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LOCALIZATION FOR QUANTUM GROUPS
AT A ROOT OF UNITY

ERIK BACKELIN AND KOBI KREMNIZER

1. Introduction

Let C be the field of complex numbers and fix q ∈ C�. Let g be a semi-simple Lie
algebra over C and let G be the corresponding simply connected algebraic group.
Let Uq be the quantized enveloping algebra of g. Let Oq be the algebra of quantized
functions on G. Let Oq(B) be the quotient Hopf algebra of Oq corresponding to a
Borel subgroup B of G.

In the paper [BK] we defined categories of equivariant quantum Oq-modules
and Dq-modules on the quantum flag variety of G. We proved that the Beilinson-
Bernstein localization theorem holds at a generic q. Namely, the global section
functor gives an equivalence between categories of Uq-modules and Dq-modules on
the quantum flag variety. Thus one can translate questions about the represen-
tation theory of quantum groups to the study of the (noncommutative) geometry
of the quantum flag variety. In this paper we prove that a derived version of this
theorem holds at the root of unity case. Using this equivalence, we get that one can
understand the representation theory of quantum groups at roots of unity through
the (now-commutative) geometry of the Springer fibers.

We now recall the main results in [BK]. The constructions given there
are crucial for the present paper and a fairly detailed survey of the material there
is given in the next section. We defined an equivariant sheaf of quasi-coherent
modules over the quantum flag variety to be a left Oq-module equipped with a
right Oq(B)-comodule structure satisfying certain compatibility conditions. Such
objects form a category denoted MBq

(Gq). It contains certain line bundles Oq(λ)
for λ in the weight lattice. We proved that Oq(λ) is ample for λ >> 0 holds for
every q. This implies that the category MBq

(Gq) is a Proj-category in the sense of
Serre.

We defined the category Dλ
Bq

(Gq) of λ-twisted quantum D-modules on the quan-
tized flag variety (see Definition 3.11). An object M ∈ Dλ

Bq
(Gq) is an object in

MBq
(Gq) equipped with an additional left Uq-action satisfying certain compati-

bility axioms (in particular, the Uq(b)-action on M , that is, the restriction of the
Uq-action, and the Oq(B)-coaction “differ by λ”).
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1002 ERIK BACKELIN AND KOBI KREMNIZER

The global section functor Γ on MBq
(Gq) (and on Dλ

Bq
(Gq)) is given by taking

Oq(B)-coinvariants. Let M ∈ MBq
(Gq). Its sections over an open set (i.e., a

localization Oqf of Oq) are given by Γ(Oqf , M) = Γ(Oqf ⊗Oq
M).

The category Dλ
Bq

(Gq) has a distinguished object Dλ
q . As a vector space, Dλ

q =
Oq ⊗ Mλ, where Mλ is a Verma module. Here Dλ

q is the (quantum) equivariant
counterpart of the usual sheaf of rings of λ-twisted differential operators on the
flag variety of G. (The “set” Dλ

q is not a ring, but its “sections over open sets”
are naturally rings.) We proved that for each q except a finite set of roots of unity
(depending on g), the global sections Γ(Dλ

q ) is isomorphic to Uλ
q := Ufin

q /Jλ, where
Jλ is the annihilator of Mλ and Ufin

q is the maximal subalgebra of Uq on which the
adjoint action of Uq is locally finite.

The main result in [BK] stated that the global section functor gives an equiv-
alence of categories between Dλ

Bq
(Gq) and modules over Uλ

q in the case when q

is not a root of unity and λ is regular dominant. This is a quantum version of
Beilinson-Bernstein’s, [BB], localization theorem.

In the present paper we study the root of unity case; q is a primitive l’th root
of unity. The situation becomes different and very interesting: It turns out that Dλ

q

naturally forms a sheaf of algebras over the classical (nonquantum) complex variety
T �Xλ := (G × Nλ2l

)/B, where Nλ2l

is the B-invariant subvariety {λ2l} × N of B

(see section 3.1). If λ is integral, Nλ2l

= N and so T �Xλ = T �X is the cotangent
bundle of the flag variety X of G in this case. Hence, we refer to T �Xλ as a twisted
cotangent bundle.

A key observation is that Dλ
q is an Azumaya algebra over a dense subset of T �Xλ

(Proposition 3.6) and that this Azumaya algebra splits over formal neighborhoods of
generalized Springer fibers (Proposition 3.23). We then show that Dλ

q has no higher
self-extensions, i.e., that RΓ>0(Dλ

q ) = 0 (Proposition 3.25). This fact, together
with the result Γ(Dλ

q ) = Uλ
q and the Azumaya property implies a derived version of

the localization theorem: The functor Γ induces an equivalence between bounded
derived categories Db(Dλ

Bq
(Gq)) and Db(Uλ

q −mod) (restricted to the dense subsets).
Using the Azumaya splitting, we prove that the subcategory of Dλ

Bq
(Gq) whose

objects are supported on (a formal neighbourhood of a generalized) Springer fiber is
isomorphic to the category of O-modules over the twisted cotangent bundles T �Xλ

supported on the same fiber (Corollary 3.24).
Combining these results, we get an equivalence between Db(Uλ

q −mod) and the
derived category of O-modules on T �Xλ whose cohomologies are supported on
certain Springer fibers.

An application of our theory is for instance the computation of the number of
simple uq-modules, because this number can be interpreted as the rank of the K-
group of the category of O-modules on T �Xλ supported on the trivial Springer
fiber. Of course, such a formula follows also from the fact that this is a highest
weight category. Our method gives the possibility to extend this to nontrivial
central characters as well. In a future paper we will use this to prove a conjecture
of De Concini, Kac and Procesi regarding dimensions of irreducible modules.

In [BMR] analogous results were established for a Lie algebra gp in
characteristic p. In fact most of our methods of proofs are borrowed from that
paper. They showed analogous results for U(gp)-modules, (crystalline) D-modules
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LOCALIZATION FOR QUANTUM GROUPS 1003

on the flag variety over the finite field XFp
and certain twisted cotangent bundles

of X over F̄p.
Combining their results with ours, we see that the representation theory of Uq

(when q is a p’th root of unity) is related to the representation theory of U(gp) via
cotangent bundles of X in char 0 and char p, respectively. We know furthermore
that baby Verma modules go to skyscraper sheaves in both cases and [BMR] showed
that the K-group of the category of quasi-coherent sheaves on the cotangent bundle
is torsion-free and its rank does not depend on the characteristic of the field. Right
now we are investigating what can be deduced about the representation theory
of gp, e.g., character formulas, from the representation theory of Uq with these
methods.

2. Generalities

2.1. Quantum groups. See Chari and Pressley [CP] for details about the topics
in this section.

2.1.1. Conventions. Let C be the field of complex numbers and fix q ∈ C
�.

We always assume that if q is a root of unity, it is primitive of odd
order and in case G has a component of type G2, the order is also prime
to 3. Let A be the local ring Z[ν]m, where m is the maximal ideal in Z[ν] generated
by ν − 1 and a fixed odd prime p.

2.1.2. Root data. Let g be a semi-simple Lie algebra and let h ⊂ b be a Cartan
subalgebra contained in a Borel subalgebra of g. Let R be the root system, ∆ ⊂
R+ ⊂ R a basis and the positive roots. Let P ⊂ h� be the weight lattice and P+

the positive weights; the i’th fundamental weight is denoted by ωi and ρ denotes
the half sum of the positive roots. Let Q ⊂ P be the root lattice and Q+ ⊂ Q those
elements which have nonnegative coefficients with respect to the basis of simple
roots. Let W be the Weyl group of g. We let 〈 , 〉 denote a W-invariant bilinear
form on h� normalized by 〈γ, γ〉 = 2 for each short root γ.

Let TP = Homgroups(P, C�) be the character group of P with values in C (we
use additive notation for this group). If µ ∈ P , then 〈µ, P 〉 ⊂ Z and hence we can
define qµ ∈ TP by the formula qµ(γ) = q〈µ,γ〉, for γ ∈ P . If µ ∈ P, λ ∈ TP , we write
µ + λ = qµ + λ. Note that the Weyl group naturally acts on TP .

2.1.3. Quantized enveloping algebra Uq and quantized algebra of functions Oq. Let
Uq be the simply connected quantized enveloping algebra of g over C. Recall that
Uq has algebra generators Eα, Fα, Kµ, α, β are simple roots, µ ∈ P subject to the
relations

KλKµ = Kλ+µ, K0 = 1,(2.1)

KµEαK−µ = q〈µ,α〉Eα, KµFαK−µ = q−〈µ,α〉Fα,(2.2)

[Eα, Fβ] = δα,β
Kα − K−α

qα − q−1
α

(2.3)

and certain Serre relations that we do not recall here. Here

qα = qdα , dα = ∠α, α〉/2.

(We have assumed that q2
α �= 1.)
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1004 ERIK BACKELIN AND KOBI KREMNIZER

Let G be the simply connected algebraic group with Lie algebra g, B a Borel
subgroup of G and N ⊂ B its unipotent radical. Let b = Lie B and n = LieN
and denote by Uq(b) and Uq(n) the corresponding subalgebras of Uq. Then Uq(b)
is a Hopf algebra, while Uq(n) is only an algebra. Let Oq = Oq(G) be the algebra
of matrix coefficients of finite dimensional type-1 representations of Uq. There is a
natural pairing ( , ) : Uq ⊗Oq → C. This gives a Uq-bimodule structure on Oq as
follows:

(2.4) ua = a1(u, a2), au = (u, a1)a2, u ∈ Uq, a ∈ Oq.

Then Oq is the (restricted) dual of Uq with respect to this pairing. We let Oq(B)
and Oq(N) be the quotient algebras of Oq corresponding to the subalgebras Uq(b)
and Uq(n) of Uq, respectively, by means of this duality. Then Oq(B) is a Hopf
algebra and Oq(N) is only an algebra.

There is a braid group action on Uq. For each w ∈ W , we get an automorphism
Tw of Uq.

2.1.4. Integral versions of Uq. Let Ures
A be the Lusztig integral form of Uq, the A-

algebra in Uq generated by divided powers E
(n)
α = En

α/[n]dα
!, F

(n)
α = Fn

α /[n]dα
!,

α a simple root, n ≥ 1 (where [m]d =
∏m

s=1 qd·s−q−d·s

qd−q−d ) and the Kµ’s, µ ∈ P .
There is also the De Concini-Kac integral form UA, which is generated over A by
the Eα, Fα and Kµ’s. The subalgebra UA is preserved by the adjoint action of
Ures
A : adUres

A
(UA) ⊂ UA. The operators Tw from section 2.1.2 preserve the integral

versions.
OA is defined to be the dual of Ures

A . This is an A-sub-Hopf algebra of Oq.

2.1.5. Finite part of Uq. The algebra Uq acts on itself by the adjoint action ad :
Uq → Uq where ad(u)(v) = u1vS(u2). Let Ufin

q be the finite part of Uq with respect
to this action:

Ufin
q = {v ∈ Uq; dim ad(Uq)(v) < ∞}.

This is a subalgebra. (See [JL].)
We can also give an integral version of the finite part as the finite part of the

action of Ures
A on UA. Thus by specializing we get a subalgebra of Uq for every q.

Of course, when specialized to generic q, this coincides with the previous definition.

2.1.6. Specializations and Frobenius maps. For any ring map φ : A → R we put
UR = UA ⊗A R and Ures

R = Ures
A ⊗A R. If R = C and φ(ν) = q, there are three

different cases: q is a root of unity, q = 1 and q is generic. Then UR = Uq.
There is also a ring map A → Fp, sending ν → 1. Then UFp

/(K − 1) = U(gp),
the enveloping algebra of the Lie algebra gp in characteristic p.

For any UA-module (resp. Ures
A -module) MA we put MR = MA ⊗A R. This is

an UR-module (resp. Ures
R -module). When R = C, we simply write M = MC.

When q is a root of unity, we have the Frobenius map: Ures
q → U(g). Its

algebra kernel is denoted by uq. We also have the Frobenius map Ures
q (b) → U(b),

with algebra kernel bq. These maps induce dual maps O = O(G) ↪→ Oq and
O(B) ↪→ Oq(B). It is important to note that the Frobenius map Ures

q (b) → U(b)
has a splitting. From this splitting we can deduce that the functor of bq-invariants
on the category of Ures

q (b) is exact as follows: the splitting implies that Ures
q (b) is

a semi-direct product of bq and U(b). Hence bq is exact in Ures
q (b) (the induction
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LOCALIZATION FOR QUANTUM GROUPS 1005

functor is exact). Note that we are working with algebraic induction so we should
write everything in terms of the dual Hopf algebras. So we get

(2.5)
H∗(bq, ResBq

bq
(M)) = H∗(Bq, IndBq

bq
ResBq

bq
(M))

= H∗(Bq, O(B) ⊗ M triv) = H∗(Bq, IndBq

bq
(C)) ⊗ M = H∗(bq, C) ⊗ M.

Here H∗(Bq, ?) is cohomology w.r.t. the big quantum Borel. Note that the coho-
mology of bq is zero in odd degrees. Hence when we apply the functor of invariants
to an exact sequence of integrable Ures

q (b)-modules, we get an exact sequence. Note
that we have proven a stronger statement, we only need to assume that the first
object in the sequence is a Bq-module.

For each q there exists a map Uq → Ures
q whose image is uq and whose algebra

kernel is Z(l) (see section 2.1.7 below for the definition of Z(l)).

2.1.7. Verma modules. For each λ ∈ TP there is the one dimensional Uq(b)-module
Cλ which is given by extending λ to act by zero on the Eα’s. The Verma module
Mλ is the Uq-module induced from Cλ. If µ ∈ P , we write Mµ = Mqµ . An
important point for us is that Mλ carries an Ures

q (b)-module structure defined as
follows: Ures

q (b) acts on Uq by restricting the adjoint action of Ures
q on Uq. This

induces a Uq(b)-action on the quotient Mλ of Uq. Since this action is locally finite,
it corresponds to an Oq(B)-comodule action on Mλ. Note!! As a Ures

q (b)-module
Mλ has trivial highest weight. (In case q is generic, Ures

q (b) = Uq(b) and then the
Ures

q (b)-action on Mλ described above is the same as the U(b)-action on Mλ⊗C−λ.)
The Verma module Mλ has an integral version Mλ,A.

2.1.8. Centers of Uq and definition of Ũq. Let Z denote the center of Uq. When
q is a p’th root of unity, Z contains the Harish-Chandra center ZHC and the
l’th center Z(l) which is generated by the El

α, F l
α, Kl

µ and K−l
µ ’s. In fact, Z =

Z(l) ⊗Z(l)∩ZHC ZHC . There is the Harish-Chandra homomorphism ZHC → O(TP )
that maps isomorphically to the W -invariant even part of O(TP ). We define Ũq =
Uq ⊗ZHC O(TP ).

2.1.9. Some conventions. We shall frequently refer to a right (resp. left) Oq-comod-
ule as a left (resp. right) Gq-module, etc. If we have two right Oq-comodules V and
W , then V ⊗ W carries the structure of a right Oq-comodule via the formula

δ(v ⊗ w) = v1 ⊗ w1 ⊗ v2w2.

We shall refer to this action as the tensor or diagonal action. A similar formula
exist for left comodules.

2.2. Quantum flag variety. Here we recall the definition and basic properties of
the quantum flag variety from [BK].

2.2.1. Category MBq
(Gq). The composition

(2.6) Oq → Oq ⊗Oq → Oq ⊗Oq(B)

defines a right Oq(B)-comodule structure on Oq. A Bq-equivariant sheave on Gq

is a triple (F, α, β) where F is a vector space, α : Oq ⊗ F → F a left Oq-module
action and β : F → F ⊗Oq(B) a right Oq(B)-comodule action such that α is a right
comodule map, where we consider the tensor comodule structure on Oq(G) ⊗ F .
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1006 ERIK BACKELIN AND KOBI KREMNIZER

Definition 2.1. We denote MBq
(Gq) to be the category of Bq-equivariant sheaves

on Gq. Morphisms in MBq
(Gq) are those compatible with all structures.

If q = 1, the category MB(G) is equivalent to the category M(G/B) of quasi-
coherent sheaves on G/B.

Definition 2.2. We define the induction functor Ind : Bq − mod to MBq
(Gq),

Ind V = Oq ⊗ V with the tensor Bq-action and the Oq-action on the first factor.
For λ ∈ P we define a line bundle Oq(λ) = Ind C−λ.

Definition 2.3. The global section functor Γ : MBq
(Gq) → C−mod is defined by

Γ(M) = HomMBq (Gq)(Oq, M) = {m ∈ M ; ∆B(m) = m ⊗ 1}.

This is the set of Bq-invariants in M .

The category MBq
(Gq) has enough injectives, so derived functors RΓ are well-

defined. We showed that RiΓ(IndV ) = Hi(Gq/Bq, V ), where Hi(Gq/Bq, ) is the
i’th derived functor of the functor V → Γ(IndV ) from Bq − mod to C − mod.

We proved a quantum version of Serre’s basic theorem on projective schemes:
Each M ∈ MBq

(Gq) is a quotient of a direct sum of Oq(λ)’s and each surjection
M � M ′ of noetherian objects in MBq

(Gq) induces a surjection Γ(M(λ)) �
Γ(M ′(λ)) for λ >> 0.

Here the notation λ >> 0 means that 〈λ, α∧〉 is a sufficiently large integer for
each simple root α and M(λ) = M ⊗ C−λ is the λ-twist of M .

Let V ∈ Gq − mod. Denote by V |Bq the restriction of V to Bq and by V triv

the trivial Bq-module whose underlying space is V . We showed that Ind V |Bq and
Ind V triv are isomorphic in MBq

(Gq). In particular

(2.7) Γ(IndV |Bq) = V |Bq ⊗ Γ(Oq) = V |Bq, for V ∈ Gq − mod.

2.2.2. MBq
(Gq) at a root of unity. In case q is a root of unity, we have the following

Frobenius morphism:

(2.8) Fr∗ : MBq
(Gq) → M(G/B),

defined as

(2.9) N 
→ N bq .

Using the description of MBq
(Gq) as Proj(Aq) where Aq =

⊕
Vq,λ [BK] and

similarly M(G/B) = Proj(A) where A =
⊕

Vλ, we see that Fr∗ is induced from
the quantum Frobenius map A ↪→ Aq. It follows that

Proposition 2.4. Fr∗ is exact and faithful.

This functor has a left adjoint.

3. Dλ
q -modules at a root of unity

3.1. First construction. From now on q is an l’th root of unity (recall the re-
strictions of 2.1.1).

In this section we shall give a representation theoretic construction of the sheaf
of quantum differential operators. This will turn out to be a sheaf of algebras over
the Springer resolution—the sheaf of endomorphisms of the (nonexistent) universal
baby Verma module.
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LOCALIZATION FOR QUANTUM GROUPS 1007

Recall the Frobenius map O ↪→ Oq and the fact that O
uq
q = O. This allows us

to define the functor of (finite) induction

Ind : uq − mod → MGq
(G),(3.1)

N 
→ (Oq ⊗ N)uq .(3.2)

Here MGq
(G) is the category of Gq-equivariant O-modules, that is, an O-module

which is also an Oq-comodule and such that the O-module structure map is a map
of Oq-comodules.

We have the following important proposition [AG]:

Proposition 3.1. Ind : uq − mod → MGq
(G) is an equivalence of categories.

Notice that both categories are tensor categories (in MGq
(G) it is tensoring

over O) and that Ind is a tensor functor. This will be used later. Note also that
MGq

(G) has an obvious action by G, that is, for any g ∈ G we have a functor
Fg : MGq

(G) → MGq
(G) and natural transformations αg,h : Fg ◦ Fh ⇒ Fgh

satisfying a certain cocycle condition. Moreover starting from any uq-module, we
can form a family of such modules indexed by G, more precisely an O(G)-module
in the category of uq-modules. We will use this to construct the universal family of
endomorphisms of baby Verma modules.

Remark 3.2. The article [CKP] defined an action of an infinite dimensional group
G on Uq preserving the l-center (and the augmentation ideal of the l-center) and
thus acting also on uq. This is defined by observing that the derivation defined
by commuting with the divided powers E(l), F (l) actually preserves the algebra
generated by the nondivided powers. These derivations are then exponentiated to
get automorphisms of Uq at a root of unity. The group they generate is infinite
dimensional as the action is not locally finite. This action also induces an action on
uq, but here the group is finite dimensional G0. We thus have another group action
on the category. Note that the action of G on the category gives us an infinitesimal
action of the Lie algebra g on the category, which as weak action is the same as a
map of g to outer derivations. But for G0 the Lie algebra action is given by the
derivation defined by commuting with a divided power and for G it is given by the
adjoint action and both have the same image inside Ext1(uq, uq). Both actions are
also faithful, so as weak actions they are the same.

Recall that Mλ = Uq/Jλ; put

Iλ = Z(l) ∩ Jλ,(3.3)

Z(l)
−,λ = Z(l)/Iλ,(3.4)

so that Z(l)
−,λ ⊂ Mλ.

Then Z(l)
−,λ is a Ures

q (b)-module algebra and Mλ is a Ures
q (b)-module for this

algebra (see section 2.1.7).
In fact, O ⊗ Z(l)

−,λ is a B-equivariant algebra: Recall the Frobenius map Fr :
Ures

q (b) → U(b) and denote the algebra kernel of Fr by bq.

Definition 3.3. i) Consider O(B) as a B-module under the adjoint action. For
each t ∈ T we have the B-subvariety N t = {t} × N of B. O(N t) is isomorphic to
O(N) as an algebra, but not as a B-module, unless t = 1.
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1008 ERIK BACKELIN AND KOBI KREMNIZER

ii) Think of T as characters on 2l · P and of TP as characters on P . Lattice
inclusion induces a natural map ( )2l : TP → T .

Note that for λ integral, λ2l = 1.
We now have

Lemma 3.4. bq acts trivially on Z(l)
−,λ; this module is a pullback by the Frobenius

of the B-module O(Nλ2l

).

Proof of Lemma 3.4. This will follow from Lemma 3.18. �

bq also acts trivially on O, so O ⊗ Z(l)
−,λ is a B-module. Hence, we have the

category MB(O ⊗Z(l)
−,λ) of B-equivariant O ⊗Z(l)

−,λ-modules; from Lemma 3.4 we
conclude that

(3.5) MB(O ⊗Z(l)
−,λ) ∼= qcoh(O

(G×Nλ2l )/B
).

Here the B-action on G×Nλ is given by b · (g, x) = (bg, b · x). Similarly we can
define the category Gq

MB(O⊗Z(l)
−,λ) of Gq-equivariant objects in MB(O⊗Z(l)

−,λ).
We shall denote

(3.6) G × Nλ2l

/B = T �Xλ.

Note that for integral λ this is the cotangent bundle to the flag variety, also
known as the Springer resolution. For nonintegral λ this is a twisted cotangent
bundle.

For any τ ∈ maxspec(Z(l)
−,λ) we have the central reduction Mλ,τ (a baby Verma

module). Only for trivial τ (corresponding to the augmentation ideal) we get a uq-
module. But for any τ , End(Mλ,τ ) = Mλ,τ ⊗M∗

λ,τ is a uq-module since its l-central
character is trivial, and likewise EndZ(l)

−,λ
(Mλ) is a uq-module. Hence we can define

Definition 3.5. D = (Ind(EndZ(l)
−,λ

(Mλ+2ρ))).

(The shift by 2ρ will become clear later.) Since EndZ(l)
−,λ

(Mλ) is a Z(l)
−,λ-module

and also a Bq-module (Oq(B)-comodule) in a compatible way we get that D actually
lives in Gq

MB(O ⊗ Z(l)
−,λ). Since Ind is a tensor functor and EndZ(l)

−,λ
(Mλ) is a uq

algebra, we get that D is a sheaf of algebras over the (twisted) cotangent bundle.
By construction we know that the algebras sitting over the fiber over B are

matrix algebras (endomorphisms of baby Verma modules); hence we get

Proposition 3.6. Over a dense subset of T �Xλ, D is an Azumaya algebra.

Note that by the construction of the sheaf of algebras D, its fibers over the zero
section of T �Xλ are endomorphisms of baby Verma modules. Hence we see that
over the zero section D is the endomorphism sheaf of the vector bundle whose fibers
are baby Verma modules. This implies that the Azumaya locus contains the zero
section and in fact the algebra is split over the zero section. It will also follow
from Proposition 3.23 that the Azumaya locus contains the preimage of the big cell
under the Springer map.

Remark 3.7. Note that all our constructions can also be defined over a formal
neighbourhood of a prime p that is over a p-adic field and that when specialized to
Fp, they give the usual characteristic p crystalline differential opeartors which are
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LOCALIZATION FOR QUANTUM GROUPS 1009

Azumaya and thus we would get that over the p-adic field our algebra is Azumaya
as well. This will not be used in this paper since we will look at complex repre-
sentations, but in a subsequent paper we will use this to construct t-structures in
zero characteristic relating to the ones constructed by Bezrukavnikov, Mirkovic and
Rumynin [BMR].

Remark 3.8. For any rigid braided tensor category one can define the notion of
an Azumaya algebra. In the category of uq-modules, EndZ(l)

−,λ
(Mλ) is an Azumaya

algebra. Hence, using the equivalence Proposition 3.1, we get that D is an Azumaya
algebra over T �Xλ, not with respect to the usual braiding (flip), but with respect
to the braiding induced from Ures

q .

3.2. Second construction—the ring DGq
and the category of Dλ-modules.

We need the following important

Remark 3.9. All objects described in the preceding sections are defined over A. For
any specialization A → R and any object Obj we denote by ObjR its R-form. For
the functors, we do not use any subscripts; so, for instance, there is the functor
Ind : Bq,R − mod → MBq

(Gq)R.

Recall the Uq-bimodule structure on Oq given by (2.4). Now, as we have two
versions of the quantum group, we pick the following definition of the ring of dif-
ferential operators on the group (the crystalline version).

Definition 3.10. We define the ring of quantum differential operators on Gq to
be the smash product algebra DGq

:= Oq �Uq. So DGq
= Oq ⊗Uq as a vector space

and multiplication is given by

(3.7) a ⊗ u · b ⊗ v = au1(b) ⊗ u2v.

We consider now the ring DGq
as a left Ures

q -module, via the left Ures
q -action

on Oq in (2.4) and the left adjoint action of Ures
q on Uq; this way DGq

becomes a
module algebra for Ures

q : In the following we will use the restriction of this action
to Ures

q (b) ⊂ Ures
q . As Uq is not locally finite with respect to the adjoint action,

this Ures
q (b)-action does not integrate to a Bq-action. Thus DGq

is not an object
of MBq

(Gq); however, DGq
has a subalgebra Dfin

Gq
= Oq � Ufin

q which belongs to
MBq

(Gq). This fact will be used below.

Definition 3.11. Let λ ∈ TP . A (Bq, λ)-equivariant DGq
-module is a triple

(M, α, β), where M is a C-module, α : DGq
⊗ M → M a left DGq

-action and
βres : M → M ⊗ Oq(B) a right Oq(B)-coaction. The latter action induces an
Ures

q (b)-action on M , again denoted by βres. We have the natural map Uq(b) →
Ures

q (b) which together with βres gives an action β of Uq(b) on M . We require
i) The Uq(b)-actions on M ⊗ Cλ given by β ⊗ λ and by (α|Uq(b)) ⊗ Id coincide.
ii) The map α is Ures

q (b)-linear with respect to the β-action on M and the action
on DGq

.
These objects form a category denoted by Dλ

Bq
(Gq). There is the forgetful functor

Dλ
Bq

(Gq) → MBq
(Gq). Morphisms in Dλ

Bq
(Gq) are morphisms in MBq

(Gq) that
are DGq

-linear.

We defined ([BK]) Dλ
q as the maximal quotient of DGq

which is an object of
Dλ

Bq
(Gq) and showed that

(3.8) Dλ
q = Ind Mλ
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as an object in Dλ
Bq

(Gq). (See section 2.1.7 for the Bq-action = Ures
q (b)-action

on Mλ.) The global section functor Γ : Dλ
Bq

(Gq) → M is the functor of taking
Bq-invariants (with respect to the action β); we have Γ = HomDλ

Bq
(Gq)(Dλ

q , ).

Hence, in particular Γ(Dλ
q ) = EndDλ

Bq
(Gq)(Dλ

q ) (which explains the ring structure

on Γ(Dλ
q )).

If we view Dλ
q as an object in Gq

MBq
(Gq), we have that Fr∗(Dλ

q ) is an object of

Gq
M(G/B). But it actually lies in Gq

MB(O ⊗ Z(l)
−,λ) since Mλ is a Z(l)

−,λ-module.
In the next section we shall show that Dλ

q = D and that the category of modules
over this sheaf of algebras is Dλ

Bq
(Gq).

3.3. Dλ as a sheaf of algebras. We have a natural functor:

F : Dλ
Bq

(Gq) → MB(O ⊗Z(l)
−,λ),(3.9)

F (N) = Nbq .(3.10)

Since taking bq-invariants is exact on Bq-modules (Oq(B)-comodules) (see (2.5))
and is faithful on MBq

(Gq) (see (2.4)), we get

Proposition 3.12. This functor is exact and faithful.

The functor F has a left adjoint. Let us denote it G.

Proposition 3.13. F (G(O ⊗ Z(l)
−,λ)) = (Dλ

q )bq is a sheaf of algebras over T �Xλ.
The category of modules over it is equivalent to Dλ

Bq
(Gq).

Proof of Proposition 3.13. This theorem follows from a Barr-Beck type argument.
F is an exact and faithful functor with left adjoint G. F ◦ G is a monad in
qCoh(T �Xλ) and modules over this monad are equivalent to the category Dλ

Bq
(Gq).

Note also that F ◦ G is a right exact functor from the category qCoh(T �Xλ) to
itself. Note that any right exact functor L from qCoh(X) to qCoh(Y ) where X
and Y are varieties is given by tensoring with the bimodule L(OX). In our case
this is F (G(O⊗Z(l)

−,λ)). The monad structure induces the algebra structure on this
sheaf. �

We want to prove the following:

Proposition 3.14. (Dλ
q )bq = D as sheaves of algebras.

Proof of Proposition 3.14. We have that

(3.11) (Dλ
q )bq = (Oq ⊗ Mλ)bq = IndGq

bq
(Mλ) = IndGq

uq
◦ Induq

bq
(Mλ).

Hence it is enough to prove that

(3.12) Induq

bq
(Mλ) = EndZ(l)

−,λ
(Mλ+2ρ)

and that this map is compatible with all relevant structures. Here we use two
conventions about Verma modules, where Mλ gets its action from the adjoint action
of the restricted quantum group on the nonrestricted and in EndZ(l)

−,λ
(Mλ+2ρ) we

think of the Verma module as induced from the Borel. It is enough to prove that

(3.13) Induq

bq
(Mλ,χ) = End(Mλ+2ρ,χ).
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First note that if we denote by oq(G) the functions on the quantum Frobenius
kernel (the fiber over the identity of sheaf of algebras Oq(G) over O(G)), we have
that oq(G) = oq(N−)⊗oq(B) and so Induq

bq
(Mλ,χ) = oq(N−)⊗Mλ,χ as vector spaces

(actually as N
q
-modules). Now by definition Mλ,χ is an algebra (it is a quotient

of Uq(b)) and using duality, one can define an action of oq(N−) on Mλ,χ as in [J]
(which gives explicit formulas on page 91 and proposition on page 92), getting the
desired isomorphism by specializing the map from [J] (lemma on page 93) to the
χ central character. Notice that [J] works with generic q but that all the formulas
and proofs make sense and are compatible with the action of the center for q a root
of unity if we work with the De Concini-Kac integral form. �

3.3.1. Category Dλ
Bq

(Gq) as a gluing of module categories over quantum Weyl alge-
bras. In this section we will give another way of viewing Dλ

q as a sheaf of algebras
over the cotangent bundle.

For w ∈ W , De Concini and Lyubashenko [DL] introduced localizations Oq,w of
Oq. These induce localizations Ow of O corresponding to covering G by translates
of the big cell B−B. Joseph has introduced localizations of the representation ring
ONq

q ([J]), and it is easy to see that they are exactly ONq
q,w. We thus have a covering

of the category of Oq-modules by the categories Oq,w. By this we mean that we
have a pair of adjoint functors

(3.14) f∗ : Oq − mod →
∏

Oq,w − mod : f∗

such that f∗ is exact and faithful, thus inducing an equivalence between Oq-modules
and modules over the monad f∗◦f∗ (Barr-Beck). We will denote such an equivalence
by

(3.15) Oq − mod = lim
←−w∈W

Oq,w − mod .

We have corresponding localizations MBq
(Gq)w (i.e., Bq-equivariant Oq,w-

modules), of the category MBq
(Gq). Then

(3.16) MBq
(Gq) = lim

←−w∈W
MBq

(Gq)w.

Using the description of MBq
(Gq) as a Proj-category from [BK], it is clear that

MBq
(Gq)w is affine, i.e., Oq,w is a projective generator of MBq

(Gq)w and hence
MBq

(Gq)w
∼= mod−EndMBq (Gq)(Oq,w). The functors that induce this equivalence

are the adjoint pair (? ⊗EndMBq
(Gq)(Oq,w) Oq,w, ?Bq ). Now EndMBq (Gq)(Oq,w) =

HomMBq (Gq)(Oq,Oq,w) = Γ(Oq,w). Joseph [J] showed that

(3.17) EndMBq (Gq)(Oq,w) = (M�
0 )Tw

as Uq-modules, where Tw are the algebra automorphisms of Uq from section 2.1.3.
Note that these algebras are nonisomorphic for different w in general. When w = e,
we have EndMBq (Gq)(Oe) ∼= Uq(n−) as an algebra.

Similarly to MBq
(Gq), MBq

(Gq)w also has an induction functor from Bq-mod-
ules, V 
→ Oq,w ⊗ V . It follows from the fact that MBq

(Gq)w is affine that

(3.18) (Oq,w ⊗ V )Bq ∼= OBq
q,w ⊗ V.
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Next we have the forgetful functor f� : Dλ
Bq

(Gq) → MBq
(Gq), which is exact

and faithful. It is easy to see that it has left adjoint f� : MBq
(Gq) → Dλ

Bq
(Gq)

(just tensor with DGq
over Oq and factor out the necessary relations).

Define Dλ
Bq

(Gq)
w

to be the localization of Dλ
Bq

(Gq) lying over MBq
(Gq)w (i.e.,

replace Oq by Oq,w in the definition of Dλ
Bq

(Gq)). We get the adjoint pair of
functors (f�

w, fw,�) between these categories with the same properties as above.
Hence, abstract nonsense shows that

Proposition 3.15. f�
wOq,w = Oq,w ⊗Oq

Dλ
q is a projective generator of Dλ

Bq
(Gq)

w
and therefore

(3.19) Dλ
Bq

(Gq)w
∼= mod − EndDλ

Bq
(Gq)(Oq,w ⊗Oq

Dλ
q ).

Put

(3.20) Aλ
q,w = Γ(Oq,w ⊗Oq

Dλ
q ) = EndDλ

Bq
(Gq)(Oq,w ⊗Oq

Dλ
q ).

We can calculate these Aλ
q,w explicitly. We have

(3.21) Aλ
q,w = Γ(Oq,w ⊗Oq

Dλ
q ) = (Oq,w ⊗ Mλ)Bq = OBq

q,w ⊗ Mλ

where the ring structure is induced from the one on DGq
.

It follows that the Aλ
q,w coincide with the rings introduced by Joseph [J]. In the

generic case these can be described as the BTw
q -finite part of the full endomorphism

ring End((M�
λ)Tw).

When w = e, Joseph describes this ring explicitly, a quantum Weyl algebra

(3.22) Aλ
q,e

∼= Uq(n−) ⊗ Uq(n+).

Here, the algebra structures on Uq(n−) and on Uq(n+) are the usual ones and we
have the commutation relations

(3.23) q−(α,β)Eα ⊗ Fβ − q(α,β)Fβ ⊗ Eα = δα,β

for α, β ∈ ∆. (So Aλ
q,e’s algebra structure is independent of λ.)

The category Dλ
Bq

(Gq) can now be described as the gluing of module categories

(3.24) Dλ
Bq

(Gq) = lim
←−w∈W

Aλ
q,w −mod.

From the description of Aλ
q,w as OBq

q,w ⊗ Mλ with the algebra structure induced
from DGq

, we get

Proposition 3.16. i) Z(Aλ
q,w) = (Ow ⊗Z(l)

−,λ)B = OB
w ⊗Z(l)

−,λ for each w ∈ W.
ii) Consequently,

qcoh(T �Xλ) = lim
←−w∈W

Z(Aλ
q,w) − mod

where Z(Aλ
q,w) denotes the center of Aλ

q,w.

Let us remark that for generic λ the variety (G × Nλ2l

)/B is an affine variety.
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3.3.2. Torsors. We first define a “torsor” as a category D̃Bq
(Gq) of DGq

-modules
that contains all Dλ

q , λ ∈ TP .

Definition 3.17. An object of D̃Bq
(Gq) is a triple (M, α, β), where α : DGq

⊗M →
M is a left DGq

-action and βres : M → M ⊗Oq(B) is a right Oq(B)-coaction.
i) The Uq(n+)-actions on M given by β|Uq(n+) and by (α|Uq(n+)) coincide.
ii) The map α is Uq(b)-linear with respect to the β-action on M and the action

on DGq
.

Put M̃ = Uq(g)/
∑

α∈R+
Uq(g) · Eα (a “universal” Verma module) and define

(3.25) D̃q = Oq ⊗ M̃ .

D̃q inherits an Ures
q (b)-module structure from DGq

, so D̃q is an object in D̃Bq
(Gq).

M̃ has the Ures
q (b)-submodule Z(l)

b−
= Z(l)/(Z(l) ∩ Uq · Uq(n+)+), which is an

algebra generated by K
(l)
µ , E

(l)
µ , µ ∈ R+. bq acts trivially on Z(l)

b−
, so the Ures

q (b)-

action factors to a U(b)-action on Z(l)
b−

. We have

Lemma 3.18. As a B-module, Z(l)
b−

∼= O(B), where the module structure comes
as follows: consider the map B → B defined as tn → t2n; this is an unramified
covering. Use this covering to pull back the adjoint action of B on itself .

Proof of Lemma 3.18. To calculate this, one should notice that in the generic case
the action induced from the adjoint action of Uq(n+) on the universal Verma module
is the same as the one induced from the commutator action. Hence one can use
the calculations of [CKP] which give the required result. As for the torus part,
the adjoint action is by the grading and it is easy to see that we get the required
action. �

As in the previous sections we see that O(G×B) imbeds to D̃q, Bq-equivariantly.
Note that this embedding corresponds to the surjection ( )l : TP → T . Define Btwist

to be the cover of B induced from the map B = TN � tn → t2ln ∈ B with the
natural B-structure. We have

Definition-Proposition 3.19. We define T̃�X
twist

= (G × Btwist)/B (where B

acts on G × Btwist by b · (g, b′) = (bg, b · b′)). T̃�X
twist

is a TP -torsor over T �X.

D̃q is a sheaf of Azumaya algebras over T̃�X
twist

.

3.4. Azumaya splitting over fibers. Recall the Ures
A -action on Uq. The center

of Uq is exactly the submodule of invariants with respect to the subalgebra uq.
Hence the center of Uq is a g-module. Recall also that Ufin is the finite part of Uq

with respect to the Ures
A -action. We have

Lemma 3.20. Let Zfin be the center of Ufin. We have Zfin = Z ∩ Ufin. Zfin

is an integrable g-module and Spec(Zfin) is isomorphic to an unramified cover of
G ×T/W T where the map T → T/W is induced from the l’th power map and the
action is the adjoint action.

Proof of Lemma 3.20. The first claim follows from Joseph’s [JL] description of Ufin
q

inside Uq. The second statement follows from the calculations of [CKP]. �
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Consider the diagram

(3.26)
TP ←− T̃�X

twist

↓2l ↓π

T/(•, W ) ←− G

Definition 3.21. t ∈ TP is unramified if for every α ∈ ∆̃ = ∆ ∪ {−α0} (where α0

is the longest root), (t(Kα))2l = 1 implies (t(Kα))2 = q−(2ρ,α). Tunram
P denotes the

set of unramified t’s.

Note that any t ∈ TP can be made unramified by adding an integral weight to
it. We put Zunram = O(Tunram

P ×T/W B−B) and Uunram
q = Uq ⊗ZHC O(Tunram

P ).
Brown and Gordon [BG] proved that

Lemma 3.22. i) Uunram
q is Azumaya over Zunram and

ii) for each χ ∈ maxspec(Zunram), we have End(M baby
χ ) = Uq/χUq (where

M baby
χ is the baby Verma module).

Let σ : T̃�X
twist

→ TP ×T/W G be the natural map. Note that this is a Gq-
equivariant map. Now since both sheaves are also Gq-equivariant, from the descrip-
tion of the DGq

as induced from endomorphism of baby Vermas and from Lemma
3.22 that describes the sheaf over a dense subset (the big cell), we have

Proposition 3.23. The action map Ufin
q ⊗Z O

T̃�X
twist → D̃q induces an isomor-

phism Ufin
q ⊗Z O

T̃�X
twist,unram

∼= D̃q |
T̃�X

twist,unram .

Thus we see that over the preimage of the big cell Dλ
q is Azumaya. (Note again

that in a formal neighbourhood of p it is Azumaya everywhere.)
Hence it follows as in [BMR] (vanishing of the Brauer group of a local ring with

separably closed residue field) that D̃q Azumaya splits over the formal neighborhood
of any fiber of σ lying over the big cell. Hence, we get

Corollary 3.24. The category of Dλ
q -modules supported on the fiber of σ over the

big cell is equivalent to O-modules supported on the same fiber.

3.5. Derived D-affininty.

3.5.1. Global sections and vanishing cohomology of Dλ
q .

Proposition 3.25. We have i) Uλ
q
∼= RΓ(Dλ

q ) and ii) Ũq
∼= RΓ(D̃q) (if l is a prime

p > Coxeter number of G).

We recall from [BK] that the natural map Uλ
q → Γ(Dλ

q ) was given as follows:
There is the natural surjection Uλ

q → Mλ. It induces a surjective map

(3.27) IndUλ
q → Ind Mλ = Dλ

q .

Since Uλ
q is a Gq-module, (2.7) shows that Γ(IndUλ

q ) = Uλ
q , which gives the desired

map, by applying Γ to (3.27).

Remark 3.26. Recall that Uλ
q = Ufin/Jλ. In order to get global differential oper-

ators equal to Uq/Jλ, one can enlarge Dλ
q by adding some grading operators; the

vanishing of higher self-extensions will remain true.
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Proof of Proposition 3.25. We have Dλ
q = Ind Mλ. We have the integral version

Ind Mλ,A ∈ MBq
(Gq)A.

Consider the specialization A → Fp, ν → 1. In [BK] we showed that the state-
ment about global sections in i) holds for a generic q. The argument given there
transforms to the case of p’th roots of unity if we can show that

(3.28) dimC Γ(Ind gri Mλ) = dimC Γ(Ind gri Mλ,q=1).

Now, by [AJ], dimC Γ(Ind gri Mλ,q=1) = dimFp
Γ(Ind gri Mλ,Fp

). On the other hand,
it follows from [APW] that dimC Γ(Ind gri Mλ) = dimFp

Γ(Ind gri Mλ,Fp
).

In order to prove that higher cohomologies vanishes in i), it suffices by [APW]
(page 26) to show that

(3.29) RΓ>0
Fp

(IndMλ,Fp
) = 0.

This holds because RΓ>0(Ind gr Mλ,Fp
) = RΓ>0(Ind S(n−,p)) = 0, by [AJ] (gr is

taken with respect to the filtration on Mλ coming from the identification Mλ =
Uq(n−) and putting each Fµ in degree 1). This proves i). The proof of ii) is
similar. �

Remark. In [BK] we explain how the restrictions on the roots of unity can be
dropped by using the work of [K] or [W] in order to drop some of the assumptions
of [APW].

3.5.2. Localization functor. Recall the definition of the localization functor Locλ :
Uλ

q − mod → Dλ
Bq

(Gq) [BK].

Definition 3.27. Define the localization functor Locλ : Γ(Dλ
q ) − mod → Dλ

Bq
(Gq)

by M → Dλ
q ⊗Uλ

q
M , where we have used Uλ

q = Γ(Dλ
q ).

This is a left adjoint to the global sections functor. Note that Locλ(Uλ
q ) =

Dλ
q . Similarly, we can define localization L̃oc : Ufin

q − mod → D̃Bq
(Gq) and also

localizations with generalized central character L̃oc
λ

: modλ(Ufin
q ) → D̃Bq

(Gq)λ.
Since Ufin

q has finite cohomological dimension, we get that L̃oc has left derived
functor

(3.30) L̃ : Db(Ufin
q − mod) → Db(D̃Bq

(Gq))

and hence also L̃oc
λ
. Note that a priori we do not know if Uλ

q has finite cohomo-
logical dimension (it will follow later that for regular λ it has); hence Locλ has a
left derived functor which is defined for the bounded above derived category:

(3.31) Lλ : D−(Uλ
q − mod) → D−(Dλ

Bq
(Gq)).

For regular λ this functor is compatible with restriction from a generalized central
character as in [BMR] and so we get that it is also defined on the bounded derived
category. From now on we will use Lλ to denote the functor on the bounded derived
category in case λ is regular. We thus have

Lemma 3.28. (i) L̃ is left adjoint to RΓ̃ and (ii) if λ is regular, Lλ is left adjoint
to RΓ.

If λ is not regular, the second statement in the lemma will hold if we replace Db

by D−.
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Proposition 3.29. i) The functor RΓ̃◦ L̃ : Db(Uq) → Db(Ũq) is isomorphic to the
functor M → M ⊗ZHC O(TP ).

ii) For regular λ, the adjunction map id → RΓ ◦ Lλ is an isomorphism.

Proof. Part i) follows from part ii) of Lemma 3.25 for free modules and then from
the same lemma again for general modules, by considering free resolutions.

For ii) observe that for regular λ, for any M ∈ Db(Uλ
q −mod), we have canonically

M ⊗ZHC O(TP ) =
⊕

w∈W
⊕

Hom(P,{+1,−1}) M . Now the claim follows since RΓ ◦
Lλ(M) is one of these direct summands. �

3.5.3. Derived D-affinity.

Theorem 3.30. RΓ : Db(Dλ
Bq

(Gq)) → Db(Uλ
q − mod) is an equivalence of cate-

gories.

Noting that the canonical bundle of T �Xλ is trivial and that π from (3.26) is a
projective morphism, the theorem now follows from the following lemma of [BMR]:

Lemma 3.31. Let A be a generically Azumaya algebra over a smooth variety X
(i.e., Azumaya over a generic point). Suppose that X is Calabi-Yau (i.e., ωX

∼=
OX) and that we have a projective map π : X → SpecR for some commutative
algebra R. Suppose also that the derived global section functor RΓ : Db(A−mod) →
Db(Γ(A) − mod) has a right adjoint L and the adjunction morphism id → RΓ ◦ L
is an isomorphism. Then RΓ is an equivalence of categories.

The first point in the proof of this lemma is the following proposition:

Proposition 3.32. Let L : C → D be a functor between triangulated categories with
D O-triangulated Calabi-Yau for some finitely generated commutative algebra O
(we have a natural functor RHom(X, Y ) defined on D×Dop with values in Db(O−
mod) whose first cohomology is the Hom in the category and there is a functorial
isomorphism RHom(X, Y ) ∼= DO(RHom(Y, X[n])) where D is the duality functor
over O). Suppose L has a right adjoint R such that the adjunction id → R◦L is an
isomorphism. Suppose also that D is indecomposable. Then L is an equivalence.

The second point is the observation that the bounded derived category of mod-
ules over an Azumaya algebra is indecomposable.

Note that, for generic λ, T �Xλ is affine and hence we then get an equivalence
Γ : Dλ

Bq
(Gq) ∼= Uλ

q − mod.

4. Applications

Assume for simplicity λ is integral and regular and that χ belongs to B−B and
is unipotent. We know that

(4.1) Db(Dλ
Bq

(Gq)) ∼= Db
λ(Uq − mod).

We get that

(4.2) Db(Dλ
Bq

(Gq)(χ,λ)) ∼= Db
χ̂,λ(Uq − mod)

where the left hand side denotes those (complexes of) Dλ
q -modules supported on the

Springer fiber of (χ, λ) and the right hand side denotes Uλ
q -modules that are locally

annihilated by a power of the maximal ideal in Z corresponding to χ (generalized
central l-character χ).
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By the Azumaya splitting we have

(4.3) Dλ
Bq

(Gq)(χ,λ)
∼= qcoh(T �X)χ

where the latter category is the quasi-coherent O-modules on T �X supported on
the Springer fiber of χ (with respect to the usual Springer resolution T �X → N =
unipotent variety of G). Note that for the trivial central character this equivalence
is Koszul dual to the equivalence in [ABG], thus giving a geometric proof of their
equivalence.

We deduce an equivalence of K-groups

(4.4) Kχ̂(Uλ
q − mod) ∼= K(qcoh(T �X)χ).

Note that K(qcoh(T �X)(χ)) is torsion-free. From (4.4) we see for instance that the
number of irreducible Uq,χ-modules equals the rank of K(qcoh(T �X)(χ)).

In [Kr] we use the methods here to prove a conjecture made by De Concini, Kac
and Processi stating that the dimensions of irreducible Uq,χ-modules is divisible by
lcodim(O)/2 where l is the order of the root of unity and O is the orbit through χ.

Notice also that [BMR] showed that K(qcoh(T �X)χ) ∼= K(qcoh(T �X)χ(F̄p)) for
p > Coxeter number of G. This relates our work to the representation theory of gp

via the results in [BMR].
Actually, it is possible to relate our work to [BMR] in order to get more transpar-

ent geometric proofs of the theorems appearing in the work of Andersen, Jantzen
and Soergel [AJS], leading to the proof of Lusztig’s conjecture about multiplicities
in characteristic p and also extending them to nontrivial central characters. Our
work defines a perverse t-structure on O-modules in zero characteristic (root of
unity), where [BMR] defines such a structure in positive characteristic. By showing
that in specializing the root of unity t-structure one would get (at least for big p)
the positive characteristic t-structure, one would be able to deduce that the quan-
tum modules and the positive characteristic modules have the same multiplicity
formulas, as shown in [AJS]. This will appear in future work.
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