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Localization atomic force microscopy

George R. Heath1,4, Ekaterina Kots2, Janice L. Robertson3, Shifra Lansky1, George Khelashvili2, 

Harel Weinstein2 & Simon Scheuring1,2 ✉

Understanding structural dynamics of biomolecules at the single-molecule level is 
vital to advancing our knowledge of molecular mechanisms. Currently, there are  
few techniques that can capture dynamics at the sub-nanometre scale and in 
physiologically relevant conditions. Atomic force microscopy (AFM)1 has the 
advantage of analysing unlabelled single molecules in physiological bu�er and at 
ambient temperature and pressure, but its resolution limits the assessment of 
conformational details of biomolecules2. Here we present localization AFM (LAFM), a 
technique developed to overcome current resolution limitations. By applying 
localization image reconstruction algorithms3 to peak positions in high-speed AFM 
and conventional AFM data, we increase the resolution beyond the limits set by the tip 
radius, and resolve single amino acid residues on soft protein surfaces in native and 
dynamic conditions. LAFM enables the calculation of high-resolution maps from 
either images of many molecules or many images of a single molecule acquired over 
time, facilitating single-molecule structural analysis. LAFM is a post-acquisition 
image reconstruction method that can be applied to any biomolecular AFM dataset.

Observing the native structure and behaviour of biomolecules is chal-
lenging owing to their architectural complexity and dynamic nature. 
Additionally, biomolecules can adopt multiple interchanging confor-
mational states. Protein structure determination is progressing rapidly 
thanks to recent advances in cryo electron microscopy (cryo-EM) and 
X-ray crystallography. However, these structures represent static snap-
shots of averaged ensembles acquired from molecules incorporated 
into crystals and/or imaged at cryogenic temperature, whereas indi-
vidual molecules at physiological temperature are highly dynamic. In 
contrast to cryo-EM, which provides three-dimensional (3D) volume 
data, AFM is restricted to surface analysis. Nevertheless, AFM images 
molecules in a native-like environment: (i) at ambient temperature, (ii) 
at ambient pressure, (iii) in physiological buffer and (iv) in membranes 
(in the case of membrane proteins). Furthermore, the AFM measure-
ment mechanism and the openness of the fluid cell allow for (v) buffer 
exchanges, (vi), temperature changes and (vii) force changes during 
image acquisition2,4.

High-speed AFM (HS-AFM)5 has an additional advantage in that it 
yields real-time nanometre topographical information of single bio-
molecules at unprecedented spatiotemporal resolutions6–13, through 
the integration of short cantilevers14 and the development of faster 
scanners15 and feedback operation16. Although this is proving powerful 
in revealing conformational changes of proteins4,17, it is often not pos-
sible to resolve sub-molecular structural features on protein surfaces, 
primarily owing to the finite size of the AFM tip. For probes typically 
used to image biological samples, the resolution in the z direction 
(topography) is about 1 Å, whereas the lateral resolution in the x, y direc-
tions is about 1 nm, fundamentally limited by the probe geometry and 
the probe–sample interaction forces. The lateral resolution is further 
reduced when imaging softer samples, owing to an increased contact 
area between the tip and flexible protein structures18. Because of these 
limitations, sub-nanometre lateral resolution of biological samples 

has only been reported for two-dimensional (2D) crystals19,20, and was 
evidenced to be an overestimation due to periodic tip convolution 
effects21. In an attempt to circumvent such limitations, tip deconvolu-
tion algorithms were proposed22,23, which produced sharpened images 
but could introduce artefacts.

Localization microscopy methods, also known as super-resolution 
fluorescence microscopies, such as stochastic optical reconstruction 
microscopy (STORM)24 and photoactivated localization microscopy 
(PALM)3, have provided insights into the architecture and macromo-
lecular assemblies of cells. By isolating and pinpointing the source 
of excited fluorescence signals with high spatial precision in many 
images, high-lateral-resolution maps can be reconstructed, taking 
the ~400 nm resolution limit set by the diffraction limit of light down 
to about 20 nm (refs. 25,26).

Here, inspired by these fluorescence localization microscopy meth-
ods (Extended Data Fig. 1a–d), we develop LAFM, whereby localization 
algorithms are applied to the spatial fluctuations of topographic fea-
tures in AFM and HS-AFM images (Extended Data Fig. 1e–h). Compari-
sons with X-ray structures and molecular dynamics (MD) simulations 
show that this approach can reveal angstrom-range high-resolution 
details on protein surfaces.

Breaking the resolution limit

Under specific conditions; that is, with an atomically sharp tip and 
rapidly decaying tip–sample interaction forces, atomic resolution is 
attainable on flat incompressible materials such as mica by conven-
tional AFM imaging18. Achieving and maintaining such conditions 
on biological samples, which are not only soft and dynamic, but also 
immersed in liquid at room temperature, is not possible. Typically, the 
tip geometry from the apex up to the height of the objects being imaged 
is much larger than the separation distance between the features of 
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interest (Fig. 1a, b, surface). The finite tip radius results in convoluted 
lateral dimensions. The signal is further obstructed by noise in the z 
direction and stochastic fluctuations of flexible protein surface fea-
tures (Supplementary Video 1) in the x, y and z directions (Fig. 1b, AFM 
traces). Averaging several of these traces removes noise and results in a 
noise-free topography trace but the tip convolution remains a limiting 
factor (Fig. 1b, average AFM). By applying localization algorithms that 
detect the local maxima in the same series of traces (Fig. 1b, AFM traces, 
crosses), extracting the location-specific heights (Fig. 1b, LAFM height) 
and merging the individual detections in a peaking-probability map 
(Fig. 1b, LAFM probability), the surface structures are reconstructed 
with greater lateral resolution in an LAFM map (Fig. 1b, LAFM). Local 
peak-search algorithms to identify and accumulate local maxima in AFM 
data have previously been used to create probability density maps, from 
which energy landscapes were calculated to sample the conformational 
space of protein moieties27 and to derive stiffness maps7. Here we build 
on this concept and extend the approach, leveraging the methodologi-
cal knowledge generated by the development of super-resolution fluo-
rescence localization microscopies3,24. Localization-based fluorescence 
microscopy methods taught us that a resolution superior to the physical 
limitations can be achieved when the localization of isolated signals is 
determined with high spatial precision in many images, which are later 
merged in a compiled map3, which has higher lateral resolution than 
the initial data. Advantage is taken of the fact that the peak position of 
signals with wide intensity distributions can be determined with aston-
ishing precision. Here, we adapt this transformative rationale to AFM 
data (Extended Data Fig. 1e–h). First, the pixel- and/or AFM-restricted 
low-lateral-resolution data are oversampled to allow peak positions 
to be determined with increased spatial localization resolution. Peak 
positions are measured and localization data are then merged to give a 
reconstructed map with higher lateral resolution than the initial pixel 

sampling and/or technique allowed (Fig. 1b; compare LAFM with aver-
age AFM).

The LAFM map reconstruction is best illustrated in the simulation, 
where several features of varying height are contoured next to each 
other (Fig. 1b, bottom row). Simulations show that the LAFM algorithm 
detects features that are hidden to theoretical and average topographies 
(Fig. 1b, Extended Data Fig. 3). However, the detection probability per-
forms best on flat samples, and is nonlinear with the protrusion height if  
there are closely neighbouring higher features (Extended Data Fig. 2). 
Each pixel in these maps contains both height and probability informa-
tion (Fig. 1b, bottom right). Further simulations with varying tip radius 
and shape on simple (Extended Data Fig. 4, Supplementary Video 2) and 
more complex (Extended Data Fig. 5) model 3D surfaces showed that 
the LAFM algorithm outperformed averaging methods within 10–100 
images, showing the greatest improvement in resolution (about 1/5) 
for tip radii greater than the separation of structural features. These 
analyses corroborate that the quality of the LAFM map increases with 
increasing number of observations until it plateaus, at around 50 (for a 
sharp tip) and around 500 (for a blunt tip) particles are analysed.

On real AFM data, detection of local height maxima is performed 
after image expansion (Fig. 1c). Image expansion using bicubic inter-
polation (see Methods) does not increase the lateral resolution of the 
topography but allows the detection of local maxima with far greater 
spatial precision (Fig. 1c; compare panels (ii) and (v) with (iii) and (vi)). 
Merging the high-precision local maxima from several particles results 
in resolving structural features with separation distances shorter than 
the initial pixel sampling. To retain the topographic structural informa-
tion, the topography height value from each peak location is carried 
into the LAFM reconstruction, where height and peaking probability are 
encoded by a 2D false-colour scale in which the green/red ratio scales 
linearly with height h and probability P from white at P = 1 to black at 
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Fig. 1 | Principle of LAFM. a, Schematic of an AFM tip scanning a high 
topography with high-resolution features. Dashed line, theoretical contour. 
Coloured lines, three representative simulated topography traces. Open 
symbols and lines, vertical and lateral positions of detected local maxima.  
b, Simulations (n = 1,000) of the LAFM method on surfaces with one (top), two 
(middle) and many (bottom) height-modulated surface features. Surface: 
representation of idealized surface features (grey). AFM traces: nine 
representative simulated topography traces (coloured lines), with detected 
local maxima (crosses). Average AFM: average topography (n = 1,000). LAFM 
height: average height of detected local maxima. LAFM probability: peaking 

probability distribution of detected local maxima. LAFM: LAFM map merging 
real-space height with peaking probability. Insets: false-colour scales 
represent height, probability and height/probability. c, High-spatial-resolution 
topography local maxima detection. (i), (iv), Two representative sequential 
(t = 0 s, t = 1 s) raw data images of an A5 trimer. (ii), (v), Magnified views of raw 
data (4 Å per pixel). Blue squares, local maxima pixels. Local maxima labelled ‘1’, 
‘2’ and ‘3’ are detected at identical pixel locations in both images. (iii), (vi), Same 
image regions after image expansion (0.5 Å per pixel). Red squares, local 
maxima pixels.
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P = 0 (Extended Data Fig. 1i, j). Furthermore, each peaking detection, 
originating from an atomic tip–sample interaction, is assigned a 2D 
Gaussian density function decaying from 1 to 0 over 1.4 Å to approxi-
mate atomic solvent-accessible surface areas. A reconstructed LAFM 
map thus compiles, from many particles, the average topography 
height refined by the peaking probability (Fig. 1b, right), where each 
pixel carries the full information about topography and its likelihood 
of being detected at this location. In merging many particles, randomly 
distributed apparatus noise does not merge into consistent height/
probability data. Conversely, peaking detections that emerge from 
protein surface fluctuations will merge into strong localized signals 
in high-resolution reconstructed LAFM maps.

Single amino acids on protein surfaces

To illustrate the power of the LAFM approach, we first applied it to a 
former conventional AFM dataset20. After extraction and alignment 
of aquaporin-Z (AqpZ) tetrameric channels, the LAFM map revealed 
details comparable to the surface of the X-ray structure (Fig. 2a, Supple-
mentary Video 3), resolving single amino-acids on surface protruding 
loops (Fig. 2b). Line profile analysis and image comparison between the 
average AFM topography, previous peak probability mapping meth-
ods27 and LAFM probability maps of independent dataset half-maps 
show the ability of LAFM to detect previously hidden structural features 
(separated by 2.6 Å) well beyond the details resolved by previous averag-
ing and peak probability methods (11 Å) and the Nyquist frequency of 
the raw data (1/(6.6 Å)) (Extended Data Fig. 6a–i). Interestingly, among 
the AqpZ X-ray structures, E31 in the central a-loop is in different orien-
tations, and the LAFM map indicates that in physiological buffer the E31 
rotamer configuration, as found in PDB 2ABM, is preferred (Extended 
Data Fig. 6j). We also applied the LAFM approach to annexin-V (A5) 
trimers extracted from HS-AFM videos5,9,28 (Fig. 2d, Supplementary 
Video 4) and found that the LAFM map resolved fine structural details 
(whereas the average resolved only the protein envelope) along the 
backbone of the molecule (Fig. 2b).

To quantitatively assess the resolution of the LAFM maps, we applied 
the Fourier ring correlation (FRC) method, developed for electron 

microscopy29 and more recently adapted for super-resolution fluores-
cence microscopy26. The FRC method splits the datasets into halves and 
assesses their statistical resemblance as a function of the resolution 
range. This analysis resulted in a resolution of 4.0 Å for AqpZ, 5.1 Å 
for A5 and 4.5 Å for A5 P13W-G14W (Fig. 2c, f, Extended Data Fig. 7a, 
b, h). The FRC curve of AqpZ has, in addition to the signal power up to 
about 4.0 Å, a second information-containing range in the 2-Å regime. 
Thus, both the real-space (Extended Data Fig. 6h, i) and the statistical 
analysis of AqpZ LAFM half-maps report resolution at distances shorter 
than the Nyquist frequency of the raw data. Accordingly, LAFM maps 
of both AqpZ and A5 resolve details down to the amino acid size range 
(around 5 Å to 4 Å), and some signal power on the quasi-atomic scale 
(around 2 Å) in the case of AqpZ (Fig. 2b, c, Extended Data Fig. 6). We 
also capitalized on the serendipitous co-existence of two differently 
oriented A5 trimers in the A5 lattice. LAFM of the two trimer datasets, 
independent from each other and acquired through different relative 
AFM scan-directions, agree in great detail (Extended Data Fig. 7c–e). 
Finally, we cloned, expressed and purified a mutant A5, replacing two 
amino acids in the N terminus with tryptophans (P13W, G14W), and 
imaged the A5-mutant by HS-AFM (Extended Data Fig. 7f–h). LAFM 
maps of the A5 mutant show overall rearrangements of the N terminus 
with increased height and peaking probability at the mutation site.

Localization AFM of CLC antiporters

The AFM data of A5 and AqpZ were acquired on 2D lattices, however, a 
considerable advantage of LAFM is that the biomolecules do not need 
to be confined in a crystal for analysis, but can be sparsely populating 
a native-like environment. Furthermore, the buffer conditions inside 
the fluid cell can be changed to assess structural changes in response to 
environmental changes. Therefore, we studied CLC-ec1 (a Cl−/H+ anti-
porter from E. coli)30,31, which, to our knowledge, has not been observed 
by AFM, and whose transport mechanism remains unresolved. Muta-
tions in human CLC family homologues have been associated with 
diseases32.

HS-AFM of CLC-ec1 in membranes formed through proteo-liposome 
fusion showed a dispersed population of proteins protruding 1.2 nm 
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Fig. 2 | LAFM of AqpZ and A5. a–c, AqpZ; d–f, A5. a, d, Left, average AFM maps; 
middle, LAFM maps; and right, surface representations of X-ray structures.  
b, e, Detail views of LAFM maps and X-ray structures, with recognizable 
residues labelled. c, f, FRC analyses of LAFM half-maps. AqpZ data acquisition: 
AqpZ reconstituted in DMPC/POPC (1/1) membranes imaged by conventional 
AFM in contact mode; scan speed, 6.8 lines per second; scan area, 169 nm; 

image size, 512 pixels; pixel sampling, 3.3 Å per pixel20. A5 data acquisition: A5 
on a DOPC/DOPS (8/2) bilayer imaged by HS-AFM in amplitude modulation 
mode; scan speed, 1 frame per second; scan area, 80 nm; image size, 200 pixels; 
pixel sampling, 4.0 Å per pixel. LAFM map pixel sampling, 0.5 Å per pixel; AqpZ: 
n = 128, A5: n = 698, filtered to 5 Å. X-ray structures: AqpZ, PDB 2ABM, A5, PDB 
1HVD.
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from the membrane (Fig. 3a–c, Supplementary Video 5). CLC-ec1 was 
predominantly dimeric, with small populations of monomers and 
higher-order oligomers assembled from multiple dimers (Fig. 3b). 
The topography and lateral dimensions of the dimers (Fig. 3c) were 
consistent with the 5.5 nm × 9.6 nm dimensions of the extracellular face 
of CLC-ec1 (Extended Data Fig. 8a–e)33,34. Because the dimers were not 
confined, they exhibited translational and rotational freedom (Fig. 3c, 
Supplementary Video 5), which led us to establish a generalized LAFM 
workflow (Fig. 3d; see Methods): (1) a HS-AFM video is acquired and (2) 
low-pass-filtered, so that (3) particles can automatically be detected. 
Particles are thus (4) tracked throughout the HS-AFM observation and 
(5) selected and extracted in a gallery. (6) Bicubic image expansion 
allows for (7) precise particle centring and (8) rotational alignment 
to an arbitrary molecule reference. A second cycle of (9.1) lateral and 
(9.2) rotational alignment, this time with respect to an ensemble aver-
age, prepares particles for (10) application of the LAFM method (Sup-
plementary Video 6). As described in Fig. 1, (10.1) local maxima peaks 
are detected and (10.2) the height at these locations is extracted with 
a 1.4-Å-wide probability radius. Finally, all detections are merged in a 
height–probability LAFM map (Fig. 3e). The particle gallery (step 5) 
can be assembled from many molecule observations in one or sev-
eral frames. Alternatively, an LAFM map can be reconstructed from 
one molecule observed over time, which gives this method unique 
possibilities to access high-resolution information of individual  
molecules.

Conformational changes in CLC-ec1

The exchange pathway in the CLC-ec1 Cl−/H+-antiporter has been pro-
posed to have two separate entrances/exits for H+ and Cl− on the intra-
cellular face, converging to a central binding region from which both 
ions follow the same path to the extracellular side. However, there is 
debate about whether the gating mechanism requires only localized 
side-chain motions in the Cl− pathway based on X-ray structures, or if 
greater movements occur, as evidenced by nuclear magnetic resonance 
(NMR)35,36, computational37 and helix-crosslinking studies38. Findings 
by these non-crystallographic methods35–39 have led to suggestions 
that confinement of CLC in 3D lattices inhibit large conformational 
movements (Extended Data Table 1, Extended Data Fig. 8f), similar 
to other transporters40–43. Cl− transport by CLC-ec1 is maximal at 
acidic pH and stalled at neutral and basic pH (owing to pH-dependent 
activation and lack of H+ as substrate)44. A more recent structure of a 
protonation-mimicking triple mutant also indicates conformational 
rearrangements45. Therefore, we performed HS-AFM of transporters 
sparsely packed in lipid membranes and in physiological buffer. Sub-
sequent LAFM of the pH 7.6 (inactive state) and pH 4.5 (active state) 
observations should inform on whether large-scale conformational 
changes occur.

On the basis of the X-ray structure surface (Fig. 4a), we assigned the 
protruding residues expected to give signals in AFM: Asp73 in loop 
B-C, Glu235, Asp240 and Lys243 in the long loop I–J, Asn327 in loop 
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L–M, and Gln381 and His383 in loop N–O. To refine the interpretation 
of LAFM reconstructions, we used MD simulations to convert the 
static X-ray structure into a dynamic molecular system fluctuating 
at room temperature and at pH 7 (Supplementary Video 1). Similar 
to the LAFM method, we plotted a population density map of the dis-
tribution of the z-coordinate local maxima on the CLC-ec1 extracel-
lular face from MD trajectories, which reflected side-chain motions 
of membrane-protruding residues (Fig. 4b, Extended Data Fig. 8g, h). 
The MD trajectories show how structural fluctuations that are probed 
(in AFM) and merged (in LAFM) allow extraction of high-resolution 
information of amino acid residues on protein surfaces.

The CLC-ec1 LAFM reconstructions at pH 7.6 and pH 4.5 display the 
same set of structural features as the X-ray structure and the MD popula-
tion map, but in distinctly different configurations (Fig. 4c, d). Peaks 2, 
3 and 4, which form a triangle close to the dimer interface, pack more 
loosely at pH 4.5, and peak 3 moves towards a more lateral position 
on the dimer, while the most remarkable conformational change is a 
~6-Å movement of peak 1 towards the dimer interface at acidic pH. The 
extracellular Cl−/H+ ion pathway lies between Asp73, Asn327 and Glu235 
(Fig. 4c, asterisk); thus, under the premise that these displacements 
are related to movements in the underlying helices, these structural 
changes might alter accessibility to the extracellular gate. In summary, 
LAFM reports large pH-dependent conformational changes (Fig. 4e, 
Supplementary Video 7).

By recording 3D topographic images and videos, AFM and HS-AFM 
offer rich data, captured through many atomic interactions between 
tip and sample in liquid and at ambient conditions. By pinpointing 
peak interaction locations with high spatial precision in oversampled 
topographies, LAFM produces quasi-atomic resolution maps of pro-
tein surfaces from such data. We demonstrate the ability of LAFM to 
detect amino acid side chains on the surfaces of AqpZ, A5 and CLC-ec1, 
mutation-related differences in A5, and conformational changes in the 
angstrom range in CLC-ec1. Our LAFM maps, calculated from CLC-ec1 
imaged at physiological and acidic pH, identified substantial differ-
ences in the central region, where helices N and O are located, and at 
the peripheral end of helix B, which moves towards the dimer centre, 
giving the entire molecule a ~1.2-nm shortened appearance (Fig. 4d, e).

HS-AFM5 operates in amplitude modulation mode using short can-
tilevers that oscillate at resonance at around 660 kHz (oscillation 

cycle of around 1.5 µs). The tip touches the surface only during ~10% 
of an oscillation cycle4, thus about 150 ns. Even though this is a short 
period in the life of a protein, side-chain fluctuations occur in such time 
regimes, thus blurring the signal. Hence, LAFM will provide improved 
data when the next generation of faster HS-AFM systems arrive. Today, 
amplitude detectors oversample the cantilever5,46, but feedback opera-
tion and the z-piezo are limiting (about 100 kHz) factors and need 
improvement.

The LAFM method can be used in two different ways: LAFM maps can 
be reconstructed (i) from many molecules recorded in one or several 
frames or (ii) from a single molecule over time. The first approach allows 
us to resolve time- or environment-dependent conformational changes. 
About 50 particles are needed to reconstruct an LAFM map (Extended 
Data Fig. 5); therefore, the temporal resolution of LAFM is decreased to 
the time required to accumulate these 50 observations. Faster HS-AFM 
operation will of course improve time-resolved studies of single mol-
ecules. Alternatively, imaging densely packed proteins (with around 50 
particles in each frame8,47) would allow LAFM map reconstruction of 
the conformation of the proteins in each frame, giving high-resolution 
structural changes as a function of time. The second approach gives the 
method the unique capability to provide high-resolution information 
of single molecules or of non-ordered supramolecular assemblies. 
Altogether, we envisage that LAFM will become the standard method 
applied to AFM imaging, allowing the extraction of high-resolution 
information beyond the tip-radius resolution limit in the study of single 
biomolecules in native-like environments.
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Fig. 4 | Conformational changes in CLC-ec1 at neutral and acidic pH.  
a, Extracellular surface of CLC-ec1 at pH 9.5 (PDB 1OTS31); membrane- 
protruding residues in four major protrusions (1–4) are labelled.  
b, Logarithmic-scale population density map of the positions of atoms with  
the highest z coordinates on the extracellular surface of CLC-ec1 from 5.6-µs 
MD simulations at pH 7 (simulated from PDB 1OTS). Major protrusions (1–4) are 
labelled. Major contributions to each population peak: (1) D73 (97%), A72 
(2.7%); (2) N237 (91%), D240 (2.2%); (3) Q381 (42.3%), H383 (54.7%); (4) K243 

(52%), D240 (21.7%), S245 (3.4%). c, d, LAFM reconstructions of CLC-ec1 at pH 7.6 
(c) and pH 4.5 (d). The ion pathway entry is labelled with an asterisk. The four 
major protrusions (1–4) are highlighted for comparison with the X-ray 
structure and the MD population density map. e, Detection probability 
difference map between CLC-ec1 LAFM reconstructions at pH 7.6 (c) and pH 4.5 
(d). The difference map highlights the conformational changes of the four 
major protrusions, notably a ~6-Å movement of peak 1 towards the dimer axis.
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Methods

HS-AFM

HS-AFM measurements (annexin-V, CLC-ec1) were taken with an ampli-
tude modulation mode HS-AFM (RIBM), as previously described in  
ref. 28. In brief, we used short cantilevers (USC-F1.2-k0.15, NanoWorld) 
with a spring constant of 0.15 N m–1, a resonance frequency of ~0.66 MHz 
and a quality factor of ~1.5 in buffer.

AFM

AFM data (aquaporin-Z) were taken by contact-mode AFM using a 
Nanoscope-III AFM (Digital Instruments) equipped with a 120-µm scan-
ner ( J-scanner) and oxide-sharpened Si3N4 cantilevers with a length 
of 120 µm and spring constant of 0.1 N m−1 (Olympus Ltd), as detailed 
in ref. 20.

Cloning, expression and purification of annexin-V-P13W-G14W

The P13W-G14W site-directed mutagenesis was performed on 
an untagged human annexin pET28a expression vector using 
the Q5 site-directed mutagenesis kit (New England BioLabs) and 
the following mutagenic primers (mutated nucleotides are in 
bold): 5′-GACCGATTTTTGGTGGTTTGATGAACGTGCTGATGCC-3′ and 
5′-ACGGTACCACGCAGCACTTG-3′.

The mutated genes were sequenced to confirm that only the desired 
mutations were inserted into the plasmid. The annexin-V-P13W-G14W 
plasmid was then transformed into BL21 (DE3) pLysE chemically 
competent E. coli cells (Invitrogen), and grown overnight at 37 °C for 
small-scale culture. The overnight culture (50 ml) was inoculated into 
2 l fresh Luria–Bertani broth media at 37 °C, and once an optical density 
(A600) of 0.6–0.8 was achieved, the cells were induced by addition of 
0.4 mM isopropyl β-D-1-thiogalactopyranoside. After induction for 
4 h, the cells were separated from the culture medium by centrifu-
gation (5,000 g; 20 min) and resuspended in ice-cold calcium buffer 
(50 mM Tris pH 7.5, 10 mM CaCl2). The suspension was three times 
tip-sonicated on ice for 5 min (one pulse every 9 s), and centrifuged 
(23,000 g; 45 min). The supernatant was discarded, and the pellet 
was resuspended in ice-cold EGTA buffer (50 mM Tris pH 7.5, 60 mM 
EGTA). After gentle shaking for 30 min, the cell debris were removed 
by centrifugation (23,000 g; 45 min), and the supernatant contain-
ing the soluble Annexin-V-P13W-G14W was dialysed overnight against 
buffer A (20 mM Tris pH 7.5, 20 mM NaCl). The solution was applied to 
a HiTrap DEAE FF sepharose column (5 ml) ÄKTA Avant (GE Healthcare 
Life Sciences), and eluted with a linear gradient of 0–1 M NaCl. Fractions 
containing annexin-V-P13W-G14W (based on SDS–PAGE analysis) were 
concentrated to ~1 mg ml−1 using 10 kDa centrifugal filters (Amicon, 
Millipore), and subjected to a final purification step with a Superdex 
200 Increase 10/300 gel filtration column (equilibrated with 20 mM Tris 
pH 7.5, 100 mM NaCl buffer), reaching a final purity of >95% according 
to SDS–PAGE analysis.

CLC-ec1 expression and purification

Expression and purification of CLC-ec1 were carried out as previously 
described48. BL21-AI E. coli competent cells (Thermo Fisher Scientific) 
were transformed with the plasmid and then 2 l Terrific Broth supple-
mented with ampicillin was inoculated and grown at 37 °C. Protein 
expression was induced with anhydro-tetracycline at OD600 = 1.0. After 
3 h of induction, cells were harvested, then lysed by sonication in buffer 
supplemented with 5 mM reducing agent TCEP (Tris(2-carboxyethyl)
phosphine; Soltec Bioscience) and pH adjusted to 7.5. Protein extraction 
was carried out with 2% n-decyl-β-D-maltopyranoside (DM; Anatrace) 
for 2 h at room temperature. Cell debris was pelleted down, and the 
supernatant was run on a 2 ml column volume (CV) TALON cobalt affin-
ity resin (Clontech Laboratories) equilibrated in cobalt column wash 
buffer (CoWB)/TCEP: 100 mM NaCl, 20 mM Tris, 1 mM TCEP, pH 7.5 with 
NaOH, 5 mM DM. After binding, the column was washed with 15 CVs of 

CoWB/TCEP followed by a low-imidazole wash of CoWB/TCEP contain-
ing 20 mM imidazole (Sigma-Aldrich). CLC-ec1 was eluted with CoWB/
TCEP containing 400 mM imidazole, then concentrated in 30-kDa 
nominal molecular weight limit (NMWL) centrifugal filters (Amicon, 
EMD Millipore) to ~500 µl and injected on a Superdex 200 10/30 GL 
size exclusion column (GE Healthcare) equilibrated in size exclusion 
buffer (SEB): 150 mM NaCl, 20 mM MOPS pH7.5, 5 mM analytical-grade 
DM, attached to a medium-pressure chromatography system (NGC, 
Bio-Rad).

CLC-ec1 reconstitution and bilayer formation

Lipids were resuspended in 300 mM KCl, 20 mM citrate pH 4.5 with 
NaOH. CHAPS (35 mM) solubilized lipids were combined with protein 
at 100 µg CLC-ec1 per 1 mg of lipids, corresponding to a protein/lipid 
mole fraction of 7.6 × 10−4 (assuming a 50% incorporation yield)48. The 
protein–lipid–detergent mixture was dialysed in cassettes (NMWL 
10 kDa; ThermoFisher Scientific) at 4 °C against 4 l of buffer for 48 h 
with buffer changes every 8–12 h. After completion of dialysis, the 
proteo-liposomes were harvested from the cassettes, freeze/thawed 
and then extruded using an Avanti Polar Lipids Mini Extruder (Ala-
baster) through a 400-nm membrane. 1.5 µl of the SUV solution with 
a total lipid concentration of 0.1 mg ml−1 was deposited onto freshly 
cleaved mica to form supported lipid bilayers (SLBs) through vesicle 
fusion. The excess lipids, after SLB formation, were rinsed first with 
deionized water, followed by buffer. For experiments at pH 7.6 the 
sample was rinsed with 25 mM Tris, 300 mM KCl pH 7.6.

Image expansion

AFM topography images were expanded using bicubic interpolation 
(Catmull–Rom interpolation; implemented in imageJ, scripted using 
the method of Burger and Burge)49. The method considers values over 
a 16-pixel surface (4 × 4 pixels) to calculate the new intermediate sur-
face, p(x, y), created by expansion across the central 2 × 2 area. The 
interpolated values are approximated by 3rd-order polynomials in 
both the x and y directions:

∑ ∑p x y a x y( , ) = ,
i j

ij
i j

=0

3

=0
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where i and j are the order of the polynomial for x and y, respectively, 
and aij are 16 possible corresponding coefficients. The resulting poly-
nomial can be calculated using the values at the four corners of the 
central 2 × 2 grid (f(x, y)), the gradients at each of those positions in 
the x and y directions (fx(x, y), fy(x, y)) and the cross-derivatives (fxy(x, 
y)) requiring the 4 × 4 pixel grid, with the derivatives being calculated 
numerically. The interpolated surface, p(x, y), between four corner 
pixels can be described by:
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Using this method, all our datasets were resampled to 0.5 Å per pixel, 
as indicated in the figure captions. The reason for expanding to 0.5 Å 
per pixel is based on approximating the picked maxima features to the 
solvent-accessible surface of atoms with Gaussian profiling, as detailed 
in the Methods section ‘Detection probability’. By constructing the 
interpolant value from continuous piecewise polynomials, the result 
is always continuous. This works particularly well for interpolation of 
smooth areas, as in the case of tip-radius-limited imaging, and there-
fore considerably improves local maxima localization, but does not 
increase image resolution.

Detection of local maxima

A local maximum position (Fig. 1c) is defined if a given pixel is higher 
than all the surrounding eight pixels in a 3 × 3 pixel grid (Figs. 1c, 3d). 
This 3 × 3 pixel grid is ‘scanned’ pixel by pixel over the image, and thus all 
pixels (with the exception of those at the image borders) in each particle 
image are checked for maxima. To reduce the selection of maxima due 
to noise in certain datasets, a noise tolerance algorithm that selects 
maxima based on their prominence above surrounding maxima was 
implemented. The prominence of each maximum, pi, is calculated by 
the following steps: (i) search for the closest neighbouring maximum 
hn with higher height than the current maximum hi or closest image 
boundary; (ii) find the minimum height along the profile between hi 
and hn or between hi and the image boundary; and (iii) define the peak 
prominence as:

p h h h h= − ( → ).
i i i nmin

In our method, for a local maximum to be selected, its prominence 
must be greater than the noise tolerance (typically 1–2 Å). In our plugin, 
the noise tolerance is defined by the user from 0 to 100%, where the 
noise tolerance parameter corresponds to the range of height values 
from lowest to highest in the image. These maxima selection crite-
ria are based on the noise level of the AFM imaging and the typical 
root-mean-square fluctuations at protein surfaces (Extended Data 
Fig. 8g, h). An alternative method is to apply a Gaussian filter to the 
image to reduce noise and use 0% noise tolerance. The repulsive inter-
action forces between the farthest exposed atoms of the tip and the 
atoms in protein moieties that protrude most have very steep separa-
tion distance dependence. Very strong short-range interactions occur, 
including Pauli repulsion and van der Waals, hydration, steric and 
ionic forces, which depend on the surface properties of both the AFM 
tip and the protein50. As a result, the most exposed atoms dominate 
local topographic detection and high-resolution information can be 
obtained through merging many tip–sample atomic interactions at 
different localizations and time points or on different molecules of 
the same kind.

Detection probability

The peaking probability at a given localization in an LAFM map, is the 
cumulative probability that a pixel (in the expanded image) is detected 
within all particles analysed. It is the sum of: picking events (n), multi-
plied by the power of the 2D Gaussian, g(0 < P < 1) on each pixel, divided 
by the total number of particles merged (N).

P
n g

N
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The 2D Gaussian in all our datasets was set to 1.4 Å width to approxi-
mate the solvent-accessible surface of the underlaying atoms (the 
solvent-accessible surface area is defined as the surface traced out 
by the centre of a water sphere rolled over the protein atoms)51 while 
imparting a continuous probability density to each discreetly selected 
maximum. The application of larger Gaussian radii to approximate the 
atomic origin of the tip–sample interactions or pre-filtering the data 

before peaking leads to loss of resolution or loss of peaking detection 
of lower features, respectively (Extended Data Fig. 9). Because AFM 
can reproducibly image atoms on solid surfaces, for example, on mica, 
the piezo-elements that mediate the scanning of the AFM sample stage 
have sub-atomic x–y position precision.

Height extraction

The real-space topographic height is extracted at each detection to 
produce a set of N matrices containing height values for each value 
of n. This matrix is then false-coloured to allow distinction between 
height and probability information.

Merging height and detection probability

The false-coloured extracted height values in each image are then mul-
tiplied by the greyscale probability values in each image, and then 
averaged for the whole image set to reconstruct an LAFM map.

LAFM workflow

The HS-AFM videos were 1st-order flattened to compensate for sample 
stage tilt, drift-corrected and contrast-adjusted by laboratory-built 
image analysis software in ImageJ and MATLAB (Mathworks). The 
workflow used to calculate an LAFM map from molecular HS-AFM 
raw data is outlined in Fig. 3. The key steps in the preparation for the 
LAFM method are: extraction of molecular observations from images 
(Fig. 3d, steps 1–5), image expansion (Fig. 3d, step 6; see Methods sec-
tion ‘Image expansion’) and creation of a particle gallery with later-
ally and rotationally well aligned particles (Fig. 3d, steps 7–9). Several 
image processing packages used for electron microscopy (for example, 
ref. 52) allow particle extraction and alignment, and could be used for 
convenience. The particle gallery of pixel-expanded (0.5 Å per pixel) 
molecular observations is the entry for the LAFM algorithm, which 
comprises detection of local maxima, height extraction and merging of 
height and peaking probabilities (Fig. 3d, steps 10–11; Methods sections 
‘Detection of local maxima’, ‘Detection probability’, ‘Height extraction’ 
and ‘Merging height and detection probability’) in the final LAFM map. 
The LAFM method is available as code in the form of an appendix and 
as an ImageJ plugin (Supplementary Information).

LAFM simulations

2D and 3D LAFM simulations were performed using MATLAB. In 2D 
simulations (x, z), various model surfaces were created with different 
features depending on the simulation (Fig. 1b; simulation parameters: 
tip radius, 20 pixels; feature height, 3 pixels; feature width and sepa-
ration, 2 pixels; scanning noise, 0.05 (standard deviation, σ), feature 
fluctuation, 0.3 (σ); the Gaussian surface topography (bottom row) has 
σ = 20; varying parameters are used in Extended Data Figs. 2, 3, given 
in the figure captions). Each topographic feature was given a height 
higher than the surrounding baseline surface (set at zero). Normally 
distributed random numbers with set standard deviation were then gen-
erated and added to each x position containing a topographic feature, 
increasing or decreasing the height. These random fluctuations were 
added independently of neighbouring x positions. A semicircular tip 
of defined radius was calculated numerically and then scanned across 
the simulated 2D surface to create a tip-convoluted topography. To 
simulate the AFM instrument noise, normally distributed random noise 
was then added in the z direction to the tip-convoluted topography at all 
positions. Many randomly generated topographies were then analysed 
using the LAFM algorithm to produce peaking probability and peaking 
height traces. 3D simulations were run using a similar methodology, 
however a hemispherical tip was scanned across 3D model surfaces 
(Extended Data Figs. 4, 5, Supplementary Video 2).

Simulation data are compared to a theoretical resolution limit 
(Extended Data Fig. 3) on the basis of geometric considerations, assum-
ing a rigid pair of spikes separated by a distance (d) and a height differ-
ence (∆h), contacted by a tip radius (R) without noise or fluctuations. 



The resolution limit is defined as being resolved if the probe is able to 
reach a minimum (∆z) below the height of the smallest spike53:

d R Δz Δz Δh= 2 ( + + ).

The absolute resolution limit under these considerations occurs 
when maxima can be detected at both spikes when ∆z = 0.

MD simulations of CLC

Construct for MD simulations. The molecular model of the CLC-ec1 
dimer used in all MD simulations described in this work was based on 
the X-ray structure PDB 1OTS31. The protonation states of the titratable 
residues at pH 7 were determined from constant-pH calculations with 
the neMD/MC (non-equilibrium MD/Monte Carlo) approach54. The spa-
tial arrangement of the CLC-ec1 dimer in the bilayer was optimized using 
the Orientations of Proteins in Membranes (OPM) database55 and input 
to the Membrane Builder module on the CHARMM-GUI web server56 
to assemble the protein–membrane system. The CLC-ec1 dimer was 
embedded in a 629-lipid membrane bilayer containing a ~70:30 mixture 
of POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) and 
POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)), 
solvated in 150 mM KCl explicit water to achieve electroneutrality.

MD simulation procedures. The assembled molecular system was sub-
jected to an initial equilibration phase using NAMD57 (version 2.13) fol-
lowing two protocols. The first used the standard six-step equilibration 
protocol provided by CHARMM-GUI. The other used a laboratory-built 
multi-step equilibration, in which the backbone of the protein was first 
fixed58. Backbone constraints were gradually released in three 300-ps 
steps of force constant change (1 to 0.5 and to 0.1 kcal per mol−1 Å−2). 
The final structures from the equilibration phases were subjected to 
short (46 ns and 48 ns) unbiased MD with NAMD (2-fs time steps, vdw-
ForceSwitching option, and PME for electrostatic interactions)59. The 
runs were in the NPT ensemble under semi-isotropic pressure coupling 
at 24 °C. The Nose–Hoover–Langevin piston algorithm60 was used to 
control the target P = 1 atm pressure with LangevinPistonPeriod = 50 fs 
and LangevinPistonDecay = 25 fs. Van der Waals interactions had a cut-
off distance of 12 Å. The first phase of production runs (Production 1) 
was initiated by all-atom velocity resetting and continued with simula-
tions of the system in 50 independent replicates of ~150 ns each (that 
is, 100 replicates overall for a cumulative 15 µs) using ACEMD61. At the 
conclusion of Production 1, the trajectories were analysed to assess the 
stability of the bound Cl− ions, and replicates with the most stably bound 
Cl− ions were identified. The final snapshots from 48 replicates were 
selected as starting points for the next phase, Production 2, in which 
the systems were simulated using NAMD with the parameters described 
above for ~120 ns (cumulative 5.76 µs). Run parameters: timestep 4 fs, 
vdwforceswitching on, switching on, switchdist 7.5, cutoff 9, fullelect-
frequency 2, langevindamping 0.1, pme on, and pmegridspacing 1.0. 
All the simulations used the latest CHARMM36 force-field parameters 
for proteins, lipids and ions.

Population density maps from the MD trajectories. To analyse the 
height of protein atoms with respect to the membrane plane during 
the MD simulations, the symmetry axis of the CLC-ec1 dimer was set 
perpendicular to the X–Y plane. In analogy to the LAFM method, the 
highest z-coordinate values on the CLC extracellular surface were se-
lected for each frame to plot the position distribution map. Maps were 
constructed by taking the 8, 10 and 16 highest points in each frame, 
leading to the conclusion that detection of more than 8 points resulted 
in sampling the neighbouring atoms of residues already included in the 
8-point set. Thus, the distribution maps were obtained by pooling the 8 
highest-z-coordinate peaks from each frame. Analysis performed sepa-
rately on Production 1 and Production 2 trajectories did not show nota-
ble differences, and in the main text we show the results from the analysis 

of 5.6 µs with 20-ps time strides of Production 2 trajectories. Because 
both protomers of CLC-ec1 were considered identical, we symmetrized 
the data by aligning trajectories of each protomer onto another one.

MD simulation of annexin-V P13W-G14W

MD simulations of the mutant annexin-V-P13W-G14W were conducted 
with Gromacs2019.162, using the Amber03 force field63. The initial 
molecular model of annexin-V-P13W-G14W was generated using the 
X-ray structure PDB 1HVD, and the double mutation introduced using 
the program Coot64. This model was then solvated with ~40,000 water 
molecules in accordance with the Tip3P water model65, and neutral-
ized with Na+ and Cl− ions to a concentration of 150 mM. The system 
was placed in a dodecahedron box, with a minimal distance of 1.0 nm 
between protein and box wall. Van der Waals interactions were imple-
mented with a cutoff at 1.0 nm, and long-range electrostatic effects 
were treated with the particle mesh Ewald method. The protein–solvent 
model was then put through four rounds of geometry optimization and 
energy minimization, followed by a 50-ps protein position-restrained 
equilibration and an additional 50 ps of unrestrained equilibration. 
The system was then heated to 300 K using a velocity-rescaling ther-
mostat66 (50 ps), and equilibrated to a constant pressure of 1 bar using 
a Parrinello–Rahman barostat (50 ps). Following these equilibration 
procedures, a time trajectory of 100 ns was simulated at constant tem-
perature and pressure, using time steps of 2 fs and the same thermostat 
and barostat. The data were then symmetrized along the threefold axis 
by aligning trajectories of each protomer one onto the other. To build 
an annexin-V-P13W-G14W mutant structural model that represents the 
rotamer conformations of the mutated Trp residues, clustering analysis 
of the simulation trajectories was performed with Gromacs (g_cluster, 
gromos algorithm)62, with a root-mean-square deviation cut-off of 0.2 
with respect to the mutated Trp residues in positions 13–14. Out of the 
10 resulting clusters, the most representative structure was extracted 
from the centre of the most populated cluster (containing ~50% of total 
protein structures).

Data availability

The datasets generated and/or analysed during the current study are 
available from the corresponding author on reasonable request.

Code availability

The custom-written script implemented in ImageJ to create LAFM maps 
from a stack of aligned and expanded images is available in Supplemen-
tary Information. MATLAB codes used in 2D and 3D LAFM simulations 
are also available in Supplementary Information.
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Extended Data Fig. 1 | Localization principles in PALM and LAFM.  
a, A diffraction-limited image/profile of two fluorescent molecules located at a 
separation distance smaller than the diffraction limit. b–d, Spatially resolved 
positions of the fluorophores after application of optical localization methods 
such as PALM or STORM. The position of each fluorophore can be spatially 
localized with high precision if the emitted signal can be isolated from 
neighbouring fluorophores, permitted by stochastic activation of the right (c) 
or left (d) fluorophore. e, A tip-convoluted AFM image of two structural 
features located at a separation distance smaller than the sharpness of the AFM 
tip. f–h, Spatially resolved positions of structural features after application of 
LAFM. Stochastic height fluctuations allow the position of each feature to be 
localized by the protruding height signal of the right (g) or left (h) feature 
peaking over the neighbouring features. In a–h, top panels show 2D intensity/
topography images and bottom panels show intensity/height profiles across 

the central x line of the top panels. i, j, LAFM false-colour scale used to encode 
topography and localization peaking probability information. i, The LAFM map 
is encoded by a false-colour scale in which red (R), green (G) and blue (B) values 
follow the relations: R(h) = −h2/255 + 2h − 2; G(h) = Rh/255; B(h) = h{sin[0.036(h +  
127)] + 1}/2, where h is the topography scale and RGB values range between  
0 and 255 (minimum to maximum). The ratio of green to red (G/R) increases 
linearly with height (dashed line), whereas the blue value increases and 
oscillates to produce a visually informative false-colour scale. j, To incorporate 
the probability, each picked location is given a Gaussian probability density 
function that peaks at value 1. To generate the final LAFM map, the peaks of all 
molecules are merged, and thus an average topography height and related 
peaking probability (grey scale; bottom) at any location is calculated, resulting 
in a 2D false-colour table in which each pixel carries the full information about 
topography and the likeliness of a topography to be detected at this location.
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Extended Data Fig. 2 | Simulations of varying cleft height and cleft width, 

and detection of features in varying topographic superstructures by the 

LAFM algorithm. a, Example average surface topography (top) and peaking 
probability (bottom) for 24, 8 and 2 pixels cleft width and cleft heights of 0, 90 
and 100%. At a separation of 2 pixels (cleft width), averaging is unable to detect 
any topography change as the cleft height is changed, because the tip never 
probes into the cleft. In contrast, the LAFM method reports lower peaking 
probabilities in this region separating the two features. The detection 
probability in the cleft areas depends on the tip radius, feature separation and 
height fluctuation, and is therefore not linear. The height detection in the cleft 
areas is the same as the topography (see Fig. 1b). b, Surface plot showing the 
peaking probability in the cleft region relative to the pillar positions for varying 
cleft heights and widths. In the simulations the tip radius is 20 pixels and each 

surface feature pixel has feature fluctuation standard deviation of 0.3, and 
fluctuations are independent of neighbouring pixels. c, Peak detection of 
surface features on Gaussian curved surfaces. Features are 2 pixels wide 
interspersed by 2 pixels multiplied by Gaussian functions with σ = 10, 20, 40 and 
a flat surface, respectively, scanned by a tip with a radius of 20 pixels 
(noise, 0.3). d, e, Surface plots of the height of the model surface (d) and the 
relative peaking probability compared to the probability at the central peak (e) 
for each Gaussian surface topography up to a distance of 8 peaks from the 
central peak. The probability of peak detection is affected by neighbouring 
peaks and tip radius, leading to a correct representation of the height, but a 
nonlinear relation between surface height and peaking probability. There is 
little to no lateral error of localization position detection on peaks of different 
local height.



Extended Data Fig. 3 | Simulations of feature detection with varying 

topographic height by the LAFM algorithm. a, Schematic of two sharp features 
in which the feature separation, d, and height difference, ∆h, are varied by 
changing the position/height of the secondary feature. Feature fluctuations are 
then simulated by adding or subtracting a randomly generated height (normally 
distributed), f, with a set standard deviation, fsd, before  being scanned by a model 
AFM tip of radius R. b, Example simulations of topographies with d = 4, ∆h = 1 (top) 
and d = 10, ∆h = 3 (bottom), scanned by a tip with a radius R = 20, for varying 
amounts of feature fluctuation from left to right ( fsd = 0, 0.1, 0.3 and 0.6). Coloured 
lines are three representative simulated topography traces and thick grey lines 
show the average scanned topography (n = 2,000). Panels above each topography 
plot give the LAFM peaking probability at each position in the topography. c, 
Matrix of simulations plotted as an image in which each pixel represents the LAFM 
peaking probability of the secondary feature for a different height difference–

separation distance combination. The black pixels indicate zero probability and 
therefore no peak detection. Also plotted are the theoretical resolution limits 
according to geometrical arguments allowing the apex of the tip to contact the 
feature (see Methods section ‘LAFM simulations’) and the average AFM maximum 
resolution, according to whether a local maximum can be detected for the 
secondary feature in the average topography. d, Lateral position of peaking 
probability for the different height difference–separation distance combinations. 
Each coloured line represents a different lateral separation and error bars show the 
peak width (±s.d.). e, Matrix of simulations plotted as an image in which each pixel 
represents the difference between the detected LAFM average height and the 
model height for each height difference–separation distance combination. In c–e, 
each row from top to bottom represents a different feature fluctuation standard 
deviation of 0, 0.1, 0.3 and 0.6. For each fluctuation level, 286 ∆h–d combinations 
were each simulated 2,000 times.
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Extended Data Fig. 4 | Simulations to assess the ability to resolve two 

spatial features in LAFM maps. a–e, A tip with varying tip radius r (here 100 
pixels) is scanned over two different simulation surfaces featuring topographic 
lines (b) or topographic points (c). These lines and points have a size of 1 pixel in 
the x, y and z directions, and are interspaced by 1, 2, 3, 4 and 5 pixels. This 
procedure, including sample fluctuations and contouring noise, results in 
individual simulated topography images for the line topography (d) and the 

point topography (e) that are either averaged or analysed using the LAFM 
algorithm (average AFM and LAFM maps result from merging 2,000 simulated 
topographies). f, Surface plot of the simulated LAFM map resolution 
determined by FRC as a function of the number of merged images and 
simulation tip radius, showing that when ~100 particles are analysed, features 
of size ~1/40 (for a blunt tip) to ~1/5 (for a sharp tip) of the tip radius can be 
resolved.



Extended Data Fig. 5 | Influence of tip radius and number of merged 

particles for the calculation of LAFM maps. First column: simulation 
experiments in which the surface topography (S) with a ring diameter of 35 
pixels (top) is probed by five different tips, four spherical tips with increasing 
radius (1–4, R = 10, 100, 300, 600) and an irregular tip with a ‘double-tip’ 
protrusion (R = 40, peak to peak = 12 pixels). Second column: simulated 
individual raw data images (comprising random noise) of the topography (S) 
contoured by the various tips. Third column: average image of 500 simulated 
images. Fourth column: LAFM map derived from the same 500 simulated 

images. The numbers in the top right corner of each image are the normalized 
cross-correlation values (CCV [0,1]) between the image and the surface model. 
The graphs show the dependence of the CCV between average or LAFM maps 
with the topography as a function of the number of merged particles. In the 
case of the sharpest tip (top row), the LAFM map CCV plateaus after merging 
~50 molecules. Right: analysis of localization map image quality and CCV for 
the largest tip (4) when merging up to 10,000 particles. In the case of the 
bluntest tip, the LAFM map CCV plateaus after merging ~500 particles.
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Extended Data Fig. 6 | Resolution comparison between averaging, peak 

probability and LAFM methods applied to AFM images of AqpZ.  
a, b, Average AFM images at the original pixel sampling of 3.3 Å per pixel (a) and 
after bicubic interpolation to 0.5 Å per pixel (b). c, d, Peak probability maps20 
calculated at the original pixel sampling of 3.3 Å per pixel (c) and after bicubic 
interpolation to 0.5 Å per pixel (d) (n = 128 for average height and probability 
maps). e–g, LAFM probability maps calculated at 0.5 Å per pixel with 1.4-Å 
Gaussian peaking probability distribution using 128 AqpZ particles with 
highest correlation to the average map (e) or using two randomly generated 
independent 128-particle sets from a set of 256 to create two independent 
half-maps (f, g). h, i, Line profiles along arrow 1 (h) and arrow 2 (i) in b and g, 
measuring height (for average AFM images) and probability across structural 

features in the average AFM, probability and LAFM probability maps. The 
features in the two line profiles are consistently resolved near and below the 
highest theoretical resolution based on the discrete sampling of a single image 
(raw data Nyquist frequency is 1/(6.6 Å)). j, Left: alignment of the nine available 
AqpZ X-ray structures. The structures can be grouped with respect to the 
side-chain orientation of E31 in the a-loop. Middle: surface representation 
overlay of 1RC2 and 2ABM, highlighting how the different E31 rotamers alter 
the surface structure. Right: representative structures (top) and surface 
representations (bottom) of 1RC2 and 2ABM. The 2ABM structure features an 
E31 conformation that fits closely the reconstructed LAFM map (g and  
Fig. 2a, b), suggesting that in the membrane, physiological buffer and room- 
temperature E31 is in a conformation similar to the 2ABM structure.



Extended Data Fig. 7 | LAFM map resolution and quality assessment.  
a, b, AFM image frames of AqpZ (a) and A5 (b) are alternately extracted into two 
separate image sets (Set A and Set B). The LAFM algorithm is then applied to 
each image set to produce two independent LAFM half-maps of AqpZ (left) and 
A5 (right). FRC analysis of the LAFM half-maps is then used for quantification of 
the power as a function of the spatial resolution in the AqpZ dataset (left) and 
A5 (right). Dashed and dotted lines show the 1/2-bit and 3σ criteria, respectively. 
c, Image from an HS-AFM video of A5 in a p6 lattice (centre), showing that the  
A5 lattice contains trimers of two fixed orientations labelled U and D. The two 
A5 trimer types U and D are scanned with different relative orientation with 
respect to the HS-AFM fast-scan axis. Extracted images of the trimers in each of 
the two orientations are shown on either side for set U (up; left) and set D (down; 
right). d, Average AFM and LAFM maps filtered to 5 Å of A5 trimers in the U 
(n = 700) and D (n = 697) orientations. e, Structural comparison between LAFM 

maps obtained from the independent differently orientated A5 and the 
probability difference map (image U has been rotated 180° to allow direct 
comparison). f, Analysis of A5 P13W-G14W mutant (data acquisition: A5 
P13W-G14W on a DOPC/DOPS (1/1) bilayer imaged by HS-AFM in amplitude 
modulation mode; scan speed, 1 frame per second; scan area, 120 nm; image 
size, 300 pixels; pixel sampling, 4.0 Å per pixel). Average AFM map (left), LAFM 
map (middle; pixel sampling, 0.5 Å per pixel; number of particles n = 300, 
filtered to 4.5 Å) and surface representations of an A5 P13W-G14W structural 
model. g, Detail views of the LAFM maps (top) and structures (bottom; 
MD-refined structural model of A5 P13W-G14W and X-ray structure of A5). The 
mutations appear to induce conformational rearrangements in the N-terminal 
region (residues 1 to 15), with an increased height and peaking probability at 
positions 13–14 in the LAFM map. h, FRC analysis of the A5 P13W-G14W LAFM 
map.
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Extended Data Fig. 8 | Extracellular sidedness assignment of CLC-ec1.  
a, b, HS-AFM video frames of CLC-ec1 in a POPE:POPG (ratio of 2:1 w-w) bilayer: 
molecules protruding just a little and S-shaped molecules protruding farther 
from the membrane were detected. c, Section analysis of the two molecules 
shown in b: one molecular species protrudes only ~4 Å from the bilayer, 
whereas the S-shaped representation of the CLC-ec1 protrudes ~11 Å from the 
membrane surface. d, e, Surface representations of the intracellular (d) and 
extracellular (e) faces of the X-ray structure (PDB 1OTS). Based on the structural 
comparison, we assigned the S-shaped CLC-ec1 HS-AFM topography to the 
extracellular face. Only the S-shaped extracellular-face molecules were 
integrated into the LAFM analysis. f, Alignment of CLC-ec1 X-ray structures 
(PDB: 1OTS, 2FEE, 2H2P, 3DET, 2HTK, 4KKB) exhibiting essentially identical 
conformations, leading to the suggestion that the transport mechanism 
implicates only minor side-chain motion. NMR, computational and 

biochemical studies have suggested larger-scale movements of helices N39, O38 
and B37 in transport. Protruding residues detectable by LAFM are shown in 
sticks and are labelled. g, Root-mean-square fluctuations (RMSF) of the 
backbone (left) and the side-chain (right) atoms of membrane-protruding 
extracellular CLC-ec1 residues from the analysis of MD trajectories at pH 7. The 
coloured blocks demarcate the groups of residues attributed to the four major 
LAFM and MD population map peaks, and the key residues are labelled. h, Key 
residues contributing to the peak observations in LAFM maps in the PDB 1OTS 
structure (middle and top right panels). The black shadowed plane illustrates 
the average position of the lipid phosphate atoms throughout the MD 
trajectories and thus represents the membrane level. Surrounding images 
(labelled 1 to 4) show representative snapshots from MD simulations 
highlighting re-orientations/fluctuations of the side chains of the residues 
contributing to the LAFM-detected peaks.



Extended Data Fig. 9 | Analysis of the influence of the 2D Gaussian radius to 

the peaking events and data pre-filtering on LAFM map reconstruction. 
Horizontal panels show reconstructed AqpZ LAFM maps of peaking detections 
with varying 2D Gaussian radii of 0.7 Å, 1.4 Å, 2.8 Å, 4.2 Å and 5.6 Å (without any 
pre-processing Gaussian filtering). The vertical panels show reconstructed 
AqpZ LAFM maps of images pre-processed with varying Gaussian filters of 0 Å, 
1 Å, 2 Å, 3 Å and 4 Å while varying the peaking detection 2D Gaussian radius. The 
comparison shows that applying a filter to the data before applying the LAFM 

method results in a loss of information, particularly from features that are 
smaller or of lower height. Whereas increasing the 2D Gaussian radius applied 
to each localization during the LAFM method results in a loss of lateral 
resolution in the reconstructed LAFM map. Highlighted in red is our standard 
method for constructing LAFM maps, using no pre-filtering and a peaking 
detection 2D Gaussian of 1.4 Å, approximating the solvent-accessible surface of 
atoms.



Article

Extended Data Table 1 | Set of available PDB structures of 
CLC-ec1 at various conditions

The root-mean-square deviation (RMSD) values are calculated for backbone atoms with 

respect to the PDB 1OTS structure as reference. All CLC X-ray structures exhibited essentially 

identical conformations. 

*A low-pH structure of CLC from Salmonella typhimurium. 

†Structure of monomer.
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