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LOCALIZATION FOR BRANCHING BROWNIAN MOTIONS
IN RANDOM ENVIRONMENT
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Abstract. We consider a model of branching Brownian motions in random environ-
ment associated with the Poisson random measure. We find a relation between the slow popu-
lation growth and the localization property in terms of the replica overlap. Applying this result,
we prove that, if the randomness of the environment is strong enough, this model possesses
the strong localization property, that is, particles gather together at small sets.

1. Introduction. We studied in [13] the population growth rate and the diffusivity of
the population density for branching Brownian motions in random environment associated
with the Poisson random measure. We proved there that our model possesses the phase transi-
tion in terms of the population growth rate. Our purpose in this paper is to show the existence
of the phase transition in terms of the diffusive behavior of the population density.

Smith and Wilkinson [14] introduced a model of branching processes in random en-
vironment as a generalization of the classical Galton-Watson process. This model is then
generalized to the continuous time model ([10]) and the model of branching random walks
in random environment ([2], [8] and [15]). In particular, Yoshida [15] proved that, if the ran-
domness of the environment is moderated by that of the random walk, the population growth
rate is the same as its expectation with positive probability and the population density satis-
fies the central limit theorem in terms of convergence in probability, that is, particles spread
over the whole space diffusively. These two results are then refined to hold almost surely by
Hu and Yoshida [8] and Nakashima [11], respectively. Yoshida [15] also showed that, if the
randomness of the environment is strong enough, the population growth rate is less than its
expectation almost surely. Furthermore, Hu and Yoshida [8] proved that this model possesses
the localization property, that is, particles gather together at small sets. The latter two proper-
ties contrast with those of the non-random environment model, and arise from the fluctuations
in the randomness of the environment.

Here we consider a model of branching Brownian motions in time-space random envi-
ronment associated with the Poisson random measure; the places occupied by Poisson points
are suitable for particles to live, and the branching rate of each particle is proportional to the
number of Poisson points which influence the particle. This model is introduced in [13] as
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a continuous counterpart of branching random walks in random environment, and is closely
related to Brownian directed polymers in random environment introduced by Comets and
Yoshida ([6]). We are now concerned with the diffusive behavior of the population density
for this model. To be precise, let P be the law of the branching Brownian motion in random
environment (see Section 2 below for the definition of our model). We denote by Nt(A) the
number of particles on A ⊂ Rd at time t and set N̄t := Nt(R

d ). We can then recognize Nt(·)
as a configuration measure of particles at time t on Rd . We associate a population density
ρt (dx) at time t defined by

ρt (dx) = Nt(dx)

N̄t

.

We obtained in [13] the continuous counterparts of the results by Yoshida [15] which we
mentioned above. In this paper, we show the following localization property (Corollary 2.3):
if the randomness of the environment is strong enough, then there exists a non-random positive
constant c > 0 such that

(1.1) lim sup
t→∞

ρ̄t ≥ c P -a.s.

Here U(x) is a closed ball centered at x ∈ Rd with unit volume and ρ̄t := supx∈Rd ρt (U(x))

is the density at the most populated site. We should note that this kind of the localization
property is studied for many models, such as directed polymers in random environment ([3],
[4], [5] and [6]), branching random walks in random environment ([8]), linear stochastic
evolutions ([16]) and linear systems ([17]).

Our result is a continuous counterpart of that established by Hu and Yoshida [8], and we
take an approach similar to theirs. However, unlike the discrete time model, the splitting time
of each particle is randomly determined. To overcome this difficulty, we use Ito’s formula
for semimartingales and the asymptotic equivalence between the quadratic variation and the
predictable quadratic variation of a martingale. We now explain how to obtain the localization
property of our model. Let M̄t be the normalization of N̄t with respect to its expectation (see
(2.1) below for the definition of M̄t ), which is a martingale as we proved in [13]. We can then
calculate the predictable quadratic variation of M̄t explicitly (Proposition 3.3). Moreover, by
applying Ito’s formula to − log M̄t and by the asymptotic equivalence as we mentioned above
(see also (4.6) below), − log M̄t is comparable to the replica overlap defined by

Rt =
∫

Rd
ρt (U(x))2 dx ,

which measures the degree to which pairs of particles meet together. In fact, we obtain the
following relation: if the randomness of the environment is strong enough, then there exists a
non-random positive constant c such that∫ t

0
Rs ds ≥ −c log M̄t for large t .
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We finally get (1.1) by combining this relation with the inequality ρ̄t ≥ Rt for any t ≥ 0 and
by the fact that the population growth rate is strictly less than its expectation almost surely as
we proved in [13] (see also Theorem 2.1 below).

2. Model and results.
2.1. Model. We begin by recalling the model of branching Brownian motions in ran-

dom environment introduced in [13]. Define R+ = [0,∞) and let η denote the Poisson
random measure on R+ × Rd with unit intensity on a probability space (M,G,Q). Namely,
η is a non-negative integer valued random measure such that η(A1), . . . , η(An) are mutually
independent for disjoint and bounded sets A1, . . . , An ∈ B(R+ × Rd ) and

Q(η(A) = k) = e−|A| |A|k
k! for A ∈ B(R+ × Rd) ,

where B(R+ × Rd ) is the family of all Borel measurable sets on R+ × Rd and | · | is the
Lebesgue measure on R1+d . Let {θt}t≥0 be the time shift operator of the Poisson random
measure, that is, for η ∈ M, θtη = θtη(ds, dx) = η({t} + ds, dx) identically for any s, t ≥ 0.
The notation θtη is often abbreviated to ηt . We denote by {Gt }t≥0 the family of the sub-σ -field
of G defined by

Gt = σ
(
η(A ∩ ((0, t] × Rd)), A ∈ B(R+ × Rd)

)
.

Let M = (Ω,F , {Ft }t≥0, {Bt }t≥0, {Px}x∈Rd , {θt }t≥0) be the Brownian motion on Rd ,
where {θt}t≥0 is the time shift operator of paths, that is, for ω ∈ Ω , Bt (θsω) = Bt+s (ω)

identically for any s, t ≥ 0. Note that we use the common notation {θt }t≥0 as the time shift
operators of paths and of the Poisson random measure, respectively. Denote by Vt the tube
around the graph {(s, Bs)}0<s≤t defined by

Vt = Vt(ω) = {(s, x) ∈ R+ × Rd ; s ∈ (0, t], x ∈ U(Bs(ω))} for ω ∈ Ω ,

where U(x) is a closed ball in Rd centered at x ∈ Rd with unit volume.
Let τ be a non-negative random variable on (Ω,F , Px), independently of the Brownian

motion, of exponential distribution with the mean 1; Px(τ > a) = e−a for any a ≥ 0. Fix a
parameter α > 0 and set

S = S(ω, η) = inf{t > 0 ; αη(Vt (ω)) > τ(ω)} for (ω, η) ∈ Ω × M .

Then we have
Px(S(·, η) > t) = Ex[e−αη(Vt)] .

Here we note that, if a path ω ∈ Ω is fixed, {η(Vt (ω))}t≥0 is a standard Poisson process on
the half line. In particular, the jump size of this process is equal to one Q-a.s. (for instance,
see [12, p. 472, Proposition 1.4]). Let {pn}∞n=0 be a probability function, that is, pn ≥ 0 for
any n ≥ 0 and

∑∞
n=0 pn = 1. In what follows, we assume p0 + p1 < 1 to avoid the case

where the numbers of particles do not increase for branching Brownian motions which are
introduced below. We define

m(q) =
∞∑

n=0

nqpn for q ≥ 0 .
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We also let I be an N ∪ {0}-valued random variable on (Ω,F , Px), independently of the
Brownian motion and τ , such that Px(I = n) = pn.

We now introduce the index sets. For each k in N , we define

K0
k = {()} , K1

k = {(k)} , Kn
k = {(k, k2, . . . , kn) ; k2, . . . , kn ∈ N} for n ≥ 2

and

Kk =
∞∐

n=0

Kn
k ,

where () is the empty sequence. In addition, it is useful to define

Kn
k = Kn+1

k for n ≥ 0 and Kk =
∞∐

n=0

Kn
k .

If k = (k, k2, . . . , kn) ∈ Kn
k for some n ≥ 1 and kn+1 ∈ N , then we define k · kn+1 =

(k, k2, . . . , kn, kn+1) ∈ Kn
k . By the same way, we identify (k) ∈ K0

k with () · k.
Let {Bk

t }t≥0 and τk, k ∈ Kk, be independent copies of {Bt }t≥0 and τ , respectively. De-
note by V k

t the tube Vt associated with the Brownian motion {Bk
t }t≥0, and by Sk the random

variable S with τ and Vt replaced by τk and V k
t , respectively. In addition, we set I () = 1 and

let Ik, k ∈ Kk \ K0
k , be independent copies of I , respectively.

Let us denote by K0, . . . , K0, . . . , K, K̄ the quantities K0
k , . . . ,K0

k , . . . , Kk, Kk with
k = 1, respectively. We consider the family of random variables T k and {Bk

t }t≥0 indexed by
k ∈ K on the measurable space (Ω×M,F⊗G) as follows; for each fixed (ω, η) ∈ Ω×M, let
T ()(ω, η) = 0 and B()

t (ω, η) = B
()
t (ω) identically for any t ≥ 0. We then define inductively

for k · k ∈ K̄,

T k·k = T k·k(ω, η)

=
{

T k(ω, η) + Sk·k(θT k(ω,η)ω, θT k(ω,η)η) if k ≤ Ik(ω)

∞ if k ≥ Ik(ω) + 1 ,

and

Bk·k
t = Bk·k

t (ω, η)

=




Bk
T k(ω,η)

(ω, η) + Bk·k
t (ω) − Bk·k

T k(ω,η)
(ω)

for T k(ω, η) ≤ t < T k·k(ω, η) if k ≤ Ik(ω)

∆ otherwise ,

where ∆ is a cemetery point. We use the notations Bk
t and T k to denote, respectively, the

position and the splitting time of the particle with index k of a branching Brownian motion.
More precisely, we can describe our branching Brownian motion as follows:
• At time 0, the Brownian particle with index 1 starts from B()

0 .
• The Brownian particle with index k ∈ K \ K0 splits into n Brownian particles with proba-

bility pn at site Bk
T k at time T k.
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• These Brownian particles, indexed by k · 1, k · 2, . . . , k · n, respectively, start from Bk
T k

independently.
Here we note that particles indexed respectively by k · 1, k · 2, . . . , k · n at time T k can be
identified with n particles starting from Bk

T k at time t in environment ηT k .
Let us introduce the notion of branching Brownian motions in random environment. We

define the probability measures {P η
x}x∈Rd and {P x}x∈Rd on (Ω × M,F ⊗ G), respectively,

by

P η
x = Px ⊗ δη and P x =

∫
M

Q(dη)P η
x ,

where δη is the Dirac measure at η ∈ M. We call (Ω × M,F ⊗ G, {{Bk
t }t≥0}k∈K, {T k}k∈K,

{P η
x}x∈Rd ) the branching Brownian motion in environment η with offspring distribution

{pn}∞n=0, and (Ω × M,F ⊗ G, {{Bk
t }t≥0}k∈K, {T k}k∈K, {P x}x∈Rd ) the branching Brownian

motion in random environment with offspring distribution {pn}∞n=0.
Let Nt(A) be the number of particles on the set A ∈ B(Rd ) at time t , that is,

Nt(A) =
∑

k·k∈K̄

1{T k≤t<T k·k, Bk·k
t ∈A} .

We denote by N̄t the total number of particles at time t , that is, N̄t = Nt(R
d ). We also use

the notation

Nt(f ) =
∑

k·k∈K̄

f (Bk·k
t )1{T k≤t<T k·k,Bk·k

t ∈Rd } for f ∈ Bb(R
d) ,

where Bb(R
d ) stands for the set of all bounded Borel measurable functions on Rd .

2.2. Results. In this subsection, we state the results in this paper. From now on, we
denote by P , P η, P , etc. the quantities Px , P

η
x , P x , etc. for x = 0, respectively. Let us define

(2.1) M̄t = e−λtN̄t

for

β := log{m(1) − e−α(m(1) − 1)} and λ = λ(β) := eβ − 1 .

Since M̄t is a positive P -martingale as we proved in [13], there exists a limit limt→∞ M̄t =:
M̄∞ P -a.s. Let ρt (dx) be the population density at time t defined by

ρt (dx) = Nt(dx)

N̄t

.

As we mentioned in Introduction, we proved in [13] that, if the randomness of the environment
is dominated by that of the Brownian motion, the properties of the population growth rate and
the population density are similar to the non-random environment model. In contrast with
these properties, if the effect from the randomness of the environment is strong enough, then
the situation is different from the non-environmental case. In fact, our model possesses the
phase transition in terms of the population growth rate as follows:
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THEOREM 2.1 ([13]). For d = 1 or 2, P (M̄∞ = 0) = 1 holds for any β > 0. On
the other hand, for d ≥ 3, there exists a positive constant β0(d) > 0 such that P (M̄∞ =
0) = 1 holds for any β > β0(d). Moreover, for any dimension d , there exists a non-negative
constant β1(d) ≥ 0 such that, for each β > β1(d),

lim sup
t→∞

log M̄t

t
< −c(β) P -a.s.

holds with some non-random constant c(β) > 0. In particular, we have β1(1) = β1(2) = 0
and β1(d) > 0 for d ≥ 3.

Theorem 2.1 means that the exponential growth rate of the population size is strictly less
than its expectation almost surely. Here we are concerned with the diffusive behavior of the
population density in the situation of Theorem 2.1. To confirm this property, we define

Rt =
∫

Rd
ρt (U(x))2 dx .

We can then recognize Rt as so-called the replica overlap by analogy with the spin glass
theory. We first prove the following relations between the slow population growth and the
localization property in terms of the replica overlap:

THEOREM 2.2. (i) Assume

(2.2) p0 = 0 , m(1) > 1 and m(2) < ∞ .

Then we have the relation

{M̄∞ = 0} ⊂
{∫ ∞

0
Rt dt = ∞

}
P -a.s.

Furthermore, if P (M̄∞ = 0) = 1 holds, then there exists a non-random positive constant
c > 0 such that ∫ t

0
Rs ds ≥ −c log M̄t for any t ≥ T

for some random positive constant T > 0.
(ii) Assume

(2.3) p0 = 0 and there exists L ≥ 2 such that pn = 0 for any n ≥ L + 1 .

Then we also have the relation

{M̄∞ = 0} =
{∫ ∞

0
Rt dt = ∞

}
P -a.s.

If P (M̄∞ = 0) = 1, then there exist non-random positive constants c1, c2 > 0 such that

−c1 log M̄t ≤
∫ t

0
Rs ds ≤ −c2 log M̄t for any t ≥ T

for some random positive constant T > 0.
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Let ρ̄t be the density at the most populated site at time t defined by

ρ̄t = sup
x∈Rd

ρt (U(x)) .

As we mentioned in [13], there exists a constant c = c(d) ∈ (0, 1) such that the inequality
cρ̄2

t ≤ Rt ≤ ρ̄t holds for any t ≥ 0. Hence, combining Theorems 2.1 and 2.2 (i), we finally
find that the branching Brownian motion in random environment possesses the following
strong localization property.

COROLLARY 2.3 (Localization). Assume the condition (2.2). Then, for any β>β1(d),
we have

lim sup
t→∞

ρ̄t ≥ lim sup
t→∞

Rt ≥ c′(β) P -a.s.

with some non-random positive constant c′(β) ∈ (0, 1).

3. Moments. To prove Theorem 2.2, we first calculate the conditional second mo-
ment of N̄t . Here, we assume that m(2) is finite. Define

c = m(2) − m(1) and µ = 1 − e−α .

Then we have the following lemma.

LEMMA 3.1. For any s, t ≥ 0 and f, g ∈ Bb(R
d ), we have

Eη
x [Nt+s(f )Nt+s(g)|Ft ⊗ Gt ] =

∑
k·k∈K̄

1{T k≤t<T k·k}
(

EBk·k
t

[eβηt (Vs)f (Bs)g(Bs)]

+ cµEBk·k
t

[ ∫
(0,s]

eβηt (Vu−)EBu [eβηt+u(Vs−u)f (Bs−u)]EBu[eβηt+u(Vs−u)g(Bs−u)] dηt (Vu)

])

+
∑

k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤t<T k·k
T k̃≤t<T k̃·k̃

}EBk·k
t

[eβηt (Vs)f (Bs)]EBk̃·k̃
t

[eβηt (Vs)g(Bs)] Q-a.s.

PROOF. We prove this lemma only for f ≡ 1 and g ≡ 1 because the proof for the
general case is done by a modification of the notation. Since we have

N̄t+s =
∑

k·k∈K̄

1{T k≤t<T k·k}
( ∑

k′·k′∈Kk

1{T k·k′≤t+s<T k·k′·k′ }
)

,

it follows that

N̄2
t+s =

∑
k·k∈K̄

1{T k≤t<T k·k}
( ∑

k′·k′,k̃′·k̃′∈Kk

1{
T k·k′≤t+s<T k·k′·k′

T k·k̃′≤t+s<T k·k̃′·k̃′
}
)

+
∑

k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤t<T k·k
T k̃≤t<T k̃·k̃

} ∑
k′·k′∈Kk

1{T k·k′≤t+s<T k·k′·k′ }
∑

k̃′·k̃′∈Kk

1{T k̃·k̃′≤t+s<T k̃·k̃′·k̃′ } .
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Hence the Markov property yields

Eη
x [N̄2

t+s |Ft ⊗ Gt ] =
∑

k·k∈K̄

1{T k≤t<T k·k}E
ηt

Bk·k
t

[N̄2
s ]

+
∑

k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤t<T k·k
T k̃≤t<T k̃·k̃

}E
ηt

Bk·k
t

[N̄s ]Eηt

Bk̃·k̃
t

[N̄s] .

We thus complete the proof by applying [13, Lemmas 3.1 and 3.3] to this equality. �

For two independent Brownian motions ({B1
t }t≥0, {P 1

x }x∈Rd ) and ({B2
t }t≥0, {P 2

x }x∈Rd )

on Rd , we let Px,y = P 1
x ⊗ P 2

y and abbreviate Px,x to Px . By combining Lemma 3.1 with
[13, Lemma 3.4], we obtain the following lemma.

LEMMA 3.2. For any s, t ≥ 0 and f, g ∈ Bb(R
d ), we have

Ex [Nt+s(f )Nt+s(g)|Ft ⊗ Gt ] =
∑

k·k∈K̄

1{T k≤t<T k·k}
(

eλsEBk·k
t

[f (Bs)g(Bs)] + cµe2λs

×EBk·k
t

[ ∫ s

0
e−λuEBu

[
exp

(
λ2

∫ s−u

0
|U(B1

v ) ∩ U(B2
v )| dv

)
f (B1

s−u)g(B2
s−u)

]
du

])

+
∑

k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤t<T k·k
T k̃≤t<T k̃·k̃

}e2λsE
Bk·k

t ,Bk̃·k̃
t

[
exp

(
λ2

∫ s

0
|U(B1

u) ∩ U(B2
u)| du

)
f (B1

s )g(B2
s )

]
.

In particular, we have

Ex [N̄2
t+s |Ft ⊗ Gt ]
= N̄t

(
eλs + cµe2λs

∫ s

0
e−λuE

[
exp

(
λ2

2

∫ 2(s−u)

0
|U(0) ∩ U(Bv)| dv

)]
du

)

+
∑

k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤t<T k·k
T k̃≤t<T k̃·k̃

}e2λsE
Bk·k

t ,Bk̃·k̃
t

[
exp

(
λ2

∫ s

0
|U(B1

u) ∩ U(B2
u)| du

)]
.

Let 〈M̄〉t be a predictable quadratic variation of the martingale M̄t , that is, 〈M̄〉t is a
unique predictable and locally integrable increasing process such that M̄2

t − 〈M̄〉t is a locally
square integrable martingale (see [7, p. 199, 7.28 Lemma]). Let us define

Mt(dx) = e−λtNt (dx) .

PROPOSITION 3.3. In above notation, we get the following equality.
(3.1)

〈M̄〉t =
{ ∞∑

n=1

(n − 1)2pn

}
µ

∫ t

0
e−λsM̄s ds + λ2

∫ t

0

( ∫
Rd

Ms(U(x))2 dx − e−λsM̄s

)
ds ,

t ≥ 0 .
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Before we prove this proposition, we should note the equality

(3.2)
∫

Rd
Ms(U(x))2 dx − e−λsM̄s = e−2λs

∫
Rd

∑
k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤s<T k·k
Bk·k

s ∈U(x)

}1{
T k̃≤s<T k̃·k̃
Bk̃·k̃

s ∈U(x)

} dx .

In particular, this implies that the second term of the right hand side of (3.1) is closely related
to the correlation among particles because the magnitude of the correlation is proportional to
the degree to which pairs of particles meet together as we mentioned in [13].

PROOF OF PROPOSITION 3.3. We prove this proposition only for p2 = 1 because the
proof for the general case is done by a modification of the notation. Then we have µ = λ. To
establish this proposition, it is enough to show the equality

Ex

[
M̄2

t+s −
∫ t+s

0

{
λe−λuM̄u + λ2

( ∫
Rd

Mu(U(x))2 dx − e−λuM̄u

)}
du

∣∣∣∣ Ft ⊗ Gt

]

= M̄2
t −

∫ t

0

{
λe−λuM̄u + λ2

( ∫
Rd

Mu(U(x))2 dx − e−λuM̄u

)}
du .

(3.3)

From Lemma 3.2, we get

(3.4)

E[M̄2
t+s |Ft ⊗ Gt ]

= e−2λtN̄t

(
e−λs + 2λ

∫ s

0
e−λuE

[
exp

(
λ2

2

∫ 2(s−u)

0
|U(0) ∩ U(Bv)| dv

)]
du

)

+ e−2λt
∑

k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤t<T k·k
T k̃≤t<T k̃·k̃

}E
Bk·k

t ,Bk̃·k̃
t

[
exp

(
λ2

∫ s

0
|U(B1

u) ∩ U(B2
u)| du

)]
.

On the other hand, (3.2) yields the equality

E

[ ∫ t+s

t

{
λe−λuM̄u + λ2

( ∫
Rd

Mu(U(x))2 dx − e−λuM̄u

)}
du

∣∣∣∣Ft ⊗ Gt

]
= (I) + (II)

for

(I) := E

[ ∫ t+s

t

λe−λuM̄u du

∣∣∣∣Ft ⊗ Gt

]
and

(II) := λ2
∫ t+s

t

e−2λu

∫
Rd

E

[ ∑
k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤u<T k·k
Bk·k

u ∈U(x)

}1{
T k̃≤u<T k̃·k̃
Bk̃·k̃

u ∈U(x)

}
∣∣∣∣Ft ⊗ Gt

]
dxdu.

Since M̄t is a martingale, a direct calculation implies

(I) = M̄t

∫ t+s

t

λe−λu du = (1 − e−λs)e−λtM̄t .
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Let us define

Ux,y = U(x) ∩ U(y) for x, y ∈ Rd .

Then, by the same way as that in the proof of Lemmas 3.1 and 3.2, we have

(II) = 2λe−2λt(III) + e−2λt(IV)

for

(III) : =
∑

k·k∈K̄

1{T k≤t<T k·k}
∫ s

0
EBk·k

t

[ ∫ u

0
e−λv

×EBv

[
exp

(
λ2

∫ u−v

0
|UB1

w,B2
w
| dw

)
λ2|UB1

u−v,B
2
u−v

|
]

dv

]
du

and

(IV) :=
∑

k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤t<T k·k
T k̃≤t<T k̃·k̃

} ∫ s

0
E

Bk·k
t ,Bk̃·k̃

t

[
exp

(
λ2

∫ u

0
|UB1

v ,B2
v
| dv

)
λ2|UB1

u,B2
u
|
]

du .

By Fubini’s theorem, we have

(III) =
∑

k·k∈K̄

1{T k≤t<T k·k}EBk·k
t

[ ∫ s

0
e−λv

×EBv

[ ∫ s

v

exp

(
λ2

∫ u−v

0
|UB1

w,B2
w
| dw

)
λ2|UB1

u−v,B
2
u−v

| du

]
dv

]

=
∑

k·k∈K̄

1{T k≤t<T k·k}EBk·k
t

[ ∫ s

0
e−λv

(
EBv

[
exp

(
λ2

∫ s−v

0
|UB1

w,B2
w
| dw

)]
− 1

)
dv

]

= N̄t

∫ s

0
e−λvE

[
exp

(
λ2

2

∫ 2(s−v)

0
|U0,Bw | dw

)]
dv − 1

λ
(1 − e−λs)N̄t

and

(IV) =
∑

k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤t<T k·k
T k̃≤t<T k̃·k̃

}(
E

Bk·k
t ,Bk̃·k̃

t

[
exp

(
λ2

∫ s

0
|UB1

v ,B2
v
| dv

)]
− 1

)

=
∑

k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤t<T k·k
T k̃≤t<T k̃·k̃

}E
Bk·k

t ,Bk̃·k̃
t

[
exp

(
λ2

∫ s

0
|UB1

v ,B2
v
| dv

)]
− (N̄2

t − N̄t ) .
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Hence we obtain

(I) + (II) = −M̄2
t + e−2λtN̄t

(
e−λs + 2λ

∫ s

0
e−λvE

[
exp

(
λ2

2

∫ 2(s−v)

0
|U0,Bw | dw

)]
dv

)

+e−2λt
∑

k·k,k̃·k̃∈K̄
k·k �=k̃·k̃

1{
T k≤t<T k·k
T k̃≤t<T k̃·k̃

}E
Bk·k

t ,Bk̃·k̃
t

[
exp

(
λ2

∫ s

0
|UB1

v ,B2
v
| dv

)]
.

Combining this with (3.4), we have (3.3) and the proof is completed. �

The next lemma gives us a lower bound of the exponential growth rate of N̄t .

LEMMA 3.4. Assume

(3.5) p0 = 0 and 1 < m(1) < ∞ .

Then we have the following inequality.

lim inf
t→∞

1

t
log N̄t ≥ − log

(
E

[
1

N̄1

])
P -a.s.

PROOF. We prove this lemma in a similar way to that in [8, Lemma 3.1.3]. Since we
obtain

N̄t+1

N̄t

=
∑

k·k∈K̄ 1{T k≤t<T k·k}
(∑

k′·k′∈Kk
1{T k·k′≤t+1<T k·k′·k′ }

)
∑

k·k∈K̄ 1{T k≤t<T k·k}
,

Jensen’s inequality implies(
N̄t+1

N̄t

)−1

≤ 1

N̄t

{ ∑
k·k∈K̄

1{T k≤t<T k·k}
( ∑

k′·k′∈Kk

1{T k·k′≤t+1<T k·k′·k′ }
)−1}

.

By the Markov property and by the space uniformity of Poisson random measures, we get

E

[( ∑
k′·k′∈Kk

1{T k·k′≤t+1<T k·k′·k′ }
)−1∣∣∣∣Ft ⊗ Gt

]
= EBk·k

t

[
1

N̄1

]
= E

[
1

N̄1

]

for T k ≤ t < T k·k. Thus we have

E

[
1

N̄t+1

∣∣∣∣ Ft ⊗ Gt

]
= 1

N̄t

E

[(
N̄t+1

N̄t

)−1∣∣∣∣Ft ⊗ Gt

]

≤ 1

N̄2
t

∑
k·k∈K̄

1{T k≤t<T k·k}E
[( ∑

k′·k′∈Kk

1{T k·k′≤t+1<T k·k′·k′ }
)−1∣∣∣∣ Ft ⊗ Gt

]

= 1

N̄t

E

[
1

N̄1

]
for any t ≥ 0. Inductively, we get

E

[
1

N̄n

]
≤ E

[
1

N̄1

]n

for any n ∈ N .
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Since E[1/N̄1] < 1 holds, Borel-Cantelli’s lemma implies

lim inf
n→∞

1

n
log N̄n ≥ − log

(
E

[
1

N̄1

])
P -a.s.

We complete the proof by letting n go infinity in the inequality

1

t
log N̄t ≥ n

n + 1
· 1

n
log N̄n for any t ∈ [n, n + 1) .

�

As a consequence of Lemma 3.4, if the condition (3.5) holds, we have

(3.6)
∫ ∞

0

1

N̄t

dt < ∞ P -a.s.

4. Proofs of Theorem 2.2 and Corollary 2.3. We are now in a position to prove
Theorem 2.2 and Corollary 2.3. In this section, we use the following notations: for functions
f and g defined on a set A ⊂ Rd , we write f � g on a set A if there exist two positive
constants c1, c2 > 0 such that c1g(x) ≤ f (x) ≤ c2g(x) holds for any x ∈ A. For functions f

and g defined on R+, we write f ∼ g as t → ∞ if limt→∞ f (t)/g(t) = 1 holds.

PROOF OF THEOREM 2.2. We first note that M̄t is a purely discontinuous martingale
because M̄t is of finite variation on each finite time interval (see [9, p. 41, 4.14 Lemma (b)]).
Therefore, if [M̄]t denotes the quadratic variation of M̄t , then we have

[M̄]t = M̄2
0 +

∑
0<s≤t

∆M̄s �=0

(∆M̄s)
2

for ∆M̄t := M̄t − M̄t−, t > 0. Furthermore, by Ito’s formula ([9, p. 57, Theorem 4.57])
applied to − log M̄t , we get

(4.1) − log M̄t = −
∫ t

0

1

M̄s−
dM̄s −

∑
0<s≤t

∆M̄s �=0

(
log M̄s − log M̄s− − ∆M̄s

M̄s−

)
.

On the other hand, since Proposition 3.3 yields∫ t

0

1

M̄2
s

d〈M̄〉s = λ2
∫ t

0
Rs ds −

{
λ2 − µ

∑∞
n=1

(n − 1)2pn

} ∫ t

0

1

N̄s

ds,

we see ∫ ∞

0

1

M̄2
t

d〈M̄〉t < ∞ ⇔
∫ ∞

0
Rt dt < ∞

from (3.6). Moreover, if
∫ ∞

0 Rt dt = ∞ holds, then we have

(4.2)
∫ t

0

1

M̄2
s

d〈M̄〉s ∼ λ2
∫ t

0
Rs ds as t → ∞.
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(i) Since there exists a constant C > 0 such that 0 ≤ x − log(1 + x) ≤ Cx2 for any
x ≥ 0, we obtain

−
∑

0<s≤t

∆M̄s �=0

(
log M̄s − log M̄s− − ∆M̄s

M̄s−

)
=

∑
0<s≤t

∆M̄s �=0

{
∆M̄s

M̄s−
− log

(
1 + ∆M̄s

M̄s−

)}

≤ C
∑

0<s≤t

∆M̄s �=0

(∆M̄s)
2

M̄2
s−

=
∫ t

0

1

M̄2
s−

d[M̄]s for any t > 0 ,

that is,

(4.3) − log M̄t ≤ −
∫ t

0

1

M̄s−
dM̄s + C

∫ t

0

1

M̄2
s−

d[M̄]s for any t > 0 .

Assume
∫ ∞

0 Rt dt < ∞, that is,
∫ ∞

0 (1/M̄2
t ) d〈M̄〉t < ∞. Since we know{∫ ∞

0

1

M̄2
t

d〈M̄〉t < ∞
}

⊂
{∫ ∞

0

1

M̄2
t−

d[M̄]t < ∞
}

P -a.s.

from [7, p. 222, 8.30 Corollary] and{∫ ∞

0

1

M̄2
t

d〈M̄〉t < ∞
}

⊂
{

lim
t→∞

∫ t

0

1

M̄s−
dM̄s exists and is finite

}
P -a.s.

from [7, p. 222, 8.32 Theorem], − log M̄∞ is finite by (4.3), that is, M̄∞ is strictly positive.
(ii) Assume

∫ ∞
0 Rt dt = ∞, that is, (4.2) holds. Then we get

lim
t→∞

∫ t

0

1

M̄s−
dM̄s

/( ∫ t

0

1

M̄2
s

d〈M̄〉s
)

= 0 P -a.s.

by [7, p. 247, 9.38 Corollary] and by the equality∫ t

0

1

M̄2
s

d〈M̄〉s =
〈 ∫ ·

0

1

M̄s−
dM̄s

〉
t

.

On the other hand, since (2.3) implies

(4.4) 0 ≤ ∆Nt ≤ (L − 1)Nt− for all t > 0 P -a.s. ,

we have

(4.5) − log M̄t � −
∫ t

0

1

M̄s−
dM̄s +

∫ t

0

1

M̄2
s−

d[M̄]s for any t > 0

by (4.1) and the relation x − log(1 + x) � x2 on [0, L − 1]. Furthermore, we obtain

(4.6)
∫ t

0

1

M̄2
s−

d[M̄]s ∼
∫ t

0

1

M̄2
s

d〈M̄〉s as t → ∞
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by [7, p. 291, 10.7] because (4.4) yields the inequality

E

[(
∆M̄T

M̄T −

)2

; T < ∞
]

= E

[(
∆N̄T

N̄T −

)2

; T < ∞
]

≤ (L − 1)2 < ∞

for any stopping time T . Hence we get

− log M̄t∫ t

0 Rs ds
� −

∫ t

0

1

M̄s−
dM̄s

/( ∫ t

0

1

M̄2
s

d〈M̄〉s
)

+
∫ t

0

1

M̄2
s−

d[M̄]s
/( ∫ t

0

1

M̄2
s

d〈M̄〉s
)

→ 1 as t → ∞,

by (4.2) and (4.5), which completes the proof. �

PROOF OF COROLLARY 2.3. Theorems 2.1 and 2.2 imply P (
∫ ∞

0 Rt dt = ∞) = 1 for
any β > β1(d). Therefore, in a similar way to that in Theorem 2.2 (ii), we have

lim inf
t→∞

1

t

∫ t

0
Rs ds ≥ −c1 lim sup

t→∞
log M̄t

t
> c1 · c(β) =: c′(β) P -a.s. ,

whence the inequality lim supt→∞ Rt ≥ c′(β) follows. From the inequality ρ̄t ≥ Rt for any
t ≥ 0, we complete the proof. �
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