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Abstract—In sports training and exercises like walking and 

jogging, the velocity and position of the exercise people is very 

crucial for motion evaluation. A simple wearable system and 

corresponding method for velocity monitoring using minimal 

sensors can be very useful for daily use. In this work, a velocity 

tracking and localization method using only three IMU sensors 

is introduced. The three sensors are located at the right shank, 

right thigh and the pelvis to measure the kinematics of the lower 

limbs. In the method, a reference root point on the pelvis is 

chosen to represent the velocity and location of the person. 

Through acceleration fine tuning algorithm, the acceleration 

data is refined and combined with the velocity calculated from 

body kinematics to get a drift-free and accurate 3D velocity 

result. The location of the person is tracked based on this 

velocity estimation and the limb kinematic subsequently. The 

benchmark study with the commercial optical reference shows 

that the error in velocity tracking is within 0.1m/s and 

localization accuracy is within 2% in both normal walking, 

jogging and jumping. Due to the conveniences of the small-size 

wearable IMU sensors, this proposed velocity tracking and 

localization method is very useful in everyday exercises both 

indoor and outdoor. 

1 INTRODUCTION 

Tracking the human motion and the physical 

human-environment interaction via wearable sensors closely 

relies on the human body kinematics, kinetics, and the contact 

interactions with the environment.  Among the large amount 

of parameters of human motion, the awareness of velocity 

and location of human is very important for applications like 

sports training, exercises and entertainment etc. In daily 

applications, the human subject usually acts in house or an 

open environment. Although additional infra-structure 

localization devices such as ultrasonic, Radio Frequency 

Identification (RFID) and Ultra-wideband (UWB) etc. can be 

installed in the surroundings for localization, in these sports 

and exercises related applications which take place in large 

areas, they are not economically viable. The GPS system is 

not precise enough for positioning accuracy below one meter 

and it is normally only available in open outdoor 

environments. In these daily applications, it is expected to use 

simple wearable sensors to track the location and velocity of 

the person without depending on external infra-structures. 

The wireless IMUs (inertial measurement units) wearable 

sensors are small and don't have the capture volume 

limitations. Therefore, they now show a great advantage to be 

widely applied in many daily motion tracking applications 

[1-4]. Existing IMU based motion captures systems use many 

sensors (usually more than 10) to track the human motion 
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data. In many applications where the full body motions are 

not concerned, methods and system with minimal sensors to 

track the key kinematic information of interests are necessary.  

In sports training such as walking, heel-to-toe walking and 

jogging, monitoring the velocity is quite crucial to study the 

efficiency of the exerciser. The speed of a subject describes 

how fast and in which direction the person moves in space. 

Also, its integration provides an update of the location data. 

Therefore, tracking the human moving velocity using 

wearable sensor is very helpful for such applications.  

Theoretically, root point velocity can be estimated by 

integrating the acceleration of the root point over a period of 

time. However, the slight acceleration errors [5] measured by 

the IMUS will lead to unbounded drifting errors in just a few 

seconds [6]. Thus, direct integration of the acceleration is not 

suitable for velocity tracking of daily applications. Simple 

model based methods [7] only provide an average velocity 

estimation and is not generally accurate for different walking 

speeds. In gait study and personal navigation, researchers use 

the foot-mounted IMU sensors to track the foot location and 

velocity [8-11]. Among these methods, the ZUPTs algorithm 

is efficient for regular walking localization, where the foot 

velocity is also tracked while walking. Since the foot velocity 

is zero when it stance on the floor, it cannot provide the 

continuous body velocity during motion. Also, during 

dynamic behaviors with obvious contacts, the large 

acceleration error will increase the velocity tracking and 

localization error in this method.  

Therefore, to better resolve this velocity tracking issue, 

new methods for the inertial sensor to track the general 

practical moving velocity and location is expected. 

In the previous work, we developed an IMU sensors based 

motion capture system with velocity and location tracking 

capability [3, 4, 12, 13]. With calibrated skeleton model [14], 

contact phase detection, the 3D velocity, location and 

motions of the subject when the person walks, climbs 

up/down stairs etc. are tracked. The previous method is name 

as velocity based simultaneous localization and capture, 

V-SLAC. Eight IMUs were used in the early method.  

In many application scenarios, people only concern about 

the trajectory and the moving speed of the subject. For 

example, in personal localization and jogging, the location 

and the velocity are the key parameters. In this case, it would 

be good if the system can have as few sensors as possible. 

Therefore, we started the work in this paper to improve the 

method through using only three IMUs for tracking.  

In [3], the velocity of the root point is calculated based on 

the leg kinematics every time the right or the left foot contacts 

the ground. Therefore, wearable sensors on both legs are 

needed to track the kinematic parameters for the root velocity 

calculation. The velocity tracking during the non-contact 
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phase comes from the integration of the root acceleration over 

time. Because of the root acceleration errors in the sensor 

measurement, the integration update on the velocity drifts 

gradually over time. Therefore, the reference velocity from 

the lower limb kinematics should show up frequently for 

every step in order to prevent large drifting errors in the 

velocity.  

In this paper, the idea is that if the error of the root 

acceleration can be estimated and eliminated, the integrated 

root velocity result can be more reliable so that we can track 

only one leg’s kinematics for the velocity update. In this case, 

the number of sensors for the tracking system will reduce. 

Thus, in this proposed method, the acceleration error is 

estimated based on calculating the drifting rate of the velocity. 

Subsequently, the acceleration error is fine tuned to eliminate 

the drifting effect.  

The method is illustrated in Figure 1. (1). Initially, the 

sensors and the limb lengths are calibrated. The initial 

position and velocity of the person is registered. (2). As the 

subject start to move, the shoe pad detect the right contact 

phase (sensors are mounted on right legs). The location and 

the velocity of the person are updated, and the acceleration of 

the subject is also updated as well. (3). When the right contact 

is not available, the velocity and location of the person are 

updated based on the integrations of the refined acceleration. 

(4). The whole capture cycle repeats. This method is name as 

acceleration based simultaneous localization and capture, 

A-SLAC.  
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Figure 1: Working principle of A-SLAC 

The remaining parts of the paper are organized as follow: 

Section 2 introduces the velocity tracking and localization 

algorithm. Section 3 introduces the system devices. Section 4 

shows the experimental results. Finally, Section 5 concludes 

this paper.  

2 VELOCITY TRACKING 

In this system, the root point is located around the center of 

the pelvis [6] [13] and an IMU is placed there to measure the 

root acceleration. The velocity of the body can be estimated 

based on the limb kinematics and the contacting foot. As 

shown in Figure 2. This velocity solves as a reference to (1) 

correct the acceleration errors and (2) fuse with the 

integration update through a Kalman filter to achieve reliable 

velocity results. 

+
−

 

Figure 2: Velocity Tracking Algorithm 

2.1 Calibration 

Prior to the experiments, this system undergoes the 

calibration processes to identify several important kinematic 

parameters of the limbs. Firstly, the coordinate mappings 

between the local frames and the limb body frames is 

calibrated so that  sensor data collected in the local frames can 

be transformed into the limb body frames accurately [12].  

Secondly, the limb dimensions of the person need to be 

calibrated to define the kinematics of the lower limbs. In case 

of 3 IMU sensors, the dimensions of limbs are estimated 

using direct measurement on the limb lengths, the accuracy of 

this estimation in limb lengths is within two centimeters.  

2.2 Contact Phase Detection 

The purpose of contact phase detection is to detect the foot 

contact event so that the root velocity can then be estimated 

from the supporting foot. Four FSR force sensors are 

arranged in the shoe pad and serve as a contact switch to 

indicate the impact and stationary phase of the (right) foot. In 

case of contact, the reference velocity will be introduced to 

correct the velocity when the right foot contacts the floor. 

For exercises like walking, jogging, heel-to-toe walking 

and jumping etc., the right foot contact will regularly appear 

within every second. Therefore, the reference velocity will 

regularly contribute to correct the velocity updates.  

 

2.3 Velocity Tracking  

In this method, an IMU sensor is attached to the root point 

to measure the root acceleration [15]. Inertial sensors can 

measure the angular velocity of the body limbs. Therefore, 

based on the velocity kinematic model of human body, the 

velocity of the root point can be estimated. This reference 

velocity can be combined with the integration of the root 

acceleration through a Kalman filter to obtain accurate and 

drift-free velocity value. Subsequently, the location of the 

person can be tracked based on the time integration of this 

velocity update and kinematic calculations as discussed in 

V-SLAC. In this manner, the localization of the dynamic 

motions with non-contact phases such as jumping and 

jogging can also be realized [3,4].  

The pelvis IMU, which is attached to the root point, 

measures the root acceleration 
f

a  (with gravity included) in 

the sensor frame. Thus, the root acceleration 
ra  with respect 

to the global reference can be obtained by transforming the 
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accelerometer measurement from the body frame to the 

global frame, and eliminate the gravitational acceleration 

= −
r 0S f

a R a g ,                           (1) 

where 
0SR  denotes the measured orientation of the pelvis 

IMU. 

Then, the root velocity 
kv  can be updated based on 

integration over time, with dt  being the time interval: 

dt ⋅k k -1 rv = v + a .                           (2) 

Let 0SδR  denotes the orientation error in the measurement 

and let 
f

δa  denotes the white noise of the accelerometer 

measurement. Then, the error of the accelerations can be 

calculated by 

( )

( )

−

≈

r 0S 0S f f 0S f

0S 0S f 0S f

0S f

δa = δR R a + δa R a

δR - I R a + R δa

= δa + R δa

,          (3) 

where ˆˆ −0 0S f 0S f 0δa = δω R a = (R a )δω , where 
0δω  (3×1) 

denotes the corresponding angular vector of 
0SδR , 

ˆ ˆ≈0δω

0S 0δR = e I + δω . Then, we know the property of the 

acceleration noise which will be useful while combining the 

acceleration update with the velocity estimated from the 

velocity kinematics using a Kalman Filter. 

2.3.1 The Kalman Filter for Velocity Tracking 

In the velocity update based on the integration of 

acceleration with time as shown in Equation (2), the 

discrete-time controlled process to estimate the state is 

governed by the following difference equation,  

k v k -1 v r,k -1 k k -1
v = A v + B a + W w ,         (4) 

where 
kv  denotes the velocity, 

r,k -1a  denotes the root 

acceleration and 
kw denotes the white noise. Thus, according 

to Equations (2) and (3), we have: 

,
×v 3 3A = I tδ

×
= ⋅v 3 3B I , ˆ[ ( ), ]= −k 0S 0SW R f R . 

[ , ]=
T T T

0 fw δξ δa  

On the other hand, when a foot stationary phase is detected, 

the velocity of the root can be estimated from the kinematic 

chain of the supporting leg based on the velocity kinematics.  

As shown in Figure 4, when the foot is stationary, the ankle 

velocity becomes zero. The root velocity can be calculated 

based on the motion of the shank, the thigh and the pelvis. 

Thus the measured velocity 
mv  based on velocity kinematics 

of the root is 
2

0
( )

i =
= − ×∑m i i,b i,i + 1v R ω l .                (5) 

For the existence of uncertainties in limb length and sensor 

measurements, the reference velocity from this kinematic 

calculation is represented as follows 

[( ) ( )]′ − ⋅∑
2

m i i i,b i,b i,i+1 i,i+1i=0
v = δR R ω + δω × l + δl ,  (6) 

where
iδR  denotes the orientation errors which corresponds 

to an angular error 
iδθ  and 

ˆ ˆ≈iδθ

i iδR = e I + δθ . The angular 

rate white noise is denoted by 
i,b

δω , and 
i,i+ 1

δl  denotes the 

uncertainty of the limb dimensions.  

Referring to Equations (5) and (6), we have 

′
m m m kδv = v - v = Vυ .                              (7) 

where [ , , ],= 1 2 3V V V V   

[ , , , , , , , , ]=
T T T T T T T T T T

k 1 1 0,1 2 2 1,2 3 3 2,3υ δθ δω δl δθ δω δl δθ δω δl , 

and ˆ ˆ ˆ[( ( )), ( ) , ( ) ]= − − − ⋅ ⋅
i i i,b i,i+ 1 i i,i+ 1 i i i,b i

V R ω × l R l R R ω R   

2.3.2 SLAC with Acceleration Fine Tuning (A-SLAC) 

The working principle of the acceleration fine tuning is 

illustrated in Figure 2. The pelvis IMU is mounted at the root 

point to measure the root point acceleration and the pelvis 

motion. When the foot (of the leg with sensors) stands on the 

ground, the velocity of the root point can be accurately 

tracked based on V-SLAC as discussed in Section 2.3. On the 

other hand, integration of the root point acceleration provides 

another velocity value that has the drifting errors. Comparing 

these two velocities can provide the drifting rate of the 

integrated velocity, which is the acceleration error.  

v

Tc

Ic
tv

,t I
v

t t
v

δ−

t tδ− t  

Figure 3: Velocity drifting illustration 

As illustrated in Figure 3, the true velocity of the root point 

is represented as a blue curve 
T

c . The velocity obtained from 

integrating the measured acceleration is plotted as a red curve 

I
c . The acceleration error is the drifting rate of the integrated 

velocity during this short period tδ . 

,t t I
v v

a
t

δ
δ

−
=                              (8) 

It is reasonable to assume that during a very short period of 

time tδ , (for example with the sampling rate of 50Hz, within 

25 samples 0.5s), the acceleration error does not change 

much. Thus, the acceleration error can be estimated by 

determining the drifting rate of the velocity in this period of 

time.  

Referring to Equation (4), after fine tuning the root point 

acceleration, the discrete-time controlled process to estimate 

the velocity is governed by the following difference equation: 

( ) ( )t tδ δ⋅ ⋅

=

k k -1 rm r f

A k -1 A k -1 A k -1

v = v + a - δa + R δa

A v + B u + W w
,          (9) 

where ,
×

=A 3 3A I [ , ],tδ
× ×

= ⋅A 3 3 3 3B I I ,tδ= ⋅A rW R and 

[ , ]= −
T T T

k rm,k r,ku a δa . 

wQ  represents the covariance of the white noise of the 

accelerometer measurement 
f

δa .  
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Let the estimated root acceleration be 
r,m r r

a = δa + a . The 

true acceleration is denoted by
ra  and the acceleration error is 

rδa .  

Then according to Figure 3, we have:  

( ) ( )
t t

t t t
dt dt t

δ τ
δ

− −

= + = + −∫ ∫r,m r r r t t -τ
a δa a δa v v .    (10) 

Thus  

( )
t

t
dt

t

τ
δ

δ

−
− −

=
∫ r,m t t -τ

r

a v v
a .                 (11) 

In the discrete-time process, the acceleration error can be 

estimated in every n samples by 

1
( )

k

ni k n
dt

ndt

= + −
− −

=
∑ r,m,i k k +1-

r,k

a v v
δa .    (12) 

2.3.3 Velocity Fusion 

0,1 0,bl ω，
1,2 1,bl ω，

2R

1
R

0
R

2 3 2,bl ω，，
 

Figure 4: Postures before and after refinement 

According to Equation (7), we have the velocity 

measurement 
vkz  estimated from the limb kinematics as 

below: 

′= −vk m m k v k v kz = v v Vυ = H v +V υ ,         (13) 

where 
×v 3 3H = I , and = −vV V . 

In this model, the accelerometer and gyroscope 

measurement errors are white noises. The angular error and 

the skeleton dimension errors are approximated to be 

normally distributed with certain uncertainties in the skeleton 

dimension model. In this way, ( ) (0, )p N= ww Q ;

( ) (0, )p N= vυ R . Referring to the specification of the sensors 

[16, 17] and the kinematic uncertainty, the process noise 

covariance matrix of 
wQ  and 

vR are determined.  

Based on Equation (4) and (13), the velocity can be 

updated using the introduced Kalman Filter algorithm as 

shown in Figure 5 [18, 19]. 

ˆ ˆ-

k k -1 k-1
v = Av + Ba

- T T

k k-1 k w kP = AP A +W Q W

( )
- T - T T -1

k k k k v kK = P H HP H +V R V

ˆ ˆ ˆ( )
- -

k k k vk kv = v + K z - Hv

-

k k kP = I - K H P（ ）
1 1

ˆ ,
k k

x P
− −

Figure 5: Velocity tracking Kalman filter 

2.4 Velocity Based Localization (V-SLAC) 

In A-SLAC, during the contact phases, the location 

updated based on SLAC can be combined with the root 

velocity integration to update the subject’s spatial location. 

Thus, a Kalman filter can combine these two location 

estimations together to provide localization update. In the 

non-contact phases, the location is estimated by the 

integration of the velocity estimation over time. Figure 6 

shows the working flow of the localization. The dashed-line 

in Figure 6 means that these references are only available 

during the contact phases. 

 

Figure 6: Fusion algorithm for localization 

In A-SALC, the stride vector is used as the state variables. 

The final location is calculated based on summing up all the 

stride vectors from the beginning to the end. Unlike walking 

where the steps are clearly defined based on the gait phases, 

the stride vector 
ks  in A-SLAC is defined in such a way that 

it starts from the beginning of a foot support phase, and ends 
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at the beginning of a new foot support phase as illustrated in 

Figure 7. 

In the root location update based on the integration of the 

root velocity over time, the discrete-time controlled process 

to estimate the state variable ( ks ) is governed by the 

following difference equation 

dt ⋅
k s k -1 0,k -1 s,k -1

s = A s + v + w ,            (14) 

Or  

k s k -1 s 0,k -1 s,k -1s = A s + B v + w ,           (15) 

where = , =dt
× ×

⋅s 3 3 s 3 3A I B I , and 
s,k

w denotes the white 

process noise caused by the noise of the input velocity: 

( ) (0, )p N=s sw Q . With the known error covariance matrix 

kP  of velocity input as shown in section 2.3, the process 

noise covariance in Equation (14) is 2
τ=s,k kQ P . 

Contact

Start Current

ks
0p0,sp

 

Figure 7: Stride vector estimated from kinematics 

,k-1 s,ks P
)

−

k s k -1 s 0,k -1s = A s + B v
) )

- T

s,k s s,k -1 s s,kP = A P A + Q

1
( )

−
+

- T - T

s,k s,k s s s,k s s,kK = P H H P H R

( ),
×

=
- -

k k s,k s,k s k s 3 3s = s + K z - H s H I
) ) )

( ) -

s,k s,k s s,k
P = I - K H P

 

Figure 8: Localization Kalman filter in V-SLAC 

On the other hand, the stride vector measurement is 

available based on the lower limb kinematics during the foot 

support phases (see Figure 7): 

, ( ) ~ (0, )
k k

P Nϑ ϑ+s,k m,k s,kz = s R .                 (16) 

where 
k

ϑ  denotes the measurement noise and the noise 

covariance is 
s,k

R  which can be calculated based on the 

kinematic uncertainty. Then the stride vector can be 

combined based on Equation (15) and (16) using Kalman 

filter in Figure 8. 

After updating the step vector 
ks , the root location can be 

calculated as follows. 

= +
0 0,s k

p p s ,                                       (17) 

where 
0,s

p denotes the location of the root point at the starting 

moment of current step.  

During the non-contact phase, only the left half of the 

Kalman filter is applied to update the stride vector value and 

also the covariance matrix 
s,kP . In this manner, the spatial 

location of the human during both contact phases and 

non-contact phases can be captured continuously based on 

this method. 

Note that the velocity reference is only available for the leg 

with sensors during the foot contact. If the subject exercises 

the leg without sensors for a long time without letting the leg 

with sensors touching the ground, A-SLAC cannot work. 

This is one limitation of this method as compared with the 

SLAC and V-SLAC method.  

3 SYSTEM DEVICES 

As shown in Figure 9, the velocity and position tracking 

system consists of three inertia measurement units (IMU) 

sensors and a sensitive shoe pad. The commercial IMUs 

(APDM®, US) are used to measure the spatial orientation of 

the object and other kinematic quantities including angular 

velocity and accelerations. The insoles of the shoes are used 

to identify the foot contacts. Four force sensing resistors 

(FSR) with the controllers are fabricated in the insole shoe 

pad to detect the contact phases. Details can be found in [3]. 

All the sensors data are wirelessly sent to a mobile device. 

The transmission range of the sensors is 10m line of sight. 

Currently, we use a laptop to collect the data. It could be 

implemented with a smart phone in the future such that the 

users can directly view their real time speed and other 

kinematic parameters like distance of travel, average velocity 

etc.  

Receiver Laptop

BlueTooth

Wireless

Body IMUs

Insole Pressure Sensors  

Figure 9: System setup 

The system can be easily worn one the body with little 

constraint of the human body movements. The IMUs are 

tightly attached on the limbs to minimize the effect of the skin 

and muscle effects. For these advantages with these 

small-size potable IMUs, the applications like walking, 

jogging, heel-to-toe walking, and jumping etc. can be tracked 

easily within various applications.  
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TABLE I 

SENSOR CHARACTERISTICS 

Item Accelerometer Gyroscope Magnetometer 

Axes 3 axes 3 axes 3 axes 

Range ± 6g ± 2000 deg/s ± 6 Gauss 

Noise 0.0012 m/s²/√Hz 0.05 deg/s/√Hz 0.5 mGauss/√Hz 

 

The specifications of the IMU sensors are listed in Table I. 

To get drift-free orientation estimation, instead of collecting 

orientation result from the sensor, we used the raw data from 

the 3 axes accelerometer, gyroscope and the magnetometers 

to update the orientation. The details of the tracking algorithm 

are not discussed here in this paper. For details, we can refer 

to [20, 21]. The orientation error (along all directions) can be 

maintained at about 1 degree for slow motions, and 3 degree 

for motions like jumping and jogging. 

4 EXPERIMENTAL RESULTS 

To validate the A-SLAC method in velocity tracking and 

localization, a benchmark study with the Opti-Track Motion 

Capture System is conducted for jumping and jogging 

motions. To test the A-SLAC accuracy in outdoor, an 

A-SLAC experiment is conducted around the outside of the 

laboratory (53.6m×16m). It is understandable that this 

method is not affected by the moving pattern of different 

subjects, and the body sizes of subjects are considered in the 

model. Therefore, we only tested on one subject in this paper. 

4.1 Benchmark Study of A-SLAC 

 
Figure 10: System setup for benchmark study 

In benchmark study of A-SLAC, the devices are:  

(1). The Optical Motion Capture system has eight cameras. 

After the system calibration the marker position accuracy is 

about 0.3mm  

(2). Three IMU sensors and one pair of insole shoe pad. 

The experiment procedures are as follows. 

Step 1: The subject wears the three IMUs and attaches the 

reflective marker as reference. 

Step 2: The optical system is calibrated. 

Step 3: The wearable IMU sensors is calibrated.  

Step 4: The subject jumps forward for three steps and 

walks back to the initial location. 

Step 5: The subject repeats step 4 for five more times. 

For the limitation of space in the lab, the benchmark area is 

relatively small. 

4.1.1 Velocity result in A-SLAC 

The motions are captured by the wearable tracking system 

and the optical capture system simultaneously. The position 

of the marker attached at the root point serves as a reference 

of the human subject. The derivative of the position value 

with respect to time serves as a velocity reference to evaluate 

the velocity accuracy of A-SLAC. As the reference 

coordinates used by the two capture systems are different, a 

coordinate transformation between the two is needed to unify 

the data in order to compare in the same global frame [3]. In 

this benchmark study, the reference frame is chosen to be the 

reference frame of the optical system.  

Figure 11 shows part of the result of the velocity from 

A-SLAC and the reference velocity in all directions. The 

reference velocity is represented as a dashed-line whereas the 

velocity from A-SLAC method is represented as a solid line 

(X-axis is in blue color, Y-axis is in green color, Z-axis is in 

red color).  

 

Figure 11: Benchmark study of A-SLAC: root velocity 

The RMS errors of the velocity along all directions are 

calculated from the RMS of the difference between the results 

from the two systems along all the time samplings. The RMS 

error in the main walking direction (Y-axis direction) is 

0.051m/s, which is within 3 percent of the maximum velocity 

(1.5m/s). The RMS error for the vertical direction is 

0.029m/s. In the lateral direction (blue), the result is less 

accurate (0.13m/s).  

4.1.2 Localization result Using A-SLAC 

Figure 12 shows the corresponding localization results in 

all X-, Y-, Z- directions (the unit is meter). The reference root 

position is represented as the dashed-line whereas the 

velocity from A-SLAC is represented as a solid line (X-axis is 

in blue, Y-axis is in green, Z-axis is in red). In this experiment, 

the terrain is even ground. Therefore, the Z-coordinate of the 

supporting foot is set to be the same as the ground during the 
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localization. In this manner, the drifting error in the vertical 

direction is prevented.  

 

Figure 12: Benchmark study of A-SLAC: root position 

The RMS error shows the difference between the captured 

location trajectory and the reference trajectory for all the 

sample time. The RMS error in the main walking direction 

Y-axis is 3.8cm (each trial is 3.6m in length). The RMS error 

for the vertical direction is 3.2cm. In the sideway (Y) 

direction, the error is 5.7cm, about 2 percent of the trial 

length.  

4.2 Outdoor Experiment of A-SLAC 

 

Figure 13: Floor map for A-SLAC localization experiment 

In order to test the method and system for outdoor 

localization, the subject conducted an outdoor experiment 

around the room as shown in Figure 13. The experiment 

procedures are as follows. 

Step 1: The subject wears the 3 IMUs + the Shoe Pad, and 

calibrates the system at the starting location as shown in 

Figure 13. 

Step 2: The subject walks around the outside of a room 

(16m×53.6m) and goes back to the starting point.  

Step 3: The subject repeats Step 2 for three more times.  

The map of the room shown in Figure 13 provides a 

reference to evaluate the localization accuracy. The estimated 

traveled distance for one loop is about 170m. Figure 14 

illustrates the root point 3D velocity and the trajectory of a 

sample path in the experiment while walking around the 

room. In the velocity plot on the top, the blue line represents 

the velocity in X-axis direction. The green line represents the 

velocity in Y-axis direction. The red line represents the 

velocity in Z-axis direction. 
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Figure 14: Outdoor localization 

For the four trials conducted, the position error after 

returning to the starting point are ( x, y )= (1.59, 0.91) m, 

(1.08, 0.77) m, (1.18, 1.09) m, (0.95, 0.83) m. This is within 2 % 

of the total travelled distance. The absolute velocity error in 

this experiment is not available because there is no velocity 

reference in this experiment.  

4.3 Jogging 

In the jogging exercise, the velocity and the jogging 

distance are very important parameters to quantify the 

amount of exercise. A jogging experiment is conducted using 

this system. Firstly we measure a distance of 7.5 meter and 

mark the starting and ending position (this distance is short 

because the experiment is indoor since the power source is 

needed for the APDM sensor and receiver setup.). The 

jogging tracking experiment procedures are as follows.  

Step 1: The subject calibrates the system in an initial 

starting position. 

Step 2: The subject jogs for 7.5 meters at the speed of 2 to 3 

m/s to the ending position and then jog back to the starting 

location. 

Step 3: The subject repeat Step 2 for three more times in 

the experiment.  

The reference frame is defined as follows. The X-axis is in 

the north direction, the Z-axis is in the upward direction. The 

Y-axis is defined according to the right-hand rule. Figures 15 

and 16 show the tracked velocity and location results (X-axis 

is in blue, Y-axis is in green, Z-axis is in red). The dashed-line 

denotes the results from integration of the root acceleration. 

The solid line denotes the results from A-SLAC method. 

From Figure 15 and Figure 16, the velocity and location 

data from the integration (dashed-line) drifts quickly only 

several seconds after the motion starts. Through eliminating 

the acceleration errors in A-SLAC, the drifting issue of the 

velocity and the position is eliminated. The tracked running 

distance matches nicely with the reference distance (7.5 m). 

The location error for each cycle is about 10cm with the total 

distance of 15 meter.  
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Figure 15:  Jogging velocity 

 

Figure 16: Jogging localization 

This jogging distance is still too short for evaluating the 

system in daily jogging exercise. Further study on longer 

distance outdoor jogging will be tested in the future. 

 

 

Figure 17: Root Accelerometer measurement while jumping 

4.4 Analysis 

In dynamic motions like running and jumping with flying 

phases with no reference velocity, the velocity is also updated 

from the integration of the estimated root acceleration. It is 

discussed  that the measurement during dynamic motions is 

not as accurate as during static motions [1, 3]. However, it is 

noted that during the flight phases, the measured special force 

(f) by the accelerometer of the root IMU is near trivial (As 

shown in Figure 17, during the flight phase, f is very small 

with RMS less than 2	m/s� while jumping and jogging). This 

is because of the fact that the root point is near to the average 

CG point of the person whose acceleration is exactly g during 

flight phase. Thus, from Equation (3), we know that the 

acceleration bias (��) error is also near trivial. Thus, the 

velocity can be update by integrating the root acceleration 

during the short flight duration. The slight errors can be 

corrected soon once the reference velocity shows up. 

Therefore, this method is useful for both slow and fast 

motion. 

Based on the results of this paper and ref [3], the accuracies 

of V-SLAC and A-SLAC are listed in Table II. A-SLAC uses 

only 3 IMUS as compared with eight IMUS in V-SLAC 

method. Although the accuracy is slightly lower, it is more 

convenient and costs less. The accuracy is acceptable for 

daily exercises.  
TABLE II 

ACCURACY IN DIFFERENT MOTIONS 

Item Walking Jumping & Running 

Velocity 
V-SLAC <1% 1%-2% 

A-SLAC 2% 3% 

Position 
V-SLAC <1% 1%-2% 

A-SLAC 1%-2% 2% 

 

5 CONCLUSION 

This paper introduces a 3D velocity and position tracking 

method for human daily sports and practice applications 

using only 3 IMU sensors.  

Based on an acceleration fine tuning method and human 

kinematics, the accurate and drift-free velocity result is 

achieved. The location of the human is also tracked based on 

this velocity and the human kinematics.  

The system is able to track the velocity and the location of 

the person in both slow motions and dynamic motions with 

flight phases. Sports like: walking, jumping, jogging etc. can 

be accurately tracked based on this method. 

The velocity and localization accuracy is evaluated using 

the commercial optical capture system. Velocity RMS errors 

can be less than 0.1m/s for normal walking and jumping. The 

localization accuracy is within 2 percent of the total travelled 

distance.  

In this system, no external assistive absolute positioning 

device is required, and it is convenient to wear on the body. 

There are no volume limitation or occlusion problems. These 

characteristics makes this system superior in applications in 

our daily activities or sports which happens in large and open 

terrains.  

The accuracy of the proposed method can be improved 

based on more robust new IMU tracking algorithm and better 

MEMS sensor components. Therefore, applications in more 

highly dynamic sports tracking can be expected in the future.  
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