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LOCALIZATION FOR DERIVED CATEGORIES 
OF (g, K)-MODULES 

JOSEPH BERNSTEIN AND VALERY LUNTS 

0. INTRODUCTION 

0.1. This paper arose from an attempt to solve the following problem. Let 
(g, K) be a Harish-Chandra pair, i.e. g is a complex reductive Lie algebra, 
and K is an algebraic group with an action K -- Aut(g) and an embedding 
k = Lie K c g, satisfying some standard conditions (see 1.1 below). Let Z be 
the center of the enveloping algebra U(g) . Fix a regular character 0: Z -- C. 
Let ((g, K) be the category of (g, K)-modules and t,(g, K) c l((g, K) the 
subcategory consisting of modules annihilated by Ker 0 . Then by the localiza- 
tion theorem this category X (g, K) can be described geometrically. Namely, 
fix a Borel subalgebra b c g and a dominant weight A corresponding to 0. 
Consider the algebra D, of twisted differential operators on the flag space X 
of g. Then X4/g, K) = J((DZ, K), the K-equivariant D,-modules on X. 

This result allows us to study many properties of Harish-Chandra modules 
geometrically. But it does not give a geometric interpretation of Ext-groups of 
modules in t, (g, K). Namely, let M, N E 4t (gi, K). From the point of 
view of representation theory the interesting objects are Ext.,, (, K) (M, N), the 
Ext-groups in the category of all (g, K)-modules. But these Ext's do not admit 
localization since arbitrary (g, K)-modules do not localize. 

Our main result is a geometric interpretation of these Ext-groups and, more 
precisely, of the corresponding derived category. Let us describe it. 

Let to(g, K) c l((g, K) be the subcategory of 0-finite modules. That is, 
each element m of M E Ito(g, K) is annihilated by some power of Ker 0. 
Recall the localization for the category to(g, K) (precise definitions will be 
given later). Let G be the algebraic group of automorphisms of g, H c G a 
maximal torus, [ = Lie H. The flag variety X has a natural H-monodromic 
structure X -- X. Let At(Dk) denote the category of weakly H-equivariant 
Dk-modules. Elements of 1#(Dk) are called monodromic D-modules on X. 
The enveloping algebra U(h) acts naturally by endomorphisms of Ae(DX). 
Let l: U(h) -- C be a character and 0k (Dk) c l#(Dk) be the subcategory 
of A-finite modules. Suppose that K fixes A (for example, this holds if K 
is connected). Then we may consider the category of K-equivariant A-finite 
monodromic modules 01k(DkV, K). Assume now that A is a regular dominant 
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weight corresponding to the (regular) central character 0. Then by the local- 
ization theorem 

A(g, K) -k0(Dk, K). 

Let Db(g, K) = Db (J'(g, K)) be the bounded derived category of (g, K)- 
modules. Consider the full subcategory Do (g, K) c Db (g, K) of complexes 
with cohomologies in Ito(g, K). We want to find a geometric counterpart of 

DM(g, K). 0~~ 
Consider X as a K-variety and recall the K-equivariant derived category 

Di (DX) of Di-modules introduced in [BL 1]. This is a triangulated category 
that has all the usual geometric and functorial properties of its nonequivariant 
analogue. Below we use the same construction as in [BLI] to define the K- 

b 
equivariant derived category DK mon(DI) of monodromic Dk-modules. Let 

Di ,j(Dj) c D mon (Dk) be its A-finite part. This is a certain triangulated t- 
category with the heart X, (Dx, K) . We may apply the (equivariant) Riemann- 
Hilbert correspondence to translate the category D b ,(Dk) into a certain cate- 
gory of K-equivariant constructible sheaves. In this last category the Ext-groups 
are computed in the category of all sheaves on a topological space, hence they 
have a geometric (cohomological) meaning. We prove the following 

0.1.1. Theorem. Assume that A is a regular dominant weight corresponding 
to the (regular) central character 0. Then there is a natural equivalence of 
triangulated categories 

DO(g, K)Djj(DX). 
This theorem is a natural extension to derived categories of the usual local- 

izataion theorem. Actually, we prove a slightly more general theorem (Theorem 
2.15) where we do not require A to be fixed by K. 

0.2. The proof of Theorem 0.1.1 has two essential ingredients. First of all, one 
proves that the central character 0 in the category D b(g, K) can be moved 
inside. That is, we have the equivalence 

Db (.to (g, K)) D (g, K). 
This equivalence together with the usual localization provides 

Do (g, K) Db( j (Di, K)). 

The second step is to show that the category Db(A,(Dk, K)) is the "right" 
one, i.e. that 

(*) Db (J,(Dk, K)) DKA(DX ) 

This last equivalence is the equivariant analogue of a well-known theorem of 
Beilinson [Be]. 

Remark. Let us notice that this equivariant analogue does not exist in gen- 
eral. Namely, let Y be a smooth variety with an action of a group G. Let 
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,#(Dy, G) be the abelian category of G-equivariant D -modules, and Db (Dy) 
the G-equivariant derived category of Dy-modules ([BL1]). Then the derived 
categories D b(Je(Dy, G)) and Db (Dy) are not equivalent in general (take for 
example Y = pt, G =C* ). 

We prove the equivalence (*) above using the intermediate category defined 
by Beilinson and Ginsburg. Namely, let Y and G be as in the last remark. 
One can define what we call the h-derived category Dhb (,(Dy, G)) which con- 
sists of complexes of weakly G-equivariant Dy-modules equipped with some 
explicit homotopies. (The same construction works for monodromic modules.) 
By a theorem of Beilinson (unpublished) this category is always equivalent to 
Db(Dy). Compared to Db(Dy) the category D b(,(Dy, G)) has the advan- 
tage of being defined in terms of D-modules on the space Y itself (whereas 
to define DGb(Dy) one has to use free resolutions P -- Y of the G-space Y). 
However, the category Db(Dy) is more geometric and in particular provides a 
geometric interpretation of the Ext-groups. 

To complete the proof of (*) we show that 

(**) DbG#, (Dk, K)) D*Gj#(I(Dk, K)), 

where D h j(Ae(Dk, K)) is the corresponding h-derived category with A-finite 
cohomologies. 
0.3. The technical heart of the paper consists of proving several statements (in 
geometric and algebraic contexts) of type (**) above. Namely, we prove that 
under certain conditions the usual derived category is equivalent to the corre- 
sponding h-derived category. For this purpose we found it useful to slightly gen- 
eralize the picture and to state the main result in the language of DG-modules 
over a DG-algebra with a group action. Namely, we introduce the notion of a 
Harish-Chandra DG-algebra ' such that a '-module is a generalization of 
a (g, K)-module. 

The second technical statement concerns the placement of the central char- 
acter. Namely, we need several results of the form 

Dab (b 

Here again we prove one general statement in the language of Harish-Chandra 
DG-algebras and then use its various specializations. 
0.4. Sections 1 and 2 are devoted to the proof of Theorem 0.1.1. In section 
1 we deal with algebraic categories "before the localization". Section 2 deals 
with geometric categories of D-modules and monodromic D-modules "after the 
localization". In particular, in section 2 we recall the basic localization theory 
for (g, K)-modules following [BB], and review the definition of the equivariant 
derived category of monodromic D-modules following [BL1]. In section 3 we 
discuss the question of when the natural functor 

D b(,(Dy, G)) - D b(Dy 

(see the Remark in 0.2 above) is an equivalence. We formulate a conjecture 
that this is an equivalence if the G-action on Y is free at a general point of 
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Y. Then we consider some examples related to this conjecture and prove the 
conjecture in some special important cases. 

1. ALGEBRAIC SETTING 

1.1. (g, K)-pair. Let 9 be a complex Lie algebra. Let K be a complex al- 
gebraic group with the Lie algebra k = Lie K. Assume that there is given a 
homomorphism Ad: K -* Aut(g) and an inclusion of Lie algebras j: k g 
such that 

(1) j is K-equivariant, 
(2) dAdg(x) = [j(g), x], g e k, x E. 

Such a data will be called a (g, K)-pair. 

1.1.1. Let M be a vector space. Let p: K Aut(M) be an algebraic repre- 
sentation of K and a: g -- End(M) be a Lie algebra representation. Assume 
that a is K-equivariant, i.e. 

a(Ada(x)) = p(a)a(x)p(a) 1, a E K, x Eg. 

Then we call M a weak (g, K)-module. 
Weak (g, K)-modules form an abelian category A(g, KW). 

1.1.2. A weak (g, K)-module is called a (g, K)-module if 

ca(j(g)) = dpg, g E k. 

The (g, K)-modules form an abelian category .#(g, K). Let D b(g, K) = 
D b(G#(, K)) be the bounded derived category of 1#(g, K). 
1.2. h-derived category. Let us recall a different derived category introduced in 
[DV]. 

Let Ch(g, K) denote the category of complexes C of weak (g, K)-modules 
together with a linear map i: k -- HomI(C , C) such that 

(i) i is K-equivariant, i.e. aig a- = iAd (g) aEK, gEk, 
(ii) ig is a morphism of g-modules, 
(iii) ig ig2 + ig igg = 0, 
(iv) dig + igd = dpog - a(g). 

We will call such a complex an h-complex (a complex with "homotopies"). 
The condition (iv) means that ig is a homotopy between operators dpg and 
a(g) on C . In particular, the cohomologies of C' lie in /9(g, K). 

We define the operators ig on the shifted h-complex C' [1] as minus ig on 
C. 

Given two h-complexes C;, C we define the complex Hom (C;, C2) as 
follows 

Homj(C', C2) = {(fe) E U Home,(9 Kw)(Ci, C2+): feig - (-l/igfe = 

dJ(fe) = df1 - (-l)jfj1d. 
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Then the group HomC(9 )(C, C') is the degree zero cycles in Hom (C> CG). 
We define the homotopy category Xh(g, K) in the usual way by putting 
Homx( K) = Ho Hom (C;, C2) . This is a triangulated category as usual. Fi- 

nally we define the bounded h-derived category D* (g, K) by localizing 
Xh(g, K) with respect to quasi-isomorphisms. This is a triangulated category 
in the usual way. The abelian category 4#(g, K) is naturally identified as the 

b full subcategory of D (g, K) consisting of complexes concentrated in degree 
zero (this follows for example from Theorem 1.3 below). 
1.3. Given a complex of (g, K)-modules, it may be considered as an h-complex 
with the map i = 0. Thus we have a natural functor 

b _+ b a: D (9, K) D^(q, K)- 
Theorem. The functor a is an equivalence of categories. 

This theorem follows from a more general theorem (Theorem 1.6) below. 

1.4. Harish-Chandra triple. Let us introduce a more general setting. Namely, 
we will generalize the notion of a (g, K)-pair and a (g, K)-module. 

Let A be an associative C-algebra with 1. Let F be a complex algebraic 
group and K c F a subgroup such that the connected component K? is a 
normal subgroup of F. Let k = Lie K. Assume that F acts on A algebraically 
via ao: F -- Aut(A) and there is given a map of Lie algebras jA = j: k-* A 
such that 

(1) j is F-equivariant, 
(2) ddag(x) = [i(g) a x] , gEk, xEA. 

We call the above data an (A, FIK)-triple or a Harish-Chandra triple. In case 
F = K we call (A, KIK) = (A, K) a Harish-Chandra pair. This is a general- 
ization of the notion of a (g, K)-pair. Indeed, take A = U(g), the enveloping 
algebra, F = K and j = the inclusion k c U(g). The following definitions 
are the obvious generalizations of 1.1.1-2 above. 

1.4.1. Let M be a vector space. Let p: F -* Aut(M) be an algebraic repre- 
sentation of F and a: A -+ Aut(M) be a representation of the algebra A. 
Assume that a is F-equivariant, i.e. 

a(ao(x)) = p(a)a(x)p(a) ', a E F, x E A. 

Then M is called a weak (A, FIK)-module. 

1.4.2. A weak (A, FjK)-module is called an (A, FIK)-module if in addition 
dp and a agree on k, i.e. 

a(j(g)) = dpg, g E k. 

So an (A, FIK)-module is weak for F and strong for K. 
The (A, FIK)-modules form an abelian category 0#(A, FIK). Let 

b b 
D (A, FIK) = D (J(A, FIK)) denote the bounded derived category of 
J((A, FIK). We denote by .#(A, K) and D b(.#(A, K)) the corresponding 
categories for a Harish-Chandra pair (A, K). 
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1.5. Let us adjust the notion of an h-complex (1.2) for (A, FIK)-triples. Let 
C be a complex of weak (A, FIK)-modules together with a linear map i: k 
Hom 1 (C', C() such that 

(i) i is F-equivariant, i.e. aig a- = iAd (g) aEF, gEk, 
(ii) ig is a morphism of A-modules, 

(iii) 9g1 g2 + ig21g, =0, 

(iv) dig + igd = dpg - a((g)). 

Again we call such a complex an h-complex. The cohomologies of an h- 
complex are (A, FIK)-modules. Denote by Ch(A, FIK) the abelian category 
of h-complexes. 

Now we proceed exactly as in 1.2 to define the bounded h-derived category 
Dh(A, FIK) = Dh(J/'(A, FIK)) (denote it by Dhf((A, K)) in case F = K). 
This is a triangulated category with the heart e (A, F IK) . 

1.6. As in 1.3 we have the obvious functor 

b b 
,: D (A, FIK) _*Dh(A, FIK). 

Theorem. Assume that the algebra A is a projective right U(k)-module via the 
map j: k -* A. Then the functor ,B is an equivalence of categories. 

Remark. Notice that Theorem 1.3 follows from this theorem. Indeed, apply the 
above theorem with A = U(s), F = K, and j: k -- g the given inclusion. 
Then U(g) is a free U(k)-module by the Poincare-Birkhoff-Witt theorem. The 
above theorem is a special case of our central theorem (Theorem 1.10 below). 

1.7. Later we will need the notion of a graded (A, FIK)-triple. This means that 
A = e A' is a graded algebra with the F-action that preserves the grading and 
j(k) c AO (so that the conditions (1), (2) of 1.4 hold). An (A, FIK)-module 
in this case means a graded (A, FIK)-module (that is, a graded A-module with 
the F-action that preserves the grading so that the conditions in 1.1.1 and 1.4.2 
hold). 

1.8. Lemma. Let (A, FIK) be a Harish-Chandra triple and M be a weak 
(A, FIK)-module. Consider the map w: k -* End(M) given by 

w(g) = dpg - a(j(g)), g E k. 

Then 

(i) w is a representation of the Lie algebra k, 
(ii) w(g) E EndAM, g E k, 
(iii) w is F-equivariant. 
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Proof of lemma. (i) Let g1, g2 E k . Then 

[w(gj), w(g2)] = [dp - a(j(gl)), dpg - (j(g2))] 
= [dpgl dp92] - [dpg,, a(j(g2))] 

- [a(j(gj)), dpg 2] + [a(j(gj)), a(j(g2))] 

= dp[gl, g2] - a(dag, (j(g2))) - a(-dag2(j(gj))) + a[j(gl), j(g2)] 

= dp[gj ,g2] - a([j(gl), j(g2)]) + a([j(g2), j(gl)]) + a[j(gl), j(g2)] 

= dp[gl, g2] - a(j([gl 1 g2])) 

= W([g1 1 92]) 

(ii) Let g E k, x E A. Then 

[w(g), a(x)] = [dpg - a(j(g)), a(x)] 
= [dPg , a(x)] - a([j(g), x]) 
= ca(dag(x)) - a([j(g), x]) 
=. a([j(g), x]) - a([j(g), x]) = 0. 

(iii) Since the maps dp, j, a are F-equivariant, so is w. 

1.8.1. Corollary. Given a Harish-Chandra triple (A, FIK) consider the Harish- 
Chandra triple (U(k) 0 A, F IK), where the F-action on U(k) ? A is diagonal 
and j:k-*U(k)0A is given by 

j: g g-~ g 1 + 1 0&jA(g), g E k. 
Then there exists a canonical identification {weak (A, FIK)-modules} - 

{(U(k) 0 A, FIK)-modules}. 
Proof. Indeed, given a weak (A, FIK)-module M as in 1.4.1 define the U(k)- 
module structure on M via w(g) = dpg - a(jA(g)), g E k. By Lemma 1.8 
this makes M a weak (U(k) 0A, FIK)-module. The definition of the structure 
morphism j: k -- U(k) 0 A implies that M is actually a (U(k) 0 A, FIK)- 
module. The converse is obvious. 
1.9. Harish-Chandra DG-algebras. We think that the appropriate context for 
Theorems 1.3 and 1.6 is the language of DG-modules over a DG-algebra with 
a group action. So let us introduce the following general setting. 
1.9.1. A Harish-Chandra differential graded algebra M is a four-tuple W = 
(B = eB', FIK, d), where (B, FIK) is a graded Harish-Chandra triple (1.7, 
1.4) and (B, d) is a DG-algebra, so that 

(1) the differential d commutes with the F-action, 
(2) the subspace j(k) c B? consists of cycles, i.e. d(j(k)) = 0. 

1.9.2. Let M = (E M', dM) be a complex of C-vector spaces. We say that M 
is a (left) DG-module over a Harish-Chandra DG-algebra M = (B, FIK, d) if 
M is a (graded) (B, FIK)-module (1.7, 1.4.2) so that the B-module structure 
makes M a DG-module over the DG-algebra (B, d), i.e. 

dM(bm) = d(b)m + (1)deg( bdmm, be B, meM. 
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We will call a DG-module over M a M-module. A morphism of W-modules 
is a morphism of graded (B, FIK)-modules which commutes with the differ- 
ential. Let X(w) denote the abelian category of a-modules. 

The usual construction of the homotopy category and the derived category 
for complexes of modules extends to DG-modules over a DG-algebra (see for 
example [II], [BL1]). The same construction also works for DG-modules over 
a Harish-Chandra DG-algebra M. Namely, let M be a M-module. The B- 
module structure on M[l] is twisted: b m: (l)de8(b)bm, where b . m is the 
multiplication in M[ 1] and bm is the one in M. Given M, N E X#(w) de- 
fine the complex Hom, (M, N) = Hom (M, N) as follows: Homj (M, N) = 

Hom,.(B,FIK)(M, N[j]) and d(f') = df1 - (-l)JfJd for fJ E Homj. Then 
the group Hom,(?) (M, N) is the degree zero cycle in Hom (M, N). Define 
the homotopy category X (M) in the usual way by putting Hom,(_) (M, N) = 
Ho Hom (M, N). Localizing %(S7) with respect to quasi-isomorphisms we 
obtain the derived category D(w) of M-modules. This is a triangulated cate- 
gory in the usual way. Denote by Db(G7) c D(w) the full subcategory gener- 
ated by bounded modules M = EMi, Mi = 0 for lil > 0. 

Remark. In case B = Bo (and hence d = 0) a M-module is just a complex of 
(B, FIK)-modules and hence Db (M) = D (B, FIK) (1.4.2). 

1.9.3. Let 5F = (B, FIK, d) and &' = (C, FIK, d) be two Harish-Chandra 
DG-algebras. A homomorphism ~# : M- ' is a unitary homomorphism of 
graded algebras o : B -* C which commutes with the F-action, with the map 
j and with the differential d. Given a homomorphism p : - - we may 
consider a '-module as a M-module via o. Thus we obtain restriction of 
scalars functors 

v9: D(W) -*D(M) and 9 *: Db() +Db (M). 
Let M and F be ordinary DG-algebras (i.e. without group action), and 

let 9 : W- F' be a homomorphism which is a quasi-isomorphism. Then the 
corresponding functor between the derived categories of DG-modules 

* : D(W) - D(M) 

is an equivalence (see [BLl]). This is no longer true for Harish-Chandra DG- 
algebras. In Theorem 1.14 below we give a sufficient condition for the functor 

.: D b() D (M) 

to be an equivalence. 

1.9.4. Lemma. Let ' = (C, FIK, d) be a nonpositively graded Harish- 
Chandra DG-algebra. Then in the category D(W) there exist truncation func- 
tors. That is, for any M E D(W) there exists an exact triangle 

T<OM --M -+ T>OM 

where H'(T<OM) = 0 if i > 0 and H1(r>OM) = 0 if i < 0. 
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Proof of lemma. Let M be a F-module, 

-1Id'I 0 d0 1 M= ...M 1 dM? M .... 
Consider the subcomplex TrOM c M defined by 

T< M:= EM'Imd-1. 
io 

Since the algebra C is nonpositively graded, ro M is actually a C-submodule 
in M. Hence ro M is a F-submodule in M and the desired triangle is the 
short exact sequence of F-modules 

TOM-M- M/T<OM := T>OM. 

1.9.5. Corollary. Let ' be a nonpositively graded Harish-Chandra DG- 
algebra. Then the bounded derived category Db (F) of '-modules is generated 
by the modules M concentrated in one degree. Also, every module P E Db (F) 
is quasi-isomorphic to a bounded module. 
1.9.6. Let M and ' be as in 1.9.3. We define the DG-algebra M ? ' as the 
tensor product of algebras B 0 C with the diagonal action of F and the map 
j : k - B (9 C : 

i = jB 01 + 1 (&jC. 

The differential in B 0 C is the usual one: 

d(b o& c) = db o& c+ (-l)deg(b)b ?& dc. 

1.9.7. h-construction. Consider a graded Lie algebra k = k 1 E ko, where 
k'- = k = k and the commutators [k, k?], [k?, k'- ] are given by [,]in k. 
Consider the identity map id = d: k-I ko as a derivation of k of degree 1. 
The universal enveloping algebra U(k) = Ak o U(k) is a nonpositively graded 
(by the degrees of A k ) associative algebra with the derivation d of degree 1 
induced by the above derivation of k. So U(k) is a DG-algebra. 

The group F acts on U(k) via the adjoint representation and we have a 
natural map of Lie algebras k -- U(k), g F- 1 o g. This means that U(k) is 
a Harish-Chandra DG-algebra. 

Notice that U(k) is just the standard complex for U(k), 
2 d d 

U(k) =. A k o U(k)- k U(k) U(k) -O, 
which is a resolution of C. 

Definition. Let M be a Harish-Chandra DG-algebra. Then the Harish-Chandra 
DG-algebra U(k) (&,T (1.9.6) is called the h-construction for M'. 

The augmentation map U(k) -- C induces a homomorphism of Harish- 
Chandra DG-algebras 

y/: U(k) 8&M ) ~w 
which is a quasi-isomorphism. 

The following theorem is the central technical result of this paper. 
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1.10. Theorem. Let T = (B, FIK, d) be a Harish-Chandra DG-algebra con- 
centrated in degree 0, i.e. B = B0, d = 0. Assume that B is a projective right 
U(k)-module via the map j: k -- B. Then the quasi-isomorphism 

M/: U(k) X4 -* 
from 1.9.7 induces an equivalence of categories 

DJ Db () -D b (U(k) (&, g). 
1. 10. 1. Remark. It suffices to prove that the functor V. is fully faithful. Indeed, 
by Corollary 1.9.5 both categories are generated by modules concentrated in one 
degree. Let M e Db (U(k) 09 @) be such a module. Then M is a U(k) ? B 
= (U(k) 0 B)0-module. Since the augmentation ideal I c U(k) consists of 
boundaries in U(k) 0 , then M is actually a U(k) 0 B/I 0 B = B-module. 
So M is in the image of the functor yv*. 

1.I1. Let us explain how Theorem 1.10 implies Theorem 1.6 and hence also 
Theorem 1.3. 

Let (A, FIK) be a Harish-Chandra triple. Consider it as a Harish-Chandra 
DG-algebra M = (B = B = A, FIK, d =0 ) . Then by the remark in 1.9.2 we 
have a natural identification 

D b() =D b(A, FIK). 
The following claim should be compared with Corollary 1.8.1 above. 

1. 1.1. Claim. There are natural identifications 

Ch(A, FIK) =JX((U(k) o? ), 
b b(UT Dh(A, FIK) = D(U(k) 8) 

so that the functor 
,8:Db(A,FIK) *Db(A,FIK) 

is identified with 
v. Db (M) - D b (U U(k) ) 

It follows from the above claim that Theorem 1.10 implies Theorem 1.6. Let 
us prove the claim. 

Proof of claim. Let C be an h-complex for the triple (A, F IK) . We claim that 
C is naturally a (U(k) o ??)-module. Indeed, by Corollary 1.8.1 it is naturally 
a complex of (U(k) ( A, FIK)-modules. The property (iii) in 1.5 implies that 
C is a graded k '-module via the map i: k - Hom (C, C) . Properties 
(i), (ii) in 1.5 imply that C is a graded k-module via w and i. So C_ is a 
graded weak (U(k) oA, F IK)-module. Using the definition of j: k - U(k) ?A 
(1.9.6) we see that C is actually a graded (U(k) oA, FIK)-module. Moreover, 
by the property (iv) in 1.5 the complex C is a DG-module over the DG-algebra 
U(k) 0 A. Hence C is a DG-module over the Harish-Chandra DG-algebra 
U(k) o ,S. 
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The above argument actually also shows the converse. Therefore we have a 
natural identification: 

Ch(A, FIK) = e(U(k) ?9 q). 
This identification induces the identification of the derived categories 

b b 
Dh(A, FIK) = D (U(k) ff4), 

which translates the functor /8 into Vyi . This proves Claim 1.1 1.1. 
We will deduce Theorem 1. 10 from a slightly more general theorem (Theorem 

1.14) below. Let us first introduce some useful constructions. 
1.12. Induction and coinduction functors. Let ' = (C, FIK, d) be a Harish- 
Chandra DG-algebra. Let C(F- mod ) be the category of complexes of alge- 
braic F-modules and X(F- mod ) be the corresponding homotopy category. 
We have the obvious forgetful functor 

For: .X((W) -* C(F-mod). 
Let us define left and right adjoint functors to For. 

Let M E C(F-mod). Consider M as a left k-module. Consider the algebra 
C as a right k-module via the structure map j : k -* C. Consider the complex 

i(M) = i(M) := C ()k M 

as a left C-module with the diagonal action of F. This makes i(M) a DG- 
module over W. Thus we get a functor 

i: C(F-mod) XW 

called the induction. 
1.12.1. Proposition. Let M E C(F- mod) and N E X1t(W). Then there is a 
natural isomorphism of complexes 

Hom,(i(M), N) = HomF(M, For(N)). 
Proof. Let a E Hom'(i(M), N). Define ,B E Hom>(M, For(N)) as follows: 

/3(m) := a(l 0 m). 
One checks directly that /1 is well defined and the correspondence a ,/ is 
an isomorphism of complexes. 
1.12.2. Corollary. The induction functor iW is the left adjoint to the forgetful 
functor For. The same is true on the level of the homotopy categories. 
1.12.3. Let M E C(F- mod). Consider M as a left k-module. Consider the 
algebra C as a left k-module via the structure map j : k -* C. Put ci. (M) = 
ci(M) := Hom'(C, M)F-alg_the subcomplex of Hom'(C, M) consisting of 
F-algebraic elements. We claim that ci(M) is naturally a F-module. Namely, 
let fE Ci(M). Put 

d(f) = df- ()deg(f )fd, 

(af)(c) := a(f(a c)), a E F, c E C, 

(cf )(c') = ( 1)(deg(f )+deg(c'))deg(c) f(CC)) C, c' E C. 
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Thus we get a functor 
ci: C(F-mod) - X(W) 

called the coinduction. 

1.12.4. Proposition. Let M E C(F- mod ) and N E X(W). Then there exists 
a natural isomorphism of complexes 

Hom,(N, ci(M)) = HomF(For(N), M). 
Proof. Let a E Hom'(N, ci(M)). Define ,B E Hom>(For(N), M) as follows: 

A(n) := a(n)(1). 
One checks directly that /3 is well defined and the correspondence a ,-B / is 
an isomorphism of complexes. 

1.12.5. Corollary. The coinduction functor ci is the right adjoint to the forgetful 
functor For. The same is true on the level of the homotopy categories. 

1.13. Lemma. Let q and yg: U(k) ?& -* ~W be as in Theorem 1.10 and 
M E C(F- mod). Then the induced map 

y/ 0 id: iU(kT)- (M) i- (M) 

is a quasi-isomorphism. 
Proof of lemma. We may (and will) assume that M is a single finite-dimensional 
F-module. Let us analyze the complex iU(T)?,,s (M) . Recall that the Lie algebra 
k is mapped to U(k) ? B by 

gi-* g I + I e9 (g), 

where j: k -B is the structure map for B. So in (U(k) X B) Ok M we have 
the relation 

ug?b m+u?bj(g)?m = u?b?gm. 
This means that 

(U(k)?B)?k M= U(k)Ok (B?M), 

where B X M is a left k-module via 

g(b X m) = -bj(g) X m + b ? gm 

and U(k) is a right k-module via the right multiplication. 

Recall that the complex U(k) is a resolution of C consisting of free right 
U(k)-modules (1.9.7). Hence the lemma follows from the following. 

1. 13. 1. Sublemma. The left k-module B ? M is projective. 
Proof of sublemma. Consider the functor 

P-+ P XM 

from left k-modules to left k-modules. It has a left and right adjoint functor 
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where M* is the dual vector space to M ([BG], 2.1). Indeed, to a morphism 
: P -- Q M* corresponds a morphism ': P M - Q defined by 

(0'(p 0 m) = (m , m)qi, where (0(p) = E q1 0 m> Hence for a left k-module 
P we have 

Homk(B 0 M, P) = Homk(B, Po M*). 

Since by our assumption B is a projective left k-module for the action 

g(b):=-bj(g), g E k, b E B, 

we conclude that the k-module B? M is projective. This proves the sublemma 
and Lemma 1.13. 

1.14. Theorem. Let QV = (A, FIK, d) and ' = (C, FIK, d) be nonpositively 
graded Harish-Chandra DG-algebras. Let (r:0 --+ ' be a quasi-isomorphism. 

(i) Assume that for every injective algebraic F-module T the induced map 
of complexes 

ci (T) -- ci.,(T) 
is a quasi-isomorphism. Then the functor of restriction of scalars 

*: D () - D (.V) 

is fully faithful. 
(ii) The assumption in (i) is satisfied if the following condition holds: For 

every finite-dimensional F-module M the induced map of complexes 

rq 0 1: i',(M) -* i (M) 

is a quasi-isomorphism. 

1. 14.1. Remark. Theorem 1.14 implies Theorem 1. 10. Indeed, put ' = S7, 
QZ = U(k) oq, p = Vi. Then by Lemma 1.13 the condition in (ii) of Theorem 
1.14 holds. Hence by part (i) of the theorem the functor 

/* : Db(_q) - D b(U (k) ( _) 
is fully faithful, which suffices by Remark 1. 10. 1. So it suffices to prove Theorem 
1.14. 

1. 15. Proof of Theorem 1.14. In order to compute the group HomDb(F) (M, N) 

for M, N E Db () we need to take a %-injective resolution N -- I of N. 
Let us recall what this means. 

1. 15.1. Lemma-definition ([Sp]). An object I E D(W) is called %-injective if 
it satisfies one of the following equivalent conditions 

(a) Hom.(,)(P, I) = HomD(W)(P, I) for all P E D(W) 
(b) Hom (Q, I) is acyclic if the module Q E D(W) is acyclic. 

1. 15.2. Example. Let J E C(F- mod ) be a bounded below complex consisting 
of injective algebraic F-modules. It follows from Corollary 1.12.5 that the 
coinduced F-module ci,(J) is %-injective. 
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1.15.3. Construction of resolution. Fix a bounded below F-module N - 

3Bj# NJ. We will construct a special X-injective resolution N -+ I of N. 

Step 1. Choose a bounded below complex JO:= (3j>, Ji of injective algebraic 
F-modules together with an F-morphism 

0: For(N) -' Jo 
so that 0 is injective and induces an injection of the cohomology groups 0: 
H(N) - H(JO). Let 

6: N -- ciw(Jo) 
be the &2-morphism corresponding to 0 by the adjunction property 1.12.5. 
Then 3 has the same properties: it is injective and induces an injection on the 
cohomology 3: H(N) - H(ciw(Jo)). 
Step 2. Replace the module N by the quotient ciw(JO)/N and repeat Step 1 
for ciw(JO)/N. Notice that since the algebra C is nonpositively graded the 
module ciw(JO) is bounded below by the same degree ,u. Proceeding in this 
way we will get a complex 

0 N 80 1 2 IO , NII 
aI 

I2 ... 

of &9-modules with the following properties: 
(1) Each I, is a coinduced module I, = ci,(J5), where J = fl> is S~~~~~~~~~~~~~~~~~~~ 

a bounded below (by the degree ,u) complex of injective algebraic F- 
modules. Hence Is is also bounded below by the degree u. By 1.15.2 
the &9-module Is is X-injective. 

(2) The induced complex of cohomologies 
0 -O H(N) - - H(IO) -- H(I1) -- 

is exact. 

Step 3. Define inductively the F-modules I<, in the following way: 

I<o := IO,n 

I<1 := C(eO0)[-1] = (cone of IO ? I)l I]. 

Notice that 8, defines a morphism 

E1: I<I ' 2; 
put 

1<2 :=C(6)[-l 
and so on. 

So as a graded C-module, I<,, = IO I1[-1 ] D e I,[-n . The &2-modules 
I<, are X-injective and they form the obvious inverse system 

I<O I<1 I<2 

put 
I:= limmI<,. 
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So as a graded C-module 
I = JIS[-s]. 

The map 3: N -- IO defines a compatible set of morphisms An: N I<n and 
hence a morphism 3: N -- I. It follows from the property (2) in Step 2 that 
this morphism is a quasi-isomorphism. 
Step 4. Claim. The F-module I is ]-injective. 

The proof is easy (using the construction of I and property (b) in 1. 15. 1). 
So we have constructed a %-injective resolution 3: N -- I so that the 

module I is bounded below by the same degree ,u as N. 
1.15.4. Corollary. Let g be a nonpositively graded Harish-Chandra DG- 
algebra. Let P, Q e D(g) be two g-modules. Assume that 

p . pS Q= Qt and a< b. 
s<a t>b 

Then HomD(X)(P, Q) = 0. 

Proof. Indeed, let Q I be a %-injective resolution constructed in 1.15.2. 
Then I = (j>b Ij . Hence 

HomD(F)(P, Q) = Hom.(,)(P, I) = 0. 

1.15.5. Now we are ready to prove part (i) of Theorem 1.14. So assume that 
for every injective algebraic F-module T the natural map of complexes 

cig(T) -- ci,,(T) 
is a quasi-isomorphism. Then the same is true if we replace T by a bounded 
below complex of injective F-algebraic modules. 

Fix M, N e Db(&9). We need to show that 

HomD(W) (M, N) = HomD( ) (M, N). 

By Corollary 1.9.5 we may (and will) assume that N is bounded below, 
N = (> NJ, and M is bounded above, M = M1<v MJ. 

Let N -- I be the %-injective resolution of N constructed in 1.15.2. Then 

HomD(W) (M, N) = HomD(W) (M, I) 

and 
HomD( V) (M, N) = HomD( V) (MI I). 

It follows from Corollary 1.15.4 that there exists n > 0 such that 
HomD(') (M, II) = HomD(') (M, I< n) 

and 
HomD( ) (M, II) = HomD( ) (M I I<n) 

(see Step 3 in 1.15.3 for the definition of I<n ). But I<n is a successive cone 
of morphisms between the modules Is = ci;-(Js). So it suffices to prove that 
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By our assumption ci.(J5) ci.,(J5). Now 

HomD(W)(M, ciw(Js)) = Hom.(,)(M, ciw (Js)) = Homx(F mod) (M, is), 

HomD(V) (M, c ia, (Js)) = Hom.(,,) (M, cia, (Js)) = Homx(F mod) (M, is), 

where the last equality in each row follows from Corollary 1.12.5. This proves 
(i) in Theorem 1.14. Let us prove part (ii). 
1.15.6. Lemma. Let P be a complex of algebraic F-modules. Denote the action 
of F by p: F -- Aut(P). Assume in addition that P has a structure of a left 
and right k-module (in an F-equivariant way) so that 

dpg(p) = gp -pg, g ek, p e P. 

Consider the following functors from the category C(F- mod ) to itself: 
E h-Pk Ok E, 

H >-4 Homk(kP'kH) Falg 

The F-action on P0E and Hom (P, H) is defined as in 1.12, 1.12.3. Namely, 
given a e F 

a(poe):=apoae, peP, eeE, 

a(f)(p) :=a(f(a p)), p eP, feHom (P, H). 
Then there exists a natural isomorphism of complexes 

HomF(E, HoMk(kp,kH)Fl) = HomF(Pk 0k E, H). 

Proof. Given a e Hom> (P 0) E, H) define fl e Hom> (E, Hom"(P, H)F-alg) 
by the formula 

ff(e)(p) = (1)deg(e) deg(p) a(p o e) 
One checks directly that the map a F-4 ft is well defined and is an isomorphism 
of complexes. 
1.15.7. Corollary. Thefunctors 

E,,- Pk (Ok E, 
H >-4 Homk(kP'kH) Falg 

as in Lemma 1. 15.6 are adjoint on the level of the categories C(F- mod ) and 
X(F- mod ). 
1.15.8. We are ready to prove part (ii) of Theorem 1.14. So assume that for 
every finite-dimensional F-module M the induced morphism of complexes 

Ak 0k M - Ck (Jk M 
is a quasi-isomorphism. Let T be an injective algebraic F-module. We need 
to prove that the induced map of complexes 

Hom-(kC T)F-alg -- Hom- (A T)F-alg 

is a quasi-isomorphism. 
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Since the algebra structure on A and C plays no role in these statements, 
we are actually working in the context of Lemma 1.15.6 and it suffices to prove 
that y is a quasi-isomorphism of F-complexes. 

It suffices to prove that y induces an isomorphism 

Homx(F- mod ) (M I cig,(T)) = Homx(F mod )(M, ci,, (T)) 
for every finite-dimensional F-module M. Using Corollary 1.15.7 this is the 
same as proving the isomorphism 

Hom.(F- mod ) (i, (M), T) = HomX(F mod ) (iJv (M), T). 

But this follows from the quasi-isomorphism 

i.W (M) -i (M) 
and the fact that T is injective. 

This proves part (ii) in Theorem 1.14. Hence we proved Theorems 1.14, 
1.10, 1.6, 1.3. 

1.16. Introduction of the central character. Our next goal is to show how to 
introduce the central character in Theorems 1.3, 1.6, 1.10, 1.14 above. It is 
again convenient to work in the context of Harish-Chandra DG-algebras. 

Let M' = (B, FIK, d) be a nonpositively graded Harish-Chandra DG- 
algebra. Consider the category X(w) of ?-modules. Let Z be a finitely 
generated F-invariant subring of the center of B consisting of cycles, i.e. 
d(Z) = 0. Let I c Z be an F-invariant ideal. Let M e X(w). An element 
m e M is called I-finite if Inm =0 for n > 0. Put M : U Ker In c M 
the submodule of I-finite elements. We say that M is I-finite if M' = M. Let 
-ZI(M) c X(S) be the full subcategory consisting of I-finite modules. Let 
D b(. ()) be its bounded derived category. Consider the bounded derived 
category D b(R) of M-modules. Let D b(M) c Db(G) be the full subcategory 
of modules M such that the cohomology groups H'(M) consist of I-finite 
elements. By Corollary 1.9.5 the category Di (M) is generated by A? (M). We 
have the obvious functor 

:D (()) 
Di (). 

1.16.1. Theorem. Assume that the algebra B is left Noetherian. Then thefunctor 
v is an equivalence of categories. 

1.17. Before we prove Theorem 1.16.1 let us derive some consequences. Let 
us consider, for example, a (g, K)-pair as in 1.1. Let Z = Z(g) c U(g) be 
the center of the enveloping algebra and I c Z be a K-invariant ideal. Let 
AI(g, K) c #(9, K) be the full subcategory consisting of I-finite modules 
and Db(4(g, K)) be the corresponding derived category. Consider the full 
subcategory D b(g, K) c Db(g, K) of complexes M with cohomologies H'(M) 
in Aj(g, K). We have the natural functor 

v : Db (A(g,K)) Di (g, K). 
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1.17.1 Theorem. This functor v' is an equivalence. 
Proof. Indeed, take B = Bo = U(g), F = K and W = (B, FIK, d = O), and 
apply 1.16.1. 

We have a similar statement for the h-derived category D b(g, K). Namely, 
we have the similar subcategory D b (g, K) c Db(g, K) and the natural functor 

v Db (4(g, K)) --+ Db1(, K). 

1.17.2. Theorem. The functor v f is an equivalence. 
Proof. Indeed, put A = U(g), F = K and consider the Harish-Chandra DG- 
algebra ~W = (U(k) 0 A, FIK, d) (1.9.7). Then we have the natural identifi- 
cations (1.11..1) 

Ch(g, K) = X(w), 

Db(9, K) =D b('q). 

Hence v" is an equivalence by 1.16.1. 
Combining the equivalences v', vi with Theorem 1.3 we obtain the follow- 

ing. 

1.18. Theorem. There exists a natural equivalence of categories 

Db(4#(g9, K)) -* D^b(Y,(g, K)). 

1. 19. Remarks. 1. Theorem 1.17.1 implies that one can apply the localization 
to the category D b(g, K), where I = Ker0: Z -+ C for a regular K-invariant 
character 0 of Z = Z(U(g)) (see 2.9 below). 

2. Theorem 1.18 is a major step towards the proof of our main theorem 
0.1.1. 

3. All the results in 1.17-1.18 remain valid if we replace the (g, K)-pair by a 
Harish-Chandra triple (A, FIK) (1.4), where the algebra A is left Noetherian. 
1.20. Proof of Theorem 1.16.1. Since the algebra B is nonpositively graded, 
both categories Db (X4?(f)) and D b(W) are generated by modules M e (W) 
concentrated in degree 0, i.e. M = M? (1.9.5). Hence it suffices to prove that 
the functor v is fully faithful. 
1.20.1. Lemma. Let N be a (B, FIK)-module. Then there exists a (B, FIK)- 
submodule S c N such that S n N' = 0 and N/S = (N/S) 

We postpone the proof of this lemma until 1.21.2. 

1.20.2. Proposition. Let M e Db(~W) be a bounded a-module. Then there 
exists a morphism of ?4-modules 

d M -ml 

such that M e Db(J(j)) and 3 is a quasi-isomorphism. 
Proof of proposition. Let M be the bounded ?-module 

0-OMi d-Mi+l dn Mn 0 
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Let t be the smallest integer such that (Mt)' $: Mt. Consider the B-submodule 
N := et Mi of M. Let S c N be as in Lemma 1.20.1. Then S c Mt. 

Claim 1. Ker dt n S = 0. 
Indeed, let m e S, dm = 0. Since Ht(M) is I-finite, we have Ipm C 

Imdt 1 for p > 0. But Mt-1 is I-finite, hence I'm = 0 for some q > 0. 
Hence m = 0. 

Claim 2. S (e dtS is a B-submodule of M. 
Indeed, it suffices to prove that for b e B 1, s e S we have b - ds e S. But 

0=d(0)=d(bs)=db.s-b-ds and db-seS. 
So we constructed an acyclic a-submodule S ED dt(S) of M. Replace 

M by M = M/S (e dt(S) and repeat the construction for MA. (Notice that 
.t -ti 

Al = (Al)f.) Finally we arrive at a a-module M e .4X(W) together with a 
morphism 

: AM -*A M 

which is a quasi-isomorphism. This proves the proposition. 

1.20.3. Now we can finish the proof of Theorem 1.16.1. Let P, Q e 
D b(A(W)) and fix f e HomDb()(P, Q). Then f can be represented by 
a diagram in X(w) 

P14 T Q, 

where T e D (~W) and s is a quasi-isomorphism. Let 3: T - T be the quasi- 
isomorphism as in Proposition 1.20.2 (with M = T). Then T e Db(J(()) 
and the morphism f is also represented by the diagram in .4 (-q) 

P-*T*- Q. 
Hence f comes from HomDbD,,(_))(P, Q). The same argument proves that 
the map 

HomDb(Af V))(P, G) -- HomDb(V)(P Q) 

is injective. So the functor v is fully faithful. This proves the theorem. 

1.21. Let us prove Lemma 1.20.1. The proof is based on the following lemma. 

1.21.1. Lemma (Artin-Rees). Let P be a finitely generated B-module, and T c 
P a submodule. Then there exists >? 0 such that 

T n Is+'P= IsT 

for all s > 0. 

The proof is standard (see for example [AM]). 

1.21.2 Proof of Lemma 1.20.1. Assume that N $ N' (otherwise take S = 0). 
Claim. There exists a nonzero (B, FIK)-submodule Q c N such that Q n 

N I= O., 
Indeed, choose n e N such that I kn :$ 0 for all k > 0. Let P c N be 

the B-submodule generated by the F-span (Fn) of n. Then P is a finitely 
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generated B-module, since dim(Fn) < oo, and P is F-invariant. Let T= 
pI C P be the I-finite submodule. Notice that the B-module T is finitely 
generated since B is left Noetherian. Therefore applying the Artin-Rees lemma 
1.21.1 we will find t > 0 such that ItP n T = 0. Clearly ItP :A 0 and is F- 
invariant. So we can take Q = ItP C N. This proves the claim. 

Now let S C N be a maximal (B, FIK)-submodule such that S n N = 0. 
Notice that S :$ 0 by the previous claim. We claim that N/S = (N/S) . In- 
deed suppose not. Then by the previous claim there exists a nonzero (B, F IK)- 
submodule Q c N/S such that Q n (N/S) = 0. This contradicts the maxi- 
mality of S. We proved Lemma 1.20.1. 

2. GEOMETRIC SETTING 

In this section "space" = "variety" = smooth algebraic variety over C. For 
a morphism of varieties f: Y -- Z, we denote by f*, f* the inverse and 
the direct image functors in the category of quasi-coherent sheaves. Our basic 
reference for D-modules is [B]. We first recall the notion of an equivariant D- 
module, a monodromic structure, the localization of (g, K)-modules, etc. (see 
[BB]). 

2.1. Equivariant D-modules. Let X be a variety and F an (affine) algebraic 
group acting on X by 

u: F x X -X. 

Let p: F x X -- X be the projection map. An F-equivariant VX-module is a 
quasi-coherent 69x -module M together with an isomorphism 

satisfying the usual cocycle condition. 
The F-action on X defines an F-action a on the sheaf DX of differential 

operators on X and a Lie algebra map j: Lie F -Tx C Dx, so that 

dag(P) = [i(g), P], g e Lie F, P e DX 

([BB], 1.8.3). 
Denote by Y1(Dx) the category of (left) Dx-modules. Let M e Y((Dx). 

We say that M is weakly F-equivariant if M is an equivariant AVx-module so 
that the F-action p on M is compatible with the DX-module structure: 

a(Pm) = u(a)(P)(am), a e F, P e Dx, m e M. 

A weakly F-equivariant DX-module is called an F-equivariant DX-module if 
in addition 

dpg(m) = j(g)m, g e Lie F, m e M. 

We denote the abelian categories of weakly equivariant and equivariant D - 
modules by A((Dx, FW) and .#(Dx, F) respectively. 
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Example. Let X = pt. Then I(Dx, Fw) = {algebraic F -modules} and 
,#(DX, F) = {representations of the group of components of F}. 

2.2. Monodromic varieties. Let X be a variety and H be an algebraic torus. 
An H-monodromic structure on X is a principal homogeneous H-space 

X 

X. 

We call a pair (X, I) an H-monodromic variety. A monodromic D-module 
on X is a weakly H-equivariant Dr-module. We denote by A#(Dx) 
.#(Dx, Hw) the category of monodromic D-modules. 

Let F = Lie H and U(F) be the universal enveloping algebra of F,. 
Consider the following sheaf of algebras on X: 

D := 7r Dx 

The H-action on X identifies the Lie algebra F with the vertical H-invariant 
vector fields on X. The corresponding inclusion U(F) c D identifies U(F) 
with the center of D and D/b,D = Dx . 

Let .X(b) be the category of b-modules on X. The categories 0#(D,) 
and X#(D) are naturally equivalent. Namely, the functors 

7r 

7r.(M) := MH, 7r-(N) :=r*N 

are mutually inverse equivalences of categories. 
Let M E .#(Dx) be a monodromic D-module. Define an F,-action on M 

by 
w(g) = j(g) - dpg g . 

Then as in Lemma 1.8 above we have 
(i) w is a representation of F, 
(ii) w commutes with the Df-action, 
(iii) w is H-equivariant. 
Thus monodromic D-modules have a natural structure of (Dk 0 U(M))- 

modules, where U(F) acts via w. Let I c U(F) be an ideal. Given M E 

e(Df,) we define its I-finite part MI = {m E MIIm = 0 for n > O}. Con- 
sider the full subcategories 1i(Df) c 1A(Dx) c .#(Dx), where AIi(Dx) = 
{MIIM = 0}, Aj(Dg) = {MIM = MI}. We have similar subcategories 

.,j(b) c IAl(b) c X(b). Notice that the above functors 7r., 7r are U(F)- 
linear and 

7r.(MI) =7r.(M) 
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Hence 7r., 7C induce mutually inverse equivalences 
7T. 

.At(Dfc) ( (D), 

7. 

KX 

We are especially interested in the case I = Ker A: U(I) -C 0. Denote in this 
case XI = ,A, AI = X. Then in particular we have the equivalences 

K. 

.4l(DXc) | |01D) 

2.3. Monodromic K-varieties. Let K be an algebraic group with a homomor- 
phism z: K --+ Aut(H). Since Aut(H) is discrete, T is trivial on the connected 
component K0 of K and r(K) is finite. An H-monodromic K-variety is an 
H-monodromic variety (X, X) together with a K-action K x X -+ X such 
that ahx = T(a)(h)ak for a e K, h e H, x E X; in particular the K-action 
descends to an action K x X -- X. Equivalently, this is a variety X with an 
action of the T-semidirect product K x H such that the H-action on X is free. 

Let .#(D , KW) := .#(D , (K K H)w) be the category of weakly K- equi- 
variant monodromic D-modules. Let 1?'(DV, K) be the category of K- 
equivariant monodromic D-modules. So objects of .#(Dx, K) are weakly 
K x H-equivariant Dy-modules, which are strongly equivariant for K. 

We can define similar notions for D-modules on X. Namely, the K-action 
on Dx restricts to its action a on D = (7rxDf)H . Moreover the image of the 
Lie algebra map j: k = Lie K T- C DV is contained in H-invariants, so we 
have the Lie algebra map j: k Df , so that 

dag(P) = Li(g), P], g E k, P D. 

Let N e X(b) . We say that N is a weakly K-equivariant b-module if N is 
an equivariant Ax-module so that the K-action p on N is compatible with 
the D-module structure: 

a(Pn) = a(a)(P)(an), a e K, P E b, n E N. 

A weakly K-equivariant D-module is called a K-equivariant D-module if in 
addition 

dpg(n) = j(g)n, g ek, n e N. 

Denote by f(b, K) and #(b , KW) the categories of K-equivariant and 
weakly K-equivariant b-modules respectively. The functors 7r., 7t in 2.2 pre- 
serve K-equivariant modules and induce mutually inverse equivalences 

Kt. 

A'(Dx, K ) -Z(D, KW), 

K. 

A9(Dx, K) .4(b(D, K). 
Kr 
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The group K acts on U(F) via T. For an ideal I c U(b) denote by I := 
T(K)I its K-saturation. We have the usual full subcategories X4. (Di, K) c 
Xf(Dxx K) c X(Dx, K), I Kw) c , and similarly for 4f(D, K) 
and Jtf(D, Kw) . The functors 7r., 7r induce mutually inverse equivalences of 
categories 

7t. 

Yi- (Dk, K) Y1-(D, K), 
it 

7t. 

Y/r (DX, K) ii-(D, K), 
7t 

and similarly for weakly K-equivariant categories. In particular, if I = Ker A: 
U(I) -*C, denote #. =AX,, . = X.; then we obtain the equivalences 

7t. 

-j_ (DX , K) -#j_. (D, K), 
it 
7t. 

A.oj (DI, K)iiX. (D, KW) 
it 

2.4. Functoriality for monodromic modules. Let (X, X) and (Y, Y) be two 
monodromic K-varieties. A morphism between these varieties is a morphism 
f: Y X which commutes with the (K K H)-action. Later in sections 2.1 1- 
2.13 we will only consider the case when f is smooth. In this case we have the 
exact functors (we use notations of 2.3) 

f*: (D-c K) >(Di, K 

f :J(Df, K) J e(Di, K), 

f :A --(Dx , K) - - (D , K). 

2.5. The h-derived category of monodromic D-modules. Given a monodromic 
K-variety (X, X) we define the h-derived category of monodromic K-equi- 
variant D-modules by copying the definition in 1.5 for an (A, FIK)-triple: the 
algebra A is replaced by the sheaf Dx, K = K, and F = K K H. 

Namely, a complex C of weakly K-equivariant monodromic D-modules 
is called an h-complex if there is given a linear map i: k -* Homrn (C., C-) 
satisfying the following conditions: 

(i) i is K t< H-equivariant, i.e. aiga-' = iAd(g) aEKKH, gek, 
(ii) ig is a morphism of Dx-modules, 

(iii) ig1ig2 + ig2g1 =0 , 

(iv) dig+igd=dpg-a(i(g)) 

Denote by Ch(Ye'(Dk, K)) the abelian category of h-complexes. Exactly as 
in 1.2 and 1.5 we define the bounded h-derived category Dfb(j(Dx, K)) of K- 
equivariant monodromic D-modules. This is a triangulated category generated 
by K-equivariant monodromic D-modules. 
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Let as before I c U(I) be an ideal and I = T(K)I be its K-saturation. 
Consider the full subcategory D,1- (4#(Dx, K)) c Dh(.(Dx, K)) consisting 
of complexes with cohomologies in A> (Di, K) (2.3). We have a natural func- 
tor 

v: Db(j(DX , K)) -- D' b 
(JI(Dx, K)). 

2.5.1. Theorem. The above functor vl is an equivalence of categories. 

This theorem is proved in 2.16 below. 

2.5.2. Copying again the definition in 1.5 (with A = D, F = K ) we define 
the bounded h-derived category D b((D, K)) of K-equivariant D-modules. 
Similarly we define the full subcategory Ds 1 (A(D, K)). The functors 7r., 7' 
in 2.3 preserve h-complexes and induce mutually inverse equivalences of cate- 
gories 

Dh (.(Dx, K)) 4D(h ((D K)), 

DJJ(A>.(DX, K)) (D(J(j.(D, K)), 

Dh I.t ((DX, K)) (D1 ((J D ((D, K)). 

2.5.3. Corollary. The natural functor 

v: D*(A>.(D, K)) -- Db (#(D, K)) 

is an equivalence of categories. 

Indeed, this follows from 2.5.1, 2.5.2. 

2.6. The flag variety. The main example of a monodromic structure arises in the 
following way. Let g be a semisimple Lie algebra. Denote by G the algebraic 
group of automorphisms of g, so that G0 is the adjoint group and Lie G = g. 
Let X be the flag variety of g-the variety of Borel subalgebras of g. Fix 
x e X and let bx c 9 be the corresponding Borel subalgebra, BX c G0 the 
corresponding Borel subgroup, and NX c BX the maximal nilpotent subgroup. 
Let H := BX/Nx be the Cartan subgroup of G. The natural action of Go on 
X is transitive with the stabilizer of x e X equal to BX, so X = G0/Bx . Put 
X :=G0I/Nx. Then the projection 

x 
is an H-monodromic structure on X (where H acts on X from the right). 
2.7. The extended enveloping algebra. Let g and G be as in 2.6. Let U(g) 
be the enveloping algebra of g and Z = Z(g) c U(g) be its center. Let 
I c g be the Cartan subalgebra of g, A c ij the root system, A+ the set 
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of positive roots, E c A+ the set of simple roots, W the Weyl group, and 
3 := 2Zaea+ a; for a e A let ha be the corresponding co-root and U e W 
the corresponding reflection. For any Borel subalgebra b c g and n := [b, b] 
we have the canonical identification b = b/n invariant under G0-conjugation, 
and A+ are the weights of the I-action on g/b- n*. (People often use the 
opposite ordering of A; following [BB] we choose the one for which dominant 
weights correspond to positive line bundles on the flag space.) 

We will think of W as the group of affine transformations of I* that leave 
-3 fixed; this defines an action of W on the algebra S(I). One has the Harish- 
Chandra isomorphism y: ZS(j)w. Given an ideal I c S(j) let y*I c Z 
denote the corresponding ideal in Z. 

Denote by V := U(g) (Z U(b) the extended enveloping algebra. Then U([b) 
is the center of V. Let .#(g) and X4(V) be the categories of left U(g)- 
and V-modules respectively. The embedding U(g) c V defines the functor 
.lX-(V) X#(g). Given an ideal I c U(b) and the corresponding ideal J := 
y*I c Z denote by XI(V) and A'(g) the categories of V- and U(g)-modules 
annihilated by I and J respectively. Consider also the category 4( V) = 
{M E I#(V)I for every m e M, I'm = 0 for n > 0} and the similar 
category X#1(g). 

Let A: U(r) C be a character and 0 :=A y Z -? C the correspond- 
ing central character. The embedding U(g) c V induces an isomorphism 
U(g)/(Ker 0)U(g)- V/(Ker A)V. If A is regular, then 

U(9)/(Ker +) U(0)V/(Ker A) V 

for all n > 0. Denote A1(V) := (Ker )V(V) Aj(V) V)Kera)(V) 
e' e(KeroU(g) 0( r) U (9)(3) The functor X1(V) - 

Ae,(g) is an equivalence of categories. The functor A1j(V) --+ A(g) is an 
equivalence if and only if A is regular. 

2.8. Localization of g-modules. Let X be the flag space of g and (X, X) the 
H-monodromic variety as in 2.6. Let b be the sheaf of rings on X as in 
2.2. Recall that U(b) c D and U(b) is the center of D-. For a character 
A: U(lj) ?C we have the usual categories X1(D) and X1 (D) (2.2). 

The left G-action and the right H-action on X define a homomorphism 

: u(0) X U (b) ,- F(X, D)- 

In fact, for z E Z we have f(z ? 1) = ,B(I 0 y(z)). Hence ,B induces a 
homomorphism 

/s: V -, (X, D). 

It is known that f, is an isomorphism ([BB], 3.2.2). This defines a pair of 
adjoint functors 

0(V) zY((D) 
r 

by F(M) := F(X M), S(N) := N Xv D. These functors are U(1)-linear, 
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hence they induce the adjoint functors 

(V) 2 (D) D), J4(V) 1(D). 

Recall that a weight A e 1 is dominant if (A + 3)(hj) f {- 1, -2, ... } for 
any positive co-root ha E [ . The basic result is the following 

2.8.1. Theorem ([BB], 3.3.1). If A is a regular dominant weight, then (17, 1) 
are mutually inverse equivalences of categories. The functors (I7k, .Sf) are also 
equivalences of categories. 

2.8.2. Remark. Combined with the equivalences tA (V) / k(g), #(V)- 
.(g) in 2.7 this theorem provides the localization for the categories A1(g), 
XA(0) - 
2.9. Localization for (g, K)-modules. Assume now that the Lie algebra g is 
part of a (g, K)-pair (1.1). Then the action of K on g induces a K-action 
on the Cartan subalgebra 1 (call this action T). Hence the monodromic va- 
riety (X, X) (2.6, 2.8) is a monodromic K-variety. Let A: U([) -( C be 
a weight and 0 = A- y: Z - C the corresponding central character. Put ' 

:= T(K)) e T(K)\4* and l := T(K)6. We have the corresponding full sub- 
categories X.-(9 K) c A9,.(g, K) c .#(g, K), ..(g,, KW) c _,, KW) c 
1#(g, KW) of (g, K)- and weak (g, K)-modules. There are similar categories 

A>(V, K) c 0.A(V, K) c .(V, K), 
X1(V ,Kw )c 4.(V ,Kw )c O(V ,Kw). 

As above we have the obvious functors #(V, K) -* #(g, K), Jt'(V, KW) 
.(g, KW), which induce the equivalences 

X1.(V, __ o)^,(g K, .(V. Kw) _'+0. (9, Kw). 

If A is regular and the stabilizers of A and 0 in T(K) coincide (e.g. if T(K)A = 
A), then 

X.Z'-(V,K .( K), 1. (V , K w),. Kw) 
are also equivalences of categories. 

The functors F and Y preserve K-equivariant modules: 

A'(V, K) XA (D, K) 
r 

and induce the functors between the full subcategories 
59. 

X1tA (V, K) A X (D K), 
rA 

Xl. (V, K) X (D, K). 
rA~. 
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2.9.1. Corollary ([BB], 3.3.3). If A is a regular dominant weight, then 
(J7- ' Yi.) , (Fl. , Y,.) are equivalences of categories. The same is true for 
weakly K-equivariant categories. 

2.9.2. Remark. Combined with the equivalences 0.#j- (V, K) 4.'4 (,, K), 
Ji.(V, K)--&14. (g, K) above this corollary provides the localization for the 
categories 49o. (g, K) and .,k',. (g, K) . Similarly, for the weakly K-equivariant 
categories Y4. (g, KW) and ,(. (g, KW). 

2.10. Summarizing the results. We will use the notations of sections 2.6-2.9 
above. Fix a dominant regular weight A. Let 0 be the corresponding central 
character. Assume that the stabilizers of A and 0 in T(K) coincide (e.g. that 
T(K)A = A). Let as before A' = z(K)) E T(K)\t0* and 6' = z(K)0 be the 
corresponding K-saturations. As was mentioned in the introduction our main 
goal is to provide a localization for the catetgory Do. (g, K). Let us summarize 
the results we have obtained so far. Theorem 1.3 implies the equivalence of 
categories 

Db-g K)-Dh (4(, K))* 

By Theorem 1.18 
D$h (G(g, K)) D Qh (g, K)). 

By Corollary 2.9.1 and Remark 2.9.2 

D 0 K)) D (fj- (D, K)). 

By Corollary 2.5.3 

Db Vfj(D, K)) D> (Je'(D, K)). 

By 2.5.2 
D> b.(#(D, K)) D Db .(J((Dk, K)). 

So we have the natural equivalence 
b K)- D b ((Dk,K)). 

Thus to prove the main Theorem 0.1.1 it remains to interpret the h-derived 
category of K-equivariant monodromic D-modules Dhb("'(Dk, K)) as the K- 
equivariant derived category of monodromic D-modules DKb mon (Dk) (see the 
definition below in 2.12). 

2.1 1. The equivariant derived category of D-modules ([BLI ]). Recall that "vari- 
ety" = "smooth variety". Let Y be a variety acted upon by an affine algebraic 
group G. Let us recall the definition of the G-equivariant derived category 
Db(Dy) of Dy-modules following [BLI]. In 2.12 we will extend this defini- 
tion to monodromic D-modules. Recall the main simple principle of [BLI]: if 
G acts freely on Y, then put Db(Dy) := Db(DG\y); otherwise replace Y by 
its free G-resolution P -+ Y (i.e. the G-action on P is free) and then use 
D b(DG\P) as an approximation to DG(Dy). 
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A G-space P is called free if the quotient map 
p 

q . 
j5 

is a principal G-bundle. Let P be a free G-space and p: P -- Y be an affine 
G-map which is a locally trivial fibration. Then we call P (or rather the pair 
(P, p) ) a smooth resolution of Y. Smooth resolutions of Y form a category 
SRes(Y, G) = SRes(Y) in the obvious way. For a morphism f: Q -* P of 
smooth resolutions denote by f: Q -* P the corresponding map of quotients. 
2.1 1.1. Definition of Db(Dy). An object M E Db (Dy) is a collection of objects 
MP E Db(D-) for every P E SRes(Y) together with the isomorphism af: 

f*Mp MQ for every morphism f: Q -+ P in SRes(Y) so that given a 
Q~~~~~~ composition of morphisms R g Q P we have ag af = afg . A morphism 

M -- N in D b(Dy) is a collection of morphisms MP -- NP compatible with 
the structure isomorphisms af . 

Notice that for the "trivial" resolution G x Y -* Y we have G x Y = Y. So 
an object M E DGb(Dy) in particular determines an object MGXy E D b(Dy). 

The abelian category #(D,, G) of G-equivariant DY-modules is naturally 
identified as a full subcategory of DG(DY) consisting of complexes concentrated 
in degree 0. 

Let us recall some definitions in the spirit of [BLI]. A connected affine 
variety W is called n-acyclic if HDR(W) = 0, 0 < i < n. A map of varieties 
f: T - S is called n-acyclic if f is an affine map and is a locally trivial 
fibration with an n-acyclic fibre W. A smooth resolution p: P -k Y is called 
n-acyclic if p is an n-acyclic map. Let J c Z be a segment. For a variety Z let 
DJ (Dz) c Db(Dz) be the full subcategory consisting of complexes, which are 
acyclic outside the interval J. Let DJ (Dy) c Db (Dy) be the full subcategory 
consisting of objects M such that MP E DJ(D-) for every P E SRes(Y). 

The main point which makes the above definition useful (and equivalent to 
many others) is the following. 
2.11.2. Proposition. Let P -- Y be an n-acyclic resolution and J c Z be an 
interval such that JI < n . Then the functor 

DG(Dy) *D' (D-p), M ~+Mp 
is fully faithful. 

It is easy to derive the above proposition from the following. 
2.11.3. Lemma. Let f: T -* S be an n-acyclic map. Let J c Z be an interval 
such that I JI < n . Then the inverse image functor f* : D J(Ds)-- DJ (DT) is 
fully faithful. 
Proof of lemma. Let W be the fibre of f . Let M, N be D-modules on S. It 
suffices to prove that 

f Extb (M, N) -* Ext' (f*M, f*N) 
Ds DT 
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is an isomorphism for i < n. Replacing N by its Cech resolution we may 
assume that T = S x W and f is the projection. But then 

Ext' (f*M, f*N) = eDH (W) 0 Ext '(M, N). 

Since H?R(W) = C and HDR(W) = , < j < n, we get the result. 

2.11.4. Remark. The h-derived category Dh (Dy, G) (2.5) has the advantage of 
being defined in terms of equivariant D-modules on the space Y itself. How- 
ever, it is easy to show that the equivariant derived category Db(Dy) has all 
the usual functional properties of the nonequivariant derived category. Also by 
the above Proposition 2.11.2 the Ext groups in Db(Dy) can be computed in 
the category of all D-modules on a certain space, which provides a geometric 
meaning for these groups and makes them computable in many cases. Fortu- 
nately the two categories Dh (Dy, G) and Db (Dy) are equivalent (see Theorem 
2.13 below). 

2.12. The K-equivariant derived category of monodromic D-modules. Let us 
extend the above Definition 2.1 1.1 to the monodromic setting. Let (X, X) 
be an H-monodromic K-variety (2.3). Consider X as a K-variety and let 
SRes(X, K) be its category of smooth resolutions (2.11). For a resolution 
p: P -* X in SRes(X, K) let (P, P) be the induced H-monodromic K- 
variety. Let p: P -* X be the induced map. Then P is a free (K K H)-space 
and the actions of K0 and H commute. Put P 0:= K0\P, P0:= K0\P, K = 
K/K?. Then the pair (PO, PO) is an H-monodromic K-variety, and we may 
consider the category #(Dpo, K) of K-equivariant monodromic D-modules 
(2.3). Given a morphism f: Q -* P in SRes(X, K) we have the induced 
morphism f0 Q? 0 P0 of monodromic K-varieties and the inverse image 
functor 

,,/? D (4i(Dpo , K) ) -* D (,O(DQO , K)) . 

2.12.1. Definition of Db mon (Dx). An object M in DK mon(Dx) is a collection 
of objects Mp E Db(YeX(Dpo, K)) for every P E SRes(X, K) together with 
the isomorphism af: *Mp MO for every morphism f: Q -* P in 

SRes(X, K) so that given a composition of morphisms R g Q L P we have 
o0* ag*g af =afg. 

2.12.2. Remark. Definition 2.12.1 reduces to 2.1 1.1 in case H = {e} and X = 
X. Indeed, in this case Po = Po, which is a free K-space. So f(Dpo, K) = 

bb 
'#(Dp) and D (,#(Dpo, K)) = Db (V(Dp)), where P = K\P = K\P0. 

The abelian cateogry o#(Dx, K) of K-equivariant monodromic D-modules 
b is naturally identified as a full subcategory of DK mOn (DX) consisting of com- 

plexes concentrated in degree 0. 
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2.13. Theorem (Beilinson). Let (X, X) be an H-monodromic K-variety. 
Then there exists an equivalence of categories 

e: DV(t(DX, K)) - DK mon(DX), 
Proof. The proof consists of several steps. 

Step 1. Let p: P -* X be a smooth resolution. Denote by q P P0 
the quotient map by K?. Since P is a free (K? x H)-space the inverse image 
functor q*: * (DPo, K) Z 1#(DP, K) is an equivalence of categories. (The 
inverse functor is (q*) -1 = q* (.)K .) Hence we have the equivalence 

q* :D b(.It?(D)) D (4(D K)). 
Step 2. We have the obvious functor 

a: Db(.#(D-, K)) D b(Jt'(DP K)) 

(see 2.5 for the definition of Dh#(D , K))). 
Claim. This is an equivalence of categories. 
Proof of claim. Both categories are generated by K-equivariant monodromic 

D-modules A#(DP, K), so it suffices to prove that for M, N E 1#(Dp, K) 

a: Ext i(M, N) - Ext1(a(M) , a(N)) 

is an isomorphism. Since P is a free (K K H)-space, we can find a covering 
= { Ui} of P by open (K xH)-invariant subsets of the form Ui = (K x H) x Zi 

for some affine Z 's. Replacing N by its Cech resolution with respect to this 
covering we may assume that P is an affine free (K K H)-space P = (K H) x Z . 
But then our claim reduces to the corresponding statement in section 1 above. 
Namely, put F = K K H, A = F(P, Dp) . Then (A, FIK) is a Harish-Chandra 

b b triple (1.4) and J(Dp, K) =Je(A, FIK), D (J'(Db, K)) = D (A, FIK), 
D h(J(Dp, K)) = D h(A, FIK). Moreover A is a free U(k)-module (k = 
Lie K), and so our claim follows from Theorem 1.6. 

Step 3. Let us define the functor e in the theorem. Given a free resolution 
p : P -- X we have the inverse image functor 

:Dhb(J((Dk, K)) D- D(J((Dp, K)). 

Compose it with the equivalences a-1 and (q*) 1 of Steps 2 and I to get the 
functor 

(q*)- a -1 .p* Db( (Db, K)) D (O(Dpo, K)). 

Thus, given M E Dbh((DX, K)), we get a compatible collection of objects 
{(q * cx P(M)1PESRes(X,K) 1 'which defines the functor 

b - ~~~~b 
E: DhC#(D,X, K)) -DKmon(Dk), 

Since both categories are generated by the K-equivariant monodromic D- 
modules A#(Dx, K), it suffices to prove that e is fully faithful. 

Step 4. In view of Proposition 2.11.2 it suffices to prove the following. 
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2.13.1. Proposition. Let p: P -* X be an n-acyclic resolution and J c Z be 
an interval such that IJI < n. Then the inverse image functor 

p :Dh ((Dx, K)) -* Dh (Je'(Dp, K)) 

is fully faithful. 
Proof of proposition. We will need some preliminary constructions. 

Let Z be a (smooth) variety acted upon by an affine algebraic group F. 
Consider the forgetful functor 

Forw: Jt(Dz, Fw) A9(Dz) 

from weakly F-equivariant Dz-modules to Dz-modules. 
2.13.2. Lemma. The functor Forw has an exact right adjointfunctor 

Indw : I(Dz ) -* e(Dz, F . 
Proof of lemma. Let Iu: F x Z -* Z be the F-action morphism and pz 
F x Z -* Z, PF : F x Z -* F be the two projections. Let M E .(Dz). 
Consider F x Z as an F-space via the action on the first factor. Then p M 
is an F-equivariant DFXZ-module. Since the action map ,u is F-equivariant, 
the direct image u*pzM is an F-equivariant 6'Z-module. We claim that in 
fact u*pzM is naturally a (weakly F-equivariant) D -module. Indeed, let 
Tz be the tangent bundle and 4 E Tz . Let E E TFXZ be such that d/uQi) = 
4, dpF(j) = 0. Then define the action of 4 on u*p* M as the action of 4 
on pM. This makes u*pzM a weakly F-equivariant Dz-module which we 
denote by Indw (M). 

Let i: Z -* F x Z be the embedding i(z) = (e, z), where e E F is the 
identity. We have the canonical surjection 

a:1*p*M -, i*p*M=M 
which defines a morphism of functors 

a: Forw . Indw -* Id. 

Vice versa, given N E O(DZ, FW), consider the corresponding structure map 

,u N -- p* N 
and define 

J (N): N -* Indw . Forw (N) 
as the composition 

,B: N /-* lu*lu*N u *pN. 
The morphisms (a, /1) are the adjunction morphisms for the functors 
(Forw, Indw). 
2.13.3. Corollary. The functor Indw carries injective Dz -modules to injective 
weakly F-equivariant Dz-modules. 

Let now (Y, Y) be an H-monodromic K-variety and consider the category 
Ch(,(Di, K)) of h-complexes as in 2.5. Let C(O#(Di, KW)) be the category 
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of complexes of weakly K-equivariant monodromic modules. Consider the 
natural forgetful functor 

Forh: Ch(J((Dk, K)) -* C(Q.(Dj, KW)) 
(forgetting the "homotopies"). 

Let M E .(D,, KW) and k = Lie K. As in lemma 1.8 define w k 
End(M) by 

w(g) = dpg - j(g), g E k 
(we use the notations of 2.1). Exactly as in Lemma 1.8 one checks that 

(i) w is a representation of the Lie algebra k, 
(ii) w (g) E EndD,,(M) , g e k, 
(iii) w is (K vx H)-equivariant. 

Let U(k) be the DG-algebra as in 1.9.7. Consider U(k) as a left U(k)- 
module. Let us define an exact functor 

Indh: C(J((D, KW)) -+ ChV((Dy, K)) 

as follows. Given a complex C e C(J((Dy, KW)), consider it as a left U(k)- 
module via w. Then put 

Indh(C):= HomU(k) (U(k), C). 

2.13.4. Lemma. Given C E C(J((D,, KW)) and C' E Ch(Jhf(Dj, K)) there is 
a canonical isomorphism of complexes 

Hom (Forh(C ), C) - Hom (C, Indh(C)). 
In particular Indh is the right adjoint to Forh both on the level of complexes 
and homotopy categories. 
2.13.5. Corollary. The functor Indh preserves %-injectives. 
2.13.6. End of the proof of Proposition 2.13.1. Consider again the monodromic 
K-variety (X, X). Let C(Jt(Dk)) be the abelian category of complexes of 
D'k-modules. Summarizing the results of 2.13.2, 2.13.3 (with Z = X, F = 
K K H) and 2.13.4, 2.13.5, we obtain an exact functor 

Indh.Indw: C(Je'(Dx)) Ch(XA(Dx, K)) 
which is the right adjoint to the forgetful functor Forw - Forh and preserves 
.-injectives. 

Given N E Db (.#(Dx X K)) we can construct (as in 1.1 5.3) a right resolution 
O -+N --+Io -- *, 

where Ij = Indh .Indw(Cj) for some .-injective CJ E C(e(Dk)). 
Fix M, N E D4(A#(Dk, K)). We need to show that 

p : Hom(M, N) -* Hom(p#*(M), p*(N)) 
is an isomorphism. Replacing N by the above resolution N -* I we see that 
it suffices to show that 

p ,oJ D (Dfc -- DXD 
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is an equivalence, which is true by Lemma 2.11.3. This proves Proposition 
2.13.1 and Theorem 2.13. 
2.14. Let again (X, X) be an H-monodromic K-variety, U(l) the enveloping 
algebra of b = Lie H, I e U([) an ideal, and I = T(K)I its K-saturation. 
Consider the full subcategory DZ 1.(Dk) c DK,mon(Dk) consisting of com- 
plexes with cohomologies in /#. (DX, K) (see 2.3). Then the equivalence e in 
Theorem 2.13 induces an equivalence 

E: D,' I. (Dk, K)) DKi I (DX)- 

If I = Ker A: U(lj) -- C is a character, put Di 1(DX) := DI(D). 
Combining the last equivalence E with the results in 2.10 we obtain the 

following main theorem. 
2.15. Theorem. Let (g, K) be a Harish-Chandra pair (1.1), where g is a 
semisimple Lie algebra. Let b c p be the Cartan subalgebra, Z the center 
of U(g), and 0: Z -* C a regular central character. Let A : U(4) -+ C be a 
regular dominant weight corresponding to 0. Assume that the stabilizers in K 
of A and 0 coincide (e.g. KA = A). Let X =flag varietyfor g and (X, X) be 
the corresponding monodromic variety. Then there exists a natural equivalence 
of categories 

Db.(g, K) - Di (Dk). 

2.16. Introduction of the central character. Let us fill in the gap and prove 
Theorem 2.5.1 above. The idea of the proof is the exact geometric analogue of 
the corresponding algebraic argument. Namely, we first show that the h-derived 
category Dh (.4, K) of K-equivariant monodromic D-modules is the same as 
the derived category of DG-modules over a certain (geometric) Harish-Chandra 
DG-algebra (example 3 in 2.16.2). Then we prove a general theorem analogous 
to 1. 16.1 above for such Harish-Chandra DG-algebras. 
2.16.1. Harish-Chandra DG-algebras (geometric case). Let Y be a smooth 
variety with an action of an affine algebraic group F. Let K c F be a subgroup 
such that K is a normal subgroup of F. Put k = Lie K. 

Let By = e By be a sheaf of unitary graded algebras on Y with a ring 
homomorphism 6y -* By which makes By a quasicoherent left 6y-module. 
Suppose that By is given a structure of an F-equivariant Mly-module (2.1) so 
that the F-action preserves the ring structure on ByI Denote this F-action by 
a. Let j: U(k) -* J(Y, B 0) be an F-equivariant ring homomorphism such 
that 

dag(b) = [j(g), b], g E k, b e By. 
Suppose in addition that there is given a differential d on By of degree one, 
which makes By a sheaf of DG-algebras. Assume that d commutes with the 
F-action and that j(k) c J7(Y, BO) consists of cycles, i.e. d(j(k)) = 0. We 
denote the above data y := (By ElFK, d) and call it a Harish-Chandra DG- 
algebra. Obviously, this is a direct generalization of the same notion when 
Y=pt (1.9.1). 
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Let y be a Harish-Chandra DG-algebra. Let (M = eDM', dM) be a 
complex of F-equivariant quasicoherent My-modules. Denote the F-action on 
M by p. Assume that M has a structure of a sheaf of (left) DG-modules 
over the sheaf of DG-algebras By . Denote the multiplication map a By 
End(M). We say that M is a Sy-module if 

a(ia(b)) = p(a)a(b)p(a)1, a e F, b eBy 

and 
a(j(g)) = dpg, g e k. 

Let .f(Wy) denote the abelian category of Ry-modules. Exactly as in 1.9.2 
we define the derived category D(r?y) and its full subcategory Dbb(Gy) C 
D (Vy) . 

2.16.2. Examples. Let (X, X) be a monodromic K-variety (2.3) and F = 
K K H be the z-semidirect product. Let us describe some Harish-Chandra 
DG-algebras on X. 

1. Consider the differential operators Dt as a graded algebra concentrated 
in degree zero. It has a natural F-action and a homomorphism j: k 
F(X, Dx) (2.1) satisfying the above conditions. So x := (Dx, FIK, d = 0) 
is a Harish-Chandra DG-algebra. 

2. Consider the sheaf of algebras U(k) 0 Dk with the diagonal F-action 
and the structure morphism : k -* F(X, U(k) X Dx) given by 

j1(g) = gol + 101(g). 

Then U(k) 0 A (U(k) X D , FIK, d = 0) is a Harish-Chandra DG- 
algebra. As in 1.8.1 (remark 1.9.2) we have a natural identification 

Db(U(k) ?%i) = Db(J(Dx, Kw)) 

(see 2.3). 
3. Let U(k) be the DG-algebra as in 1.9.7. Consider U(k) 0 Dx with 

the diagonal F-action and the structure morphism jh: k -f 1(X, U(k) 0 Dx) 
given by 

ih(g) = g8 1 + 11(g). 

Then U(k) 0 RX := (U(k) 0 Dx, FIK, d) is a nonpositively graded Harish- 
Chandra DG-algebra. As in 1.1 1.1 we have natural identifications (2.5) 

X'(U(k) 0 x) = Ch(J(Dx, K)), 

D b(U(k)0 -x) = Dh(J(Dx, K)). 

2.16.3. Let us consider again the last example 3. Let U([) be the enveloping 
algebra of the torus H. Given M e l#(U(k) 0 Ax), it is naturally a U(h)- 
module via w (see 2.2). This action w commutes with the (U(k)0Df)-module 
structure on M. Indeed, this follows from (ii) in 2.2, (i) in 2.5 and the fact 
that the K?-action commutes with the H-action. Recall that K acts on U(h) 
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via T. Extend this action to the action of F = K K H, where H acts trivially. 
Then the U(l)-module structure on M is compatible with the F-action via T: 

a(4m) = T(a)(4)a(m), a E F, 4 E U(l)), m e M. 
Let I c U(l) be a K-invariant ideal. Consider the usual full subcategories 

DI4(U(k) 0 X C D(U(k) %X), 
and the natural functor 

f' Db(,e ( U(k B-g )) , ' D,(XU(k _) 
This is the functor v in 2.5 under the identifications of example 3 above. 
Theorem 2.5.1 claims that this functor is an equivalence. This follows from the 
following general theorem. 
2.16.4. Let Y be an F-variety and gy = (By, FIK, d) be a Harish-Chandra 
DG-algebra (2.16.1). Let Z be a finitely generated commutative ring with an 
algebraic action T: F -* Aut(Z). Assume that the ring Z acts by endomor- 
phisms of the category O(y) . More precisely, for every M E O#(,g) there 
is given a Z-module structure, which commutes with the differential on M, 
with the By-action, and 

a(zm) = T(a)(z)a(m), z E Z, a E F, m E M. 
Moreover assume that this Z-module structure is preserved by morphisms in 
4(y) . Let I c Z be an F-invariant ideal and 1(y) c #(qy) be the full 
subcategory of I-finite modules. Let D b(,qy) c Db (,y) be the full subcategory 
of qy-modules with I-finite cohomologies. We have the natural functor 

V :Db(.X-( (y)) Db(7) 

Theorem. In the above notations assume that the sheaf of algebras By is nonpos- 
itively graded and is locally left Noetherian. Then the functor vF is an equivalence 
of categories. 

The proof of this theorem is similar to the proof of Theorem 1.16.1 above 
and we will not repeat it. 

3. A CONJECTURE AND EXAMPLES 

3.1. Let X be a smooth variety acted upon by an affine algebraic group G. 
Consider the G-equivariant derived category Db(Dx) of D-modules on X 
(2.1 1). Let #(Dx, G) be the abelian category of G-equivariant DX-modules. 
We have a natural fully faithful functor #(Dx, G) -* Db (Dx) which identifies 
,#(DX, G) with the full subcategory of complexes concentrated in degree zero. 
Thus we obtain the functor 

,BD Db(X (DX , G) ) D b(DX) . 
This functor is not an equivalence in general (take for example X = pt, G- 
C* ). However it seems that if the G-action on X is free at a general point of 
X, then f, should be an equivalence. More precisely, we have the following 
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3.2. Conjecture. Suppose that the connected component of the stabilizer of a 
general point in X is unipotent. Then /B is an equivalence. 

3.3. Remark. The importance of this conjecture is clear. For example, the 
category Db (J(DX, G)) often has a representation-theoretical meaning (e.g. 
via the localization). But some of the usual geometric properties fail in this 
category. For example, let Y c X be a closed smooth G-stable subvariety. 
Then the obvious functor 

Db(J((Dy, G)) -* D b(Je(DX, G)) 

is not an equivalence in general: take X = C, Y = the origin in C, G = 
C* with the natural C*-action on C. (This functor is an equivalence in the 
nonequivariant situation by Kashiwara's theorem [BI.) On the other hand, the 
equivariant derived category D b(DX) has all the usual geometric and functorial 
properties of the nonequivariant derived category. So it is useful to know that 
in some cases these two categories are equivalent. 

We can easily deduce from our results in section 1 the following theorem 
related to the above conjecture. 

3.4. Theorem. Let X be a smooth D-affine variety (e.g. X is affine) acted 
upon by an affine algebraic group G. Let A = 17(X, Dx) be the ring of global 
differential operators on X and U(g) be the universal enveloping algebra of 
g := Lie G. Consider the canonical homomorphism 

j: U(g) -* A 
induced by the G-action on X. Assume that A is a projective right U(g)-module 
via j. Then the functor 

fi: Db(.(Dx, G)) - Db4(Dx) 
is an equivalence of categories. 
Proof. The functor ,B is a composition of two functors 

D (,O(Dx , G)) A_ D h (,e(Dx G)) __ DG(DX). 
By Theorem 2.13 the functor ,B" is always an equivalence. So it suffice to prove 
that ,B' is such. Since X is D-affine, we have " DX-modules" = " A-modules". 
Moreover, the G-action on A and the homomorphism j : U(g) -- A make 
(A, G) into a Harish-Chandra pair (1.4), and 

b b 

Similarly, 
Db(.1t(DX , G)) = Db(.1t(A , G)). 

b b 

Under these identifications the functor ,B' is the functor 

Db(Y/(A, G)) -*Dhb(.(A, G)), 

which is an equivalence by Theorem 1.6. 
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3.5. Consider a (g, K)-pair (1.1), where g is semisimple. Let U(g) be the 
enveloping algebra of g, Z the center of U(g), and Z+ = Ker 00: Z -? C 
the augmentation ideal. Put 

UO:= U(g)/Z +U(g). 

Let X be the flag variety of g. We know that X is D-affine and that the 
natural homomorphism U(g) -- F(X, Dx) induces an isomorphism UO 
F(X, DX). Consider the natural K-action on X. Let k = Lie K. The natural 
homomorphism U(k) -, F(X, Dx) coming from the K-action on X factors 
through the embedding U(k) -* U(g) given in the (g, K)-pair. The following 
theorem is an immediate consequence of Theorem 3.4. 

3.5.1. Theorem. Assume that in the above notations the algebra UO is a projec- 
tive right U(k)-module via the embedding U(k) )-* U(g). Then the functor 

,B: DDb(.(DX, K)) -DbK(Dx) 
is an equivalence of categories. 

The following theorem was proved in [BL2] (we keep the notations of 3.5). 

3.5.2. Theorem. Assume that the stabilizer in K of a general point in X is 
finite. Then UO is a free U(k)-module. 

Theorems 3.5.1 and 3.5.2 together provide a special case of Conjecture 3.2. 
By the usual localization theorem (2.9.1, 2.9.2) we know that 

90(g, K) - (Dx, K), 

where dt(g, K) is the category of (g, K)-modules with the trivial central char- 
acter. Combining this result with Theorems 3.5.1, 3.5.2 we obtain the following 

3.5.3. Theorem. Consider a (g, K)-pair (1.1), where g is a semisimple Lie 
algebra. Let #0(g9, K) be the category of (g, K)-modules with the trivial central 
character. Let X be the flag variety for g. Assume that the stabilizer in K of a 
general point in X is finite. Then there exists a natural equivalence of categories 

Db (Jo(g, K)) - Di (DX) 

where Db (Dx) is the K-equivariant derived category of D-modules on X (2.1 1). 

3.5.4. Examples. In the above theorem let G be the adjoint group of g. To 
satisfy the assumptions of the last theorem one may take for example K = U 
to be a unipotent subgroup of G or K = the complexification of the maximal 
compact subgroup of G. 

3.6. Let G be an affine algebraic group and K c G a subgroup. Put Y = G/K 
with the natural action of G. 

3.6.1. Proposition. In the above notations the functor 

,/: D (1(DY, G)) -- DG(Dy) 
(3.1) is an equivalence if and only if the rank of K is zero. 
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Proof. Indeed, in this case both categories #(Dy, G) and Db(Dy) are in- 
duced from a point pt with the (trivial) K-action ([BLI]). That is, 

/(Dy, G) _ O(Dpt, K), 

D b(Dy) Db(pt). 

But A(Dpt, K) is a semisimple category which is equivalent to the category 
of (K/K0)-modules (K0 is the connected component of K), and Db (pt) is 
semisimple if and only if K has rank zero ([BL 1]). This proves the proposition. 

The following theorem is an immediate consequence of 3.4, 3.6.1. 

3.6.2. Theorem. In the above notations assume that the space Y = G/K is 
D-affine (e.g. Y is affine). Put A := F(Y, Dy), the ring of global differential 
operators on Y. Let U(g) be the enveloping algebra of g := Lie G. Consider 
the canonical homomorphism j: U(g) -- A induced by the G-action on Y. 
Assume that the group K has a positive rank. Then the ring A considered as a 
right U(g)- module via j is not a projective module. 

3.6.3. Problem. In the notations of the last theorem study the algebra 
Ext'(,)(A, A) 
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