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Abstract

Time-frequency (T-F) masking is an effective method for stereo speech source separation. However, reliable

estimation of the T-F mask from sound mixtures is a challenging task, especially when room reverberations are

present in the mixtures. In this paper, we propose a new stereo speech separation system where deep neural

networks are used to generate soft T-F mask for separation. More specifically, the deep neural network, which is

composed of two sparse autoencoders and a softmax regression, is used to estimate the orientations of the dominant

source at each T-F unit, based on low-level features, such as mixing vector (MV), interaural level, and phase difference

(IPD/ILD). The dataset for training the networks was generated by the convolution of binaural room impulse

responses (RIRs) and clean speech signals positioned in different angles with respect to the sensors. With the training

dataset, we use unsupervised learning to extract high-level features from low-level features and use supervised

learning to find the nonlinear functions between high-level features and the orientations of dominant source. By

using the trained networks, the probability that each T-F unit belongs to different sources (target and interferers) can

be estimated based on the localization cues which is further used to generate the soft mask for source separation.

Experiments based on real binaural RIRs and TIMIT dataset are provided to show the performance of the proposed

system for reverberant speech mixtures, as compared with a model-based T-F masking technique proposed recently.

Keywords: Deep learning, Deep neural networks, Source separation, Soft mask

1 Introduction
Robust speech separation is an attractive research field

and provides a useful front-end for many applications,

e.g., hearing aids, mobile communication device, and

automatic speech recognition system. Many methods

have been applied to this problem, such as independent

component analysis (ICA) [1–3], beamforming [4], and

computation auditory scene analysis (CASA) [5, 6]. The

performance of these algorithms, however, is still limited

in complex acoustic environment, especially when room

reverberation is present in themixtures. This is in contrast

to human auditory system which is skillful in listenting
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into a particular conversation in a cocktail party environ-

ment with the presence of background noise and interfer-

ing sound. There is a big performance gap between the

human auditory system and machine-based listening sys-

tem. An influential view in auditory scene analysis is that

the human auditory system splits the sound mixtures to

fragments (e.g., regions in the time-frequency plane), and

the fragments which belong to the same acoustic source

will be assigned to a same cluster. Based on this idea,

time-frequency (T-F) masking technique has been pro-

posed for speech source separation where the mask can

be derived from various cues based on the analysis of tem-

poral, spectral, or spatial features of the sources. Recently,

a time-frequency masking technique has been proposed

in [7] where the mixing vector (MV) [8] and interaural

phase and level difference (IPD/ILD) [9] have been inte-

grated using a Gaussian mixture model (GMM) whose
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parameters are estimated iteratively using an expectation

maximization (EM) algorithm. These methods provide a

nice probabilistic framework for incorporating comple-

mentary information to deal with the uncertainties in

T-F assignment. However, the performance of these algo-

rithms is also limited by the accuracy of model fitting

especially when room reverberation is present.

The GMM is essentially a shallow architecture of neu-

ral network which contains at most one layer of nonlinear

feature transformation and is shown to offer good per-

formance in source separation for anechoic mixtures [10]

or mixtures with a relatively low level of reverberation.

The shallow architecture, however, has a limited repre-

sentation ability, which may cause performance degrada-

tion when applied in the complex real-world problems,

such as speech separation in highly reverberant envi-

ronments. Recent studies in speech recognition have

shown that a deep architecture with more hidden lay-

ers can increase the representation abilities of a neural

network, and it can be used to build internal representa-

tion for rich sensory data [11–14]. The deep architecture

is regarded as being similar to the hierarchical struc-

tures within human visual and auditory systems, where

the raw image or speech waveforms are transformed to

a high-order linguistic level by these hierarchical struc-

tures [15–18]. The deep structure has the potential to

reduce the performance gap between the human audi-

tory system and machine listening system, as shown

in recent works in the area of natural language pro-

cessing and speech recognition systems [19–22]. The

success of deep neural networks (DNNs) in these appli-

cations inspires us to investigate its potential for improv-

ing the performance of stereo speech source separation

algorithms.

In this paper, we focus on the multiuser stereo speech

source separation in reverberation environments and

present a new approach for T-F assignment and mask

estimation based on DNNs [23]. The network is trained

with the low-level of features (i.e., MV and ILD/IPD)

extracted from a training dataset of observed speech

signals. In the separation stage, the trained network

is used to estimate the orientations (i.e., directions of

arrivals) of the target and interferers which is further

exploited to derive the source occupation probability (and

thereby the mask) at each T-F unit of the mixture. Our

experimental results show that the proposed method

performs significantly better than the GMM/EM-based

baseline method [7] in terms of both signal to distortion

ratio (SDR) and perceptual evaluation of speech quality

(PESQ).

The remainder of the paper is organized as follows.

Section 2 briefly discusses the related works. Section 3

outlines the proposed system. Section 4 discusses the

low-level features to be used as inputs to the network.

Section 5 presents the details about the deep network,

including its structure, the training method, and how it

is used for separation. Section 6 shows the experiments

using real RIRs and TIMIT data before the conclusion is

drawn in Section 7.

2 Relation to prior work
Several recent works have explored the potential of using

DNNs for monaural/stereo speech separation. In [24],

Wang et al. explored the use of monaural features for

classification-based speech segregation. To deal with

noise in the mixtures, a group Lasso approach and

SVM classifier have been applied for generating the

ideal binary mask for noise cancellation by combining

different features. The experimental results show that

(1) the complementary feature set is shown to give sta-

ble performance in experiments and outperforms each

of its components significantly and (2) the unit-level

features give better performance than frame-level fea-

tures in unmatched test condition. In [25], Xu et al.

presented a regression-based speech enhancement

framework using DNNs, and the restricted Boltzmann

machines (RBMs) have been used to learn a deep gener-

ative model for pre-training. They found that (1) using

the large training dataset could result in a good general-

ization capability in mismatched testing conditions and

(2) the two and three hidden layer DNNs have the similar

performance. In [26], Narayanan and Wang proposed

a feature enhancement algorithm for improving noise

robustness of automatic speech recognition systems. The

algorithm estimates a smoothed ideal ratio mask in the

Mel spectrogram domain using DNNs, which is then

used to filter out noise before cepstral transformation.

In [27, 28], Huang et al. proposed to jointly optimize

the deep learning models (deep neural networks and

recurrent neural networks) with an extra masking layer

to enforce a reconstruction constraint. They used a

discriminative training criterion for the neural networks

to further enhance the monaural source separation per-

formance. In [29], Jin and Wang proposed a supervised

learning approach to monaural segregation of reverberant

speech using the multiresolution cochleagram (MRCG)

features [30].

In [31], Jiang et al. first introduced DNNs to stereo

speech separation. Similar to the work in [25] and [26], the

RBMs were used to get the initial parameters of the DNNs

and the output of the DNNs are the estimated ideal binary

mask (IBM). They found that the DNN-based algorithm

with joint binaural and monaural features could achieve

better results than the representative binaural separation

algorithms, especially when reverberation is present in the

environment, and the target and interfering sources are

either collocated or close to each other.
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Compared with the monaural segregation of reverber-

ant speech in [29], the stereo speech separation in [31]

tends to be more robust due to the use of spatial infor-

mation. In [7], GMM is used to model the MV and

IPD/ILD cues that contain spatial information and the

EM algorithm is used to estimate the model parameters

and to derive the T-F mask. The combination of IPD/ILD

and MV improves the separation quality as compared

with the use of either only IPD/ILD or only MV and is

achieved by using a coarse search to find the optimum

set of weighting parameters which adjust the contribu-

tion of these cues. However, the optimum set of weighting

parameters varies with different acoustic environment,

i.e., the level of reverberation. In addition, the GMM used

in [7] is a classical shallow architecture, and its represen-

tation ability is limited and can cause the performance

degradation when the reverberation is present in the

mixtures.

In this paper, similar to [7] and [31], we also consider

multiuser stereo source separation problem. Instead of

using GMM and EM or the RBMs, however, we use DNNs

(composed of sparse autoencoders and softmax classifier)

to estimate the source occupation likelihood at each T-F

point. More specifically, the sparse autoencoders are used

to learn the general model and the combined features—

IPD/ILD and MV were used as the input of the DNNs.

In other words, the low level features, i.e., IPD/ILD and

MV, are now modelled with DNNs composed of sparse

autoencoders and softmax classifier, and the output of

the DNNs is an estimated soft mask (ratio mask). The

network parameters are obtained through training by a

greedy layer-wise training method [32] based on a train-

ing dataset containing observed speech signals (with one

source speech signal placed at a different direction with

respect to the microphones). With the trained sparse

autoencoder and softmax classifer, we extract high-level

features (i.e., spatial information of the sources) from

the low-level features of the mixtures and generate the

soft mask based on the softmax regression. The weight-

ing parameters which are used to adjust the contribution

of different cues will be learned automatically by the

deep neural networks. Hence, different from [7, 31], we

improve the separation quality by using the deep neu-

ral networks to find the optimum set of parameters and

weighting the contributions of the cues (IPD/ILD, MV)

automatically.

3 System overview
Our proposed system consists of the following four

stages: (1) extraction of the low-level features (i.e. MV

and ILD/IPD) (details in Section 4), (2) training of the

deep networks (details in Section 5.1), (3) estimation

of the probabilities that each T-F unit of the mixtures

belongs to different sources and generation of the soft

mask (details in Section 5.2), and (4) reconstruction of

the target signal from the soft mask and the mixture

signal. The system architecture is shown in Fig. 1. It

should be noted that the neural nets are trained using

isolated utterances (utterances originating from a single

direction, i.e., clean speech utterances convolved with

the binaural room impulse responses (BRIRs) corre-

sponding to that direction) rather than the mixtures in

stage (2).

The inputs to the system are the stereo (left and right)

channel mixtures. We perform short-time Fourier trans-

form (STFT) to both channels and obtain the T-F rep-

resentation of the input signals, XL(m, f ) and XR(m, f )

where m = 1, · · · ,M and f = 1, · · · , F are the

time frame and frequency bin indices, respectively. The

low-level features, i.e., MV and IPD/ILD, are then esti-

mated at each T-F unit (details in Section 4). Next,

we group the low-level features into N blocks (only

along the frequency bins f ). Each block includes K fre-

quency bins, for example, the n-th block contains the

bins ((n − 1)K + 1, · · · , nK), where K = F
N . We build

N deep networks with each corresponding to one block

and use them to estimate the direction of arrivals (DOAs)

of the sources. Through unsupervised learning and the

sparse autoencoder [11] in deep networks, high-level fea-

tures (coded positional information of the sources) are

extracted and used as inputs for the output layer (i.e., the

softmax regression) of the networks. The output of soft-

max regression is a source occupation probability (i.e.,

the soft mask) of each block (through the ungroup oper-

ation, T-F units in the same block are assigned with

the same source occupation probability) of the mixtures.

Then, the sources can be recovered by the inverse STFT

(ISTFT).

The key point of our proposed system is the train-

ing of deep networks and the generation of soft mask.

From the view point of practical applications, we create

a dataset of sensor signals with each containing only a

single source (i.e., source speech convolved with RIRs)

from different directions with respect to the sensors

for training and use the orientations of single source

as the ground truth (described in Section 5.2). With

the training dataset, the deep networks are trained by

using a greedy layer-wise training method [32]. With the

trained deep networks, we can get the probability of each

T-F block of the input mixtures associated with differ-

ent DOAs. Using a predefined threshold, we can esti-

mate the number of sources, the DOAs of the sources,

and a matrix of probabilities which we call “Probabil-

ity Mask” in Fig. 1. Through the ungroup operation,

we assign the same probability to T-F units that are

belonging to the same block. Then, we obtain the soft

mask for speech separation from the Probability Mask.
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Fig. 1 System architecture for deep neural network-based time-frequency masking for stereo source separation

The N deep networks in our proposed system have the

same architecture, and the details about the architecture

and training method can be found in Section 5. Next,

we discuss the low-level features used in our proposed

system.

4 The low-level features for localization based
separation

Many features can be used for stereo speech separation,

such as IPD or ITD [33], ILD or interaural intensity dif-

ferences (IID) [33], and the MV cue. It is widely acknowl-

edged that ITD or IPD tends to be more robust in the low

frequency range, whereas ILD or IID is more robust in

the high-frequency range [34]. In [7], Alinaghi et al. found

that the MV cues are more distinct compared to binau-

ral cues (IPD/ILD) for the sources placed close to each

other, whereas binaural cues IPD/ILD offer better separa-

tion results when the sources are distant from each other.

These observations motivated Alinaghi et al. to combine

these cues, introducing a new robust algorithm to improve

the speech separation quality. We follow the work in [7]

and use IPD/ILD andMV as the low-level features and the

inputs to the neural networks. The nonlinear relationship

between the source occupation probabilities and the input

low-level features can be found by the deep networks and

thus has the potential to further improve the speech sepa-

ration quality. These low-level features are used to derive

high-level features to be classified by sparse autoencoders.

The MV and the IPD/ILD cues can be calculated from

the mixtures.

The MV [8] can be derived as

z(m, f ) =
W(f )̃x(m, f )∥∥W(f )̃x(m, f )

∥∥ (1)

with x̃(m, f ) =
[XL(m,f ),XR(m,f )]T∥∥∥[XL(m,f ),XR(m,f )]T

∥∥∥
, where W(f ) is a

whitening matrix, with each row being one eigenvec-

tor of E(̃x(m, f )̃xH(m, f )), the superscript H is Hermitian

transpose, and ‖•‖ is Frobenius norm.

ILD and IPD are the phase and amplitude difference

between the left and right channel and calculated as

follows [9]:

α(m, f ) = 20log10

(∣∣∣∣
XL(m, f )

XR(m, f )

∣∣∣∣
)

(2)

φ(m, f ) = ∠

(
XL(m, f )

XR(m, f )

)
(3)

where |•| takes the absolute value of its argument, and

∠(•) finds the phase angle.

Concatenating the MV and ILD/IPD features, a fea-

ture vector can be obtained at each T-F unit, which is

ũ
(
m, f

)
=

[
ẑT

(
m, f

)
,α

(
m, f

)
,φ

(
m, f

)]T
∈ R

6. Since the

inputs to the DNNs are real numbers, we use the real part

and imaginary part of z as the features, i.e., ẑ
(
m, f

)
=[

Re(zL(m, f )), Im(zL(m, f )), Re(zR(m, f )), Im(zR(m, f ))
]
.

Then, we group all the feature vectors ũ
(
m, f

)
into

N blocks (only along the frequency bins). For each

block, we get a 6K-dimensional feature vector u(n,m) =[
ũT (m, (n − 1)K + 1) , · · · , ũT (m, nK)

]T
∈ R

6K , where

K is the number of the frequency bins in each block, as

the input to the deep networks.

5 The deep networks
As described in Section 3, we group the low-level features

intoN blocks and buildN individual deep networks which

have the same architecture to classify the DOAs of the cur-

rent input mixture in each block. The architecture of the

deep network is shown in Fig. 2 and composed of deep

autoencoder [11] and softmax classifier. More specifically,
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Fig. 2 The architecture for the deep neural networks in our proposed system. The deep neural networks are composed by the deep autoencoder

for high-level feature extraction and the softmax classifier for soft mask generation and was trained by the greedy layer-wise training method

for stereo speech separation task, the target location is a

natural choice of the output of the network. As shown in

Fig. 3, we split the whole space to J ranges with respect to

the sensors and separate the target and interferers based

on different orientation ranges (DOAs with respect to the

listener) where they are located. We apply the softmax

classifier (to be discussed in Section 5.2) to perform the

classification task and the inputs to the classifier, i.e., the

high-level features: a(2) which are extracted from the low-

level features (ILD/IPD and MVs), are produced by the

deep autoencoder. Assuming that the position of the tar-

get in the current input sample remains unchanged, the

deep network estimates the probability p
(
gj = j|u(n,m)

)
of

the orientation of the current input sample belonging to

the orientation index j, where gj is the j-th output unit

of the network and the u(n,m) is the m-th input sample

of the n-th block (group). With the estimated orientation

(obtained by selecting the maximum probability index) of

each input sample, we cluster the samples which have the

same orientation index to get the probability mask and

obtain the soft mask from the probability mask through

the ungroup operation. Note that each T-F unit in the

same block is assigned the same probability. The num-

ber of sources can also be estimated from the probability

mask by using a predefined probability threshold, typically

chosen as 0.1 in our experiments (we only considered two

or three sources and found empirically this value to be

suitable).

5.1 Deep autoencoder

An autoencoder (shown in Fig. 4) is an unsupervised

learning algorithm based on backpropagation. It aims

to learn an approximation û of the input u. It appears

to be learning a trivial identity function; but by using

some constraints on the learning process, such as limit-

ing the number of neurons activated (sparsity constraint),

it discloses some interesting structures about the data

[11, 35, 36]. As shown in Fig. 4, the output of the autoen-

coders can be defined as û = sigm
(
Ŵ(2)a(1) + b̂(2)

)
with

a(1) = sigm
(
W(1)u + b(1)

)
, where the function sigm(u) =

1
1+exp(−u)

is the logistic function, W(1) ∈ R
V×Y , b(1) ∈

R
V , Ŵ(2) ∈ R

Y×V , and b̂(2) ∈ R
Y , V is the number of

hidden layer neurons, and Y is the number of input layer

neurons, which is the same as that of the output layer

neurons [37]. In our proposed system, we set Y = 6K ,

where K is the number of frequency bin in each block

(group).

With the sparsity constraint, most of the neurons in

the autoencoder are assumed to be inactive. More specif-

ically, ρ̂v = 1
M

M∑
m=1

av
(
u(m)

)
is the average activation of

unit v with the m-th input sample u(m), where av =

sigm
(
w

(1)
v u + b

(1)
v

)
denotes the activation value of the

hidden layer unit v in the autoencoder andM is the num-

ber of training samples. With the sparsity constraint ρ̂v =
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Fig. 3 Split the space to J ranges. We split the whole space to J

ranges with respect to the sensors, and separate the target and

interferers based on different orientation ranges (DOAs with respect

to the listener) where they are located

ρ, the cost function Jsparse(W,b) of the sparse autoencoder

can be written as follows

Jsparse(W,b) =
1

2
‖u − û‖2 + β

V∑

v=1

KL(ρ ‖ ρ̂v)

V∑

v=1

KL(ρ ‖ ρ̂v) =

V∑

v=1

ρ log
ρ

ρ̂v
+ (1 − ρ) log

1 − ρ

1 − ρ̂v

(4)

where β controls the weight of the penalty term and ρ is a

parameter preset before training, typically very small [37].

More details about the sparse autoencoder can be found

in online lecture notes [38, 39].

In our proposed system, the cost function Jsparse(W,b)

is minimized using the limited memory BFGS (L-BFGS)

optimization algorithm [40, 41] and the single-layer sparse

autoencoder is trained by using the backpropagation

algorithm.

Fig. 4 A classical architecture of single layer autoencoder

After the finishing of the training of single-layer sparse

autoencoder, we discard the output layer neurons, the rel-

ative weights Ŵ(2), bias b̂(2), and only save the input layer

neurons W(1) and b(1). The output of the hidden layer—

a(1) are used as the input samples of the next single-layer

sparse autoencoder. We can build a deep autoencoder by

repeating these steps and stacking two or more layers of

independently trained sparse autoencoders. The stacking

procedure is shown on the right side of Fig. 5. The fea-

tures II shown on figure are the high-level features and can

be used as the training dataset for the softmax regression

discussed next.

Many studies on deep autoencoders have shown that

with the deep architecture (more than one hidden layer),

more complex representation can be obtained from the

simple low-level features. As a result, the underlying reg-

ularities of the data can be captured, leading to better

performance, e.g., in recognition [23]. Thismotivates us to

use deep autoencoder (two hidden layers) in our proposed

system.

5.2 Softmax classifier

In our proposed system, the softmax classifier [37], based

on softmax regression, was used to estimate the proba-

bilities of the current input, i.e., the m-th sample u(n,m)

in the n-th block, belonging to the orientation index j, by
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Fig. 5 The illustration of greedy layer-wise training and stacking. The left part of the figure shows the procedure of greedy layer-wise training, and

the right part of the figure shows the procedure of stacking of sparse autoencoders

the deep autoencoder with the extracted high-level fea-

tures a
(2)
(n,m)

as inputs of the classifier. The architecture of

the softmax classifier we used is shown in Fig. 6. In our

proposed system, we represent the label of the training

dataset as a one-hot vector (with 1 for the target class and

0 for others): g(n,m) ∈ R
J . Then, the cross-entropy loss

Fig. 6 A classical architecture of the softmax classifier

(cost function) of the softmax classifier can be written as

follows:

Jsoftmax(W
(3)) = −

1

M

⎡
⎣

M∑

m=1

(g(n,m) )
ThW

(
a
(2)
(n,m)

+ b
)
⎤
⎦

+
λ

2

J∑

j=1

I∑

i=1

(wj,i)
2

hW

(
a
(2)
(n,m)

)
=

1

J∑
j=1

e
wj

(
a
(2)
(n,m)

+b
)

[
e
wT
1

(
a
(2)
(n,m)

+b
)
· · · e

wT
J

(
a
(2)
(n,m)

+b
)]
T

(5)

The softmax classifier can be trained by using the

L-BFGS algorithm based on a dataset, in order to find an

optimal parameter setW(3) for minimizing the cost func-

tion Jsoftmax

(
W(3)

)
. In our proposed system, the dataset

for softmax classifier training is composed by two parts.

The first part is the input sample—a
(2)
(n,m)

(features II), cal-

culated from the last hidden layer of the deep autoencoder.

The second part is the data label—g(n,m) ∈ R
J , where the

j-th element—gj of g(n,m) will be set to 1 when the input

sample belongs to the source located in the range of DOAs

of index j.
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5.3 Stacking deep autoencoder and softmax classifier

We stack the softmax classifier and deep autoencoder

together after the training is completed, as shown on the

left part of Fig. 7. Finally, we use the training dataset

and the L-BFGS algorithm to fine-tune the deep net-

work with the initialized parameters W(1), b(1), W(2),

b(2), W(3), b(3) obtained from the sparse autoencoders

and softmax classifier training. The training phase of the

sparse autoencoders and softmax classifier are called pre-

training phase, and the stacking/training of the overall

network, i.e., deep network, is called fine-tuning phase.

In the pre-training phase, the shallow neural networks,

i.e., sparse autoencoders and softmax classifier, are train-

ing individually, using the output of current layer as the

input for the next layer. In the fine-tuning phase, we use

the L-BFGS algorithm (i.e., a gradient descent method) to

minimize the difference between the output of the deep

network and the label of the training dataset. The gradi-

ent descent works well because the initialized parameters

obtained from the pre-training phase include a signifi-

cant amount of “prior” information about the input data

through unsupervised learning [11].

6 Experiments
In this section, we first describe the generation of the

datasets for training and testing and the setup of the train-

ing parameters of the deep networks. Similar to [7], dif-

ferent sentences from different speakers were convolved

with real BRIRs to generate the stereo mixtures with room

effects. The algorithms in [7] and [42] are used as base-

lines. We then apply both our proposed system and the

basline algorithms to these mixtures to separate the tar-

get source. The separation quality is evaluated in terms of

both signal distortion and perceptual speech quality.

6.1 Dataset generation

Similar to [7], the datasets that we used for training and

testing are generated by the convolution of the original

speech signal with real BRIRs. The original speech sources

(target and interferer) were randomly selected from the

TIMIT dataset which is a continuous speech corpus con-

taining 6300 sentences: 10 sentences spoken by each of

630 speakers from 8major dialect regions of the USA [43].

10 sentences spoken by 2 female speakers, who were ran-

domly selected from the training usage set of the TIMIT,

as the training dataset; another 30 sentences spoken by 4

male and 2 female speakers, who were randomly selected

from the test usage set of the TIMIT, as the test dataset,

where 10 sentences spoken by 2males as the target source,

5 sentences spoken by 1 male, and 5 sentences spoken by

1 female as the interferer 1; and the remaining sentences

which were spoken by 1 male and 1 female as the inter-

ferer 2. Details about the sentences and speaker IDs can

be found in Table 1. All the sentences were normalized to

have equal root mean square magnitude and cut to a same

length (about 2.6 s for each sentence) for consistency.

The BRIR datasets used in our experiments were

recorded using a dummy head and torso in five different

types of room, named as X, A, B, C, and D at the Univer-

sity of Surrey, measured by Hummersone [44] and can be

download from the website [45]. Room X is a very large

room, and the reflections were truncated in the recordings

Fig. 7 The illustration of stacking deep autoencoder and softmax classifier
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Table 1 Details about the speakers and the sentences, including speakers and sentences ID, their genders, dialect regions (DR), used in

training or test dataset and used as the target or interferers

ID Sex DR Sentence ID Dataset Source type

TBR0 F 1 21 201 381 111 291 Training /

MEM0 F 1 297 333 207 387 117 Training /

BJK0 M 2 95 275 5 185 365 Testing Target

RMS1 M 7 407 137 317 47 227 Testing Target

CTT0 M 5 28 208 388 118 298 Testing Interferer 1

PKT0 F 3 8 188 368 98 278 Testing Interferer 1

BDG0 M 3 383 113 293 23 203 Testing Interferer 2

UTB0 F 5 124 304 34 214 394 Testing Interferer 2

to produce anechoic recordings. We aim to evaluate the

speech separation quality in reverberant environments.

For this reason, in our experiments, we only used the

BRIRs recorded in rooms A, B, C, and D. Different from

other similar datasets, such as [46], this dataset has higher

angular resolution and many different acoustic proper-

ties, which enabled us to evaluate the performance of the

system over different acoustic environments with finer

resolution. Table 2 shows the different acoustical proper-

ties of the rooms used in our evaluation. In each room,

acoustic sources were placed 1.5 m away from the dummy

head and had the same height as the dummy head, and

the head related transfer function (HRTF) is applied in

the BRIRs to mimic sound sources that would have been

heard by human ears.

In our experiments, the training dataset, used to train

the deep networks, is generated by the convolution of

real BRIRs with the clean speech signals of two ran-

domly selected speakers from the TIMIT dataset. More

specifically, we use the speech signals observed at the

microphones with a single source placed in different ori-

entations with respect to themicrophones, rather than the

mixtures, to train the DNNs, and the orientations of the

source are used as the ground truth. We consider speak-

ers of different genders in training and test dataset for the

evaluation of the generalization ability of the proposed

system. More specifically, the training data set is gen-

erated by the convolution of clean New England female

speech signals with all the real BRIRs (from −90° to +90°

with a step of 5°), and the sentences spoken by the male

Table 2 Room acoustic properties in initial time delay gap (ITDG),

direct-to-reverberant ratio (DRR), and reverberation time (T60)

Room Type ITDG (ms) DRR (dB) T60 (s)

A Medium office 8.73 6.09 0.32

B Small class room 9.66 5.31 0.47

C Large lecture theatre 11.9 8.82 0.68

D Large seminar room 21.6 6.12 0.89

speakers from a different dialect region are (DR in Table 1)

are used as the target source in the test set.

Different from the training dataset, the test set is com-

posed by mixtures and used for the evaluation of speech

separation quality, including determined and underdeter-

mined cases, i.e., for two sources (target and interferer

1) and three sources (target, interferer 1 and interferer 2)

with just two microphones as receivers. More specifically,

similar to [7], the mixtures in the test dataset were gen-

erated by adding the reverberant target and interfering

signals together which is equivalent to assuming super-

position of their respective sound fields. The target and

interfering signals are the randomly selected sentences

from different male and female speakers, each convolved

with the real BRIRs. For the determined case, the target

source was located at 0° azimuth, and the azimuth of inter-

ferer 1 is varied from −90° to +90° with the step of 5°. For

the underdetermined case, we add the speech signals from

interferer 2 which was located at 30° to the mixtures of the

determined case.

6.2 Experimental setting

Even though all the sources (including both the target and

interferers) at different azimuths are recovered in our pro-

posed system, the performance of the system is reported

based on the quality of the recovered target located at 0°

azimuth, with the azimuths of the interferers varied from

−90° to +90° with step of 5°, similar to [7]. The sampling

rate fs used in signal sampling, STFT and ISTFT operation

was 16 kHz (fs = 16 kHz). We used a Hanning win-

dow of 2048 (128 ms) samples with 75 % overlap between

the neighboring windows for the STFT. The frequency

grouping parameters K and N are set to 16 and 128,

respectively. Hence, we use 128 deep networks to gener-

ate the soft mask, with each deep network corresponding

to a block. For each deep network, the input layer includes

96 units and V = 256 neurons for each of the hidden

layers. J = 37 neurons were used in the output layer, cor-

responding to azimuths from −90° to +90° with a step

of 5°.



Yu et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2016) 2016:7 Page 10 of 18

The learning parameters are set as follows, the weight

decay parameter λ = 1 × 10−4, the weight of the penalty

term β = 3, and the sparsity parameter ρ = 4 × 10−3.

The maximum number of iterations is set to 300. The

parameters for the training of the softmax classifier are

set as follows. The weight decay parameter λ = 1 × 10−4

and the maximum number of iterations was set to 200.

In the fine-tuning phase, the weight decay parameter was

changed to λ = 3 × 10−3.

For speech separation performance evaluation, we con-

sider SDR [47] and PESQ [48] and the algorithms in [7, 42]

as the baseline. In the evaluation, we consider both deter-

mined and undetermined cases and test the performance

of our proposed system in different reverberation condi-

tions, spatial diffuse noises, training dataset conditions,

unseen rooms, block size K, and network types. The sepa-

ration results including the comparison with the baseline

methods are shown in Section 6.3.

6.3 Experimental results

In this section, we first test the performance of the pro-

posed system under different training dataset configura-

tions (the training set with full or half of the azimuths

as discussed earlier) and different levels of reverberation

for determined and underdetermined cases. Finally, we

present the separation results for the mixtures corrupted

by different levels of spatially diffuse noises (SNR = 5 and

10 dB).

6.3.1 Reverberation effect

We use the four reverberant rooms, i.e., rooms A, B, C and

D, to evaluate the performance. The acoustical properties

of the four rooms can be found in Table 2 in Section 6.1.

Figure 8 presents the SDRs of the separated signals with

different DOAs of the interferer 1 and different rooms,

for the determined case, where the deep networks used

for soft mask generation were trained by the training set.

Compared with the two baseline methods, we obtain at

least 2-dB improvement in rooms B andD, when the inter-

fering speech is placed far away from the target source.

However, we obtain similar performance to the baseline in

rooms A and C. It can be seen that with different reverber-

ation times (T60s) and direction to reverberation ratios

(DRRs), the proposed system performs generally more

robust than the baseline methods and the performance of

the proposed system does not decrease as much as the

baseline methods when the level of room reverberation

increases. Similar to [7], it can be seen that the separation

Fig. 8 SDRs performance comparison between the proposed system and the baseline methods among the rooms A, B, C, and D, in determined

case, without noise
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Fig. 9 SDRs performance comparison between the proposed system and the baseline methods among the rooms A, B, C, and D, in

underdertermined case, without noise

quality of our proposed system depends on the acoustic

parameters T60 and DRR.

The separation result for the underdetermined case

is presented in Fig. 9. It can be seen that, compared

with the two baseline methods, we obtain about 1-dB

improvement for rooms B and D, and similar perfor-

mance for rooms A and C, except for the situation that

the target and interferer are close to each other. Com-

pared with Fig. 8, it can be seen that the SDRs of the

proposed system decrease for about 1 dB and the per-

formance of our proposed system decreases with the

increase in the number of the sources within the mix-

tures. Compared with Fig. 8, it can be seen that the

SDRs of the proposed system decrease for about 2 dB

and the PESQs of the proposed system decrease about

0.5. It can be seen that, similar to the baseline meth-

ods, the performance of our proposed system decreases

with the increase in the number of sources within the

mixtures.

From Figs. 8 and 9, we see that the proposed system

is more robust to the acoustic parameters, i.e. the DRRs

and T60s than the baseline methods, with at least 1 dB

improvement in SDR. A summary of the PESQ results is

represented in Table 3.

The comparison between the proposed system and the

baseline methods suggests that the deep networks are able

to provide more robust estimation results for the time-

frequency mask even though blocking was used in our

system.

6.3.2 Spatially diffuse noise

Similar to [7], we also evaluated the performance of the

proposed system in the case of the mixtures corrupted by

spatially diffuse noise. Same as Section 6.3.1, we repeat

the experiments, but adding two different levels of noise

Table 3 Results of the baseline methods and the proposed

method, for reverberant mixtures with the average over rooms A,

B, C, and D in perceptual evaluation of speech quality (PESQ)

Case Methods Room A Room B Room C Room D Mean

Determined

Mandel 2.34 2.07 2.34 1.96 2.18

Alinaghi 2.39 2.11 2.38 2.01 2.22

Propsoed 2.34 2.22 2.30 2.14 2.25

Underdetermined

Mandel 2.1 1.85 2.14 1.81 1.98

Alinaghi 2.15 1.87 2.18 1.84 2.01

Propsoed 2.06 1.97 2.19 1.85 2.02
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Fig. 10 SDR performance comparison between the proposed system and baseline methods in room C, with the SNR = 10 dB, for the determined

and underdetermined cases

in the mixtures, i.e., the signal-to-noise-ratios (SNRs)

were set to 5 and 10 dB (with respect to the mixture),

respectively.

Figure 10 presents the SDRs comparison between

the proposed system and the baseline methods in

room C, with the SNR = 10 dB, for the determined

and underdetermined cases. It can be seen that, for

the determined case, the proposed system gives about

1 dB improvement in all of the azimuths, and for the

underdetermined case, it also gives about 1 dB improve-

ment in most of the azimuths. Similar to the results

without noise, the performance of the deep network-

based time-frequency masking technique also decreases

with the increase in the number of sources presented in

mixtures.

Figure 11 presents the SDRs for determined and under-

determined cases with SNR = 5 or 10 dB of the mixtures.

We see that the SDRs of the proposed system decrease

Fig. 11 SDRs for determined and underdetermined cases with SNR = 5 dB or 10 dB of the mixtures
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about 1.5 dB in determined case and about 1 dB in under-

determined case when the SNR of mixtures is varied from

10 to 5 dB. Furthermore, as compared with the SDRs in

Section 6.3.1 without noise, we can see that there is only

about 1 dB performance drop when the SNR = 10 dB.

The Fig. 12 shows a separation example for room

D, including the spectrogram of the mixture signals

(Fig. 13a), original target source signals (Fig. 13b), sepa-

rated target source signals (Fig. 13d), and the soft mask for

separation (Fig. 13c), with the deep networks trained using

the full training set, for the determined case (the interferer

1 was located at +15°).

6.3.3 Generalization to different rooms

In this subsection, we consider the generalization perfor-

mance of our proposed system to unseen rooms in the

determined and underdetermined cases. To this end, we

selected each of the BRIRs recording from the four rooms

in turn to generate the training set and use all the BRIRs

to generate the test set. For instance, as shown in the top

left plot of Fig. 13, we choose the BRIR of the room A to

generate the training dataset and use all the BRIRs to gen-

erate the test dataset. The interferer is varied from −90°

to +90° with a step of 5°. As shown in Fig. 13 (determined

case) and Fig. 14 (underdetermined case), the system that

was trained by the BRIRs of room D got the best general-

ization performance and the system trained by the BRIR

of room A got the worst. Consider the different acoustic

properties of these four rooms, we could find that the gen-

eralization performance of the proposed system increases

with the complexity of the acoustic properties of the room.

Compared with Figs. 8 and 9, the SDR performance of

the proposed system trained by room D decreases about

4 dB in rooms A and C and increases about 1 dB in

rooms B and D, both in determined and underdetermined

cases.

6.3.4 Evaluation in different block size K

As mentioned in Section 3, we group K frequency bins

to a block and use a corresponding DNN to generate a

probability from the input features for each block. In this

subsection, we evaluate the effect of different block size

K for the determined case. As shown in Fig. 15, the sys-

tem gives the best performance when the block size K = 4

and the SDR performance decreases with the increase of

the K. However, we chose K = 8 in our proposed system,

Fig. 12 A separation example for room D, including the spectrogram of the mixture signals, original target source signals, separated target source

signals, and soft mask for separation. The mixtures include two sources (interferer 1 was located at +15°), without the noise. aMagnitude

spectrogram of the mixture signals. bMagnitude spectrogram of the original target source signals. c The soft mask for separation. dMagnitude

spectrogram of separated target source signals
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Fig. 13 SDRs to unseen rooms, in determined case. We select each of the four rooms to generate the training dataset and use the BRIRs from the

four rooms (one by one respectively) to generate the test dataset. The interferer is varied from −90° to +90° with the step of 5°

Fig. 14 SDR to unseen rooms, in underdetermined case. We select each of the four rooms to generate the training dataset and use the BRIRs from

the four rooms (one by one respectively) to generate the test dataset. The interferer is varied from −90° to +90° with the step of 5°
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Fig. 15 SDR performance vs. different K, in determined case

Fig. 16 SDRs comparisons among the proposed system, the RNNs method, Mandel method, and Alinaghi method, in underdetermined case
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Fig. 17 SDRs comparisons among the proposed system, Mandel method, Alinaghi method, and the RNNs method, in underdetermined case

for the similar SDR performance and less computational

complexity.

6.3.5 Evaluation in different neural network type

Room reverberation effect on speech signal can be

regarded as signal extension in time. From this viewpoint,

the recurrent neural networks (RNNs)may perform better

than the DNNs in dealing with reverberation. In this sub-

section, we evaluate the use of the deep recurrent neural

networks (DRNNs) in our system, instead of using DNNs.

The DRNNs which were originally used by Huang et al.

for monaural speech separation [27, 28] are employed

here. The differences between the proposed system and

the method in [27, 28] reside in the training dataset and

ground truth. More specifically, we use the orientations of

the sources as the ground truth and the isolated observed

speech signals as training dataset, instead of using the sep-

arated source speech and mixture as the ground truth and

training dataset. As shown in Figs. 16 and 17, we com-

pare the SDR performance among the proposed system

(DNNs method), the RNNs method, the Mandel method,

and the Alinaghi method in four rooms, for the deter-

mined and underdetermind cases. It can be seen that the

RNNs method get the best performance in all rooms, with

about 1 dB improvement over the DNNs method. It is

worth noting that the computational complexity of the

RNNs method appears to be high and deserves further

study in our future work.

7 Conclusions
Wehave presented a new localization-based stereo speech

separation system using deep networks. Compared with

GMM/EM-based algorithm in [7, 42], the deep network-

based techniques provide better results in SDR and PESQ

when room reverberation is presented in the mixtures. It

is also shown that they are robust to spatially diffuse noise.

In our future work, it would be interesting to compare the

proposed method with other existing deep network-based

separation algorithms such as [30, 31].
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