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Quantum Entropy

Two Related Motivations

Entropy of black holes remains one of the most important and precise
clues about the microstructure of quantum gravity.

Can we compute exact quantum entropy of black holes including all
corrections both microscopically and macroscopically?

Holography has emerged as one of the central concepts regarding the
degrees of freedom of quantum gravity.

Can we find simple example of AdS/CFT holgraphy where we might be
able to ‘prove’ it exactly?
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Quantum Entropy

Black Hole Entropy Bekenstein [72]; Hawking[75]

For a BPS black hole with charge vector (q, p), for large charges, the
leading Bekenestein- Hawking entropy precisely matches the logarithm of
the degeneracy of the corresponding quantum microstates

A(q, p)

4
= log(d(q, p)) + O(1/Q)

Strominger & Vafa [96]

This beautiful approximate agreement raises two important questions:

What exact formula is this an approximation to?

Can we systematically compute corrections to both sides of this
formula, perturbatively and nonperturbatively in 1/Q and may be
even exactly for arbitrary finite values of the charges?

Finite size corrections to the Bekenstein-Hawking entropy.Atish Dabholkar (Paris) Localization & Exact Holography April 2011, Chicago 5 / 40
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AdS2/CFT1 Holography

Quantum Entropy and AdS2/CFT1 Sen [08]

Near horizon geometry of a BPS black hole is AdS2 × S2. Quantum
entropy can be defined as as partition function of the AdS2.

W (q, p) =

〈
exp

[
− i qi

∫ 2π

0
Ai dθ

]〉finite

AdS2

.

Functional integral over all string fields. The Wilson line insertion is
necessary so that classical variational problem is well defined.

The black hole is made up of a complicated brane configuration. The
worldvolume theory typically has a gap. Focusing on low energy states
gives CFT1 with a degenerate, finite dimensional Hilbert space. Partition
function d(q, p) is simply the dimension of this Hilbert space.
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AdS2/CFT1 Holography

Functional Integral Boundary Conditions

For a theory with some vector fields Ai and scalar fields φa, we have
the fall-off conditions

ds20 = v

[(
r2 + O(1)

)
dθ2 +

dr2

r2 + O(1)

]
,

φa = ua + O(1/r) , Ai = −i e i (r − O(1))dθ , (1)

Magnetic charges are fluxes on the S2. Constants v , e i , ua fixed to
attractor values v∗, e

i
∗
, ua

∗
determined purely in terms of the charges,

and set the boundary condition for the functional integral.

Quantum entropy is purely a function of the charges (q, p).

The functional integral is infrared divergent due to infinite volume of the
AdS2. Holographic renormalization to define the finite part.
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AdS2/CFT1 Holography

Renormalized functional integral

Put a cutoff at a large r = r0.

Lagrangian Lbulk is a local functional, hence the action has the form

Sbulk = C0r0 + C1 + O(r−1
0 ) ,

with C0,C1 independent of r0.

C0 can be removed by a boundary counter-term (boundary
cosmological constant). C1 is field dependent to be integrated over.

Quantum Entropy gives a proper generalization of Wald entropy to include
not only higher-derivative local terms but also the effect of integrating
over massless fields. This is essential for duality invariance and for a
systematic comparison since nonlocal effects can contribute to same order.

Atish Dabholkar (Paris) Localization & Exact Holography April 2011, Chicago 8 / 40
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AdS2/CFT1 Holography

To summarize, our most ambitious goal will be twofold.

1 Compute d(q, p) from bound state dynamics of branes.

2 Compute W (q, p) from the bulk for arbitrary finite charges by
evaluating the functional integral over string fields in AdS2.
Check if the two agree.

The first problem has now been solved in some cases. We now know the
exact spectrum of both half and quarter-BPS dyonic black holes for all
charges at all points in the moduli space for certain N = 4 theories.
Dijkgraaf, Verlinde, Verlinde; [96] Gaiotto, Strominger, Yin; David, Sen [05];

David, Jatkar, Sen; Dabholkar, Nampuri; Dabholkar, Gaiotto [06];

Sen; Dabholkar, Gaiotto, Nampuri; Cheng, Verlinde [07];

Banerjee, Sen, Srivastava; Dabholkar, Gomes, Murthy [08]
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Microscopic Counting

Exact microscopic degeneracy of half-BPS black holes

To be concrete let us consider a particularly simple example.

Heterotic string compactified on T 5 × S1. A state with momentum n

and winding w along S1 is half-BPS if in the right-moving ground
state with arbitrary left-moving excitations. Partition function of 24
left-moving transverse bosons gives

Z (τ) =
1

η24(τ)
,

Dabholkar & Harvey [89]

The degeneracy depends only on the T-duality invariant N := n w

and is given by

d(N) =

∫

C

e−2πiτNZ (τ)dτ ,
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Microscopic Counting

Rademacher expansion

d(N) admits an exact expansion

d(N) =

∞∑

c=1

Kl(N;−1; c)

(
2π

c

)14

Ĩ13(
4π

√
N

c
)

where

Ĩ13(z) =
1

2πi

∫ ǫ+i∞

ǫ−i∞

1

t14
et+

z2

4t dt,

is a modifield Bessel function of index 13, and

Kl(N;−1; c) =
∑

a,d∈(Z/Z)∗

ad=1mod c

exp(
2πidN

c
) · exp(−2πia

c
).

is called the “Kloosterman sum”. This sum simplifies for c = 1 being equal
to 1, but for other values of c it shows a nontrivial dependence on N.
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Microscopic Counting

Our goal now will be to evaluate the formal expression for W(q,p) by
doing the functional integral over string fields in AdS2.

This is of course highly nontrivial and may even seem foolishly
ambitious.

Surprisingly, one can go quite far using localization techniques to
reduce the functional integral to finite number of ordinary integrals.

With enough supersymmetry, it seems possible to even evaluate these
ordinary integrals all the way under certain assumptions.

Bulk of my talk will be about some recent progress in the evaluations of
W (q, p) functional integral using localization.

Atish Dabholkar (Paris) Localization & Exact Holography April 2011, Chicago 12 / 40
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Localization

Localization

Consider a supermanifold M with an odd (fermionic) vector field Q

be such that Q2 = H for some compact bosonic vector field H.

To evaluate an integral of a Q-invariant function h with Q-invariant
measure we first deform it

I :=

∫

M

dµ h e−S → I (λ) :=

∫

M

dµ h e−S−λQV ,

where V is a fermionic, H-invariant function.

It is easy to see I ′(λ) = 0 and thus I (λ) is independent of λ. Hence,
instead of at λ = 0, one can evaluate it at λ = ∞ where semiclassical
approximation is exact.

Witten[88, 91], Duistermaat-Heckmann [82], Schwarz & Zaboronsky [95]
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Localization

Choice of the Supercharge

In this limit, the functional integral localizes onto the critical points of
the functional SQ := QV . This reduces the functional integral over
field space to a this localizing submanifold.

To apply to our problem, we pick Q which squares to H = 4(L− J).
Here L generates rotation of the Euclidean AdS2 which is a disk and
J generates a rotation of S2, so H is compact.

Given this choice of Q we choose the localizing action functional to be

SQ = QV ; V = (QΨ,Ψ)

where Ψ denotes schematically all fermions of the theory.

To apply this directly in string theory is not feasible given the state of
string field theory. So we will first solve a simpler problem in supergravity.
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Localization

A simpler problem in supergravity

Consider Ŵ (q, p) which is the same functional integral but in
supergravity coupled to only nv + 1 vector multiplets.

This is still a complicated functional integral over spacetime fields.

We will show using localization that this functional integral reduces to an
ordinary integral over nv + 1 real parameters. Huge simplification.

To apply localization inside the functional integral, one requires an
off-shell formulation. In general, off-shell supergravity is notoriously
complicated but for N = 2 vector multiplets an elegant formalism exists
that gauges the full superconformal group.
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Motivation Strategy Supergravity String Theory Conclusions

Off-shell supergravity for Localization

Multiplets and Off-shell supersymmetry transformations

Gravity multiplet: Vielbein, spin connection, auxiliary fields and
fermions

Vector multiplet: vector field AI
µ, complex scalar X I and an SU(2)

triplet of auxiliary fields Y I
ij and fermions. Here i is SU(2) doublet.

X
I =

(
X I ,ΩI

i ,A
I
µ,Y

I
ij

)

δΩi = 2 /DX ǫi +
1

2
εijFµνγ

µνǫj + Yijǫ
j + 2Xηi ,

where ǫ, η are the (superconformal) supersymmetry parameters.
de Wit, Lauwers, van Holten, Van Proeyen [1980]
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Motivation Strategy Supergravity String Theory Conclusions

Off-shell supergravity for Localization

Importance of being off-shell

The beauty of off-shell supergravity consists in the fact that the
supersymmetry transformations are specified once and for all and do
not depend on the choice of the action. This is crucial for localization
both at conceptual and computational level.

In particular, auxiliary fields which are normally eliminated from the
physical action, will play an important role and will acquire nontrivial
position dependence for the localizing instanton solutions.

With this setup, the bosonic part (QΩ,QΩ) of the QV action is a sum of
perfect squares. Setting each of these terms to zero gives a set of
first-order differential equations. Happily, it turns out they can be solved
exactly to obtain an analytic solution.
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Motivation Strategy Supergravity String Theory Conclusions

Off-shell supergravity for Localization

The bosonic part of the localizing action (QΨ,QΨ)

cosh(η)
[
K − 2sech(η)H)

]2

+ 4 cosh(η)
[
H1 + H tanh(η)

]2
+ 4 cosh(η)[H2

0 + H2
2 + H2

3 ]

+ 2A

[
f −01 − J − 1

A
(sin(ψ)J3 − sinh(η)J1)

]2

+ 2B

[
f +01 + J − 1

B
(sin(ψ)J3 + sinh(η)J1)

]2

+ 2A

[
f −03 +

1

A
(sin(ψ)J1 + sinh(η)J3)

]2

+ 2B

[
f +03 +

1

B
(sin(ψ)J1 − sinh(η)J3)

]2
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Motivation Strategy Supergravity String Theory Conclusions

Off-shell supergravity for Localization

+ 2A

[
f −02 +

1

A
(sin(ψ)J0 + sinh(η)J2)

]2

+ 2B

[
f +02 −

1

B
(sin(ψ)J0 + sinh(η)J2)

]2

+
4 cosh(η)

AB
[sinh(η)J0 − sin(ψ)J2]

2

+
4 cosh(η) sinh2(η)

AB
[J21 + J23 ] ,

where
H I
a := eµa ∂µH

I , J Ia := eµa ∂µJ
I ,

A := cosh(η) + cos(ψ) , B := cosh(η)− cos(ψ) .

It is understood that all squares are summed over the index I .
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Motivation Strategy Supergravity String Theory Conclusions

Localizing Instanton and its Renormalized action

Localizing instanton Solution

X I = X I
∗
+

C I

r
, X̄ I = X̄ I

∗
+

C I

r

Y I1
1 = −Y I2

2 =
2C I

r2
, f Iµν = 0 .

Solves a major piece of the problem by identifying the off-shell field
configurations onto which the functional integral localizes. Thus, a
functional integral is reduced to a finite dimensional ordinary integral. This
instanton is universal and does not depend on the physical action.

Scalar fields move away from the attractor values X I
∗
inside the AdS2

‘climbing up’ the entropy function potential. Q supersymmetry is still
maintained because auxiliary fields get nontrivial position dependence.

Atish Dabholkar (Paris) Localization & Exact Holography April 2011, Chicago 20 / 40



Motivation Strategy Supergravity String Theory Conclusions

Localizing Instanton and its Renormalized action

Localizing instanton Solution

X I = X I
∗
+

C I

r
, X̄ I = X̄ I

∗
+

C I

r

Y I1
1 = −Y I2

2 =
2C I

r2
, f Iµν = 0 .

Solves a major piece of the problem by identifying the off-shell field
configurations onto which the functional integral localizes. Thus, a
functional integral is reduced to a finite dimensional ordinary integral. This
instanton is universal and does not depend on the physical action.

Scalar fields move away from the attractor values X I
∗
inside the AdS2

‘climbing up’ the entropy function potential. Q supersymmetry is still
maintained because auxiliary fields get nontrivial position dependence.

Atish Dabholkar (Paris) Localization & Exact Holography April 2011, Chicago 20 / 40



Motivation Strategy Supergravity String Theory Conclusions

Localizing Instanton and its Renormalized action

We now need to evaluate the physical action on the localizing
instantons after proper renormalization to compute Sren(C , q, p)

(−i(X I F̄I − FI X̄
I )) · (−1

2
R) +

[
i∇µFI∇µX̄ I

+
1

4
iFIJ(F

−I
ab − 1

4
X̄ IT

ij
ab εij)(F

−abJ − 1

4
X̄ JT

ij
ab εij)

− 1

8
iFI (F

+I
ab − 1

4
X ITabij ε

ij)T ij
ab εij −

1

8
iFIJY

I
ijY

Jij − i

32
F (Tabij ε

ij)2

+
1

2
iF

Â
Ĉ − 1

8
iF

ÂÂ
(εikεjl B̂ij B̂kl − 2F̂−

abF̂
−

ab)

+
1

2
i F̂−abF

ÂI
(F−I

ab − 1

4
X̄ IT

ij
ab εij)−

1

4
i B̂ijFÂIY

Iij + h.c.
]

− i(X I F̄I − FI X̄
I ) · (∇aVa −

1

2
V aVa −

1

4
|Mij |2 + DaΦi

αDaΦ
α
i ) .
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Motivation Strategy Supergravity String Theory Conclusions

Localizing Instanton and its Renormalized action

Renormalized action

Substituting our localizing instanton solution in the above action we
can extract the finite piece after removing the leading divergent piece
linear in r0 by holographic renormalization.

After a tedious algebra, one obtains a remarkably simple form for the
renormalized action Sren as a function of {C I}.

Sren(φ, q, p) = −πqIφI + F(φ, p) (2)

with φI := e I
∗
+ 2iC I and F given by

F(φ, p) = −2πi

[
F
(φI + ipI

2

)
− F̄

(φI − ipI

2

)]
,

where e I
∗
are the attractor values of the electric field.
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Motivation Strategy Supergravity String Theory Conclusions

Localizing Instanton and its Renormalized action

Note that Sren(φ, q, p) equals precisely the classical entropy function
E(e, q, p). In particular, exp(Sren) is the topological string partition
function. The physics is however completely different.

E(e, q, p) depends on the the attractor values X∗ of the scalar fields.
Sren(φ, q, p) depends on the value of the scalar fields at the center of
AdS2. This difference is very important.

Even though scalar fields are fixed at the boundary, their value at the
origin can fluctuate and we can integrate over them for large values.

It is something of a surprise that the renormalized action for these very

off-shell field configurations takes the same form as the on-shell classical
entropy function.
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Motivation Strategy Supergravity String Theory Conclusions

Reducing the problem to supergravity

We at present lack a useful definition of functional integral over string
fields. To apply localization, we proceed in three steps.

Three Steps:

1 Integrate out massive string and Kaluza-Klein modes to obtain a local
Wilsonian effective action for the massless supergravity fields.

2 Solve a supergravity problem to evaluate Ŵ (q, p).

3 Use the results in Step II to evaluate W (q, p) There are Zc orbifolds
of AdS2 that have the same boundary conditions and hence
contribute to the functional integral. Hence, W (q, p) has the form

W (q, p) =
∞∑

c=1

Wc(q, p) .

Sen[09, 10], Pioline & Murthy [10]
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Motivation Strategy Supergravity String Theory Conclusions

Reducing the problem to supergravity

Evaluation Wc(q, p) is related to the problem of evaluation of Ŵ (q, p) in
a simple way, under certain assumptions.

General form of the answer for c = 1

W1(n,w) =

∫

MQ

eSren(n,w ,φ) |Zinst(φ, n,w)|2 Zdet(φ) [dφ]µ .

[dφ]µ is the induced measure on the localizing manifold.

|Zinst |2 is contribution of instantons localized at north pole of S2 and
anti-instantons localized at the south pole.

Zdet(φ) is one loop determinant.
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Motivation Strategy Supergravity String Theory Conclusions

Reducing the problem to supergravity

No off-shell formalism with N = 4 with finite number of auxiliary fields. So
we will proceed in the N = 2 language.

Assumptions

Drop two gravitini multiplets. These contain four vector fields but no
scalar fields. If the black hole does not couple to these vector fields, it
should be reasonable to drop this.

Drop hyper multiplets. The off-shell supersymmetry transformations
of the vector multiplets do not change by adding hypers. So our
localizing instantons will continue to exist.

Drop D-terms. A large class of D-terms are known not contribute to
Wald entropy. de Wit, Katmadas, Van Zalk [10]
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Motivation Strategy Supergravity String Theory Conclusions

Reducing the problem to supergravity

Prepotential

For our example with this N = 2 restriction, the prepotential is

F (X , Â) = −1

2

X 1

X 0

23∑

a,b=2

CabX
aX b − Â

64

X 1

X 0
,

in the Type-IIA frame dual to the heterotic frame. Here Cab is the
intersection matrix for the 22 2-cycles of K3. The charge configuration
(n,w) corresponds in this frame to choosing p1 = −w and q0 = n.

Renormalized Action

Sren = −πnφ0 − 4π
w

φ0
+
π

2

w

φ0
Cabφ

aφb .
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Motivation Strategy Supergravity String Theory Conclusions

Putting it all together

Evaluation of W1

Induced Measure and one-loop determinants

Using the fact that the scalar manifold is special Kähler, can deduce the
measure over the φ-space knowing the measure on X -space.

1

w2

23∏

a=0

dφa .

The localizing action is purely quadratic in the fields. Hence the
determinant factor is one.

Instantons

Euclidean NS5-branes contribute for quarter-BPS dyons. However, the
half-BPS dyons preserve additional supersymmetries that are broken by the
NS5-brane which leads to additional fermions zero modes. Hence no
brane-instanton contribution.
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Form of the Integral

The φ-integration then takes the form

∫
dφ1

φ0

∫
dφ0φ0

w2

23∏

a=2

dφa exp

[
−πnφ0 − 4π

w

φ0
+
π

2

w

φ0
Cabφ

aφb
]
.

Substituting t = −4πw/φ0 and a = φa/φ0, we get

∫
da

∫
dt

t3
exp[t +

4π2N

t
]

∫ 23∏

a=2

dφa exp
[
− t

8
Cabφ

aφb
]
.

Residual Duality Symmetry

The residual a → a+ 1 is an unbroken discrete duality symmetry of the
integrand as well as the charge configuration. Hence must be modded out.
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Final Answer for W1(n,w)

Conformal compensator

The φ0 variable can be thought of as the conformal compensating field.
Conformal factor of the metric has wrong sign kinetic term in Euclidean
gravity and hence its contour of integration must be analytically continued
to make the functional integral well-defined.

The Gaussian integrals can be readily done to obtain

C

∫ +∞

−i∞

dt

t14
exp[t +

z2

4t
] with z = 4π

√
N .

Up to an overall constant, this is precisely the integral representation of
the first term in the Rademacher expansion — I13(4π

√
N) !
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Nonpertrubative Corrections

There is a family of freely acting supersymmetric Zc orbifolds with twists
on AdS2 × S2 on shifts along S1. The shift can be effected by modifying
the gauge field at infinity. Hence the Wilson line gives a phase both for
winding and momentum. Since the orbifold action is freely acting, one
obtains the same localizing instanton solution but the renormalized action
is divided by c because of the reduced volume.

For each c we then obtain

∑

a,d∈(Z/Z)∗

e2πi(
nd
c
−

wa
c
)

∫
da

∫
dt

c2t3
exp[t +

4π2N

c2t
]Zdet(c) .

The one-loop determinant has a c dependence.

Atish Dabholkar (Paris) Localization & Exact Holography April 2011, Chicago 31 / 40



Motivation Strategy Supergravity String Theory Conclusions

Putting it all together

One-loop determinant

It is easy to see that

Zdet(c) =
Zdet(1)

c12

which is a consequence of the fact that each scalar field has a zero mode,
there are 24 scalar fields. The nonzero modes cancel between bosons and
fermions. Factor of 1/

√
c for each zero mode by ultralocality.

For each c we then obtain

C

∑

a,d∈(Z/Z)∗

e2πi(
nd
c
−

wa
c
) 1

c14
Ĩ13(

4π
√
nw

c
) .

with the same overall constant as before. We seem to reproduce the full
Rademacher expansion (almost!).
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Kloosterman Sum and T-duality Invariance.

The Kloosterman sum satisfies

Kl(n,−w ; c) = Kl(nw ,−1; c)

if a and d satisfy ad = 1mod(c). Integers a and d naturally enter our
story from the Wilson lines but without the mod c constraint.

Our orbifold is a symmetric twist on AdS2 × S2 and a shift in the
momentum-winding lattice. Twisting of right-moving fermions gives
ground state energy. The level matching condition becomes

1

c
(1− 1

c
) +

ad

c2
= 0 mod

1

c
,

which is precisely ad = 1 mod c . Plausible explanation, but not clear
why other shifts are not allowed, nor if such geometric reasoning is OK.
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Summary

Localization of the functional integral in Sugra and String Theory

We have shown that full functional integral of supergravity coupled to
vector fields on AdS2 localizes onto the submanifold MQ of critical
points of the functional SQ where Q is a specific supersymmetry.

We have obtained exact analytic expression for a family of nontrivial
complex instantons as exact solutions which are completely universal

and independent of the form of the physical action.

In string theory, there are nonperturbative contributions from
orbifolds as well as from brane instantons.
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Summary and Outlook

W(n, w ) reproduces the full Rademacher expansion

W (n,w) = C

∞∑

c=1

Kl(N;−1; c)

(
2π

c

)14

Ĩ13(
4π

√
N

c
)

with

Ĩ13(z) =
1

2πi

∫ ǫ+i∞

ǫ−i∞

1

t14
et+

z2

4t dt,

and

Kl(N;−1; c) =
∑

d∈(Z/Z)∗

ad=1mod c

exp(
2πidN

c
) · exp(−2πia

c
).

Some of the assumptions need to be better justified. Requires off-shell
realization of at least the charge Q with vector, hypers, D-terms or N = 4
field content. Interesting problem in supergravity.
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N = nw d(N) log d(N) 4π
√
N log Ĩ13(4π

√
N)

1 24 3.17 12.56 3.94

2 324 5.78 17.77 6.23

3 3200 8.07 21.76 8.31

4 25650 10.15 25.13 10.24

17 6599620022400 29.51 51.81 28.87

18 21651325216200 30.70 53.31 30.03

19 69228721526400 31.86 54.77 31.16

20 216108718571250 33.00 56.19 32.28
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Summary and Outlook

Comparison with Earlier Work

It seems possible to compute finite size corrections to the entropy of BPS
black holes in a systematic way going well beyond Bekenstein-Hawking.

The leading Bessel function was partially derived in Dabholkar [04] and
Dabholkar, Denef, Pioline, Moore [05]. However,

it relied on the unproven OSV conjecture Ooguri, Strominger, Vafa [04];

it was at best an asymptotic expansion since there was no systematic
way of determining the measure or the range of integration since the
OSV conjecture applied to a mixed ensemble.

it was not clear how to include the nonperturbative corrections to
obtain for example the subleading Bessel functions.

it was not clear how to incorporate holomorphic anomaly
systematically.
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Summary and Outlook

Our derivation follows from first principles using standard rules of
functional integration and localization (under certain assumptions and
caveats) within the framework of holography.

Functional integral localizes onto a nontrivial localizing instanton
solution of the off-shell theory . Auxiliary fields play an important role.

The measure or the range of integration can be determined following
usual collective coordinate quantization. Gives the exact Bessel
function and not just the asymptotic expansion.

Nonperturbative corrections from orbifolds give subleading Bessel
functions. Their sum is natural in microcanonical ensemble. It is
justified to keep subleading saddles because of localization.

Nonholomorphic terms in 1PI action come from integrating the
massless fields in AdS2
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Summary and Outlook

From Gravity to Number Theory

The Rademacher expansion is an exact expansion. It is rapidly
convergent but at no finite order can one assert integrality of the
sum. It is a nontrivial fact that all these terms add up to an integer
and that we can see the entire expansion from the bulk.

This indicates an underlying integral structure to quantum gravity. If
we have two very close but different integers, the bulk theory will be
able to distinguish the two. This would be never evident from
semiclassical Bekenstein-Hawking formula.

It is intriguing that two AdS2 bulk theories which may have very
different field content but which yield the same integer W (q, p) are
expected to be dual since they will be both dual to the same CFT1.
This is rare but possible.
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Summary and Outlook

Outlook

On a philosophical note, our computation indicates that the quantum
gravity in the bulk is as fundamental as the boundary field theory,
with its own rules of computation. It is an exact dual description
rather than a coarse-grained description. It is worth exploring the
AdS2/CFT1 duality further including correlation functions.

It is remarkable that a bulk functional integral can reproduce an
integer. The fact that the bulk is able to ‘see’ this quantization may
be relevant for information retrieval.

One may use the wealth of data from microscopic counting to learn
about the nonperturbative rules of the functional integral of quantum
gravity and about the structure of the string effective action. It is
useful to have explicit answers to compare with.
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