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Abstract. In this paper, we study the localization problem in large-scale under-
water sensor networks. The adverse aqueous environments, the node mobility,
and the large network scale all pose new challenges, and most current localization
schemes are not applicable. We propose a hierarchical approach which divides the
whole localization process into two sub-processes: anchor node localization and
ordinary node localization. Many existing techniques can be used in the former.
For the ordinary node localization process, we propose a distributed localization
scheme which novelly integrates a 3-dimensional Euclidean distance estimation
method with a recursive location estimation method. Simulation results show that
our proposed solution can achieve high localization coverage with relatively small
localization error and low communication overhead in large-scale 3-dimensional
underwater sensor networks.

1 Introduction

Recently, there has been a rapidly growing interest in monitoring aqueous environments
for scientific exploration, commercial exploitation and coastline protection. The ideal
vehicle for this type of extensive monitoring is a distributed underwater system with net-
worked wireless sensors, referred to as Underwater Wireless Sensor Network (UWSN)
[1, 9]. For most UWSNs, localization service is an indispensable part. For example,
in the long-term non-time-critical aquatic monitoring service [9, 13], localization is a
must-do task to get useful location-aware data. Location information is also needed for
geo-routing which is proved to be more efficient than pure flooding in UWSNs [20]. In
this paper, we investigate the localization issue for large-scale UWSNs.

Localization has been widely explored for terrestrial wireless sensor networks, with
many localization schemes being proposed so far. Generally speaking, these schemes
can be classified into two categories: range-based schemes and range-free schemes.
The former covers the protocols that use absolute point-to-point distance (i.e., range)
estimates or angle estimates to calculate locations [12, 14, 6, 5, 18, 15], while the latter
makes no assumptions about the availability or validity of such range information [7,
17, 16, 11, 19]. Although range-based protocols can provide more accurate position es-
timates, they need additional hardware for distance measures, which will increase the
network cost. On the other hand, range-free schemes do not need additional hardware
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support, but can only provide coarse position estimates. In this paper, we are more in-
terested in accurate localization, which is requested by a range of applications, such
as estuary monitoring and pollutant tracking [9]. Moreover, in UWSNs, acoustic chan-
nels are naturally employed, and range measurements using acoustic signals are much
more accurate than using radio [9, 20]. Thus, range-based schemes are potentially good
choice for UWSNs. Due to the unique characteristics (such as low communication
bandwidth, node mobility, and 3-dimensional node deployment) of UWSNs [1, 9], how-
ever, the applicability of the existing range-based schemes is yet to be investigated.

There are also several schemes proposed for the localization service in underwater
acoustic networks [4, 3, 21, 10]. These solutions are mainly designed for small-scale
networks (usually with tens of nodes or even less). For large-scale UWSNs, hundreds
or thousands of sensor nodes are deployed in a wide underwater area. Directly applying
these localization schemes proposed for small scale underwater networks in large-scale
networks is often inefficient and costly.

In this paper, for the first time, we explore the localization problem in large-scale
UWSNs. We propose a hierarchical approach, dividing the whole localization process
into two sub-processes: anchor node localization and ordinary node localization. Many
existing approaches can be used in anchor node localization. For ordinary node local-
ization, we propose a novel distributed method based on a 3-dimensional Euclidean dis-
tance estimation method and a recursive location estimation method. Simulation results
show that our localization scheme can achieve high localization coverage with accu-
rate location estimation and low communication overhead in large-scale 3-dimensional
underwater sensor networks.

The rest of this paper is organized as follows. In Section 2, we describe our local-
ization scheme. Simulation results are then presented in Section 3. And finally we draw
conclusions in Section 4.

2 Localization for Large-Scale UWSNs

2.1 Overview

We consider a typical UWSN environment as shown in Fig. 1. There are three types of
nodes in the network: surface buoys, anchor nodes, and ordinary nodes. Surface buoys
are nodes that drift on the water surface. These buoys are often equipped with com-
mon GPS and can get their absolute locations from GPS or by other means. Anchor
nodes are those who can directly contact the surface buoys to get their absolute posi-
tions. These nodes can also communicate with ordinary nodes and assist them to do
localization. Ordinary nodes are those who can not directly talk to the surface buoys
because of cost or some other constraints but can communicate with the anchor nodes
to estimate their own positions. To handle the large scale of UWSNs, we propose a
hierarchical localization approach. In this approach, the whole localization process is
divided into two sub-processes: anchor node localization and ordinary node localiza-
tion. At the beginning, only the surface buoys know their locations through common
GPS or by other means. Four or more buoys are needed in our system. These buoys
work as the “satellites” for the whole network, and anchor nodes can be localized by
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Fig. 1. A typical large-scale underwater sensor network setting

these surface buoys. Using surface buoys to locate underwater objects has been exten-
sively investigated and many existing systems, such as [4] and [3], can be employed in
the anchor node localization process. In this paper, we will not contribute to this part.
Instead, we mainly tackle the problem of ordinary node localization, for which we pro-
pose a distributed range-based scheme, novelly integrating a 3-dimensional Euclidean
distance estimation method and a recursive location estimation method. We describe
this scheme in the following section.

2.2 Ordinary Node Localization

In 3-dimensional UWSNs, for a range-based localization scheme, ordinary nodes have
to estimate their distances to more than 4 anchor nodes and calculate their locations
by triangulation methods, which are commonly used in GPS systems. In a large-scale
UWSN, however, not all ordinary nodes can directly measure their distances to 4 or
more anchor nodes, thus some multi-hop distance estimation methods have to be devel-
oped.

In [18], the authors proposed and compared three multi-hop distance estimation
methods: DV-Hop, DV-Distance and Euclidean. Even for two dimensional terrestrial
sensor networks, the performance of DV-Hop and DV-Distance degrades dramatically
in anisotropic topologies, while the Euclidean method can achieve much more accurate
results and behave more consistently in both anisotropic and isotropic networks than
other methods [18]. In a UWSN, since the sensor nodes are constantly moving due to
many environment factors, the network topology may change unpredictably with time
and space. Thus, the Euclidean method is expected to be more suitable for UWSNs than
other approaches.

In our scheme, we employ a hybrid approach based on a 3-dimensional Euclidean
distance estimation method and a recursive location estimation method to get the ordi-
nary node positions. When combined with the recursive method, the inherent problems
of the Euclidean method such as high communication cost and low localization cov-
erage can be greatly alleviated. Next, we first discuss these two methods, examining
why they can be seamlessly integrated together. Then we describe the ordinary node
localization process in detail.
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3-Dimensional Euclidean Distance Estimation In [18], a Euclidean distance prop-
agation method is proposed for two dimensional sensor networks. Here, we extend it
into 3-dimensional networks.

We use an example to illustrate the method. Referring to Fig. 2, if an ordinary node
E wants to estimate its distance to anchor node A, it needs to know at least three (one-
hop) neighbors (e.g., B, C, and D) which have distance estimates to A. Note that nodes
A, B, C and D should not be co-plane and any three nodes out of A, B, C, D and E
should not be co-line. Moreover, E needs to know its two-hop distance estimates, that
is, E should have the length information of EB, BA, EC, CA, ED, DA, DB, DC,
and BC. The 3-dimensional Euclidean distance estimation works as follows: First, node
E uses edge BA, CA, BC to construct the basic localization plane. Since the lengths
of edges DB, DA and DC are already known (to E), the position of D can be easily
estimated. There exist at most two possible positions for D. Because E knows the
lengths of edges ED, EB and EC, corresponding to the two possible positions of D,
there will be at most four possible solutions for E’s position. The choice among these
four possibilities is made locally by voting when E has more immediate neighbors with
estimates to A. If it cannot be decided, the distance estimate to A is not available until
E gets more information from its neighbors.

Fig. 2. 3-dimensional Euclidean estimation

Recursive Location Estimation In [2], the authors propose an iterative framework to
extend the position estimation from a few reference nodes throughout the whole net-
work. System coverage increases recursively as nodes with newly estimated positions
join the reference node set, which is initialized to include anchor nodes.

This recursive location estimation method is illustrated in Fig. 3. In the figure, node
1 can get its location information from four neighboring anchor nodes A, B, C and D. If
the location estimation error is small enough, node 1 can be regarded as a new reference
node for other nodes. Then, it will broadcast its own location information. When node
2 gets to know the locations of C, D, E and 1 as well as the distances to these nodes,
it can calculate its own location. On the other hand, if the location estimation error is
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large, node 1 cannot be treated as a reference node and will not broadcast its location.
In our scheme, the following formula is used to estimate the location error δ:

δ =
∑

i

∣∣(u− xi)2 + (v − yi)2 + (w − zi)2 − l2i
∣∣, (1)

where (u, v, w) are the estimated coordinates of the unknown node, (xi, yi, zi) are the
reference node i’s location, li is the measured distance between the unknown node and
node i.

Fig. 3. Recursive location estimation

In order to alleviate the error propagation effect, every reference node in the system
has a confidence value η. For the initial reference nodes (i.e., the anchor nodes), η is set
to be the largest, while for a new reference node, η is associated with its location error.
In our scheme, η is calculated as follows

η =





1 if node is the initial anchor

1− δ∑
i

(u− xi)2 + (v − yi)2 + (w − zi)2
others (2)

We can see that η is essentially a normalized δ. A critical value λ (referred to as “confi-
dence threshold” later) is set. When η > λ, the unknown node can become a reference
node. Otherwise, it will continue to be non-localized. When a node gets to know its
distances to more than four nodes, it will choose four according to their η values and
calculate its location.

Ordinary Node Localization Process In the ordinary node localization process, there
are two types of nodes: reference nodes and non-localized nodes. In the initialization
phase, all anchor nodes label themselves as reference nodes and set their confidence
values to 1. All the ordinary nodes are non-localized nodes. With the advance of the
localization process, more and more ordinary nodes are localized and become reference
nodes. There are two types of messages: localization messages and beacon messages.
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Localization messages are used for information exchange among non-localized nodes
and reference nodes, while beacon messages are designed for distance estimates. During
the localization process, each node (including reference nodes and non-localized nodes)
periodically broadcasts a beacon message, containing its id. And all the neighboring
nodes which receive this beacon message can estimate their distances to this node using
techniques, such as TOA (time of arrival). We describe the actions of the two types of
nodes as follows.
Reference Nodes: Each reference node periodically broadcasts a localization message
which contains its coordinates, node id, and confidence value.
Non-localized Nodes: Each non-localized node maintains a counter, n, of localized
messages it broadcasts. We set a threshold N (referred to as “localization message
threshold”) to limit the maximum number of localization messages each node can send.
In other words, N is used to control the localization overhead. Besides, each non-
localized node also keeps a counter, m, of the reference nodes to which it knows the
distances. Once the localization process starts, each non-localized node keeps checking
m. There are two cases:
(1) m < 4. This non-localized node broadcast a localization message which contains
all its received reference nodes’ locations and its estimated distances to these nodes. Its
measured distances to all one-hop neighbors are also included in this localization mes-
sage. Besides, this node uses the 3-dimensional Euclidean distance estimation approach
to estimate its distances to more non-neighboring reference nodes. After this step, the
set of its known reference nodes is updated. Correspondingly, m is updated and the
node returns to the m-checking procedure.
(2) m ≥ 4. This non-localized node selects 4 reference nodes with the highest confi-
dence values for location estimation. After it gets its location, it computes confidence
value η. If η is larger than or equal to the confidence threshold λ, then it is localized and
labels itself as a new reference node. Otherwise, if η is smaller than λ, the node will
take the same actions as described in case (1).

The complete localization procedure of an ordinary node is illustrated in Fig. 4.

3 Performance Evaluation

In this section, we evaluate the performance of our proposed localization scheme through
simulation.

3.1 Simulation Settings

In our simulation experiments, 500 sensor nodes are randomly distributed in a 100m×
100m × 100m region. We define node density as the expected number of nodes in
a node’s neighborhood, hence node density is equivalent to node degree. We control
the node density by changing the communication range of each node while keeping
the area of deployment the same. Range (i.e., distance) measurements between nodes
are assumed to follow normal distributions, with real distances as mean values and
standard deviations to be one percent of real distances. 5%, 10% and 20% anchor nodes
are considered in our simulations. Besides our scheme, we also simulate a Euclidean
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Fig. 4. Ordinary node localization process

scheme and a recursive scheme for comparison. The recursive scheme here is the same
as in [2]. As for the Euclidean scheme, we use the three dimensional Euclidean distance
estimation as the distance propagation method and then use the triangulation method to
estimate an ordinary node’s position if it gets to know four or more reference nodes. It
works almost the same as the Euclidean scheme for two dimensional networks [18].

We consider three performance metrics: localization coverage, localization error
and average communication cost. Localization coverage is defined as the ratio of the
localizable nodes to the total nodes. Localization error is the average distance between
the estimated positions and the real positions of all nodes. As in [18, 8], for our simu-
lations, we normalize this absolute localization error to the node communication range
R. Average communication cost is defined as the overall messages (including beacon
messages and localization messages) exchanged in the network divided by the number
of localized nodes.

3.2 Performance in Static Networks

In this set of simulations, nodes in the network are fixed. The confidence threshold λ is
set to 0.98, and the localization message threshold N is set to 5. We change the node
density (i.e., node degree) from 8 to 16 and compare our scheme with the Euclidean
scheme and the recursive scheme. The results are plotted in Fig. 5, Fig. 6, and Fig. 7.
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Localization Coverage Fig. 5 shows that our scheme outperforms both Euclidean
scheme and recursive scheme in terms of localization coverage. This is reasonable since
any node which can be located by either Euclidean scheme or recursive scheme can also
be located by our scheme. The localization coverage of our scheme increases monoton-
ically with the node density. But when the node density is relatively large, the coverage
reaches a relatively high value and will not change much after that. For example, when
the anchor percentage is 20%, the localization coverage reaches 94% at node density
12 and does not increase much with the node degree lifted. And we can also see that
the more the anchors, the higher the localization coverage. For example, if the anchor
percentage is 5%, the localization coverage can only reach 0.4 when the node density
is 13, but if the anchor percentage is 10%, the localization coverage can reach 0.8 when
the node density is 13. This suggests us that in sparse networks, we can increase the
number of anchor nodes to achieve higher localization coverage.

Localization Error Fig. 6 plots the relationship between the localization error and the
node density. We can observe that when the node density is relatively small, the local-
ization error of our scheme is almost the same as that of the other two schemes. With
the increase of the node density, the localization error of our scheme will increase and
become a little larger than recursive scheme but much smaller than Euclidean scheme.
This is because with the increase of the node density, the localization coverage of our
scheme increases much faster than the other two schemes, as leads the growth of the
localization error. But this growth is much slower rate than that of the localization cov-
erage. As the node density continues to increase beyond some point, the localization
error of our scheme will decrease slowly. This can be explained as follows. When the
node density reaches a certain point, most sensor nodes can localize themselves. If we
continue to increase the node density, ordinary nodes will get to know more anchor
nodes and have more choices to calculate their locations. Thus, the localization error
will decrease. But, as show in Fig. 6, this decrease is very limited. For example, when
the anchor percentage is 5%, if we increase the node density from 13 to 16, the localiza-
tion error only decreases from 0.3 to 0.27. Thus, in practice, we cannot expect to reduce
the localization error by simply lifting the node density. Fig. 6 also shows us that the
localization error will decrease observably with the anchor percentage. For example, at
node density 13, when the anchor percentage is 5%, the localization error is 0.3. But
when the anchor percentage is enlarged to 20%, it reduces to 0.05. Thus, more anchor
nodes can translate into smaller localization errors.

Communication Cost Fig. 7 shows the average communication cost with the chang-
ing node density. In the recursive localization scheme, only nodes with known locations
broadcast messages and other nodes keep silent. Therefore, the average communication
cost of this scheme is very small. For our scheme, when the node density is small, it
introduces larger communication cost than the recursive scheme. This is because in our
scheme, when the network is sparse, although many nodes exchange beacon messages,
they cannot finally localize themselves. In other words, these beacon messages are actu-
ally “wasted” in the localization process. But with the increase of the node density, this
waste becomes smaller and smaller, and the average communication cost of our scheme



Localization for Large-Scale Underwater Sensor Networks 9

becomes closer and closer to the recursive scheme. From the figure, we can also ob-
serve that the average communication cost of our scheme decrease with the increase
of anchor percentage. Compared with the Euclidean localization scheme, our scheme
can always achieve much lower communication cost. This is due to that fact that the
recursive component in our scheme help to find more reference nodes much faster than
the Euclidean localization scheme.

(a) Anchor percentage=5% (b) Anchor percentage=10% (c) Anchor percentage=20%

Fig. 5. Localization coverage

(a) Anchor percentage=5% (b) Anchor percentage=10% (c) Anchor percentage=20%

Fig. 6. Localization error

Discussions It is shown in [8] that range-based ad hoc localization schemes have high
requirements on the node density of the networks. The paper also shows that in a two
dimensional network, the node density needs to be at least 11 in order to localize 95%
nodes with less than 5% localization error when 20% anchor nodes are present in the
network. From Fig. 6(c), we can observe that when there are 20% anchors, our scheme
can localize more than 95% nodes with less than 5% localization error if the node
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(a) Anchor percentage=5% (b) Anchor percentage=10% (c) Anchor percentage=20%

Fig. 7. Average communication cost

density is 12 in a 3-dimensional UWSN. Compared with the results in [8] for two di-
mensional networks, our scheme can achieve the same performance in 3-dimensional
networks, with the connectivity requirement increased from 11 to 12. This indicates
the good performance of our proposed scheme. On the other hand, this connectivity
requirement of 12 may be still a little high for UWSNs with expensive sensor nodes
or sparse deployment. One possible solution is to distinguish between the sensor’s lo-
calization range and communication range. This means that we can increase the trans-
mission power for the localization and beacon messages. In this way, the localization
connectivity requirement can be satisfied while the contention among data will not in-
crease much.

Besides the aforementioned results, we also study the impact of confidence thresh-
old λ, the impact of the localization message threshold N , and the performance in mo-
bile networks. In the following, we briefly summarize our findings for each aspect. Due
to space limit, however, we do not include the detailed results in this paper. Interested
readers can refer to our technical report [22].

Impact of Confidence Threshold: This study suggests us that by changing the confi-
dence threshold, we can control the tradeoff between the localization error, the local-
ization coverage and the average communication cost. For example, with the increase
of the confidence threshold, the localization coverage and the localization error will
decrease, while the average communication cost will increase. For UWSNs where loca-
tion information is only used for geo-routing, high localization accuracy is not required
[11], but a high localization coverage is desired. For this type of networks, the confi-
dence threshold can be set to a relatively small value. While for UWSNs which require
high precise location information, the confidence value should be set to a relatively
large value. Some adaptive algorithms can be used to control this important parameter
to provide performance guarantees.

Impact of Localization Message Threshold: This study tells us that for a network
setting, there is a critical value of N . When N is smaller than this value, the localiza-
tion coverage, the localization error and the average communication cost will increase
rapidly. When N is larger than this value, the localization coverage and the localization
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error will not change much and are relatively stable. But the communication cost will
continue to increase. This indicates that beyond the critical value, increasing N will
only increase the communication cost and will not bring any benefits. Thus, in practice
we need to carefully choose N according to the network environments. In our previ-
ously presented simulations, we set N to 5, which is the critical value of N for the
considered network setting.

Performance in Mobile Networks: We also conduct simulations to evaluate the per-
formance of our scheme in mobile networks, and the results show that the localization
coverage and average communication cost are not affected much by the node mobility,
while the localization error increases noticeably with the node moving speed. This is
mainly due to that fact that the average distance measurement error increases with the
average moving speed, as naturally causes the increase of the final localization error.

4 Conclusions

In this paper, we presented a hierarchical localization approach for large-scale UWSNs.
In this approach, the whole localization process consists of two sub-processes: anchor
node localization and ordinary node localization. We focused on the ordinary node lo-
calization, for which we proposed a distributed scheme which novelly integrates a 3-
dimensional Euclidean distance estimation method and a recursive localization method.
Simulation results showed that our scheme can achieve high localization coverage with
relatively small localization error and low communication cost. Besides, we also inves-
tigated the tradeoffs among the node density, the anchor percentage, the localization
error, the localization coverage and the communication cost in our scheme. Different
networks may have different requirements for these parameters. Via changing the con-
fidence threshold parameter of our scheme, we can well control these tradeoffs.
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