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Abstract: We reconsider the issue of localization in open-closed B-twisted Lan-

dau-Ginzburg models with arbitrary Calabi-Yau target. Through careful analsysis of

zero-mode reduction, we show that the closed model allows for a one-parameter fam-

ily of localization pictures, which generalize the standard residue representation. The

parameter λ which indexes these pictures measures the area of worldsheets with S2

topology, with the residue representation obtained in the limit of small area. In the

boundary sector, we find a double family of such pictures, depending on parameters λ

and µ which measure the area and boundary length of worldsheets with disk topology.

We show that setting µ = 0 and varying λ interpolates between the localization picture

of the B-model with a noncompact target space and a certain residue representation

proposed recently. This gives a complete derivation of the boundary residue formula,

starting from the explicit construction of the boundary coupling. We also show that

the various localization pictures are related by a semigroup of homotopy equivalences.
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1. Introduction

Closed topological Landau-Ginzburg models [1] have been a useful testing ground for

string theory. They make direct contact with the topological sector of rational con-

formal field theories through the Landau-Ginzburg approach to minimal models, and

arise as phases of N = 2 string compactifications [2]. Moreover, they give explicit

realizations of the WDVV equations and examples of Frobenius manifolds, and have

interesting relations with singularity theory.

In a similar vein, one can expect to learn important lessons about open string

theory by studying topological Landau-Ginzburg models in the presence of D-branes

(see [30, 11] for some recent results in this direction). While basic D-brane constructions

were considered by many authors (see [3] and references therein), a systematic study

has been hampered by the lack of a reasonably general description of the boundary

coupling (the ”Warner problem” [4]).

Progress in removing this obstacle was made recently in [5, 6, 8, 9, 10] (see also

[7]). These papers proposed a solution of the Warner problem for B-twisted Landau-

Ginzburg models with target space Cn and for particular families of D-branes described

by superbundles whose rank is constrained to be a power of two. In a slightly modified

form, this solution was generalized in [12] by removing unnecessary assumptions, thus

giving the general form of the relevant boundary coupling.

As in the closed string case, it is natural to translate the physical data of open

Landau-Ginzburg models into the language of singularity theory. For the closed string

sector, a crucial step in this regard is the localization formula of [1], which relates

topological field theory correlators to residues (see, for example, [13]). An open string

version of this formula was proposed in [9], though a complete derivation based on the

microscopic boundary coupling was not given.

Given the boundary coupling constructed in [12], we shall re-consider this issue

in the more general set-up of [14], and give a complete derivation of this localization

formula. Another purpose of this paper is to extend the open and closed localization

formulae in a manner which reflects the basic intuition [12] that the B-branes of Landau-

Ginzburg models are the result of tachyon condensation between the elementary branes

of the B-type sigma model, with tachyon condensation driven by the Landau-Ginzburg

superpotential. As we shall show somewhere else, this allows one to make contact with

the string field theory approach advocated in a different context in [15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25].

Perhaps surprisingly, this is non-trivial to achieve already for the closed string

sector. Indeed, the usual on-shell descriptions of the space of bulk observables differ

markedly between the two models. In the B-twisted sigma model, this space is de-
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scribed as the ∂̄-cohomology of the algebra of (0, p)-forms on the target space, valued

in holomorphic polyvector fields. In the Landau-Ginzburg case, the space of on-shell

bulk observables can be identified with the Jacobi ring of the Landau-Ginzburg super-

potential. As we shall see below, these two descriptions are related in a subtle manner,

namely by a one-parameter family of ”localization pictures” which interpolates between

them. The existence of such a family will be established by refining the localization

argument of [1]. The different pictures are indexed by a parameter λ, which roughly

measures the area of worldsheets with S2 topology. The B-model description of the

algebra of observables arises in the limit when the worldsheet is collapsed to a point,

while the Jacobi realization is recovered for very large areas. More precisely, one can

construct an off-shell model for each localization picture, with a reduced BRST opera-

tor whose cohomology reproduces the space of on-shell bulk observables. The various

pictures are related by a ”homotopy flow”, i.e. a one-parameter semigroup of operators

homotopic to the identity. This flow induces the trivial action on BRST cohomology,

thus identifying on-shell data between different pictures.

Extending this construction to the boundary sector, we find a similar description.

Namely, we shall construct a family of localization pictures indexed by two parameters

λ and µ, which – when real – measure the area of a worldsheet with disk topology and

the length of its boundary. Taking µ = 0, the standard realization of observables in

the open B-model arises for λ → 0, while the LG description and residue formula of

[9] are obtained in the opposite limit λ → +∞. The parameter µ plays an auxiliary

role, related to a certain boundary term which was not included in [12] since it is not

essential for the topological model. Contrary to previous proposals, we show that this

parameter can be safely set to zero, without affecting the localization data. Physically,

localization on the critical set of W is controlled by the bulk parameter λ, and is

completely independent of the choice of µ. In fact, one must set µ = 0 in order to

recover 1 the residue representation of [9].

The paper is organized as follows. In Section 2, we review the bulk Lagrangian

and some of its basic properties, following [14]. In Section 3, we discuss localization

in the bulk sector. Through careful analysis, we show that one can localize on the

zero modes of the sigma model action, namely that part of the bulk action which is

independent of the Landau-Ginzburg superpotential W . This gives the one-parameter

family of localization pictures. We also give the geometric realization of these pictures,

and the homotopy flow connecting them. In Section 5, we recall the boundary coupling

given in [12] and adapt it by adding a supplementary term also suggested in [6, 8, 9]

1The authors of [9] propose a different limit, namely µ → +∞ with λ = 0. It does not seem possible

to achieve localization on the critical set of W in this limit.
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for a special case. This assures that the coupling preserves a full copy of the N = 2

topological algebra, when the model is considered on a flat strip. Since the second

generator of this algebra is gauged when considering the model on a curved Riemann

surface, this condition does not play a fundamental role for unintegrated amplitudes,

but the modified coupling is useful for comparison with [9]. Section 5 constructs the

boundary observables and correlators, and explains how our model for the boundary

BRST operator arises in this approach. In Section 6, we discuss localization in the

boundary sector. As for the bulk, we proceed by reducing to zero modes of the sigma

model action. This gives a family of representations depending on two parameters λ

and µ. The second of these weights the contribution arising from the supplementary

boundary term. After describing boundary homotopy flows and the associated geo-

metric realization, we construct an off-shell representative for the bulk-boundary map

of [28] (see also [26, 27]), and use it to recover (an extension of) the localization for-

mula proposed in [9], by taking the limit λ → +∞ with µ = 02. Section 7 presents

our conclusions. The Appendix gives the boundary conditions for the general D-brane

coupling.

2. The bulk action

The general formulation of closed B-type topological Landau-Ginzburg models was

given in [14], extending the work of [1]. We take the target space to be a Calabi-

Yau manifold X, with the Landau-Ginzburg potential a holomorphic function W ∈
H0(OX). Since any holomorphic function on a compact complex manifold is constant,

we shall assume that X is non-compact. In the on-shell formulation, the Grassmann

even worldsheet fields are the components φi, φī of the map φ : Σ → X, while the G-

odd fields are sections η, θ and ρ of the bundles φ∗(T̄X), φ∗(T ∗X) and φ∗(TX)⊗T ∗Σ

over the worldsheet Σ. Here T ∗Σ is the complexified cotangent bundle to Σ, while

TX and T̄X are the holomorphic and antiholomorphic components of the complexified

tangent bundle T X to X. This agrees with the on-shell field content of the B-twisted

sigma model [29].

2.1 Action and BRST transformations

To write the bulk action, we introduce new fields χ, χ̄ ∈ Γ(Σ, φ∗(T̄X)) by the relations:

η ī = χī + χ̄ī (2.1)

θi = Gij̄(χ
j̄ − χ̄j̄) . (2.2)

2In this limit, the supplementary term introduced in Section 5 does not contribute, so one can use

the simplified boundary coupling of [12].
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We shall also use the quantity θī = Gījθj .

As in [14], it is convenient to use an off-shell realization of the BRST symmetry.

For this, consider an auxiliary G-even field F̃ transforming as a section of φ∗(T X).

Then the BRST transformations are:

δφi = 0 , δφī = χī + χ̄ī = η ī

δχī = F̃ ī − Γī
j̄k̄χ̄

j̄χk̄ , δχ̄ī = −F̃ ī + Γī
j̄k̄χ̄

j̄χk̄

δρi
α = 2∂αφi (2.3)

δF̃ i = iεαβ

[

Dαρi
β +

1

4
Ri

jl̄k(χ
l̄ + χ̄l̄)ρj

αρk
β

]

, δF̃ ī = Γī
j̄k̄F̃

j̄(χk̄ + χ̄k̄) .

These transformations are independent of W . Moreover, the transformations of φ,

η and ρ do not involve the auxiliary fields. In particular, we have δη ī = 0. These

observations will be used in Section 4.

Let us pick a Riemannian metric g on the worldsheet. The bulk action of [14] takes

the form:

Sbulk = SB + SW (2.4)

where:

SB =

∫

Σ

d2σ
√

g
[

Gij̄

(

gαβ∂αφi∂βφ
j̄ − iεαβ∂αφi∂βφj̄ − 1

2
gαβρi

αDβηj̄ − i

2
εαβρi

αDβθj̄ − F̃ iF̃ j̄

)

+
i

4
εαβRil̄kj̄ρ

i
αχ̄l̄ρk

βχ
j̄
]

(2.5)

is the action of the B-twisted sigma model and SW = S0+S1 is the potential-dependent

term, with:

S0 = − i

2

∫

Σ

d2σ
√

g
[

Dī∂j̄W̄χīχ̄j̄ − (∂īW̄ )F̃ ī
]

(2.6)

S1 = − i

2

∫

Σ

d2σ
√

g

[

(∂iW )F̃ i +
i

4
εαβDi∂jWρi

αρj
β

]

. (2.7)

The quantity εαβ = ǫαβ
√

g
is the Levi-Civita tensor, while ǫαβ is the associated density.

We have rescaled the Landau-Ginzburg potential W by a factor of i
2

with respect

to the conventions of [14] (the conventions for the target space Riemann tensor and

covariantized worldsheet derivative Dα are unchanged). In SW , we separated the term

depending on W from that depending on its complex conjugate.

As shown in [14], the topological sigma model action (2.5) is BRST exact on closed

Riemann surfaces. Since in this paper we shall allow Σ to have a nonempty boundary,
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we must be careful with total derivative terms. Extending the computation of [14] to

this case, we find:

SB + s = δVB (2.8)

where:

VB :=

∫

Σ

d2σ
√

gGij̄

(

1

2
gαβρi

α∂βφj̄ − i

2
εαβρi

α∂βφj̄ − F̃ iχj̄

)

(2.9)

and:

s := i

∫

Σ

d2σ
√

gεαβ∂α(Gījχ
īρj

β) = i

∫

Σ

d(Gījχ
īρj) . (2.10)

Since total derivative terms do not change physics on closed Riemann surfaces, we are

free to redefine the bulk sigma-model action by adding (2.10) to SB:

S̃B := SB + s = δVB . (2.11)

Accordingly, we shall use the modified bulk Landau-Ginzburg action:

S̃bulk = Sbulk + s = S̃B + S0 + S1 . (2.12)

It is not hard to check that the term S0 is BRST exact:

S0 = δV0 (2.13)

where:

V0 =
i

4

∫

Σ

d2σ
√

gθī∂īW̄ . (2.14)

Equations (2.8) and (2.13) are local, i.e. they hold for the associated Lagrange densities

without requiring integration by parts. Thus both of these relations can be applied to

bordered Riemann surfaces.

Since the boundary term (2.10) is independent of the worldsheet metric, the bulk

stress energy tensor has the form given in [14]:

Tµν =
1

2
√

g

δS̃bulk

δgµν
=

1

2
Gij̄

[

∂µφ
i∂νφ

j̄ + ∂νφ
i∂µφj̄ − 1

2

(

ρi
µDνη

j̄ + ρi
νDµη

j̄
)

]

− (2.15)

− 1

2
gµν

[

Gij̄g
αβ(∂αφi∂βφj̄ − 1

2
ρi

αDβη
j̄ − F̃ iF̃ j̄) − i

2
∂iWF̃ i +

i

2
∂īW̄ F̃ ī − i

4
Dī∂j̄W̄θīηj̄

]

.

As explained in [14], Tµν is BRST exact only modulo the equations of motion for the

auxiliary fields:

F̃ i =
i

2
Gij̄∂j̄W̄ , F̃ ī = − i

2
Gīj∂jW . (2.16)

6



Imposing these equations, one finds:

T os
µν =

1

2
Gij̄

[

∂µφi∂νφ
j̄ + ∂νφ

i∂µφ
j̄ − 1

2

(

ρi
µDνη

j̄ + ρi
νDµη

j̄
)

]

− (2.17)

− 1

2
gµν

[

Gij̄g
αβ(∂αφi∂βφj̄ − 1

2
ρi

αDβη
j̄) +

1

4
Gij̄∂iW∂j̄W̄ − i

4
Dī∂j̄W̄ θīηj̄

]

.

This obeys the BRST exactness condition [14]:

T os
µν = δGµν (2.18)

where3:

Gµν =
1

4

[

Gij̄(ρ
i
µ∂νφ

j̄ + ρi
ν∂µφj̄) − gµν(Gij̄g

αβρi
α∂βφ

j̄ +
i

2
θī∂īW̄ )

]

. (2.19)

On an infinite flat cylinder, the supercharges:

Gµ :=

∫

dσ1G0µ (2.20)

generate symmetries δµ = {Gµ, ·}P which together with δ = {Q, ·}P and a supple-

mentary nilpotent transformation δ′ := {M, ·}P form the topological algebra of [14]

(here {·, ·}P is the Poisson bracket of the Hamiltonian formulation). When placing the

model on a flat strip, the boundary conditions break the symmetries δ′ and δ1, but

preserve the subalgebra generated by δ and δ0. In the untwisted model, this subalgebra

corresponds to the usual B-type supersymmetry considered, for example, in [3].

2.2 BRST variation of the bulk action and the topological Warner term

It is not hard to check that the BRST variation of S̃bulk produces a boundary term:

δS̃bulk = δS1 =
1

2

∫

∂Σ

ρi∂iW . (2.21)

The presence of a non-zero right hand side in (2.21) is known as the Warner problem

[4].

2.3 δ0-variation of the bulk action on flat Riemann surfaces

When considered on a flat Riemann surface, our model has an enlarged symmetry

algebra which was originally described in [14]. In this paper we shall need only the

subalgebra obtained by considering an additional odd generator δ0 beyond the BRST

3The formula given for Gµν in [14] seems to be missing a global prefactor of − 1

2
.
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generator of (2.3). In the notations of [14], we have δ0 = {G0, }, where G0 = Gz + Gz̄.

Using the results of [14], one finds:

δ0φ
i =

1

2
ρi

0 , δ0φ
ī = 0

δ0ρ
i
0 = 0 , δ0ρ

i
1 = −iF̃ i (2.22)

δ0η
ī = ∂0φ

ī , δ0θ
ī = −i∂1φ

ī

δ0F̃
i = 0 , δ0F̃

ī =
1

2
(∂0θ

ī + i∂1η
ī) .

In this subsection, we are assuming that the worldsheet metric is flat, namely gαβ = δαβ

in the real coordinates σ0 and σ1.

If Σ is a cylinder, one finds δ0S̃bulk = 0. However, the δ0 variation of S̃bulk gives a

boundary term when the model is considered on the strip or on the disk. Let us take

Σ to be infinite the strip given by (σ0, σ1) ∈ R × [0, π]. We find:

δ0S̃bulk = −1

4

∫

∂Σ

dτη ī∂īW̄ . (2.23)

Here dτ = dσ0 is the length element along the boundary of Σ.

3. Localization formula for correlators on the sphere

Let us consider zero-form bulk observables O which are independent on the auxiliary

fields F̃ i or F̃ ī. We are interested in the sphere correlator of such observables:

〈O〉sphere =

∫

D[φ]D[F̃ ]D[η]D[θ]D[ρ] e−S̃bulkO , (3.1)

where we assume that O is BRST closed.

In this section, we re-consider the localization formula for such correlators. Ex-

tending the original argument of [1], we will extract a one-parameter family of repre-

sentations of (3.1) as a finite-dimensional integral. The basic point is a follows. Since

the B-model piece of the Landau-Ginzburg action is BRST exact off-shell, the standard

argument of [29] implies that we can localize on the zero modes of the associated sigma

model. Thus we shall localize on constant maps, without requiring that such maps

send the worldsheet to the critical points of W . After this reduction, one finds that

the Lagrangian density of the model becomes BRST exact, so the resulting integral

representation is insensitive to multiplying the Lagrangian density by a prefactor λ.

Since the former appears multiplied by the worldsheet area, this prefactor measures

the scale of the underlying S2 worldsheet. Thus we obtain a one-parameter family of

8



localization formulae for our correlator. Each such ”localization picture” allows us to

give a geometric representation of genus zero data, thus providing a geometric model

for the off-shell state space, BRST operator and bulk trace.

In this approach, the residue representation of [1] is recovered in the limit Re λ →
+∞, which forces the point-like image of the worldsheet to lie on the critical set of W .

Intuitively, this is the limit of large worldsheet areas, the opposite of the ”microscopic”

limit λ → 0. Varying λ allows one to interpolate between these limits, thus connecting

the ”sigma-model like” and ”residue-like” models of genus zero data.

3.1 Localization on B-model zero modes

Since S̃B is BRST exact, we can replace the bulk action with:

S̃bulk = tS̃B + SW = tδVB + SW , (3.2)

where t is a complex parameter with Re t > 0 (so that the integral is well-defined).

BRST invariance of the path integral together with BRST closure of O imply that the

resulting correlator is independent of t. This means that (3.1) can be computed in the

limit Re t → +∞, where the integral localizes on the zero-modes of S̃B. Since ρ has

no zero-modes on the sphere, we must consider configurations for which ρi
α = 0 while

φ, η, θ and F̃ are constant on the worldsheet. For such configurations, S̃B reduces to:

S̃B|zero modes = −AGij̄F̃
iF̃ j̄ , (3.3)

with Gij̄ = Gij̄(φ). Here A is the area of the worldsheet. The contribution SW becomes:

SW |zero modes = − i

2
A
[

Dī∂j̄W̄χīχ̄j̄ − (∂īW̄ )F̃ ī + (∂iW )F̃ i
]

. (3.4)

Combining these expressions, we find the zero-mode reduction of the worldsheet action:

S̃0 := S̃bulk|zero modes = −AGij̄F̃
iF̃ j̄ − i

2
A

[

1

2
Dī∂j̄W̄ θīηj̄ − (∂īW̄ )F̃ ī + (∂iW )F̃ i

]

,

(3.5)

where we wrote χ and χ̄ in terms of η and θ. The correlator (3.1) reduces to an ordinary

integral over the zero-modes φi, φī, F̃ i, F̃ ī and η ī, θi:

〈O〉sphere =

∫

dφdF̃dηdθ e−S̃0O . (3.6)

On zero modes, the BRST generator (2.3) takes the form:

δφi = 0 , δφī = η ī

δη ī = 0 , δθī = 2F̃ ī + Γī
j̄k̄θ

j̄ηk̄ (3.7)

δF̃ i = 0 , δF̃ ī = Γī
j̄k̄F̃

j̄ηk̄ .

9



In particular, we have:

Gij̄F̃
iF̃ j̄ =

1

2
δ[Gij̄F̃

iθj̄ ] , (3.8)

which is the zero-mode remnant of equation (2.8). One can also check directly that the

reduced action is BRST-closed.

The integral over F̃ can be cast into Gaussian form through the change of variables:

F̃ i = F̂ i +
i

2
Gij̄∂j̄W̄ , F̃ ī = F̂ ī − i

2
Gīj∂jW . (3.9)

Then the reduced action becomes:

S̃0 = −AGij̄F̂
iF̂ j̄ +

1

4
A
[

−iDī∂j̄W̄ θīηj̄ + Gij̄(∂iW )(∂j̄W̄ )
]

. (3.10)

Integrating over F̂ , we find:

〈O〉sphere = N

∫

dφdηdθe−
A
4

L̃0O , (3.11)

where:

L̃0 := −iDī∂j̄W̄ θīηj̄ + Gij̄(∂iW )(∂j̄W̄ ) (3.12)

plays the role of zero-mode Lagrange density. The prefactor in (3.11) has the form:

N =
(2π)n

Andet(Gij̄)
, (3.13)

where n is the complex dimension of the target space X. Since we integrated out the

fields F̂ , the BRST generator on zero-modes reduces to:

δφi = 0 , δφī = η ī

δη ī = 0 , δθī = −iGīj∂jW + Γī
j̄k̄θ

j̄ηk̄ , (3.14)

which is obtained from (3.7) by imposing the equations of motion:

F̃ i =
i

2
Gij̄∂j̄W̄ , F̃ ī = − i

2
Gīj∂jW . (3.15)

For later reference, notice that the last relation in (3.14) is equivalent with:

δθi = −i∂iW . (3.16)

Using this form of the BRST transformations, one finds that the zero-mode La-

grange density (3.12) is BRST exact:

L̃0 = δṽ0 , (3.17)
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where:

ṽ0 = iθī∂īW̄ . (3.18)

Thus we can replace (3.11) by:

〈O〉sphere = N

∫

dφdηdθ e−λL̃0O , (3.19)

where λ is a complex parameter with positive real part. The integral (3.19) is indepen-

dent of its value.

3.2 The space of bulk observables and its cohomology

The observables of interest have the form:

Oω(σ) := ω
j1...jq

ī1...̄ip
(φ(σ))η ī1(σ) . . . η īp(σ)θj1(σ) . . . θjq

(σ) , (3.20)

where ω := ω
j1...jq

ī1...̄ip
dz ī1∧· · ·∧dz īp∧∂j1∧· · ·∧∂jq

is a section of the bundle ΛpT̄ ∗X∧ΛqTX.

After reduction to B-model zero modes, we are left with:

Oω = ω
j1...jq

ī1...̄ip
(φ)η ī1 . . . η īpθj1 . . . θjq

, (3.21)

which can be identified with the polyvector-valued form ω upon setting:

ηj̄ ≡ dzj̄ , θj ≡ ∂j . (3.22)

The reduced BRST operator (3.14) becomes:

δ ≡ ∂̄ + i∂W (3.23)

where i∂W
is the odd derivation of Λ∗TX uniquely determined by the conditions:

i∂W (∂j) = −i∂W (∂j) = −i∂jW . (3.24)

Thus the cohomology of the differential superalgebra (H, δ), where H := Γ(Λ∗T̄ ∗X ∧
Λ∗TX), models the algebra of bulk observables. The obvious relations:

∂̄2 = (i∂W )2 = ∂̄i∂W
+ i∂W

∂̄ = 0 (3.25)

show that (H, δ) is a bicomplex. Hence the BRST cohomology is computed by a spectral

sequence E∗ whose second term equals:

E2 := Hi∂W
(H∂̄(H)) . (3.26)
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Since the target space is non-compact, we must of course specify a growth condition at

infinity. We shall take H to consist of those sections of the bundle Λ∗T̄ ∗X∧Λ∗TX whose

coefficients have at most polynomial growth. When the spectral sequence collapses to

its second term, the BRST cohomology reduces to (3.26). A standard example is the

case X = Cn, with W a polynomial function of n variables. Then the ∂̄-Poincare

Lemma implies that H∂̄(H) coincides with the space Γpoly(Λ
∗TX) of polyvector fields

with polynomial coefficients. In this case, the BRST cohomology reduces to the Jacobi

ring C[x1 . . . xn]/〈∂1W . . . ∂nW 〉, thereby recovering a well-known result.

3.3 The geometric model

Let us translate (3.19) into classical mathematical language. Using (3.22), we find:

L̃0 ≡ iH̄ i
j̄dzj̄ ∧ ∂i + Gij̄(∂iW )(∂j̄W̄ ) ∈ H . (3.27)

Here H i
j̄ := Gik̄H̄k̄j̄ , where Hij := Di∂jW is the Hessian of W . Consider the Hessian

operator:

H = H ī
jdzj ⊗ ∂ī ∈ Hom(TX, T̄X) = T ∗X ⊗ T̄X , (3.28)

whose complex conjugate has the form:

H̄ = H̄ i
j̄dzj̄ ⊗ ∂i ∈ Hom(T̄X, TX) = T̄ ∗X ⊗ TX . (3.29)

The quantity H̄a := H̄ i
j̄
dzj̄ ∧ ∂i ∈ T̄ ∗X ∧ TX appearing in (3.27) is the antisymmetric

part of H̄. On the other hand, the second term of (3.27) is the norm of the differential

form ∂W = ∂iWdzi. This gives the coordinate-independent version of (3.27):

L̃0 = iH̄a + ||∂W ||2 . (3.30)

Also note the representation:

ṽ0 = iGij̄∂i ∧ ∂j̄W̄ . (3.31)

It is now easy to see that (3.19) becomes:

Tr ω := 〈Oω〉sphere = N

∫

X

Ω ∧
[

Ωy

(

e−λL̃0 ∧ ω
)]

, (3.32)

where y denotes the total contraction of a form with a polyvector. The linear functional

Tr realizes the bulk trace of [28].

12



Observation The integral representation (3.32) allows us to give another (and com-

pletely rigorous) proof of λ-independence for δω = 0, with the assumption Re λ > 0.

For this, we have to show that the λ-derivative of (3.32) vanishes. Since L̃0 = δṽ0 and

δω = 0, this derivative takes the form:

d

dλ
Tr ω = −λN

∫

X

Ω ∧
[

Ωyδ
(

e−λL̃0 ∧ ṽ0 ∧ ω
)]

. (3.33)

Thus it suffices to show that
∫

X
Ω ∧ [Ωyδα] vanishes for any α ∈ H which decays

exponentially at infinity on X (the exponential decay for α = e−λL̃0 ṽ0 ∧ ω in (3.33)

is due to the second term in (3.27)). Notice further that
∫

X
Ω ∧ [Ωyδα] vanishes for

degree reasons unless δα ∈ Γ(ΛnT̄ ∗X∧ΛnTX). Hence it is enough to show vanishing of
∫

X
Ω ∧ [Ωyδα] for an exponentially decaying α such that δα ∈ Γ(ΛnT̄ ∗X ∧ ΛnTX). In

this case, we obviously have δα = ∂̄β for some exponentially decaying β ∈ Γ(Λn−1T̄ ∗X∧
ΛnTX) (this follows by noticing that the image of i∂W has vanishing intersection with

the subspace Γ(ΛnT̄ ∗X∧ΛnTX)). Therefore, we only need to show that
∫

X
Ω ∧

[

Ωy∂̄β
]

vanishes. This last fact follows from Ω ∧
[

Ωy∂̄β
]

= ∂̄ (Ω ∧ [Ωyβ]), since the boundary

term vanishes due to the exponential decay of β. The assumption Re λ > 0 is crucial,

since otherwise we cannot rely on exponential decay to conclude that the boundary

term vanishes.

3.4 Localization pictures and homotopy flows

Expression (3.32) admits the following interpretation. Consider the one-parameter

semigroup of operators U(λ) acting on H through wedge multiplication by e−λL̃0 :

U(λ)ω := e−λL̃0 ∧ ω for all ω ∈ H . (3.34)

The semigroup is defined on the half-plane ∆ := {λ ∈ C|Reλ > 0}, so that U(λ) maps

H into a subspace of itself. Then (3.32) takes the form:

Trω := Tr B(U(λ)ω) , (3.35)

where Tr B is the bulk trace of the B-twisted sigma model:

Tr Bω := N

∫

X

Ω ∧ (Ωyω) . (3.36)

Since L̃0 is BRST closed (L̃0 = δṽ0), each operator U(λ) is homotopy equivalent

with the identity in the complex (H, δ):

U(λ) = 1 + [δ, Wλ] , (3.37)
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for some operator Wλ. In particular, U(λ) is an endomorphism of our complex, i.e. the

following relation holds:

U(λ) ◦ δ = δ ◦ U(λ) . (3.38)

Such a semigroup will be called a homotopy flow. It is clear that each U(λ) is a

quasi-isomorphism, i.e. induces an automorphism U∗(λ) on the BRST cohomology

Hδ(H). Following relation (3.35), we define the localization picture λ by associating

ωλ := U(λ)(ω) ∈ H to each ω ∈ H (then ωλ is the representative of the ”state” ω

in the picture λ). The representatives of this picture belong to the subspace Hλ :=

U(λ)(H) ⊂ H. As in quantum mechanics, we have a representative for any operator

T ∈ End(H) in the localization picture λ:

Tλ := U(λ) ◦ T ◦ U(−λ) ∈ End(Hλ) , (3.39)

where Re λ > 0 and U(−λ) is defined as an operator from Hλ to H. Relation (3.38)

shows that the BRST operator is ”picture-independent” in the following sense:

Qλ = Q|Hλ
, (3.40)

where in the right hand side we restrict both the domain and image to Hλ. Relation

(3.35) becomes:

Tr ω = Tr Bωλ . (3.41)

For λ = W = 0, we have U(0) = IdH and we recover the familiar data of the

B-twisted sigma model. Namely, H provides a geometric model for the off-shell state

space, the Dolbeault operator ∂̄ models the ”localized BRST operator” and Tr B mod-

els the bulk trace of [28]. Turning on the Landau-Ginzburg superpotential W and

performing localization as above with ”worldsheet area” λ leads to a geometric model

given by the triplet (H, δ, Tr ). This is related to the triplet describing the B-twisted

sigma model by the modification δ = ∂̄ + i∂W of the BRST operator, followed by the

homotopy flow U(λ).

Because varying λ along the real axis amounts to changing the area of the world-

sheet, the operators U(λ) implement a sort of ”renormalization group flow” connecting

the point-like (UV) limit λ = 0 with the large area (IR limit) λ = +∞. Since the

model is topological, such a flow ”does nothing” at the level of BRST cohomology, but

acts non-trivially off-shell.

3.5 The residue formula for sphere correlators

Since the integral (3.19) is independent of λ, we can compute its value for Re λ → +∞
(more specifically, we shall take λ → +∞ with λ ∈ R). In this limit, the second term
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in (3.12) forces the integral to localize on the critical points of W , and the Gaussian

approximation around these points becomes exact. For simplicity, we shall assume

that the critical points of W are isolated (the general case can be incorporated by a

continuity argument). For simplicity, we shall also assume that the spectral sequence

of Subsection 3.2 collapses to its second term.

Taking λ → +∞ with λ ∈ R, we find that the correlator (3.19) vanishes unless

ω = f with f a complex-valued function defined on X 4. In this case, we obtain:

〈Of 〉sphere =

= lim
λ→+∞

(

N
∑

p∈CritW

[

n!2(iλ)n(−1)n(n−1)/2det(H̄īj̄)
]

[

(2π)n

λndet(Hij)det(H̄īj̄)
det(Gij̄)

]

f |p + O(1/λ)

)

= n!2(2π)n(−1)n(n+1)/2Ndet(Gij̄)
∑

p∈CritW

1

det(Hij(p))
f(p) . (3.42)

Since
∑

p∈CritW
1

det(Hij(p))
f(p) ∝

∫

X
f(z)dz1∧···∧dzn

∂1W...∂nW
by residue theory [13], one recovers the

following generalization of the well-known result of [1]:

〈Oω〉sphere = 0 unless ω = f (3.43)

〈Of 〉sphere = C

∫

X

Ω
f(z)

∂1W . . . ∂nW
. (3.44)

Here C is an uninteresting normalization constant.

4. The boundary coupling

In this section we discuss the boundary coupling of our models. The construction

is based on [12], with a certain modification which will prove useful later on. After

recalling the basics of superconnections, we construct the coupling in the form of [12],

with the addition of a term which insures δ0-invariance on a flat strip. While this

does not affect the target space equations of motion, it will help us make contact

with previous work on the subject. We also give the target space reflection of the

δ0-invariance constraint.

4For this, notice that the bosonic Gaussian integral over fluctuations of φ around each critical point

of W produces a factor which is weighted by 1

λn . Thus the fermionic Gaussian integral over θ and

η must produce n powers of λ if one is to obtain a non-vanishing result in the limit λ → ∞. This

obviously requires that Oω contain no η’s or θ’s, so that the highest (n-th order term) in the expansion

of e+iλDī∂j̄W̄θīηj̄

survives when performing the integral over η and θ.
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4.1 Mathematical preparations

Consider a complex superbundle E = E+ ⊕ E− over X, and a superconnection [31] B
on E. We let r± := rkE±. The bundle of endomorphisms End(E) is endowed with the

natural Z2 grading, with even and odd components:

End+(E) := End(E+) ⊕ End(E−) (4.1)

End−(E) := Hom(E+, E−) ⊕ Hom(E−, E+) . (4.2)

The superconnection B can be viewed as a section of [T ∗X ⊗ End+(E)] ⊕ End−(E).

In a local frame of E compatible with the grading, this is a matrix:

B =

[

A(+) F

G A(−)

]

(4.3)

whose diagonal entries A(±) are connection one-forms on E±, while F, G are elements

of Hom(E−, E+) and Hom(E+, E−). We require that the superconnection has type

(0,≤ 1), i.e. the one-forms A(±) belong to Ω(0,1)(End(E±)). The morphism F should

not be confused with the curvature form used below.

When endowed with the ordinary composition of morphisms, the space of sections

Γ(End(E)) becomes an associative superalgebra. The space Hb := Ω(0,∗)(End(E)) also

carries an associative superalgebra structure, which is induced from (Ω(0,∗)(X),∧) and

(Γ(End(E)), ◦) via the tensor product decomposition:

Ω(0,∗)(End(E)) = Ω(0,∗)(X) ⊗Ω(0,0)(X) Γ(End(E)) . (4.4)

For decomposable elements u = ω ⊗ f and v = η ⊗ g, with homogeneous ω, η and f, g,

the associative product on Hb takes the form:

uv = (−1)degf rkη(ω ∧ η) ⊗ (f ◦ g) , (4.5)

where deg denotes the grading of the superalgebra End(E):

deg(f) = 0 ∈ Z2 if f ∈ End+(E) , deg(f) = 1 ∈ Z2 if f ∈ End−(E) . (4.6)

The total degree on Hb is given by:

|ω ⊗ f | = rkω + degf (mod 2) . (4.7)

We also recall the supertrace on End(E):

str(f) = tr f++ − tr f−− , (4.8)
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where f =

[

f++ f−+

f+− f−−

]

is an endomorphism of E with components fαβ ∈ Hom(Eα, Eβ)

for α, β = +,−. This has the property:

str(f ◦ g) = (−1)degfdegg str(g ◦ f) (4.9)

for homogeneous elements f, g.

The twisted Dolbeault operator:

D̄ = ∂ + B =

[

∂̄ + A(+) F

G ∂̄ + A(−)

]

(4.10)

induces an odd derivation ∂̄ + [B, ·] of the superalgebra Hb, where [u, v] := uv −
(−1)|u||v|vu is the supercommutator.

The (0,≤ 2) part of the superconnection’s curvature has the form:

F (0,≤2) = D̄2 = ∂B +
1

2
[B,B] = ∂B + BB =

[

F
(+)
(0,2) + FG ∇̄F

∇̄G F
(−)
(0,2) + GF

]

(4.11)

where F
(±)
(0,2) are the (0, 2) pieces of the curvature forms F (±) of A(±) and:

∇̄F = ∂̄F + A(+)F + FA(−) = ∂̄F + A(+) ◦ F − F ◦ A(−)

∇̄G = ∂̄G + A(−)G + GA(+) = ∂̄G + A(−) ◦ G − G ◦ A(+) . (4.12)

We will use the the notations:

A := A(+) ⊕ A(−) =

[

A(+) 0

0 A(−)

]

, D :=

[

0 F

G 0

]

(4.13)

for the diagonal and off-diagonal parts of B. Then A is an connection one-form on E

(compatible with the grading), while D is an odd endomorphism. We have B = A + D

and:

F (0,≤2) = F (0,2) + ∇̄AD + D2 . (4.14)

Here F (0,2) = F
(+)
(0,2) + F

(−)
(0,2) is the (0, 2) part of the curvature of A and ∇̄A = ∂̄ + [A, ·]

is the Dolbeault operator twisted by A.

4.2 The boundary coupling

Following [12], we define the partition function on a bordered and oriented Riemann

surface Σ by:

Z :=

∫

D[φ]D[F̃ ]D[θ]D[ρ]D[η]e−S̃bulkU1 . . .Uh , (4.15)
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where h is the number of holes and the factors Ua have the form:

Ua := Str Pe−
∮

Ca
dτaM . (4.16)

We are assuming that the boundary of Σ is a disjoint union of smooth circles Ca, asso-

ciated with holes labeled by a. The symbol Str denotes the supertrace on GL(r+|r−),

while dτa stands for the length element along Ca induced by the metric on the interior

of Σ. The quantity M is given by:

M =

[

Â(+) + i
2
(FF † + G†G) 1

2
ρi

0∇iF + i
2
η ī∇īG

†

1
2
ρi

0∇iG + i
2
η ī∇īF

† Â(−) + i
2
(F †F + GG†)

]

. (4.17)

Here ρi
0dτa is the pull-back of ρi to Ca and:

Â(±) := A
(±)

ī
φ̇ī +

1

2
η īF

(±)

īj
ρj

0 (4.18)

are connections on the bundles E± obtained by pulling back E± to the boundary of Σ.

The dot in (4.18) stands for the derivative d
dτa

. Notice that ∇iF = ∂iF and ∇iG = ∂iG

since A is a (0, 1)-connection.

We have:

M = Â + ∆ + K (4.19)

where:

∆ :=
1

2
ρi

0∂iD , (4.20)

K :=
i

2

(

η ī∇īD
† + [D, D†]+

)

(4.21)

and:

Â = φ̇īAī +
1

2
Fījη

īρj
0 . (4.22)

Here A is the direct sum connection on End(E) introduced in (4.13). The first two

terms in (4.19) agree with [12], while the last term K is added for comparison with [9].

As we shall see below, this term preserves BRST-invariance of the partition function

(which is already preserved by the sum of the first two terms [12]). As for the open

B-model, adding K insures invariance of the boundary coupling with respect to the

second generator δ0 of the N = 2 topological algebra, thereby fixing an ambiguity
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familiar form Hodge theory5. This modification has minor effects which can be safely

ignored for most purposes 6.

4.3 The target space equations of motion

To insure BRST invariance of the partition function (4.15), we must choose the back-

ground superconnection B such that:

δUa =
1

2

[
∫

Ca

dτρi
0∂iW

]

Ua . (4.23)

In this paper, we also require δ0-invariance of the partition function on the flat strip:

δ0Ua = −1

4

[
∫

Ca

dτη ī∂iW̄

]

Ua . (4.24)

It is not hard to check the relations:

δUa = − Str
[

Ia(δM)Pe−
∮

Ca
dτaM

]

(4.25)

where:

Ia(δM) =

∮

Ca

dτaU
−1
a

(

Fīj̄η
īφ̇j̄ − 1

4
∇kFīj̄η

īηj̄ρk
0 − φ̇ī∇īD − 1

2
ρi

0∇i(D
2) +

1

2
η īρj

0∇j∇īD +

+
1

2
η īηj̄[Fīj̄ , D

†] + η ī[∇īD, D†] + [D2, D†]
)

Ua ,

and:

δ0Ua = − Str
[

Ia(δ0M)Pe−
∮

Ca
dτaM

]

(4.26)

where:

Ia(δ0M) =
1

4

∮

Ca

dτaU
−1
a

(

η ī∇ī(D
†)2 + [D, (D†)2]

)

Ua

+
i

2

∮

Ca

dτaU
−1
a

(

−φ̇i∇iD
† +

1

2
η ī∇ī∇jD

†ρj
0 +

1

2
ρi

0[D,∇iD
†]

)

Ua .

5The symmetry generators δ and δ0 can be viewed as analogues of the operators ∂̄ and ∂̄† of Hodge

theory, as already pointed out in [29] in the context of twisted B-models. The boundary coupling of

[12] is chosen to preserve BRST invariance of the partition function. This is ambiguous up to addition

of ’exact’ terms, an ambiguity which we can fix by requiring δ0-invariance of the partition function.
6As we shall see in the next section, the extra-term in the boundary coupling can be used to

introduce a parameter µ characterizing boundary localization pictures. For most practical purposes,

this parameter can be set to zero, which amounts to neglecting the last term in (4.19). In particular,

one must set µ to zero in order to recover the trace formula of [9]. It is the bulk parameter λ which

must be taken to infinity in order to recover the proposal of [9].
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Here Ua(τa) ∈ GL(r+|r−) is a certain invertible operator7) which plays the role of

‘parallel transport’ defined by M along Ca (see [12] for details). Namely Ua(τa) =

Ua(τa, 0), where:

Ua(τ2, τ1) := Pe
−
∫ τ2
τ1

M(τ)dτ
(4.27)

if τ2 > τ1. The origin of the proper length coordinate τa along Ca is chosen arbitrarily,

while the orientation on Ca is compatible with that of Σ. The quantities Fīj̄ etc. are

the (0, 2)-components of the curvature of the direct sum connection A introduced in

(4.13). Notice the relations:

Ua = Str Ha(τ) (4.28)

where:

Ha(τ) = U(τ + la, τ) (4.29)

are the ”superholonomy operators” (here la the length of Ca).

Relations (4.23, 4.24) and (4.25,4.26) show that the BRST and δ0-invariance con-

ditions amount to:

Fīj̄ = 0 (4.30)

∇īD = 0 (4.31)

∇i(D
2) = ∂iW (4.32)

[D†, D2] = 0 . (4.33)

The first relation says that A is integrable, so it defines a complex structure on the

bundle E. The second condition means that D ∈ End(E) is holomorphic with respect

to this complex structure. The third equation requires D2 = c + W idE, with c a

covariantly-constant endomorphism. Comparing with (4.14), we find that these first

three conditions are equivalent with:

F (0,≤2) = c + W idE ⇐⇒ D̄2 = c + W idE . (4.34)

This is the target space equation of motion for our open string background [12]. Notice

that (4.34) admit solutions only when r+ = r−.

For backgrounds satisfying the equation of motion, the last condition in (4.30)

reads:

[D†, D2] = 0 ⇐⇒ [D†, c] = 0 . (4.35)

This can be viewed as a partial ”gauge-fixing” constraint, which is fulfilled, for example,

if one takes c to be proportional to the identity endomorphism (in which case the

proportionality constant can be absorbed into W ). For simplicity, we shall take c = 0

for the remainder of this paper.
7This should not be confused with the homotopy flow of Subsection 3.4 !
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5. Boundary observables and correlators

As we shall see in Section 6, the boundary conditions derived from the partition function

(4.15) constrain θ in terms of η along the boundary of the worldsheet. Hence it suffices

to consider boundary observables of the form:

Oα(τ) = αī1...̄ip(φ(τ))η ī1(τ) . . . η īp(τ) , (5.1)

where τ is a point on ∂Σ. Here α := αī1...̄ipdz ī1 ∧ · · · ∧ dz īp is a (0, p) form valued in

End(E).

Consider a collection of m topological D-branes described by superbundles Ea en-

dowed with superconnections Ba, such that the target space equations of motion are

satisfied. The index a runs from 1 to m. Let Σ be a Riemann surface with m cir-

cle boundary components Ca, which we endow with the orientation induced from Σ.

Choosing forms α
(a)
j ∈ Ω(0,p

(a)
j )(End(Ea)) and points τ

(a)
1 . . . τ

(a)
ka

arranged in increasing

cyclic order along Ca, we are interested in the correlator:

〈
m
∏

a=1

1
∏

ja=ka

O
α

(a)
ja

(τ
(a)
ja

)〉Σ :=

∫

D[φ]D[F ]D[ρ]D[η]D[θ]e−S̃bulk (5.2)

m
∏

a=1

Str
[

O
α

(a)
ka

(τ
(a)
ka

)Ua(τ
(a)
ka

, τ
(a)
ka−1)Oα

(a)
ka−1

(τ
(a)
ka−1) . . .O

α
(a)
1

(τ
(a)
1 )Ua(τ

(a)
1 , τ

(a)
ka

)
]

,

where we used the ”parallel supertransport” operators defined in (4.27). The inte-

gration domain in (5.2) is specified by the appropriate boundary conditions on the

worldsheet fields, which will be discussed in more detail below.

Let us first consider a single operator insertion Oα along a circle boundary compo-

nent C. In this case, the relevant factor in (5.2) is:

Str[H(τ)Oα(τ)] . (5.3)

We wish to compute the BRST variation of this quantity. From the relation:

δH(τ) =

[

1

2

∫

C

ρi∂iW

]

H(τ) + [H(τ), D(τ) + Aī(τ)η ī(τ)] (5.4)

we obtain:

δ Str[H(τ)Oα(τ)] =

[

1

2

∫

C

ρi∂iW

]

Str[H(τ)Oα(τ)] + Str[H(τ)δbOα(τ)] , (5.5)

where:

δbOα := δOα + [D + Aīη
ī,Oα] . (5.6)

21



Using the target space equations of motion, one easily checks that 8 δb squares to zero,

so that it plays the role of an ‘effective’ BRST operator in the boundary sector. Notice

that δb arises naturally due to the second term in the BRST variation (5.4) of H(τ).

Using (5.6), we find the relation:

δbOα = OD̄α (5.8)

where D̄ = D̄B is the Dolbeault operator on Ω(0,∗)(End(E)) twisted by the supercon-

nection B.

It is not hard to generalize (5.5) to the case of k insertions along C:

δ Str[Oαk
(τk)U(τk, τk−1) . . .Oα1(τ1)U(τ1, τk)] = (5.9)

=

[

1

2

∫

C

ρi∂iW

]

Str[Oαk
(τk)U(τk, τk−1) . . .Oα1(τ1)U(τ1, τk)] +

+
k
∑

j=1

Str[Oαk
(τk) . . . U(τj+1, τj)δbOαj

(τj)U(τj , τj−1) . . .Oα1(τ1)U(τ1, τk)] .

Applying this to (5.2), we find that the BRST variation of e−S̃bulk is canceled by the

first contribution in (5.9), summed over circle boundary components. This gives:

δ

(

e−S̃bulk

m
∏

a=1

Str
[

O
α

(a)
ka

(τ
(a)
ka

)U(τ
(a)
ka

, τ
(a)
ka−1) . . .O

α
(a)
1

(τ
(a)
1 )U(τ

(a)
1 , τ

(a)
ka

)
]

)

= (5.10)

= e−S̃bulk

m
∑

a=1

ka
∑

ja=1

Str
[

O
α

(a)
ka

(τ
(a)
ka

)U(τ
(a)
ka

, τ
(a)
ka−1) . . . δbOα

(a)
ja

(τ
(a)
ja

) . . .O
α

(a)
1

(τ
(a)
1 )U(τ

(a)
1 , τ

(a)
ka

)
]

.

Equation (5.10) replaces the more familiar formula known from the open topological

sigma model. Unlike the sigma model case, the left hand side includes the factor e−S̃bulk ,

because its BRST variation does not vanish separately. Equation (5.10) implies that

the correlator of δb-closed boundary observables only depends on their δb-cohomology

class, and in particular such a correlator vanishes if one of the boundary observables is

δb-exact. Remember that S̃bulk = S̃B + SW . BRST closure of S̃B implies that (5.10) is

8Indeed, one has:

δ2
bO =

1

2
[Fīj̄ ,O] + ηī[∇īD,O] + [D2,O] . (5.7)
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equivalent with:

δ

(

e−SW

m
∏

a=1

Str
[

O
α

(a)
ka

(τ
(a)
ka

)U(τ
(a)
ka

, τ
(a)
ka−1) . . .O

α
(a)
1

(τ
(a)
1 )U(τ

(a)
1 , τ

(a)
ka

)
]

)

= (5.11)

= e−SW

m
∑

a=1

ka
∑

ja=1

Str
[

O
α

(a)
ka

(τ
(a)
ka

)U(τ
(a)
ka

, τ
(a)
ka−1) . . . δbOα

(a)
ja

(τ
(a)
ja

) . . .O
α

(a)
1

(τ
(a)
1 )U(τ

(a)
1 , τ

(a)
ka

)
]

,

a fact which will be used in Section 6.

Observation It is easy to extend the discussion above by including boundary condi-

tion changing observables, which in the present context have the form (5.1), but with

α an element of Ω(0,p)(Hom(Ea, Eb)). In this case, the operator (5.6) is replaced by:

δbOα := δOα + (D(b) + A
(b)

ī
η ī)Oα − (−1)rkαOα(D(a) + A

(a)

ī
η ī) (5.12)

and D̄ in relation (5.8) becomes the Dolbeault operator on Ω(0,∗)(Hom(Ea, Eb)), twisted

by the superconnections Ba and Bb.

6. Localization formula for boundary correlators on the disk

We next discuss localization in the boundary sector. As for the bulk, we will proceed

by localizing on sigma model zero-modes, thereby extracting a two-parameter family of

localization formulae. The first index of this family is the bulk parameter λ of Section

3, while second parameter µ is associated with the last term in (4.19). These two pa-

rameters measure the area and circumference length of a worldsheet with disk topology.

Each pair (λ, µ) defines a localization picture, and a certain off-shell representation of

the boundary trace of [26, 27, 28]. As we shall see below, the various pictures are

again related by a homotopy flow, and in particular the various representations of the

boundary trace agree when reduced to the cohomology of δb. In this approach, the

appropriate generalization of the residue representation of [9] is recovered in the limit

λ → +∞ with µ = 0.

The boundary conditions induced by the coupling (4.15) can be extracted by study-

ing the Euler-Lagrange variations of the non-local action Seff = S̃bulk − lnU . These

conditions are given explicitly in Appendix A, where we also show that they are BRST

invariant modulo the equations of motion for the auxiliary fields F . The disk correla-

tor of a collection of boundary observables Oα1(τ1) . . .Oαk
(τk) (with τ1 . . . τk arranged

in increasing cyclic order along the boundary) is obtained by performing the relevant

path integral while imposing the boundary conditions, which cut out a subset C in field
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configuration space:

〈Oαk
(τk) . . .Oα1(τ1)〉disk = (6.1)

=

∫

C
D[φ]D[F̃ ]D[η]D[θ]D[ρ] e−S̃bulk Str[Oαk

(τk)U(τk, τk−1) . . .Oα1(τ1)U(τ1, τk)] .

In this section, we assume that Oαj
are δb-closed:

δbOαj
= 0 ⇐⇒ D̄Bαj = 0 . (6.2)

6.1 Localization on B-model zero-modes

Remember that S̃bulk = S̃B +SW , where S̃B = δVB is BRST exact. As in Section 3, this

allows us to replace S̃bulk by tS̃B+SW , without changing the value of the correlator (6.1).

Here t is a complex variable with positive real part. Invariance of (6.1) under changes

in t follows by differentiation with respect to this parameter upon using δb-closure of

Oαj
and equation (5.11) 9.

We can now take the limit Re t → +∞ to localize on the zero modes of S̃B. This

gives:

〈Oαk
. . .Oα1〉disk = 〈Oα〉disk = N

∫

C0

dφdηdθe−
A
4

L̃0 Str[H0Oα] . (6.3)

To arrive at this formula, we noticed that the dependence of τj disappears on zero-

modes, we set α := αk ∧ · · · ∧ α1 and integrated out the auxiliary fields F̃ . Also notice

that δbOα = 0 due to relations (6.2). The symbol H0 denotes the restriction of the

superholonomy factor H to zero-modes:

H0 = e−
il
2

k0 , (6.4)

where l is the length of the disk’s boundary and:

k0 := η ī∇īD
† + [D, D†] = δbD

† . (6.5)

The symbol C0 denotes the subset of the space of zero modes cut out by the boundary

conditions. Since we integrated out the auxiliary fields, this subset is strictly BRST

invariant:

δC0 ⊂ C0 . (6.6)

9The path integral over C of the BRST exact term involved in this argument vanishes because the

boundary conditions determining C are preserved by the BRST transformations up to terms which

vanish by the equations of motion for F̃ (see Appendix A).
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Using this property as well as δ-exactness (3.17) of L̃0 and δb-exactness (6.5) of k0, one

checks 10 that (6.3) is insensitive to rescalings of these quantities, and hence can be

replaced with:

〈Oα〉disk = N

∫

C0

dφdηdθe−λL̃0 Str[e−µk0Oα] , (6.7)

where λ and µ are complex numbers such that Re λ > 0. The quantity (6.7) is inde-

pendent of the values of these two parameters.

To make (6.7) explicit, we must describe the restriction to C0. The relevant bound-

ary condition takes the form (see Appendix A):

i(Gij̄η
j̄ + θi)U = Str[H(τ)(∂iD + Fij̄η

j̄)] ⇐⇒ Str[H(τ)(θi + iVi)] = 0 , (6.8)

where:

Vi := ∂iD + (Fij̄ − iGij̄)η
j̄ . (6.9)

Equation (6.8) instructs us to replace θi by −iVi under the supertrace in order to pro-

duce the desired restriction. To implement these constraints, we shall use the quantity:

Π :=
1

n!
ǫi1...in(θi11End(E) + iVi1) . . . (θin1End(E) + iVin) . (6.10)

Consider an End(E)-valued function f of θi:

f(θ1 . . . θn) =
n
∑

p=0

∑

1≤i1<···<ip≤n

θi1 . . . θipf
i1...ip =

n
∑

p=0

1

p!
θi1 . . . θipf

i1...ip , (6.11)

where fi1...ip ∈ End(E) with f iσ(1)...iσ(p) = ǫ(σ)f i1...ip for all σ ∈ Σp and in the last

equality we use implicit summation over i1 . . . ip = 1 . . . n. Here Σp is the group of

permutations on p elements, while ǫ(σ) is the signature of the permutation σ. Then

one checks the identity:
∫

dθ1 . . . dθnΠf(θ1 . . . θn) = f(−iV1 · · · − iVn) , (6.12)

where the right hand side is defined by:

f(−iV1 · · · − iVn) :=

n
∑

p=0

∑

1≤i1<···<ip≤n

1

p!

∑

σ∈Σp

ǫ(σ)(−iViσ(1)
) . . . (−iViσ(p)

)f i1...ip

=
n
∑

p=0

1

p!
(−iVi1) . . . (−iVip)f

i1...ip . (6.13)

10The proof requires the identity δ Str B = Str δbB for any quantity B built out of zero modes. This

holds because the supertrace of any supercommutator vanishes.
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For later reference, we note the case f = eqiθi, with qi some Grassmann-odd quantities

depending on φ and η. Then we have fi1...ip = (−1)p(p+1)/2qi1 . . . qip and find f(−iV1 · · ·−
iVn) = e−iqiVi, using the fact that qj are mutually anti-commuting. This gives:

∫

dθ1 . . . dθneqiθiΠ =

∫

dθ1 . . . dθnΠeqiθi = e−iqiVi . (6.14)

Relation (6.12) shows that Π is a sort of ‘Poincare dual’ of C0 on the supermanifold

of field configurations. Using (6.14), this observation allows us to write (6.7) as an

unconstrained integral over the space of sphere zero-modes :

〈Oα〉disk = N

∫

dφdηdθe−λL̃0 Str[e−µk0ΠOα] . (6.15)

Employing equation (6.14), we find:

〈Oα〉disk = N

∫

dφdη Str[e−µk0e−λL̃b
0Oα] , (6.16)

where:

L̃b
0 := L̃0|θi→−iVi

= −Dī∂j̄W̄V īηj̄ + Gij̄(∂iW )(∂j̄W̄ ) = (6.17)

= H̄ i
j̄η

j̄∂iD + η īηj̄H̄k
īFkj̄ + Gij̄(∂iW )(∂j̄W̄ ) .

It is easy to check the relation:

δbVi = ∂iW , (6.18)

which shows that the on-shell BRST variation (3.16) of θi agrees with the δb-variation

of −iVi:

δb(θi1End(E) + iVi) = 0 ⇐⇒ (δθi)1End(E) = −iδbVi (6.19)

(this in particular implies that δΠ = 0). Using this equation and relation (3.17), one

finds that L̃b
0 is δb-exact:

L̃b
0 = δbṽ

b
0 , (6.20)

where:

ṽb
0 = ṽ0|θi→−iVi

= V ī∂īW̄ . (6.21)

Together with δb-exactness of k0, this can be used to give a direct proof of independence

of (6.16) of λ and µ.

We end by mentioning some useful properties of Vi. It is easy to compute the

anticommutator:

[Vi, Vj]− = ∂i∂jW − δb[∂i∂j(D + Ak̄η
k̄)] . (6.22)
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Moreover, it is not hard to check the identity:

[Vi,O] = ∂i(δbO) − δb(∂iO) (6.23)

for any boundary observable O (as usual, the quantity on the left hand side is a super-

commutator). In particular, a δb-closed boundary observable supercommutes with Vi

up to a δb-exact term.

6.2 The space of boundary observables

After reduction to zero-modes, each boundary insertion Oα can be identified with the

superbundle-valued differential form α. This amounts to setting η ī ≡ dz ī, so the su-

peralgebra Hb := Ω(0,∗)(End(E)) provides an off-shell model for the space of boundary

excitations. Moreover, equation (5.8) identifies the boundary BRST operator δb with

the operator D̄B = ∇̄A + D acting on Hb, where ∇̄A acts in the adjoint representa-

tion and D = [D, ·]. The target space equations of motion imply that δb squares to

zero. Thus Hb is a differential superalgebra. To be precise, we take Hb to consist of

bundle-valued differential forms with at most polynomial growth at infinity.

The target space equations of motion imply the relations:

∂̄2
A = D2 = ∂̄A ◦ D + D ◦ ∂̄A = 0 , (6.24)

which show that Hb is a bicomplex. Thus the boundary BRST cohomology is computed

by a spectral sequence Eb
∗ whose second term has the form:

Eb
2 = HD(H∂̄A

(Hb)) . (6.25)

In the simple case X = C
n, the holomorphic bundle E is the trivial superbundle of

type (r+, r−) and the spectral sequence collapses to its second term. Then the BRST

cohomology coincides with the cohomology of D taken in the space of square matrices

of dimension r+ + r− whose entries are polynomial functions of n complex variables.

This recovers the result of [6].

6.3 The boundary-bulk and bulk-boundary maps

The equivalent expressions (6.15) and (6.16) allow us to extract an off-shell version of

the boundary-bulk map of [28]:

fµ(Oα) = Str[e−µk0ΠOα] . (6.26)

This maps Hb to H and obeys:

〈Oα〉disk = 〈fµ(Oα)〉sphere ⇐⇒ Tr bα = Tr fµ(α) , (6.27)
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where we identified α with Oα. Here Tr and Tr b are the bulk and boundary traces

determined by the localization formulae (3.19) and (6.16):

Tr ω = 〈Oω〉sphere =

∫

dφdηdθe−λL̃0Oω (6.28)

Tr bα = 〈Oα〉disk =

∫

dφdη Str[e−µk0e−λL̃b
0Oα] . (6.29)

As in [28], we can also define a bulk-boundary map e through the adjunction formula:

Tr (Oωfµ(Oα)) = Tr b(e(Oω)Oα) . (6.30)

From the relations above, we find:

e(Oω) := eλL̃b
0

∫

dθ1 . . . dθne−λL̃0OωΠ . (6.31)

This maps H to Hb.

Using (6.19), we find that fµ and e are compatible with the bulk and boundary

BRST operators:

δ ◦ fµ = (−1)nfµ ◦ δb (6.32)

δb ◦ e = e ◦ δ . (6.33)

To prove the second equation, we used the identity:

δ

∫

dθ1 . . . dθnf(θ1 . . . θn) =

∫

dθ1 . . . dθnδf(θ1 . . . θn) , (6.34)

which follows from (3.16). Relations (6.32) and (6.33) show that e and fµ descend to

well-defined maps e∗ and f∗ between the bulk and boundary BRST cohomologies (the

latter are the maps considered in [28]). Since k0 is δb-exact, one easily checks that f∗
is independent of µ.

6.4 A geometric model for the boundary trace

As in Section 3, we can use the identifications η ī ≡ dz ī and θi ≡ ∂i to represent our

formulae in terms of standard geometric objects. We find:

L̃b
0 ≡ H̄y(∂D + F ) + ||∂W ||2 = δbṽ

b
0 (6.35)

with:

ṽb
0 = gradW̄y (∂D + F ) (6.36)
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and:

k0 = ∇̄BD† = ∇̄AD† + [D, D†] . (6.37)

The disk localization formula (6.16) becomes:

Tr bα = N

∫

X

Ω ∧ str[e−λL̃b
0 ∧ e−µk0 ∧ α] , (6.38)

while the quantity (6.10) takes the form:

Π =
1

n!
(∂1 + iV1) ∧ · · · ∧ (∂n + iVn) , (6.39)

with:

Vi = ∂iD + (Fij̄ − iGij̄)dzj̄ . (6.40)

Defining V = dzi ⊗ Vi, we obtain:

V = ∂D + F − iG , (6.41)

where G := Gij̄dzi⊗dzj̄ . Notice that here and above, ∂D is defined by ∂D = dzi⊗∂iD

(the order matters since D is odd).

6.5 Boundary localization pictures and the homotopy flow

As for the bulk sector, one can define a two-parameter semigroup of operators acting

on Hb through:

Ub(λ, µ)(α) := e−λL̃b
0 ∧ e−µk0 ∧ α . (6.42)

The pair (λ, µ) is taken inside the domain:

∆b := {(λ, µ) ∈ C
2|Reλ > 0} . (6.43)

Since both L̃0 and L̃b
0 are BRST-exact, each Ub(λ, µ) is homotopy-equivalent with the

identity so this defines a homotopy flow. We let:

Tr B
b (α) := N

∫

X

Ω ∧ str(α) (6.44)

denote the boundary trace of the B-twisted sigma model (viewed as a linear functional

on the off-shell state space Hb). Then equation (6.38) becomes:

Tr b(α) = Tr B
b (Ub(λ, µ)(α)) . (6.45)

Again one can define localization pictures indexed by λ and µ. The boundary BRST

operator satisfies:

Ub(λ, µ) ◦ δb = δb ◦ Ub(λ, µ) . (6.46)
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6.6 Residue formula for boundary correlators on the disk

As in Section 3, we can use equation (6.15) to express boundary correlators in terms

of generalized residues. For simplicity, we shall assume that the spectral sequence of

Subsection 6.2 collapses to its second term. Setting µ = 0 in (6.15) gives:

〈Oα〉disk = N

∫

dφdηdθe−λL̃0 Str[ΠOα] . (6.47)

We next take the limit λ → +∞ with λ ∈ R+. As in Section 3, this forces the integral

to localize on the critical points of W , while the Gaussian approximation around these

points becomes exact. Counting the powers of λ produced by the bosonic and fermionic

Gaussian integrals, we find that the correlator vanishes unless α = f with f a section

of End(E). In this case, δb-closure of Of amounts to the conditions ∇̄Af = 0 and

[D, f ] = 0, and counting powers of λ shows that the only contributions which survive

in the limit come from those pieces of the factor Π which are independent of θ and η.

This gives:

〈Oα〉disk = 0 unless α = f ∈ End(E) (6.48)

〈Of 〉disk =
C

n!

∫

X

Ω
Str[(i∂D)∧nf(z)]

∂1W . . . ∂nW
, (6.49)

where C is the constant introduced in Section 3. These expressions generalize the

residue formula proposed in [9]. Notice, however, that the residue formula of [9] arises

for µ = 0 and in the limit Re λ → +∞. The limit proposed in [9] (namely Reµ → +∞
with λ = 0) does not suffice to localize the model’s excitations unto the critical set of

W .

7. Conclusions

We gave a detailed and general discussion of localization in the bulk and boundary

sectors of B-type topological Landau-Ginzburg models. In the bulk sector, we showed

that careful reconsideration of the localization argument of [1] leads to an entire family

of localization formulae, parameterized by a complex number λ of positive real part.

When real, this parameter measures the area of worldsheets with S2 topology. The var-

ious ”localization pictures” are related by a ”homotopy flow” (a semigroup of operators

homotopic to the identity), which implements rescalings of this area. The generalized

localization argument leads to a one-parameter family of off-shell models for the bulk

trace, extending the well-know result of [1]. The later is recovered for Reλ → +∞, a

degenerate limit which leads to the standard residue representation.
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In the boundary sector, a similar argument gives a family of localization formulae

parameterized by complex variables λ and µ subject to the condition Re λ > 0. When

real, these parameters describe the area of a worldsheet with disk topology, respectively

the length of its boundary. The boundary localization pictures are once again related

by a semigroup of homotopy equivalences, which implements rescaling of the disk’s

area and of the length of its boundary. This leads to a two-parameter family of off-shell

models for the boundary trace. We also showed that the residue formula proposed in [9]

arises in the limit λ → +∞ with µ = 0, and generalizes to the set-up of [14, 12], which

does not require constraints on the target space or on the rank of the holomorphic

superbundle describing the relevant D-brane. In particular, this proves and generalizes

the proposal of [9], though the residue representation we have found arises in a limit

which differs from previous proposals. The argument required to establish this result

is rather subtle, due to the complicated form of the boundary conditions.
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A. Euler-Lagrange variations and boundary conditions

Let us consider the Euler-Lagrange variations for our model. It is not hard to compute

the variations of the bulk action:

δθS̃bulk =
i

2

∫

Σ

d2σ
√

g

[

εαβDβρ
i
α +

1

2
Gik̄Dk̄∂j̄W̄ηj̄

]

δθi (A.1)

δηS̃bulk =
1

2

∫

Σ

d2σ
√

g

[

gαβGījDαρj
β − i

2
Dī∂j̄W̄ θj̄

]

δη ī − 1

2

∫

∂Σ

dτGīj(ρ
j
n + iρj

0)δη
ī (A.2)

δρS̃bulk =
1

2

∫

Σ

d2σ
√

g

[

Gij̄(iε
αβDβθ

j̄ + gαβDβη
j̄) − 1

2
εαβDi∂jWρj

β

]

δρi
α

+
i

2

∫

∂Σ

dτGij̄(η
j̄ + θj̄)δρi

0 (A.3)

δφS̃bulk =

∫

Σ

d2σ
√

g

[

−Gīj∆φj − i

4
DīDj̄∂k̄W̄θj̄ηk̄ +

i

2
Dī∂j̄W̄ F̃ j̄

]

δφī

+

∫

Σ

d2σ
√

g

[

−Gij̄∆φj̄ − i

2
Di∂jWF̃ j +

1

8
εαβDiDj∂kWρj

αρk
β

]

δφi

+

∫

∂Σ

dτGīj(∂nφ
j + iφ̇j)δφī +

∫

∂Σ

dτGij̄(∂nφ
j̄ − iφ̇j̄)δφi . (A.4)
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For the boundary coupling U = StrH(0), we find:

δU = − Str[H(0)IC(δM)] , (A.5)

where:

IC(δM) =

∫ l

0

dτU(τ)−1δM(τ)U(τ) . (A.6)

For δM we substitute the Euler-Lagrange variations:

δθM = 0 (A.7)

δηM = −
(

1

2
Fījρ

j
0 +

i

2
∇īD

†
)

δη ī (A.8)

δρM = −1

2
(∂iD + Fij̄η

j̄)δρi
0 (A.9)

and:

U−1δφMU =
d

dτ
(U−1Aīδφ

īU) + U−1(Siδφ
i + Sīδφ

ī)U (A.10)

with:

Si = Fij̄φ̇
j̄ +

1

2
∂iFj̄kη

j̄ρk
0 +

1

2
ρj

0∂i∂jD +
i

2
ηj̄[Fij̄ , D

†] +
i

2
[∂iD, D†] (A.11)

Sī = Fījφ̇
j +

1

2
∇īFj̄kη

j̄ρk
0 +

1

2
ρj

0[Fīj, D] +
i

2
ηj̄∇ī∇j̄D

† +
i

2
[D,∇īD

†] . (A.12)

This gives:

δθU = 0 (A.13)

δηU =

∫

∂Σ

dτ Str[H(τ)(
i

2
∇īD

† +
1

2
Fījρ

j
0)]δη

ī (A.14)

δρU =
1

2

∫

∂Σ

dτ Str[H(τ)(∂iD + Fij̄η
j̄)]δρi

0 (A.15)

δφU = −
∫

∂Σ

dτ
(

Str[H(τ)Si]δφ
i + Str[H(τ)Sī]δφ

ī
)

. (A.16)

To extract the boundary conditions, we write:

e−S̃bulkU = e−Seff , (A.17)

where Seff = S̃bulk − lnU is viewed as a (non-local) worldsheet action. Since we desire

local equations of motion, the boundary contributions to (A.1-A.4) must cancel the

variation of lnU :

UδS̃bulk = δU . (A.18)
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Imposing this requirement, we find the boundary conditions:

Gīj(ρ
j
n + iρj

0)U = − Str H(τ)(i∇īD
† + Fījρ

j
0) (A.19)

i(Gij̄η
j̄ + θi)U = Str H(τ)(∂iD + Fij̄η

j̄) (A.20)

Gīj(∂nφj + iφ̇j)U = − Str[H(τ)Sī] (A.21)

Gij̄(∂nφj̄ − iφ̇j̄)U = − Str[H(τ)Si] . (A.22)

The Euler-Lagrange equations can be read off from the bulk contributions to (A.1-A.4):

ǫαβDαρi
β =

1

2
Gij̄Dj̄∂k̄W̄ηk̄ (A.23)

gαβDαρi
β =

i

2
Gij̄Dj̄∂k̄W̄ θk̄ (A.24)

iǫαβDβθi + gαβGij̄Dβη
j̄ =

1

2
ǫαβDi∂jWρj

β . (A.25)

It is not hard to see that the boundary conditions are BRST invariant modulo the

equations of motion for F . For simplicity, we explain this for condition (A.20), which is

of interest in Section 6. Starting with (A.20), one easily computes the BRST variations

of the left and right hand sides:

δ(LHS) = 2iGij̄F̃
j̄U + i(Gij̄η

j̄ + θi)

[

1

2

∫

∂Σ

ρi∂iW

]

U (A.26)

δ(RHS) = (∂iW )U +

[

1

2

∫

∂Σ

ρk∂kW

]

Str[H(τ)(∂iD + Fij̄η
j̄)] . (A.27)

The two variations obviously agree if one uses equation (A.20), provided that the

equation of motion F̃ ī = − i
2
Gīj∂jW holds.
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