle has width11`/6. Thus at least one
of the variable has length less than`/2. That is, the clause
is satisfied if at least one variable is assigned value1. The
clauses with two or one variables are designed similarly. See
Figure 11 (ii) and (iii).

Now we put all the components together and show a realization
of the graphGC (Figure 6) for a 3SAT instanceC by a unit disk



v3

11`/6

v1

v2

v2
7`/6

v1

`/2 v1

(i) (ii) (iii)

Figure 11. Clause components (i)(v1 ∨ v2 ∨ v3); (ii) (v1 ∨ v2); (iii) v1.

graph in Figure 12. Intuitively, the hardness of the problem is due
to that the ways to embed the 0/1 blocks are affected by each other
through the constraints put by the clauses.
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���

���
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���
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���
���

x3

C3

C2

C1

x1 x1 x2 x2 x3

Figure 12. The realization of a 3SAT instance(x1 ∨ x2 ∨ x3) ∧ (x2 ∨
x3) ∧ (x1 ∨ x2 ∨ x3) by a unit disk graph. Shaded areas are 0/1 blocks
for variables. In this examplex1 = 1, x2 = 0, x3 = 0. The instance is
satisfied.

4.3 Hardness results

Now we are ready to prove the NP-hardness of unit disk graph em-
bedding with local angle information.

Theorem 4.1. It’s NP-hard to find a topologically equivalent em-
bedding of a unit-disk graph with local angle constraints.

PROOF. By the construction ofGC for a 3SAT instanceGC , we
can see that the the instanceC can be satisfied if and only if we can
find an embedding ofGC in the plane that has the same topology
and preserves all the local angles. Since 3SAT is NP-hard, it’s also
NP-hard to find a topologically equivalent embedding. �

Corollary 4.2. It’s NP-hard to find a valid embedding of a unit-
disk graph with local angle constraint.

PROOF. The proof is similar with the above theorem. For a
graphGC of a satisfiable 3SAT instanceC, we can find an em-
beddingE of GC with no incorrect crossings. Further we can do
proper scaling and local arrangement ofE such thatE is a valid
embedding. �

Corollary 4.3. It’s NP-hard to find anα-approximate embedding
of a unit-disk graph with local angle constraints, forα <

√
2.

PROOF. We construct a graphGC for a 3SAT instanceC. By
Theorem 3.5, a

√
2-approximate embedding is a topologically equiv-

alent embedding. Thus if we have a
√

2-approximate embedding
E of GC , thenC is satisfiable. The other direction can be proved
similarly as the above proof. �

Input Hardness ref.
UDG graph only NP-hard [5, 16]
O(1)-hop distances NP-hard [1]
O(1)-hop angles NP-hard this paper
O(1)-hop angles & distances in P this paper
Ω(n2) pairs distances in P [2, 31]
all pairs angles in P this paper

Figure 13. A summary of the hardness of finding a valid embedding of a
UDG.

4.4 A summary of hardness of localization
Localization by using only angles between adjacent edges in a unit
disk graph is shown to be NP-hard. However, if we have more
information, localization can be solved easily from a theoretical
point of view. For example, if we have the angles between all pairs
of nodes in the graph, then the graph is basically determined up to
a scaling factor. For another example, if we have both the lengths
of the edges and the angles between adjacent edges in a unit disk
graph, the graph is uniquely determined. A short summary of the
hardness results on localization is shown in Figure 13.

5 Planar spanner construction

In the previous section we’ve shown that by using the communica-
tion graph and local angle information, it’s NP-hard to find a valid
embedding of a unit disk graph. On the positive side we’ll show
that by local angle information we can find a planar spanner sub-
graph whose embedding in the plane can be used for geographical
routing with guaranteed delivery.

A planar graph is a graph that can be embedded in the plane with
no edge crossings. Ac-spannerG′ of a graphG is a subgraph ofG
such that the shortest path distance ofu, v in G′ is at mostc times
the shortest path distance ofu, v in G, where the shortest path dis-
tance is the sum of the Euclidean length of all the edges on the
shortest path.c is the spanning ratio ofG′. A spanner with a con-
stant spanning ratio is usually called a spanner. In this section we’ll
show that one can construct a planar spanner for a unit disk graph
by using only the angles between adjacent edges. Recall that the
location information is not available. Thus when we say a planar
spanner we mean a subgraphG′ of the input unit disk graphG such
that for anyvalid embeddingE(G), the subgraphG′ on the same
embeddingE(G′) is a planar spanner. Finding a spanner subgraph
can be easily done without the location information, however, find-
ing a spanner subgraph that has a planar embedding for any valid
embedding of the UDG doesn’t seem to be intuitive. The idea is
to find a planar subgraph that is guaranteed to contain a restricted
Delaunay graph, i.e., a subgraph of the Delaunay triangulation with
all the edges longer than1 deleted [11].

A Delaunay triangulation on a point set inR2 is a triangulation
with “empty-circle” property: the circumcircle of any triangle has
no other points inside. A restricted Delaunay graph, defined as the
subgraph of the Delaunay triangulation with all the edges longer
than 1 deleted, is known to be a2.42-spanner of the unit disk
graph [11, 19]. Now we claim that with local angle information
we can find a subgraphG′ of G that is planar and contains all the
edges of a restricted Delaunay graph. ThusG′ is a planar spanner
subgraph ofG with spanning ratio2.42.

Suppose two edgesAB, CD cross each other in a unit disk
graph, then only one of them can possibly be a Delaunay edge due
to the planar property. We show that we can decide which one isnot



a Delaunay edge by using the local angle information. To be spe-
cific, there are only three possible cases of a pair of crossing edges,
as shown in Figure 3. Notice that in cases (ii) and (iii), because
of the given angle information, the positions of the four nodes are
unique up to a rigid motion and a scaling factor. Since the Delau-
nay triangulation is invariant under global scaling, there is only one
possible Delaunay triangulation, which can be decided by only the
angles.

For case (i), nodeC is at least of distance1 away from nodes
A, B. See Figure 14. We take the bisectors of the edgeAD, BD,
`1, `2, that intersect at a pointO. O is also the center of the cir-
cumcircle of4ABD. The lines`1, `2 divide the plane into four
quadrants. NodeC must be inside the same quadrant with nodeD
sinced(E(C), E(D)) ≤ 1 < d(E(C), E(A)), d(E(C), E(D)) ≤
1 < d(E(C), E(B)). ThusC is inside the circumcircle of4ABD.
This implies that the edgeAB is not a Delaunay edge, since it vi-
olates the “empty-circle” property of the Delaunay triangulation.

O

A

`1 `2

D

C

B

Figure 14. Thick lines are edges in the unit disk graph. NodeC must lie in
the circumcircle of triangle4ABD.

By the above argument, one can decide a non-Delaunay edge
between a pair of crossing edges in a unit disk graph. Thus we can
eliminate crossings by always deleting non-Delaunay edges. In the
end we’ll have a planar subgraphG′ such that all the Delaunay
edges with length no more than 1 are kept. That is,G′ contains the
restricted Delaunay graph, which is a constant spanner.

Theorem 5.1. Given a unit disk graph and the angles between ad-
jacent edges, one can construct a planar spanner subgraph with
spanning ratio2.42.

We should also notice that there are possibly infinitely many
valid embeddings of a particular unit disk graph that satisfies the
angle constraints. However, the planar spanner we found is the
same for all such embedded graphs. This is a little counter-intuitive
since Delaunay triangulation has been considered to be very deli-
cate – a tiny movement of a single point can possibly change the
whole graph structure. Yet we show that the restricted Delaunay
graph has some kind of robustness. Further, such a planar span-
ner subgraph can help us with efficient routing in a sensor network.
In particular, it can be used to produce a set of virtual coordinates
for efficient geographical routing, or a set of distributed labels for
approximate shortest path routing.

5.1 Geographical routing with guaranteed
delivery

It’s known that any planar graph has a straight line realization in
the plane [9, 6]. By using a straight line embedding of the planar

subgraphG′, each node is assigned an Euclidean coordinate that
can be used in geographical routing [15, 4]. Although in our case
the location information can not be obtained unlessP = NP , the
embedded planar subgraph provides a set of virtual coordinates that
are equally good for geographical routing. The virtual coordinates
guarantee the delivery of a packet if possible at all.

5.2 Approximate shortest path routing

In general, graph labelling is to assign a set of distributed labels
to the vertices such that the shortest path can be inferred by using
only the labels of the source and destination. In particular, one can
compute a set of labels, each with size at mostO(

√
n log n), on

the vertices of a planar graph withn vertices, due to the fact that a
planar graph enjoys aO(

√
n) balanced separator [12]. The basic

idea is to partition the graph recursively into pieces by small-size
separators. The number of recursions islog n. For a separator of
a subgraphP , we compute and store distributedly the shortest path
trees ofP centered at all nodes of the separator. Each node has
a label with sizeO(

√
n log n). Therefore with the planar spanner

G′ of the unit disk graph, we can use the above graph labelling
algorithm to construct a set of labels with sizeO(

√
n log n) such

that one can find a2.42-approximate shortest path ofG by using
only the labels of the source and the destination.

6 A practical solution to UDG embedding and
routing with angles

Embedding a unit-disk graph is NP-hard, and it is so even when
the restriction is relaxed to be finding a topologically equivalent
embedding. In practice, however, we still hope to use the local an-
gle information to find localization that well approximates the true
sensor network. The planar spanner of a sensor network is certainly
very useful for geographical routing and approximate shortest path
routing; yet before the routing works, the spanner firstly needs to be
realized in the plane where edges are embedded as straight-line seg-
ments not crossing each other. There are currently known straight-
line embedding algorithms for planar graphs [9, 6]; however, when
such algorithms are applied to planar spanners of UDG, they distort
the edge lengths and the relative positions among nodes extremely
severely, and thus are not effective in practice. In this section, we
show that we can construct an embedding method based on linear
programming, which produces very good localization solutions; the
solutions lead to nearly optimal routing performance as well; we
also demonstrate the robustness of the embedding method to noisy
measurements of angles and to more general topological models of
sensor networks. This shows that using local angle information to
do localization and routing is practically good for sensor networks.

6.1 UDG embedding based on LP

We formulate the embedding problem by solving a linear program.
We include as many constraints as possible such that the optimiza-
tion remains a LP. We take the length of each edgee, `(e), as a
variable. We arbitrarily pick an edge and make thex-axis be par-
allel to it. By the fact that we know the angle between any two
adjacent edges, theabsolute angleof every edgee — the coun-
terclockwise angle between the positivex-axis ande — can be
uniquely determined. We see every edge as the superposition of
two directed edges of opposite directions, whose absolute angles
differ by π. Then a valid UDG embedding satisfies the following
constraints.



• Edge-length constraint. ∀ edgee, we have

0 ≤ `(e) ≤ 1. (1)

• Cycle constraint. For any cycle that consists of edges{e1,
e2, · · · , ep}, where for1 ≤ i ≤ p, the absolute angle ofei

is θei , there exist two constraints

pX
i=1

`(ei) cos θei = 0, (2)

pX
i=1

`(ei) sin θei = 0. (3)

• Non-adjacent node pair constraint. For any two adjacent
edgese1, e2 whose three endpoints do not induce a triangle
subgraph, we have

`(e1) + `(e2) > 1. (4)

• Crossing-edge constraint. For any two edgesAB andCD
crossing each other, one of the four nodes must be connected
to all the other three. Let’s sayD is connected toA, B and
C, andAB crossesCD at the pointx (see Fig. 15(i)). Then
there exists the constraint

`(CD) ≥ |xD| = `(AD)
sin\DAB

sin(\ADC + \DAB)
. (5)

C

A

B

D

x

e0

e1

e3e2
A

B C

(i) (ii) (iii)

Figure 15. (i) Crossing-edge constraint. (ii) A subgraph where any two
edges are related through a sequence of triangles. (iii) Two rigid subgraphs
sharing nodeA and connected by edgeBC.

The above constraints serve as the linear constraints in our linear
programming. A feasible solution to the LP gives us an embedding
of the UDG, since we can use the edge lengths of a spanning tree
and the angle information to determine the node positions. There
are many ways to select the objective function; as a heuristic, we
choose it to be maximizing the minimum length of all edges.

When the UDG has lots of edges, the large number of variables
and constraints in the LP will lead to high complexity. In such
cases, we can almost always use the following method to signifi-
cantly reduce the complexity. First we reduce the number of vari-
ables. For any three edgesAB, BC andCA that form a triangle,
since the values of\ABC, \BCA and\CAB are given, the
three edge lengths have fixed ratios. So we can regard only`(AB)
as a variable, and represent the lengths ofBC andCA respectively
by c1 · `(AB) andc2 · `(AB), for some constantsc1 andc2. Thus
three variables are reduced to one variable. Similarly, if a subgraph
of the UDG satisfies the condition that for any two of its edgese0

andep, there exist edgese1, e2, · · · , ep−1 such thatei−1 andei are
contained in a triangle for1 ≤ i ≤ p (see Fig. 15(ii) for an exam-
ple), then all the edge lengths in this subgraph have fixed ratios —
therefore they can be represented with only one variable. We call
such a subgraph arigid subgraph. To push this approach further,
we observe that if several rigid subgraphs share common nodes or

are connected by edges, then every cycle that travels through mul-
tiple rigid subgraphs enables us to derive two equations like the
cycle constraintdescribed before. If there are enough such equa-
tions, the ratios among the sizes of those subgraphs and the lengths
of the connecting edges can be uniquely determined — then those
subgraphs and the edges between them unite and form a larger rigid
subgraph, all of whose edge lengths can be represented with only
one variable. (For example, see Fig. 15(iii), where two rigid sub-
graphs share the nodeA and are also connected by an edgeBC.
All the edge lengths there have determined ratios between them-
selves and therefore can be represented with only one variable.)
The improvement by this approach is large. For example, when
1000 nodes are placed in a18 × 18 square with a uniform distri-
bution, the largest connected component typically contains more
than4500 edges; by the above approach, the number of variables
in the LP can nearly always be reduced to be less than30. Then the
number of linear constraints can also be reduced.

The above method not only reduces complexity, but also gives
us additional constraints for further guarantee on the quality of the
embedding. For any two non-adjacent nodesA andB in a rigid
subgraph, let̀(e) denote the edge length in the subgraph specially
chosen to be the variable, then|AB| = c · `(e) for some constant
c. We include the constraintc · `(e) > 1 in the LP.

We have implemented the embedding algorithm and measured
its performance on a variety of inputs. In the first experiment, we
placedn nodes in a15×15 square with a uniform distribution, and
embed the largest connected component. The results are shown
in the top part of Fig. 16, where each result is averaged over50
experiments. In Fig. 16,distance violationis the number of non-
adjacent node pairs that mistakenly have distance less than or equal
to 1 in the embedding.derror is theminimum distancebetween two
non-adjacent embedded nodes that mistakenly have distance less
than or equal to 1 in the embedding. (Soderror ≤ 1 if such a pair of
nodes exist; if no such node pair exists, we letderror = 1). Extra
crossingis the number of edge pairs that do not cross in the true
UDG but mistakenly cross each other in the embedding. Note that
the other criteria for embedding are guaranteed to be satisfied by the
LP method: theedge-length constraintguarantees that every edge
has length at most 1; thecycle constraintguarantees that all the
angles between adjacent edges are as specified; thecrossing-edge
constraintguarantees that any two edges that cross in the true UDG
also cross in the embedding. In Fig. 16 some additional properties
are displayed as well, whereorder of graphis the number of nodes
in the embedded UDG, andnode degreeis the average degree of
nodes. A typical embedding result is shown in Fig. 17.

In a second experiment, we place nodes in an annulus with ex-
ternal radius7.5 and internal radius2.5. The results are shown in
the bottom part of Fig. 16. A typical embedding result is shown in
Fig. 18.

We can clearly see that the results are very good. Compared to
previous results on embedding in the literature, our results can be
seen to have superb performance without using landmarks [2] or
edge-length information [13], even when the edges in the unit disk
graphs are sparse. The number of non-adjacent node pairs having
distance less than or equal to 1 in the embedding is very small, and
even for such node pairs, their distances are close to 1. The number
of incorrect edge crossings in the embedded graphs is very close
to 0. We have also conducted experiments with many other inputs
and in areas of other shapes, and the results have been consistently
very good. Therefore the LP-based method does produce an almost
truthful localization for sensor networks.



network in square
order of node distance derror extra

graph degree violation crossing
n = 200 33.22 3.6422 0.80 0.9728 0.00
n = 400 337.96 5.4512 9.68 0.7642 0.50
n = 600 596.82 7.9110 6.50 0.8714 0.68
n = 800 799.64 10.5237 1.60 0.9568 0.10
n = 1000 999.94 13.1944 0.68 0.9601 0.00

network in annulus
order of node distance derror extra

graph degree violation crossing
n = 200 59.76 4.1810 1.70 0.9368 0.00
n = 400 397.30 7.4084 6.62 0.8426 0.42
n = 600 599.88 11.0106 0.90 0.9570 0.08
n = 800 799.88 14.6423 0.10 0.9909 0.00
n = 1000 1000.00 18.2822 0.00 1.0000 0.00

Figure 16. Performance of embedding unit disk graphs deployed in a
square and an annulus. Each result is averaged over50 experiments.

6.2 Geographical routing and approximate
shortest path routing

In this section we examine the performance of routing schemes on
the embedding of a unit disk graph by the linear program. In par-
ticular, given a unit disk graph with angle constraints, we find an
embedding by the LP. Further, we embed the planar spanner con-
structed in the previous section using only local angle information.
In particular we exclude the edges not in the spanner from the em-
bedded UDG; if two edges still cross, we arbitrarily exclude one
(this second step is heuristic). We run a particular geographical
routing protocol (GPSR) and the approximate shortest path routing
on this embedded UDG and its planar subgraph and compare the
performance with that on the original (true) embedding.

Geographical routing and the approximate shortest path routing
have their special requirements that differ from the criteria com-
monly used for localization. Geographical routing constantly makes
local decisions on choosing the next hop, so it is important that the
ranking of the distances from nearby nodes to any faraway desti-
nation is well maintained by the embedding. The graph-labelling-
based approximate shortest path routing routes along shortest paths
in planar spanners, so the distances between all pairs of nodes, ad-
jacent or not, need to be well maintained in the embedding. Those
requirements are global structures of a localization and differ from
the comparatively more local criteria commonly used for localiza-
tion — whether the node distance passes the threshold of 1, or
whether two edges incorrectly cross or not cross. The success of the
two routing algorithms in the embedded graphs shows the power of
local angle information for routing, which reaches beyond the com-
mon objectives of network localization.

We experiment on sensor networks embedded with the LP ap-
proach, and compare its routing performance to that of the sensor
networks with true coordinates. In the first experiment, we place
n nodes in a15 × 15 square with a uniform distribution, and em-
bed the largest connected component. Then20 source-destination
node pairs are randomly selected, and routing is performed for each
pair. We measure the Euclidean length (resp., number of hops) of
a routing path, as well as that of the routing path with the same
source-destination pair in the graph with true coordinates; we call
the ratio between them thelength distortion(resp.,hop distortion),
and denote it byDl (resp.,Dh). (Note that the Euclidean length
of a routing path performed on the embedded graph should still
be measured based on the true Euclidean lengths of its edges.) In
the second experiment nodes are placed in an annulus with exter-
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Figure 17. The unit disk graph of 597 nodes randomly deployed inside a
15× 15 square. Top: the original UDG. Bottom: embedding by LP.

nal radius7.5 and internal radius2.5, while other conditions are
unchanged. The results for GPSR and approximate shortest path
routing (ASPR) are shown in Fig. 19, where each result is aver-
aged over50 experiments and20 source-destination pairs in each
experiment.

Fig. 19 shows that for GPSR and ASPR, they both have the same
routing performance in the embedded networks as in the true net-
works, both in terms of length and hops. In fact, a detailed study
showed us that most of the time, the routing routes in the embedded
networks are identical to their counterparts in the true networks.
We have also conducted experiment for many other inputs and in
areas of other shapes, and the results have been consistently as
good. Thus not only does the LP give very good local embed-
ding, i.e., neighboring nodes are close and non-neighboring nodes
are far away, but it also gives a quite accurate global view such that
geographical routing and approximate shortest path routing on the
embedded graph are almost identical to those on the original (true)
embedding.
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Figure 18. The unit disk graph of 600 nodes randomly deployed inside an
annulus. Top: the original UDG. Bottom: embedding by LP.

6.3 Variations

In this subsection, we address the localization problem with noisy
angle measurements and with sensor networks modelled as quasi-
unit disk graphs. The simulation we have shown so far assumes
that the angles are measured accurately. In practice measurement
errors are inevitable. The modelling of sensor networks as UDG
can be inaccurate, too, because network links can be lost due to
noise, signal interference or obstacles, and the transmission ranges
of directional antennas are not circles. A more realistic model for
sensor networks is called quasi-unit disk graphs, where a pair of
nodes have an edge for sure if their distance is no more thanα ≤ 1,
don’t have an edge if their distance is more than 1 apart, and may
or may not have an edge if their distance is betweenα and 1 [18].

We will show by simulation that the embedding algorithm by LP
is robust to measurement errors and network models. Noisy mea-
surements will introduce inconsistency in the input data. For ex-
ample, the measured inner angles of a cycle may not sum up to the
correct value. Thus we modify the constraints of LP accordingly.

network in square
n = n = n = n = n =
200 400 600 800 1000

GPSRDl 1.1549 1.0011 1.0000 1.0000 1.0000
GPSRDh 1.1403 1.0007 1.0000 1.0000 1.0000

ASPRDl 1.0000 1.0000 1.0001 1.0000 1.0000
ASPRDh 1.0000 1.0000 1.0000 1.0000 1.0000

network in annulus
n = n = n = n = n =
200 400 600 800 1000

GPSRDl 1.0580 1.0078 1.0014 1.0000 1.0000
GPSRDh 1.0575 1.0099 1.0012 1.0000 1.0000

ASPRDl 1.0000 1.0001 1.0000 1.0000 1.0000
ASPRDh 1.0000 0.9989 1.0000 1.0000 1.0000

Figure 19. Length distortion and hop distortion for GPSR and ASPR, aver-
aged over50 experiments and20 source-destination pairs per experiment.

Specifically, thecycle constraintis modified to be

|
pX

i=1

`(ei) cos θei | ≤ ε ·
pX

i=1

| sin θei |,

and

|
pX

i=1

`(ei) sin θei | ≤ ε ·
pX

i=1

| cos θei |,

whereε is an additional variable. Thenon-adjacent node pair con-
straint is modified to bè (e1) + `(e2) > α due to the Quasi-
UDG property. Theedge-length constraintis maintained, and the
crossing-edge constraintis discarded. The objective function is
modified to be minimizingε − mine `(e). A solution of the LP
gives the edge lengths; then we randomly choose a spanning tree
of the network, and use its edge lengths and measured angles to
determine node positions. The random spanning tree is generated a
few times, and the one that gives comparatively better embedding
performance is picked. In the final step, minor local adjustments in
the node positions and the network size scaling factor are used to
further improve the embedding result.

In the following experiment, we assume that each node measures
the direction of an incident edge with an error uniformly distributed
in [−∆, +∆]. As a result, the error of a local angle between ad-
jacent edges can be as large as2∆ or −2∆. For the quasi-UDG
model, we assume that for two nodes whose distanced is between
α and 1, there is an edge with probability1−d

1−α
. Such a model has

the property that nearby nodes are more likely to have edges. We
place 225 nodes in a10×10 square. For the node positions we use
the grid with perturbationmodel. Specifically, The position of a
node indexed by(i, j) is (i ·δ +γ cos ϕ, j ·δ +γ sin ϕ), whereδ is
the grid’s step size,γ is an i.i.d. Gaussian variable with mean 0 and
varianceσ2

p, andϕ is an i.i.d. variable uniformly distributed in the
range[0, 2π]. For this experiment,δ = 2

3
andσp = 1.5. The per-

formance measurements include thetotal distance violation, which
is the number of node pairs that are adjacent but have embedding
distance more than 1 or that are non-adjacent but have embedding
distance less thanα, and thetotal crossing violation, which is the
number of edge pairs that do not actually cross but mistakenly cross
in the embedding or the other way around. The results are shown in
Figure 20. Each result is averaged over 50 experiments. A typical
result is shown in Figure 21.

Figure 20 shows that the embedding algorithm by LP is quite
robust to noisy measurements of angles and the quasi-UDG model.
The values of total distance violation and crossing violation are



total distance violation
∆ = 1◦ ∆ = 2◦ ∆ = 3◦ ∆ = 4◦ ∆ = 5◦

α = 0.8 29.66 34.52 42.32 51.90 54.50
α = 0.6 17.36 17.56 20.08 24.46 27.76
α = 0.4 7.86 9.08 9.18 9.44 10.18
α = 0.2 4.00 3.08 4.08 4.30 5.22

total crossing violation
∆ = 1◦ ∆ = 2◦ ∆ = 3◦ ∆ = 4◦ ∆ = 5◦

α = 0.8 69.46 77.58 90.98 128.26 134.24
α = 0.6 35.72 38.68 38.96 52.60 57.80
α = 0.4 11.94 13.68 16.10 16.38 16.96
α = 0.2 6.98 5.60 7.98 9.26 9.56

Figure 20. Performance of embedding quasi-UDG with noisy angle mea-
surements. Each result is averaged over 50 experiments.

substantially greater than those in Figure 16, but they are not large
considering the size of the graph. And a detailed study shows that
the global structure of the graphs is maintained quite well, even
though in our experiments no landmarks are used to help fix the
large-scale structure. That can also be seen from Figure 21. We
have conducted experiments with many other inputs and different
quasi-UDG models and measurement error models, and the results
have been very consistent.

7 Summary and future work
In this paper we studied embedding a unit disk graph in the plane
with angle constraints. We show theoretically that this problem
is actually NP-hard. We also propose a solution based on linear
programming that gives very good results in practice. This work
raises a few open questions. For example, it’s unknown whether
one can find an algorithm that gives a good approximate embedding
with theoretical bounds in the worst case. Also, the linear program
mentioned in this paper is a centralized algorithm, but in practice
distributed localization methods are more desirable.
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8 Appendix

Now we prove that a
√

2-approximate embedding is topologically
equivalent with a valid embedding.

If there are four nodesA, B, C, D such that in the unit-disk
graphG there are edgesAB, CD, AD, we show that it’s impossi-
ble to haveAB, CD cross in a

√
2-approximate embeddingE , but

not cross in a valid embeddingE∗.

θ

D

O

BC

P

A
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B

A
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Figure 22. (i) A
√

2-approximate embeddingE ; (ii) A valid embedding
E∗.

Without loss of generality we assume that edgeAB is no shorter
thanCD and the embeddingE looks like Figure 22 (i). First, if
AB, CD cross inE , then\BAD + \CDA < π. Otherwise
AB, CD will never cross in any embedding preserving the angles.
Notice that the angleθ between lineAB, CD doesn’t change for
any embedding preserving the angles. We argue thatθ is at most
π/6 if we can find a valid embeddingE∗ such thatAB, CD don’t
cross. See Figure 22 (ii). Specifically, in a valid embeddingE∗
there are no edgesAC in the unit disk graph. ThusE∗(C) is outside
the unit disk centered atE∗(A). E∗(B), E∗(D) are inside the unit
disk centered atE∗(A). It’s not hard to see that the angleθ achieves
the maximumπ/6 when E∗(A). E∗(B), E∗(D) are exactly of
distance1 pairwise apart andD is arbitrarily close toC such that
CD is arbitrarily close to the tangent atC. Soθ ≤ π/6.

In a
√

2-approximate embeddingE , supposeO is the intersec-
tion of edgesAB, CD. \BOC = θ ≤ π/6. Since the length
of BC, BD, CA are all greater than

√
2/2, the angles\ACB,

\CBD are both less thanπ/2. Thus the angle\BCD, \CBA
are less thanπ/2 as well. Assume without loss of generality that
BO is longer thanCO. We take the perpendicular line through
B to the lineCO and denote the intersection asP . P must be
on the interior of line segmentCO since\OCB < π/2. Thus the
length ofBC achieves the maximum whenCO has the same length
of BO. Thusd(E(B), E(C)) ≤ 2d(E(B), E(O)) sin(π/12) ≤
2 sin(π/12) ≈ 0.52. This contradicts with the assumption that
BC has length at least

√
2/2.


