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Abstract

An indoor localization method using multiple input, multiple output orthogonal frequency division multiplexing

(MIMO-OFDM) channel state information (CSI) is proposed as a method that can be implemented on wireless local

area networks of a current standard without affecting their protocol structures and that does not require a training

process for adaptation to indoor environments. In the proposed method, the CSI obtained by the MIMO-OFDM

receivers of all access points upon successful reception of a data packet from a mobile terminal (MT) is processed in

order to determine the location of the MT. The proposed method analyzes the multipath effect that appears in the CSI

as multiple complex sinusoids by using the matrix pencil method in order to extract only terms that are contributed

by direct paths from the MT to the access points. Localization is achieved using the direct-path terms on the basis of

the maximum likelihood principle.

Keywords: Indoor localization, MIMO-OFDM, Channel state information, Multipath propagation, Matrix pencil
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1 Introduction
Indoor localization is a hot research topic in the field of

wireless communication owing to its capability to provide

a wide range of location-based services for increasingly

ubiquitous smart mobile devices. For indoor environ-

ments, wireless local area network (WLAN) technology

based on the IEEE 802.11 standards is widely employed

around the world for providing data connections to

mobile devices. Therefore, this paper focuses on indoor

localizationmethods based onWLAN technology. Specif-

ically, the purpose of this paper is to propose a localization

method that can be implemented using the infrastruc-

ture of a WLAN without affecting its protocol structure.

The proposed method will simultaneously exploit and be

constrained by WLAN characteristics whereby WLANs

are trending toward asynchronous networks of multi-

ple input, multiple output orthogonal frequency division

multiplexing (MIMO-OFDM) access points (APs) [1].
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Although many studies have investigated localization

[2–6], it is not straightforward to apply their results to the

problem of interest without requiring dedicated infras-

tructure or affecting the WLAN protocol structure. A few

localization methods based on the IEEE 802.11 standards

have been proposed in the literature [7–9] and imple-

mented commercially. However, most of these methods

use the received signal strength indicator (RSSI) as data

for location determination [7, 8]. The use of the RSSI usu-

ally requires a disincentive process of measurement-based

training for adaptation to ever-changing environments

because the RSSI is very sensitive to both large-scale

shadowing and small-scale multipath fading prevalent in

indoor environments. Recently, a method that uses chan-

nel state information (CSI) available through a network

interface card [10] has been proposed [9]. Compared

to the RSSI, the CSI is less sensitive to multipath fad-

ing. Nevertheless, the method proposed in [9], which

is based on single-antenna APs, requires a disincentive

measurement-based training process. The method pro-

posed in the present paper uses the CSI obtained by the

MIMO-OFDM receiver of each AP as data for location

determination, without any measurement-based training
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process for adaptation to ever-changing environments.

The details of the proposed method are described in

subsequent sections.

2 Proposed localizationmethod
According to the proposed method, the CSI obtained by

the MIMO-OFDM receivers of all APs upon successful

reception of a data packet from a mobile terminal (MT)

is processed in order to determine the location of the

MT. We assume that the MT uses only one antenna,

i.e., one spatial stream, for transmitting the data packet

for localization. Therefore, the packet’s preamble part for

estimating the CSI by the OFDM receiver of each AP will

consist of only one VHT-LTF (see [1], Fig. 22–4). It may be

noted that, while the standard [1] defines four OFDM sig-

nal models, classified according to the bandwidth as the

20-, 40-, 80-, and 160-MHz models, the duration of the

VHT-LTF symbol equals 4 µs including the 800-ns guard

interval for all the models.

The localization method involves removing multipath

reflection components in the CSI and searching for the

best location on the basis of a likelihood metric. Because

removing multipath reflection components in the CSI is

an important step, the characteristics of indoor multi-

path propagation and the CSI are discussed first; then, the

algorithm of the proposed method is described in detail.

2.1 CSI fromMIMO-OFDM receivers as location

information

The CSI is always required for data demodulation in an

OFDM receiver. Therefore, a receiver can provide the CSI

at no overhead [10]. The CSI is represented by the chan-

nel frequency response (CFR) for the set of used OFDM

subcarriers. As radio wave propagation in indoor environ-

ments is subjected to multipath characteristics, we may

characterize the CFR as follows. Assuming that the anten-

nas of an AP are closely located, the CFR estimated by

the receiver of the q-th AP for the m-th antenna and k-th

subcarrier can be expressed by

Hk,m,q =
NP−1
∑

n=0

hn,qe
−j2π(f0+kB/N)(tq+tn,m,q) + wk,m,q, (1)

whereNP is the number of paths in the channelmodel, hn,q
is the complex amplitude of the n-th path for the q-th AP,

f0 is the carrier frequency, tn,m,q is the propagation delay

associated with the n-th path between the MT antenna

and the m-th antenna of the q-th AP, B is the OFDM sig-

nal bandwidth, B/N is the OFDM subcarrier spacing, tq
is the time shift introduced by the OFDM time synchro-

nizer of the receiver, and wk,m,q is the estimation error

that is assumed to behave as additive white Gaussian noise

(AWGN). Note that a perfect OFDM time synchronizer

only needs to force the time shift tq to be well within a

tolerance supported by the OFDM guard interval [11]. In

other words, with a guard interval length of tg, the time

shift is required to ensure that the effective delay of the

shortest path is non-negative (tq + minn,m (tn,m,q) ≥ 0)

while the effective delay of the longest path does not ex-

ceed the guard interval length (tq + maxn,m (tn,m,q) ≤ tg).

Therefore,

0 ≤ tq + tn,m,q ≤ tg,∀(n,m). (2)

This uncertainty of tq is another source of variation of

the CSI, which must be properly treated when the CSI is

used for localization.

In this study, the AP antennas are closely located as an

array with spacing between elements of the order of half

wavelength. Therefore, the differences between the prop-

agation times to the AP antennas for the same path man-

ifest themselves as approximately frequency flat phase

difference terms, i.e., (1) can be approximately expressed

by

Hk,m,q =
NP−1
∑

n=0

hn,qe
−j(2π(f0+kB/N)tn,q+φn,m,q) + wk,m,q,

(3)

where tn,q = tq +
(
∑

∀m tn,m,q

)

/Mq with Mq is the num-

ber of antennas in the antenna array for the q-th AP, and

φn,m,q = 2π f0(tq + tn,m,q − tn,q). Note that the phase terms

φn,m,q, 1 ≤ m ≤ Mq, obey

∑

∀m
φn,m,q = 0 (4)

and share a relationship that depends on the antenna array

geometry for the q-th AP and the angle of arrival (AOA)

to the array from the n-th path. In what follows, we shall

assume that the terms in (3) have been sorted according

to time delays such that tn1,q ≤ tn2,q if n1 ≤ n2. Further, it

may be noted that (2) becomes

0 ≤ tn,q ≤ tg,∀n. (5)

We may then rearrange (3) as

Hk,m,q =
NP−1
∑

n=0

gn,qe
−j(2πBtn,qk/N+φn,m,q) + wk,m,q, (6)

where gn,q = hn,qe
−j2π f0tn,q . We may note from (6) that for

an AP antenna, the estimated CFR as a function of k is the

sum of multiple sinusoids plus noise. In addition, it is the

relationship between φ0,m,q, 1 ≤ m ≤ Mq, characterizing

the sinusoids of the shortest paths to the array elements,

that will contain the location information of the MT, if the

shortest paths are the direct paths.
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2.2 Proposed algorithm

The proposed algorithm consists of two major steps. The

first step is to obtain CFRs that are effective for local-

ization by minimizing irrelevant contributions from mul-

tipath reflection and the uncertainty of the OFDM time

synchronizer. The second step is to search for the best

location on the basis of a likelihood metric.

2.2.1 Obtaining an effective CFR

To minimize irrelevant contributions from multipath

reflection and the uncertainty of the OFDM time synchro-

nizer in the CFR for the m-th antenna of the q-th AP, we

aim to obtain an effective CFR modeled by

Gm,q = g0,qe
−jφ0,m,q + wm,q, (7)

where wm,q denotes the average of wk,m,q across k. Note

that the effective CFR consists of the contribution from

the shortest path and additive noise. Therefore, the effec-

tive CFR will carry information of the MT location if

the shortest path is actually the direct path. Hence, the

main assumption of the proposed algorithm is that direct

paths between the MT and the APs exist with consider-

able amplitudes compared to the amplitude of the additive

noise.

In the proposed algorithm, the effective CFRs for an

AP are obtained by first obtaining reflection-rich CFRs

for contiguous subcarriers from the CSI, then obtain-

ing parameters of the sinusoids in the reflection-rich

CFRs, and finally transforming the reflection-rich CFRs to

obtain the result.

Obtaining a reflection-rich CFR for contiguous sub-

carriers According to the underlying standards [1], a

CFR can be obtained from the CSI only for used OFDM

subcarriers that are discontiguous. The proposed algo-

rithm obtains the CFR for contiguous subcarriers by sim-

ply using linear interpolation to compute the CFR for

unused subcarriers whenever they are between two used

subcarriers. The linear interpolation method is clearly

simple, but we consider whether it can effectively preserve

the slow-oscillation characteristics of the shortest-path

sinusoid. Hence, according to the standard signal models

[1], the resulting CFR is contiguous for −K ≤ k ≤ K ,

where the values of K for the 20-, 40-, 80-, and 160-MHz

signal models are 28, 58, 122, and 250, respectively.

Obtaining parameters of sinusoids A sinusoid as a

function of k, expressed by aejωk , is characterized by its

frequency ω and its complex amplitude a. To estimate the

frequencies of all the sinusoids in the CFRs of the q-th

AP, we adopt the matrix pencil method (MPM) [12, 13]

because this constant amplitude multiple-sinusoid esti-

mation problem is equivalent to the direction-of-arrival

estimation problem with fully coherent sources, which

is directly addressed by the MPM . Moreover, the MPM

method has been shown to be the most suitable method

among various super-resolution methods [13].

Following [13] with our own notations, we may detail

the estimation procedure as follows. According to [13], a

snapshot of data is a sequence of limited samples of the

observation. Therefore, from the CFR data of the q-th AP,

we have Mq snapshots of data, with each snapshot con-

taining 2K+1 samples. Accordingly, the input data matrix

is formed as

Y = [Y1 Y2 · · · YMq ] , (8)

where Ym denotes the Hankel matrix for the m-th snap-

shot. Thus,

Ym =

⎡

⎢

⎢

⎢

⎣

H−K ,m,q H−K+1,m,q · · · H−K+L−1,m,q

H−K+1,m,q H−K+2,m,q · · · H−K+L,m,q

...
...

. . .
...

HK−L+1,m,q HK−L+2,m,q · · · HK ,m,q

⎤

⎥

⎥

⎥

⎦

(9)

is a matrix of size (2K − L + 2) × L, where L is called

the pencil parameter. In [13], it is stated that if the value

of L is selected from a certain range, the variance of the

estimation results will be minimal. Such a range depends

on the snapshot size, which is then translated to our case

as

(2K + 1)/3 ≤ L ≤ (2K + 1)/2. (10)

Here, the value of L will be selected on the basis of the

simulation results for this range.

Then, YR is obtained by reducing the rank of Y to NU,

which is the number of significant sinusoids in the data.

This is based on singular-value decomposition as follows.

Suppose that Y can be expressed as

Y = USVH, (11)

where (·)H denotes the matrix conjugate and transpose,U

and V are unitary matrices, composed of the eigenvectors

of YYH and YHY, respectively, and S is a diagonal matrix

containing the singular values of Y. Then,

YR = USRVH, (12)

where SR is obtained from S by setting all the singular val-

ues in S that are smaller than ρsmax to zero, where ρ is a

small positive parameter (0 < ρ < 1), and smax is the max-

imum singular value in S. Hence,NU equals the rank of the

resulting SR. A suitable value of ρ depends on how often

and by how much the direct-path amplitude is lower than

the strongest-path amplitude. It also depends on theMPM

performance in separating the paths from others. In addi-

tion, it can depend on the additive noise level. However,

the noise-level effect may be minimal in practice because

the algorithm always obtains the CSI from a detected data

packet for which the signal must be of a detectable qual-

ity. As the effect of ρ on the algorithm performance is so
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complex analytically, the value selected in this paper will

be based on a simulation study.

Then, the frequency values of the NU sinusoids are

obtained from YR as follows. First, the eigenvalues of

Y+
1 Y2 are evaluated, where (·)+ denotes the Moore-

Penrose pseudoinverse, and Y1 and Y2 are matrices of size

(2K −L+1)×MqL, obtained by deleting the last and first

rows of YR, respectively. Then, the NU frequency values

ω0,ω1, . .,ωNU−1 are obtained as the angles of the obtained

NU eigenvalues.

Suppose that the NU frequency values ω0, ω1, . ., ωNU−1

just obtained have been already sorted in descending

order. In addition, consider for simplicity that all the NP

paths in (6) have clearly distinctive delays and consider-

able amplitudes compared to the amplitude of the noise.

Then, NU is an estimate of NP. In addition, the NU fre-

quency values can be considered as they are related with

the effective path delays tn,q by ωn = −2πBtn,q/N . Then,

the corresponding complex amplitudes an,m, 0 ≤ n <

NU, that estimate gn,qe
−jφn,m,q are obtained by applying

the conventional linear least-squares method [14] to the

problem:
⎡

⎢

⎢

⎢

⎣

e−Kω0 e−Kω1 · · · e−KωNU−1

e(1−K)ω0 e(1−K)ω1 · · · e(1−K)ωNU−1

...
...

. . .
...

eKω0 eKω1 · · · eKωNU−1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

a0,m
a1,m
...

aNU−1,m

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

H−K ,m,q

H1−K ,m,q

...

HK ,m,q

⎤

⎥

⎥

⎥

⎦

. (13)

Transforming a reflection-rich CFR Recall that NU

denotes the number of significant sinusoids for the fre-

quency estimation. Then,
∑NU−1

n=1 an,me
jωnk approximates

(6), where the terms of the shortest path and the AWGN

are ignored, i.e.,

NU−1
∑

n=1

an,me
jωnk ≈ Hk,m,q−g0,qe

−j(2πBt0,qk/N+φ0,m,q)−wk,m,q,

(14)

or

Hk,m,q−
NU−1
∑

n=1

an,me
jωnk ≈ g0,qe

−j(2πBt0,qk/N+φ0,m,q) +wk,m,q.

(15)

Therefore, the effective CFR for the m-th antenna is

obtained by first computing the left-hand side of (15),

then translating the frequency of the remaining shortest-

path term to zero, and finally averaging the result over the

frequency domain, i.e.,

Gm,q =
K

∑

k=−K

Gk,m,q/(2K + 1), (16)

where Gk,m,q is obtained by

Gk,m,q =
(

Hk,m,q −
NU−1
∑

n=1

an,me
jωnk

)

e−jω0k . (17)

2.2.2 Search for the best location

Searching for the best location involves the computation

of likelihood-based metrics for locations of interest, and

it is equivalent to maximizing the likelihood over the

locations. The likelihood to be maximized is defined by

u(ζ ) = f (Gm,q;∀(m, q)|ζ , g∗
0,q;∀q), (18)

where f (·) denotes the probability density function (PDF),

ζ denotes the location, and g∗
0,q,∀q, are g0,q,∀q, that

jointly maximize f (Gm,q;∀(m, q)|ζ , g0,q;∀q). Assume that

the CSI data have been scaled such that the variances

of wk,m,q,∀(m, q), are the same. Note that such scaling

requires the average noise power or signal-to-noise ratio

of every receiver chain to be estimated. However, as the

information is generally required also by the MIMO-

OFDM receiver, obtaining the information should not

involve any overhead. Then, based on (7) and because

wm,q,∀(m, q), are zero mean independent and identical

complex Gaussian random variables

f (Gm,q;∀(m, q)|ζ , g0,q;∀q) =
∏

∀q

∏

∀m

ℵ
(

g0,qe
−j(2π/λ)(r

(ζ )
m,q−r̄

(ζ )
q ), σ 2

)

,

(19)

where σ 2 is the variance of wm,q, ℵ(µ, σ 2) is the PDF of a

circularly symmetric complex Gaussian random variable

with mean µ and variance σ 2, λ is the wavelength of the

radio-frequency carrier, r
(ζ )
m,q is the distance from ζ to the

m-th antenna of the q-th AP, and r̄
(ζ )
q =

∑Mq

m=1 r
(ζ )
m,q/Mq.

Then, it can be shown that

argmax
ζ

u(ζ ) = argmax
ζ

∑

∀q
|
∑

∀m
Gm,qe

j(2π/λ)r
(ζ )
m,q |2.

(20)

Then, to determine the best location, the metric defined

as

s(ζ ) =
∑

∀q
|
∑

∀m
Gm,qe

j(2π/λ)r
(ζ )
m,q |2 (21)

is computed for every location of interest, and the best

location ζ ∗ is obtained as s(ζ ∗) = maxζ s(ζ ).

2.3 Some remarks

2.3.1 AOA-based localization

Wemay note that the location metric (21) is a sum of met-

rics, each of which is contributed by the data of an AP, i.e.,
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s(ζ ) =
∑

∀q sq(ζ ), where sq(ζ ) = |
∑

∀mGm,qe
j(2π/λ)r

(ζ )
m,q |2.

The metric contributed by the data of an AP has an inter-

esting property that may be described as follows. Note

that the metric sq(ζ ) can be equivalently expressed by

sq(ζ ) = |
∑

∀mGm,qe
j(2π/λ)[r

(ζ )
m,q−r

(ζ )
1,q ]|2. Then, since r

(ζ )
m,q −

r
(ζ )
1,q ,∀m will not considerably change if ζ moves along on

the same AOA to the q-th AP, sq(ζ1) ≈ sq(ζ2) if ζ1 and

ζ2 are along similar AOAs to the q-th AP. Then, we can

conclude that the metric contributed by the data of an AP

contains information of the AOA to the AP.

The usefulness of the effective CFR obtained by (16)

may be noted as follows. Thus far, we have assumed that

the direct path exists and all paths also have distinctive

delays. However, paths can actually have indistinguishable

delays. Then, a problem could arise when some scattered

paths of considerable amplitudes have delays close to the

delay of the direct path, while they also have AOAs con-

siderably different from that of the direct path. In this

case, the effective CFR will possibly contain also the AOA

information of the scattered paths that can degrade the

location estimation of the proposed algorithm. There-

fore, the proposed algorithm requires significant scattered

paths with delays close to the delay of the direct path

to also have AOAs close to the AOA of the direct path.

This could be realistic if the placement of the AP antenna

array is not close to any significant reflective materials.

Such placement also seems to be a good practice for other

AOA-based localization systems.

2.3.2 Effect of MT velocity

It may be interesting to assess the effect of the MT veloc-

ity on the performance of the proposed algorithm. In

this regard, we consider that there are two issues caused

by MT movement that may affect the performance. One

issue is the location shift of the MT that may change the

real multipath configuration of the channel during the

OFDM training symbol. The other issue is the Doppler

shift of the direct-path term in the estimated CSI. The

location shift should be of no concern because the dura-

tion of the training symbol is just 4 µs, which means that

a moving speed of 900 km/h is required to observe a loca-

tion shift of 1 mm. The 1-mm shift does not seem to

significantly change the multipath configuration, and the

900-km/h speed is infeasible in indoor environments.

Regarding the Doppler shift, it should be noted that

movement of the MT during a packet transmission would

cause a direction-dependent spectral shift of the radiating

wave. Hence, the spectral shift of one transmission path

arriving at the receiver could be different from the spec-

tral shifts of other paths. This effect is not as simple as that

of the local oscillator frequency offset between the trans-

mitter and the receiver, where the effect is equivalent to

causing identical spectral shifts for all paths. However, the

direction-dependent spectral shifts could only change the

phases of the sinusoidal terms in (6) and therefore could

not affect the frequency estimation of the MPM. In addi-

tion, the spectral shift of the direct-path term could only

rotate g0,q in (6) through a certain angle and therefore

could not change the MT location information in φ0,m,q,

1 ≤ m ≤ Mq.

However, the Doppler shift is known to cause inter-

carrier interference in OFDM data detection. It will also

affect the CSI estimation that is conventionally based on

detecting the data carried by the training symbol. For

a successfully detected data packet, we can expect that

such interference is insignificant. Therefore, in this paper,

we assume that the effect is negligible. Nevertheless, we

believe that it merits a detailed analysis that should be

conducted in a separate study.

2.4 CRLB for two-dimensional systems with linear-type

arrays

For benchmarking the performance of the location esti-

mators based on (7), we obtain the Cramer-Rao lower

bound (CRLB) [15], which is the variance of the estima-

tion error of aminimum variance unbiased estimator. This

is done on the basis of the following considerations. First,

we model the observation of the estimator as a real vector:

X =
[

OT
1 OT

2 · · · OT
Q

]T
, (22)

where Q is the number of APs, (·)T denotes the matrix

transpose, and

Oq =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

|g0,q| cos(φ0,1,q − ∠g0,q) + ℜ(w1,q)

−|g0,q| sin(φ0,1,q − ∠g0,q) + ℑ(w1,q)

|g0,q| cos(φ0,2,q − ∠g0,q) + ℜ(w2,q)

−|g0,q| sin(φ0,2,q − ∠g0,q) + ℑ(w2,q)

...

|g0,q| cos(φ0,Mq ,q − ∠g0,q) + ℜ(wMq ,q)

−|g0,q| sin(φ0,Mq ,q − ∠g0,q) + ℑ(wMq ,q)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(23)

We restrict the analysis to only the case in which each

AP antenna array is of linear type. Then, we base the com-

putation on the following geometrical reference model.

Denote the location of the array center of the q-th AP in

the Cartesian coordinate system as (xq, yq) and that of the

MT as (x0, y0). The locations are related using the polar

coordinate system as (rq, θq), as shown in Fig. 1. Define

a normal looking direction of an antenna array as a main

radiation direction when the phase shifts of all the antenna

elements are zero.While the linear antenna array of an AP

has two normal looking directions, we shall be interested

in only the one that is closest to the direction of arrival of

the MT. For the q-th AP, we denote the counter-clockwise

angle of the normal looking direction relative to the x-axis
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Fig. 1 Illustration of geometrical reference model. Illustration of geometrical reference model of (x0 , y0), (xq , yq), (rq , θq), and γq

as γq. For example, if the array elements of the q-th AP

are placed along the x-axis in Fig. 1, γq will be π/2. Then,

assuming that the spacing between the antenna elements

in each array is d and rq >> d, φ0,m,q, ∀(m, q), can be

approximated by

φ0,m,q = 2π

λ
(m − (Mq + 1)/2)d sin(θq − γq). (24)

Based on [15], the CRLB can be computed by

CRLB(ζ̂ ) = [ I−1]1,1 + [ I−1]2,2 , (25)

where [K]i,j denotes the (i, j) element of matrix K and I is

the Fisher information matrix:

[I]i,j =
2

σ 2

∂µ
T

∂ui

∂µ

∂uj
, (26)

where µ is the mean of X, and (u1,u2, ..,u2Q+2)
.=

(x0, y0, |g0,1|,∠g0,1, .., |g0,Q|,∠g0,Q). However, following

[16], the CRLB may be also computed by

CRLB(ζ̂ ) = [I−1
e ]1,1 + [I−1

e ]2,2 , (27)

where Ie is the equivalent Fisher information matrix

obtained as follows. Let

I =
[

A B

BT C

]

, (28)

where the sizes of matrices A, B, and C are 2 × 2, 2 × 2Q,

and 2Q × 2Q, respectively. Then, Ie can be computed by

Ie = A − BC−1BT. (29)

Noting that ∂θq/∂x0 = −(sin θq)/rq and ∂θq/∂y0 =
(cos θq)/rq, we then apply these two relations and (22),

(23), and (24) to derive the elements of A, B, and C.

Accordingly, after arranging the terms, we obtain B as

a zero matrix, and therefore, Ie = A, which can be

expressed by

Ie = 1

σ 2

Q
∑

q=1

|g0,q|2
Mq(M

2
q − 1)

6

(

2πd cos(θq − γq)

λrq

)2

p(θq)p(θq)
T,

(30)

where

p(θq) =
[

sin(θq) − cos(θq)
]T

. (31)

We may use (27) and (30) to compute the CRLB as a

function of g0,q, 1 ≤ q ≤ Q, which are random variables.

In this paper, by considering such variability, the CRLB is

then obtained by averaging the computed CRLBs across

the simulated values of {g0,q|1 ≤ q ≤ Q}.

3 Numerical results and discussions
3.1 Multipath propagation model

In this paper, we estimate the performance of the pro-

posed algorithm on the basis of computer simulation

using statistical indoor channel models. In addition,

because our algorithm is AOA-based, we require a rele-

vant channel model to provide specifications of the AOA

characteristics in addition to the power delay profile of

the multipath. As we find that only the IEEE 802.11 TGn

channel models [17] are available in detail and meet our

requirements, we base our performance evaluation on

only such models.

Let us briefly describe the major characteristics of the

models as follows. In a TGn channel model, a non-line-

of-sight (NLOS) model is defined by delay taps, with each
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tap representing the contribution of scattered paths of the

same delay. The delay taps are grouped into clusters such

that scattered paths within the same cluster possess the

same random characteristics of the AOA to the receiver.

In other words, the AOAs of scattered paths of a clus-

ter are obtained as follows. First, the mean AOA is drawn

from a uniform distribution over [0,2π ). Then, the AOA of

each scattered path is drawn from a Laplacian distribution

according to the obtained mean and the angular spread

(AS), i.e., the standard deviation, specific to the cluster.

The amplitude of a scattered path is a complex Gaussian

random variable, with the magnitude being a Rayleigh dis-

tribution. The number of clusters, power delay profile,

and AS of each cluster are specific to model subtype, e.g.,

the number of clusters is three for model D. The total

received power in an NLOS model is also subjected to

path loss, which includes a log-normal shadowing effect

and is specific to the model subtype. The TGn channel

modeling also provides a line-of-sight (LOS) model for

each model subtype, which is relevant to our case where

the localization algorithm requires the existence of LOS.

In a TGn channel model, an LOS model of a subtype is

simply obtained by adding an LOS component to the first

arriving tap of the corresponding NLOS model. However,

the addition is done according to a first-tap k-factor, i.e.,

the ratio of the LOS power to the average power of the

NLOS first tap, which is specific to the model subtype.

The TGn channel modeling does not use a large first-tap

k-factor for any model subtype because changing from the

NLOS model to the LOS model of the same subtype will

slightly reduce the root-mean-square (RMS) delay spread

of the channel (see Table 1).

However, we note that the described LOS model con-

sists of LOS and NLOS parts, with the first tap of the

NLOS part being set to have the same delay as (but

arbitrarily different AOA from) the LOS. This seems to

be unrealistic if the placement of the AP antenna array

is not close to any significant reflective materials. Such

placement seems to be also a good practice for other

AOA-based localization systems. Assume that such place-

ment has been done successfully for every array, although

Table 1 NLOS and LOS characteristics of models D and E of [17]

Model D Model E

First-tap k-factor (dB)
NLOS −∞ −∞
LOS 3 6

RMS delay spread (nm)
NLOS 50 99

LOS 47 95

Maximum delay spread (nm)
NLOS 390 730

LOS 390 730

absorptive materials may be required in some cases. Then,

it would be more realistic if a scattered path with a delay

close to that of the LOS also had its AOA statistically close

to that of the LOS. Accordingly, we modify the TGn chan-

nel models for our purpose by (i) setting the mean AOA

of the NLOS first tap to equal the AOA of LOS and (ii)

introducing a new parameter σ0 as the AS of the NLOS

first tap. The impact of this parameter on the algorithm

performance will be studied by simulation.

The TGn channel models include six model subtypes

with RMS delay spread in the range of 0 to 150 ns. We

use the LOSmodels D and E in this paper because accord-

ing to [18], the associated delay spreads are representative

of typical office environments for model D and typical

large open spaces and office environments for model E.

In addition, such environments are expected to be tar-

gets of a wide range of indoor location-based services. The

characteristics of the two models in terms of the first-tap

k-factor, the RMS delay spread, and the maximum delay

spread (tNP−1,q − t0,q) are summarized in Table 1, while

additional details can be found in [17]. Note that each LOS

model is multipath-rich while having a direct path that

is nondominant because changing from the NLOS model

to the LOS model of the same subtype can just slightly

reduce the RMS delay spread of the channel.

3.2 Common assumptions and search method

The performance of the proposed method is evaluated

with geometrical assumptions as shown in Fig. 2, illus-

trating the region of interest for localization, which is a

square having an area of 400 m2 and the normal looking

directions of the antenna arrays of four APs located at the

corners of the square. Each antenna array is of linear type

with half-wavelength spacing between elements. A carrier

frequency of 5 GHz is assumed. In addition, an antenna

gain of 0 dB is assumed for the MT antenna as well as for

each array element of an AP. Further, it is assumed that

the variance of the CSI estimation error depends only on

the system noise, i.e., E
[

|Hk,m,q − wk,m,q|2]/E[|wk,m,q|2
]

equals the average signal-to-noise ratio per OFDM sub-

carrier. Regarding the OFDM signal models [1], we will

consider only the 40-, 80-, and 160-MHz models, as they

should be sufficient for demonstrating the performance

with regard to the bandwidth.

In this paper, the search for the best location on the

basis of the metric of (21) is conducted in three rounds. In

the first round, the metrics are computed for regular grid

points over the 400-m2 square region with a grid-point

spacing of 1 m, and the first-round optimum location is

then determined. In the (n + 1)-th round, the metrics are

computed for regular grid points over the (l2n)-m
2 square

region centered at the n-th round optimum locationwith a

grid-point spacing of ln/20, and the (n+1)-th-round opti-

mum location is then determined, where ln/2 equals the
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Fig. 2 Illustration of geometrical simulation assumptions. The 400-m2 region of interest for localization and the normal looking directions of the

antenna arrays of four APs located at the corners

grid-point spacing in meters for the n-th round. Note that

the grid-point spacing for the last round, representing the

effective resolution of the search space, is 10−2 m.

3.3 Selection of algorithm parameters

The performance of the proposed algorithm depends on

its parameters L and ρ. We realize that obtaining opti-

mal values of the parameters may require a separate

elaborate study. In this paper, we only select certain val-

ues for demonstrating the basic working performance of

the proposed algorithm and for comparing the proposed

algorithm with previous methods. This is done for each

standard signal model [1] as follows.

First, we select a tentative value of L to be the middle

value of the range (10). Therefore, the selected values for

the 40-, 80-, and 160-MHz OFDM signal models are 49,

102, and 209, respectively.

Then, a tentative value of ρ is selected from the sim-

ulation results as shown in Fig. 3. The results show the

root-mean-square error (RMSE) versus ρ with OFDM

signal bandwidth (B) and number of antennas per AP

(Mq = M,∀q) as parameters. The RMSE is obtained

from 1000 independent samples, based on the following

assumed typical conditions. TheMT transmitted power is

10 dBm, the AP receiver noise figure (NF) is 4 dB, and the

LOS model D is used with σ0 = 4°. In addition, the MT

is uniformly and randomly located in the 400-m2 region,

except the locations that are close to the center of an

antenna array by less than 1m. All the RMSE values shown

in the figure are based on same test data, defined by the

drawn MT locations and channel characteristics. Accord-

ing to the results, the selected values of ρ are 1/32 for the

40- and 80-MHzmodels and 1/16 for the 160-MHzmodel,

as they represent a rough approximation of the optimal

values for the assumed conditions.

Then, we iterate the simulation experiments by fixing

the value of ρ to the tentative one and performing sim-

ulations for evaluating the performance in terms of L.

According to the results, the performance does not vary

significantly with L. Therefore, the tentative values of L

and ρ stated above are adopted in this paper.

3.4 Implications of σ0 and CSI interpolation

We also study the implications of the AS of the NLOS first

tap and CSI interpolation. The localization performance

is evaluated with the same assumptions as in Section 3.3,

except that L and ρ are set to be the selected values and σ0
is now variable. The performance is also evaluated for two

cases. One is based on using discontiguous CSI as input

data and using linear interpolation to obtain contiguous

CSI as proposed. The other is based on using contigu-

ous CSI as input data, assuming that the used OFDM

subcarriers are already contiguous. For a value of σ0, the

performance results for both cases of CSI data are based

on the same test data, defined by the drawn MT locations

and channel characteristics. It may be noted from the

results shown in Fig. 4 that the localization performance

of both cases is similar, although using discontiguous CSI
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Fig. 3 Average localization error in terms of ρ . Root-mean-square error versus ρ with OFDM signal bandwidth and number of antennas per AP as

parameters

with linear interpolation leads to slightly worse perfor-

mance. Hence, we may conclude that linear interpolation

is effective in mitigating the problem of CSI discontigu-

ity in the proposed algorithm. The results also show that

the RMSE values when σ0 = 0°, 4°, 8°, and 16° for both

cases are around 0.7, 1.1, 1.6, and 2.7 m, respectively.

Hence, controlling σ0 to be small based on the placement

of the antenna arrays as mentioned in Section 3.1 is very

important for realizing good performance of the proposed

algorithm.

3.5 Comparison with other methods

The performances of the proposed method, the RSSI-

based method [8], and the CSI-based method [9] were

compared under the same statistical channel conditions.

The CSI-based method [9] and the RSSI-based method

are similar but differ in terms of the observation data

that they use. The RSSI-based method uses the RSSI as

observation data, whereas the CSI-based method [9] uses

a norm computed from the CSI as observation data. We

will refer to the RSSI-based method [8] and the CSI-based

Fig. 4 Average localization error in terms of σ0 . Root-mean-square error versus σ0 for two cases of CSI data
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method [9] as the RSSI method and the CSI normmethod,

respectively. Both methods require the localization algo-

rithm to be trained before use or testing. In the training

process, usually referred to as fingerprinting, the PDF of

the observation data conditioned on the MT location is

obtained from the training data for each reference loca-

tion. In the use phase, the location is determined as a

weighted average of the reference locations according to

the observation data and the trained model. For the per-

formance comparison, the LOS models D and E are used

with the following simulation conditions. The MT trans-

mitted power is 10 dBm, the AP receiver NF is 4 dB, and

each LOS model has σ0 = 4◦. In addition, B = 160 MHz

and M = 2. The MT locations for testing are rectangular

grid points spanning the 400-m2 region with a grid-point

spacing of 1 m, except for the center points of the four

antenna arrays. The set of reference locations for the RSSI

and CSI-norm methods is the same as the set of MT loca-

tions for testing. Because the RSSI and CSI-normmethods

assume observation data from a single antenna, the RSSI

and CSI-norm averaged across the antennas in the array

are respectively used as the observation data for the two

methods in this paper. The training data for each reference

location consist of 500 independent samples of the obser-

vation data, while the test data for each grid point consist

of 10 other independent samples.

Figures 5 and 6 show the results of the cumulative

distribution function (CDF) according to models D and

E, respectively. It can be noted that the proposed algo-

rithm clearly outperforms the other two methods in both

channel models. Note that the RSSI and CSI-norm meth-

ods are not generally designed to model both small-scale

and large-scale fading effects. They are designed to model

only the variabilities of small-scale fading conditioned on

a fixed large-scale fading condition because when a sig-

nificant object moves in the environment and changes

the large-scale fading condition, the methods usually

need to be retrained for maintaining the performance.

In the simulation environment of this study, different

samples of observation data correspond to totally inde-

pendent fading conditions. Therefore, the two methods

cannot perform well in this simulation experiment. The

figures also show that the performance of the proposed

method improves when changing from model D to model

E, possibly because of the stronger LOS component in

model E.

3.6 Effect of infrastructure conditions

Figure 7 shows the results of the localization performance

in terms of the signal-to-noise condition, signal band-

width, and number of antennas per AP. The localization

performance is evaluated with the same assumptions as in

Section 3.3, except that L and ρ are set to be the selected

values and the MT transmitted power is varied over the

range of −20 to 20 dBm. All the RMSE values shown in

the figure are based on the same test data, defined by

the drawn MT locations and channel characteristics. The

figure shows that the localization performance improves

with increasing MT transmitted power, but the improve-

ment is saturated when the power increases over around

Fig. 5 Performance comparison according to channel model D. CDF of localization errors for the RSSI, CSI-norm, and proposed methods according

to channel model D
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Fig. 6 Performance comparison according to channel model E. CDF of localization errors for the RSSI, CSI-norm, and proposed methods according

to channel model E

10 dBm.We believe that the performance saturation could

be mainly due to residual contributions from scattered

paths that still remain in the effective CFR. Note that we

could expect such contributions to be smaller by having

richer observation data for the multiple-sinusoid param-

eter estimation process of the proposed algorithm. This

is supportive of the results shown by the figure, where

the saturated performance improves with increasing B or

M. The saturated performance, when the MT transmit-

ted power equals 10 dBm, is summarized in Table 2. The

table lists numerical values of the RMSE in meters and

also in percent maximal length of a straight line within the

localization region, in order to illustrate how the errors

are related to the dimension of the localization region.

Note that the maximal length is considered to be 20
√
2 m.

Comparing the performance improvement as a result of

Fig. 7 Average localization error in terms of the signal-to-noise condition, signal bandwidth, and number of antennas per AP. Root-mean-square

error versus MT transmitted power with OFDM signal bandwidth and number of antennas per AP as parameters
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Table 2 Localization performance in terms of B andM when the

MT transmitted power is 10 dBm, expressed as root-mean-square

error in meters and also in percent maximal length of a straight

line within the localization region

M = 2 M = 4

B (MHz)

40 3.9 m; 13.79 % 2.8 m; 9.90 %

80 2.0 m; 7.07 % 1.8 m; 6.36 %

160 1.2 m ; 4.24 % 1.1 m ; 3.89 %

changing from M = 2 to M = 4 for the three cases of

B shown in the table, we can see that the improvement

decreases with increasing B.

Figure 8 compares the results of Fig. 7 and the CRLB

when B = 160 MHz. The important points to be noted

are as follows. The CRLB performance always improves

steadily with increasing MT transmitted power. The per-

formance of the proposed algorithm is much worse than

that of the CRLB in all the cases. This large perfor-

mance gap is expected because the CRLB here is based

on the observation data modeled by (7), which is free of

scattered-path contributions, and the CRLB result corre-

sponds to an optimal unbiased estimator. The source of

impairment of the CRLB results is only the AWGN.

It is also interesting to see how the proposed method

performs in terms of the MT location and the number of

usable APs. Figures 9, 10, 11 and 12 show the simulation

results with the same assumptions as in Section 3.5, except

that the test data for each grid point here consist of 30

independent samples and only model D is used.

It can be noted from Fig. 9 that the 90 % confidence level

error bound, i.e., the error when the cumulativeprobability

is 0.9, increases approximately from 1.2 to 1.6 and 3.5 m

when the number of usable APs is reduced from 4 to 3

and 2, respectively. The performance seems to degrade

steadily if the number of usable APs is greater than two.

However, the performance with two APs is still better than

the performances of the RSSI and CSI-normmethods with

four APs, as shown in Fig. 5, from which we may note that

the 90 % confidence level error bounds are around 4.5 and

3.8 m for the RSSI and CSI-norm methods, respectively.

For the proposedmethod, the preferable number of usable

APs seems to be three or greater, while having only two

usable APs may still be viable in some applications.

Regarding the localization performance in terms of the

MT location, it is interesting to note from Fig. 10 that the

RMSE is locally large for locations on the line connect-

ing the two usable APs. This can be explained by noting

that the locations on such a line correspond to the case

where the equivalent Fisher information matrix expressed

in (30) is singular. Intuitively, the singularity indicates

that the available information is not sufficient for esti-

mation, i.e., the location information contribution in the

observation data is not sufficient for deducing a location.

Therefore, the localization performance in the singularity

case here is extremely vulnerable to the AWGN. It may

be noted from Figs. 11 and 12 that having more usable

APs effectively relieves the singularity problem, especially

for locations farther away from the two underlying APs.

In contrast, having more usable APs is less effective in

relieving the problem for locations close to an AP, possibly

because the equivalent Fisher information matrix for such

a location is largely dominated by only the contribution of

that AP.

Fig. 8 Comparison with CRLB when B = 160 MHz. Root-mean-square error versus MT transmitted power with number of antennas per AP as a

parameter when B = 160 MHz
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Fig. 9 Performance in terms of the number of usable APs. CDF of localization errors in terms of the number of usable APs

4 Recommendations for further study
The purpose of this paper is to introduce a new algorithm

for indoor localization and to demonstrate the poten-

tial superiority of the proposed algorithm over previous

approaches to the same problem. We believe that the

issues listed below merit further investigation.
• Validation with real measurements : In this paper, the

localization performance of the proposed algorithm

was evaluated on the basis of statistical indoor

channel models specifically obtained for

benchmarking data communication systems. It is

much more relevant to evaluate the performance on

the basis of real measurements or a statistical indoor

channel model specifically obtained from real

measurements for benchmarking AOA-based

localization systems. Therefore, performance

validation with real measurements is very

important.

Fig. 10 Average localization error in terms of the MT location based on two usable APs. Root-mean-square error versus MT location when only two

APs located at (0,20) and (20,20) m are usable
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Fig. 11 Average localization error in terms of the MT location based on three usable APs. Root-mean-square error versus MT location when only

three APs located at (0,20), (20,20), and (20,0) m are usable

• Other super-resolution methods : Estimating the

frequencies of all the sinusoids in the CFRs plays a

major role in obtaining an effective CFR for the

proposed algorithm. Although the MPM is used in

this paper because it directly addresses the problem

of interest, we believe that other super-resolution

methods should also be studied in this regard.

• Using a priori knowledge in estimation : In this paper,

estimating the parameters of all the sinusoids in the

CFRs plays a major role in obtaining an effective CFR.

Such estimation has been performed without

considering a priori knowledge about the parameters,

i.e., their statistical models. Note that such knowledge

may be used to improve the estimation performance

Fig. 12 Average localization error in terms of the MT location based on four usable APs. Root-mean-square error versus MT location when all four

APs are usable
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in general, as discussed in [16]. Applying such

knowledge to the proposed algorithm is an

interesting direction for further study.
• Optimal parameters for the algorithm : In this paper,

the values of the algorithm parameters L and ρ were

selected for simply demonstrating the basic working

performance of the proposed algorithm. Actually, the

optimal values could depend on variable conditions

of the radio channel and infrastructure. These effects

are also worthy of further study.
• Problem of NLOS : In addition to bandwidth

availability and multiple-antenna configuration, an

essential requirement for the proposed algorithm to

work is the availability of LOS in the radio channel. In

this regard, the availability required is just sufficient

for triangulation. This requirement is the same as for

the ultrawideband-based localization regime [19, 20].

Several methods for mitigating the problem of LOS

availability have been presented in the literature.

These methods are based on the detection of channel

condition. By applying the detection of channel

condition, we may simply ignore an AP if the

detection result declares unavailability of LOS. We

could then expect performance degradation on the

basis of the results shown in Fig. 9, or encounter an

outage if the number of usable APs is less than two.

We note that the signal processing results obtained

using the proposed method are employed as

observation data for the detection of channel

condition. However, a detailed study of such

detection is beyond the primary scope of the present

paper and it is therefore recommended for future

work.
• AOA bias induced by diffraction : In the present

study, the effect of diffraction caused by building

components, such as walls, is ignored. If not properly

managed, this effect may degrade the performance of

the proposed algorithm by introducing a bias into the

AOA of a direct path, as well as the performance of

the ultrawideband-based localization regime by

introducing a bias into the time of arrival of a direct

path. Therefore, further investigation is required to

efficiently mitigate such a bias.
• MT velocity effect : As discussed in Section 2.3.2, a

detailed analysis of the effect of MT velocity on the

localization performance should be carried out in a

future study.
• Simple way to obtain the effective CFR : Note that

an,m obtained using the proposed algorithm by

solving (13) is an estimation of gn,qe
−jφn,m,q .

Therefore, according to (7), a0,m is also an estimation

of Gm,q. Then, it might be better to save computation

by using a0,m as Gm,q, instead of obtaining Gm,q from

(16). This issue also requires further investigation in

order to observe its possible effects on the

localization performance.

5 Conclusions
A new localization method based on an asynchronous

network of MIMO-OFDM access points was proposed.

This method can be implemented on WLANs of a cur-

rent standard without affecting their protocol structures.

The method involves first obtaining effective CFRs, in

which irrelevant contributions from scattered paths and

the uncertainty of the OFDM time synchronizer are min-

imal, and then searching for the most likely location. The

proposed method does not require a training process for

adaptation to ever-changing environments. The availabil-

ity of direct paths is sufficient for triangulation, as in the

ultrawideband-based localization regime. Further, signifi-

cant scattered paths with delays close to the delay of the

direct path are required to have AOAs close to the AOA

of the direct path.
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