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Abstract—We prove localization for Anderson-type random perturbations of periodic Schr dinger

operators on R near the band edges.

General, possibly unbounded, single site potentials of fixed sign and compact support are allowed

in the random perturbation. The proof is based on the following methods:

(i) A study of the band shift of periodic Schr dinger operators under linearly coupled periodic pertur-

bations.

(ii) A proof of the Wegner estimate using properties of the spatial distribution of eigenfunctions of finite

box hamiltonians.

(iii) An improved multiscale method together with a result of de Branges on the existence of limiting

values for resolvents in the upper half plane, allowing for rather weak disorder assumptions on the

random potential.

(iv) Results from the theory of generalized eigenfunctions and spectral averaging.

The paper aims at high accessibility in providing details for all the main steps in the proof.

1. INTRODUCTION, THE MODEL AND THE RESULTS

One of the most interesting issues concerning mathematical models of solid state physics
is localization. Mathematically it is most commonly described by the occurence of
pure point spectrum with rapidly decaying eigenfunctions for random operators in a
certain energy region (see, however [6]). More precisely, consider a periodic Schr dinger
operator Hper = —Ä 4- Vper describing the one-dectron approximation of a perfect
crystal. Then Hper has purely absolutely continuous spectrum consisting of closed
intervals, called bands, under some mild assumptions on Vp€r. Adding an Anderson
type random potential Õù to Hptr we get an operator Çù which corresponds to the
crystal with impurities distributed according to Õù. This perturbation, even if it is very
small with respect to Hper, causes a drastic change of the spectral picture: near the
band edges of ó(Çù) the operator exhibits localization in the above sense. This is the
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content of Theorem 1.1 below, where we need a certain "disorder regime", condition
(1.2) below. Results which are closely related to Theorem 1.1 have recently been given
by Barbaroux, Combes and Hislop in [1], and by Figotin and Klein in [10] and [11].
Figotin and Klein also proved a discrete version of Theorem 1.1 in [9].

For the bottom of the spectrum we present a result, Theorem 1.2, in which no
additional disorder assumption is needed. Thus it partly improves upon the results of
Combes and Hislop, [2], and Klopp, [19]; see however a result of Kotani and Simon,
[21], who treat a special model without disorder assumption. The difference between
general band edges and the bottom of the spectrum lies in the fact that for the latter
it is known that the the density of states exhibits Lifshitz tails, see [17]. This idea has
been used before to prove localization in [19].

Let us now briefly describe the organization of the paper: In the rest of this section
we introduce the model we are working with, and state the main results. We also discuss
some basic technical facts, in particular we characterize the almost sure spectrum of

fiu.
Sections 2 to 7 are devoted to build up the machinery needed for the proofs of

Theorems 1.1 and 1.2, which are finally completed in Section 8. The center of this
machinery is a multiscale analysis, a technique which has been used in most of the proofs
of multidimensional localization. We use a version which is close to the treatment by
Combes and Hislop in [2], which itself is based on a discrete multiscale method used by
von Dreifus and Klein [7], see also [29].

The two main ingredients for the multiscale analysis, a Wegner estimate and the
initial length scale estimate, are presented and proven in Sections 3 and 4. Their use
has also become standard meanwhile, but two specific features of our presentation
should be pointed out: First, we have a rather short and direct method to prove a
Wegner estimate which uses an idea of one of us from [14]. Second, we aim to include
single site potentials of small support (see Assumption A below) under minimal disorder
assumptions. In particular, we do not assume 'large disorder' in the sense that the
random coupling constansts Qk to be introduced below have a distribution with large
support. This needs some non-trivial preparation in Section 2, where we show that
the bands of a periodic Schrodinger operator are shifted linearly by a linearly coupled
periodic perturbation.

Sections 5 and 6 present the multiscale analysis with complete proofs. Some recent
ideas have been added with the effect of streamlined proofs and somewhat stronger
results. One improvement arises from an improved Combes-Thomas method due to [1].
We use it in the proof of Lemma 5.5, which is given in an Appendix. Another idea is to
use a basic functional analytic result of de Branges [5] on boundary values of operator
valued analytic functions in our proof of exponential decay of the resolvent in Section 6.
This idea has been used in a similar context in [33].

The conclusion of the proof of our main results in Section 8 is based on two additional
basic methods from spectral theory: spectral averaging and expansions in generalized
eigenfunctions. We state what we need from these theories in Section 7 Note that
generalized eigenfunctions have been used in other works on localization, cf. [7], and
can be seen as an alternative to a method based on Fredholm theory and the de la
Valloe-Poussin theorem used in [2]. We end our paper with some conclusive remarks
concerning some readily available extensions and generalizations of the results presented
here and a discussion on the relation of our results to the works [1], [10] and [11]. We
did not include the generalizations in the first place, since it is definitely an aim of this
article to invite non-specialists to the subject of localization. Thus we have not striven
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for overwhelming generality but rather tried to present the main ideas as clearly as
possible in their simplest form.

We now present the model we are dealing with. Throughout we rest on the following
assumptions:

A.Letp = 2ifd< 3, and p > d/2 if d > 4 and let Vper G Lp
loc be a Zd-periodic

real potential, Hper = -Ä 4- Vper. As a random potential consider an Anderson type
potential of the form

íù(÷)=

where the single site potential f € If and the qk satisfy:

A.I For some 0 < s < 1: / > AX(o)> where Ar(x) denotes an open cube of sidelength
r centered at x.

A. 2 The support of f is contained in Ai(0).

A. 3 The Qk are i.i.d. random variables with common density g £ I/00.

A. 4 The support of g is a compact interval [g_,g+j.
We denote by Ù the product [<?_,g+]z and by Ñ the product measure
®kez* 9(Qk)dqk. Thus, for ù € Ù we have qk(u) = cj*.

Clearly, in A.I it would suffice to have a lower estimate by some positive number on
some smaller cube. Note that the support of / can be arbitrarily small. A. 2 can be
weakened to only assuming that / is compactly supported. The necessary changes in
the proof are discussed in Section 9. Also, A. 4 is mainly needed to have the following
formula for the spectrum of Çù — Hper 4- Õù:

ó(Çá)= U a(Hper+q- £/(·-*))=: Ó P-a.s., (1.1)

where the fact that the spectrum is deterministic is already clear from ergodicity. For
the case Vper = 0 this formula is well known, cf. [16]. We defer the easy proof of
(1.1) to the end of this section. Note that Ó has band structure, since the operators
occuring in the formula for Ó are all periodic and their band edges depend continuously
on g, see the discussion of basic properties of periodic operators below. Moreover, the
boundary points of Ó correspond to band edges of either Hper + q+ - X^ez* /(' ~~ ¼ ÏÃ

Hper 4- Q- · ZlfceZ'1 /(' ~ ¼· Thus they "correspond" to the rare events that almost all
the coupling constants are near q+ or òô_. This is the reason for the name fluctuation
boundaries and it is near these boundaries where one expects localization. This quite
vague picture can be made precise on the level of the corresponding operators restricted
to finite boxes (see Section 4 below) and is the basis for the proof of localization. Finally,
note that existing gaps in a(Hper) may be filled-in for Ó, but it follows again from
continuity that Ó will have non-trivial gaps if a(Hper) has gaps and q+ is close to g_.

Here are our main results:

THEOREM 1.1. Assume that there exists ô > d/2 such that g satisfies

/

0-+Ë rg+
g(s) ds <hT and I g(s) as < hT for small h > 0. (1.2)

Jq+-h

Then in a neighborhood of 9Ó the spectrum of Çù is pure point P -a.s. with exponen-
tially decaying eigen functions.
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It will be clear from the proof that if we require the decay of g only near q+ or g_ we
get localization, but only at the upper or lower band edges respectively. Using estimates
from the theory of Lifshitz tails we get the following improvement for the bottom of the
spectrum.

THEOREM 1.2. In a neighborhood of inf Ó the spectrum of Çù is pure point P-a.s.

with exponentially decaying eigenfanctions.
In his recent preprint [20] Klopp established the existence of Lifshitz tails at inter-

nal band edges provided the unperturbed periodic operator satisfies a nondegeneracy
condition. Under this condition the assumption (1.2) could be removed in Theorem 1.1.

The class of potentials used in this work is standard in the theory of periodic
Schr dinger operators, c.f. [27, Ch. XIII]. Nevertheless, we now briefly discuss some of
its properties, in particular, to point out the uniform dependence of operator bounds
on several parameters.

Let V be a potential on Kd which is locally uniformly in LP ', with ñ as above. For a
cube Ë with integer sidelength ß and È € [0,27r)d let C§>(\) be the = C°° -functions ö
on Rrf which are È-quasiperiodic w.r.t. Ë, = i.e. ö(÷ 4- tek) = elofc(^(x), k = 1, . . . ,d.

The proof of Ä-boundedness of V with relative bound zero in [27, Theorem ×ÉÐ.96],
i.e. self-adjointness of — Ä + V on Z,2(Rrf), can easily be extended to show the following:
For every å > 0 there is a C(e) such that

for every cube Ë, È € [0,27r)d and ö € C|?(A). Moreover, the proof shows that C(e)
can be chosen uniformly w.r.t. a family of potentials V if supx ||V|Up(Ai(a:)) is uniformly
bounded in V. This applies to the family {Vper + Õù\ù € Ù} considered by us and will
be used several times in the sequel. The operators Hf = (-Ä 4- V)f on £2(A) are

rc/2.2

therefore self-adjoint with domain WQ (A) = C^p(A) . For è = 0, i.e. periodic
boundary conditions, we just write H\ = (-Ä + V)\.

If V € Lp
loc with ñ as above is Z^-periodic, then recall from [27, Ch.XIII.16] that

ó(-Ä + V) = UnUee[o,27r)<<£n(0), where ^ç(è) is the n-th eigenvalue of (-Ä +
V)^ ,Q^ . En(Q) is continuous in È, which can be seen from the min-max characterization
of eigenvalues and the quasi momentum representation ß/^^-Ä -fVjf /o^C/e = (-Ä +
F4-|0|2+i0-V)Al(0) with the unitary operator (Uefi(x) =e~ie'xf(x] »'in L2 (Ai(0)). If
V = V\ -f ëÀ^é where V\ and V^ are both Zd-periodic, then similar considerations show
that the "band edges" mine Åç(è, ë) and maxe En(&, ë) depend continuously on ë.

As promised, we now sketch the
Proof of (1.1). "C": By standard convergence results we have that

ó(Çá) C U a((/UA,.(o));
«€N

on the other hand, for fixed n € N, it follows by min-max that

since the fc-th eigenvalue of (#^„(0) lies between the fc-th eigenvalue of (-Ä 4- Vper 4-
Q- ' Ó* /(' - *))A„(O) and the fc-th eigenvalue of (-Ä 4- Vper 4· q+ · £* /(· - *))An(o)·
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"D": Given a q € [g-,g+] and an E € ó(-Ä -I- Vper + g · £* /(' ~ *)) we find a

singular sequence öç in C£° for E. Let /„ € Í be such that supp(</>n) C Ë/ç (Ï), and for
÷ £ 2d consider

Ùç(æ) := {a; € Ù; <fc(cj) € k - ̂ q + £] for all ë € Ë/ç(÷)} .

Then Ñ (Ùç(÷)) is independent of a; and strictly positive. Also, if Ë/ç (÷) Ð Ë/ç (y) = 0,
then Ùç(á;) and iln(y) are independent. Thus, for a.e. ù € Ù there exists an ÷ç(ù)
such that ù € Ùç(÷ç(á;)). By countability it follows that for a.e. ù this holds for all n.
This implies

n
\\(HU - Å)öç(· - ÷ç(ù))\\ < || /(· - *ìç|| + ||(ffper + 9 /(· - ë) |̂| -> 0

as n -> oo, where a relative boundedness argument has to be used on || £* = /( —
Thus öç(- - xn(u)) is a singular sequence for Å to Çù. This concludes the proof of
(1.1).

In the context of random perturbations of diffusion matrices one can give a similar
description of the spectrum; this was done by one of us in [3]. As usual we use the letter
C for a constant that may be different in different equations or inequalities; moreover
we will often leave the dependence upon the space dimension d implicit.

2. PERTURBATION OF BANDS

In this section we provide the tools for our proof of the Wegner estimate and the initial
length scale estimates. As the title indicates it is mainly about how the bands of a
periodic Schr dinger operator behave under perturbation by certain periodic potentials.
The following result is a step in this direction, since the quantity estimated from below
in (2.1) will show up as a derivative of eigenvalues.

PROPOSITION 2.1. Let VQ and V be locally uniformly in L? with p as in Assumption
A and denote by H^ and H\ the corresponding Schr dinger operators with periodic
boundary conditions on the cube Ë C Rrf. Let F C A such that dist({a: € A; VQ(x) /
V(x}}, F U Ac) =: û > Ï, ÷ := 1 - ÷ñ· Then there is a constant C = C(d) such that for
every eigenfunction f of Ç with eigenvalue ì € Ñ(#Ë) we nave

11/11 < [É+óÏÊÇ×-ì)-1 1| + ||(flX-/i)-1V||)] \\xf\\. (2.1)

Proof. Choose a C2-cut-off function 0 < ö < 1 which vanishes on a neighborhood of
F and ÏË and is 1 on a neighborhood of {x; VQ(X) ^ V(x)}. We can choose it in such a
way that the supremum norms of its derivatives are bounded in terms of i?. Note that
with / also (1 — ö)/ € D(H%) by the assumptions on ö.

\\(H°A -M)-1^ -ì)(1-0/||

IKS? - ÌÃ'ÊÉ - *)(#Ë - ì)/ + (Ä(1 - ö))} - 2V[V(1 - ö)]ß\\\

\\(Hl - /éÃ'ÊÄßÉ - ö))ß - 2V[V(1 - ö)} = /]||,
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where we used that / is an eigenfunction of H. Since Ä(1 - ö) and V(l - ö) are
supported on F we can estimate

which proves the assertion by noting that \\ö/\\ < \\xf\\·
The following result is of interest beyond its application in Section 4.

THEOREM 2.2. Let V, W € £foc be Zd-periodic and p as in Assumption A. Assume
that W > 0 is such that the interior of {x: W(x) > a} is non-empty for some a > 0.
Let Ç = -Ä + V,#(A) = H + XW and denote bya(X) € da(H(\)} a band edge varying
contifltiousJy with ë € (— ëï, ëï). Then there exists \i > 0 and C > 0 such that

|ï(ë) - o(0)| > C\\\ for |A| < AI (2.2)

Before stating the proof let us note that by the remarks in Section 1 for each band
edge á € äó(Ç) we find a continuous function á(·) as indicated.

Proof. By [27, XIII.16] we know that for some n G N and all ë € (-ëï,ëï) we have

for some è (A) € [0,27r)d, where En(T) denotes the n-th eigenvalue of the operator
Ô and #è(ë)(^) is short for (#(ë))Ëé(ë (see Section 1). By monotonicity, we can
assume without restriction that W € L°°. We can also assume that the interior of
{x; W(x) > a} contains 0.

Consider first the case where á(·) is an upper band edge and A > 0. Choose an
orthonormal basis (/*) of eigenfunctions of #e(o) with eigenvalues E*(0), i.e. for A = 0.
The min-max principle gives

Since the corresponding operator has compact resolvent, only finitely many -E*(0) can
equal J5n(0), say at most those with k < N. We write P and Q for the orthogonal
projections onto the subspaces spanned by /n, ..., JN and /jv+i, ... respectively and have

> inf(En(Q)\\Pg\\2 + EN+1(0)\\Qg\\2 + X(Wg\g)] .

Assume that the inf equals En(0). Then there exists a normalized sequence (#*) in
{/n, "-JN}± such that ||Q |̂| -4 0 and (Wgk\gk) -> 0. Therefore, also (WPgk\Pgk) ->
0. Since P has finite dimensional range, there is an accumulation point g = P g of the gk

with (Wg\g) = 0. Since W is strictly positive on some open set, this would contradict
the unique continuation result from [12], since g is an eigenfunction of #e(o) with eigen-
value En(ff). (See [28] for more recent developments concerning unique continuation.)
Thus á(ë) > £Ð(#è(0)(ë)) > E„(0) = á(0).

From this we also get that á(ë) < á(0) for an upper band edge and A < 0 (treat
H(\) as the unperturbed operator). Similarly, we can prove that in case of a lower
band edge á(·) and A > 0 we have that á(ë) > á(0) (here we use an argument as in the
first case, with á(ë) = En(He^(X)), (fk) an orthonormal basis of eigenfunctions for
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)· Again it follows by reversing the roles of H(X) and #(0) that á(ë) < á(0) for
small ë < 0. In order to show the assertion of the theorem we use kind of a boot-strap
argument and apply Proposition 2.1:

Consider now a lower band edge and ë < 0. Fix á > 0 such that {x; W(x) > a}
contains the cube Ë#(0) for some P. > 0. For later use we also choose R < 1. By
periodicity of W we know that

W > á on U A (j). (2.3)

Let U be an open interval containing á = á(0) such that á = inf ó(Ç) Ð U. Let Ï < ë2
be so small that, for ë € [-ë2,0], we have

á(×)=ßçúó(Ç(×))çõ.

As an auxiliary potential consider the characteristic function of

U *r )
JS.1

A

for some 0 < r < A, denoted by W\ . Then b(t) := inf ó(Ç + tWi)n U is a band edge of
H 4- tW\ for £ small enough; by what we saw above, b(t) > á for t > 0 small and fixed.
By continuity in ë we find 0 < ëé < ë2, a compact neighborhood J of á and ä > 0 such
that

dist(a(#(A) 4- tWi), J) > ß for ë € [-Aj,0] (2.4)

and
á(ë) € Jfor ë€[-ë!,0].

By standard theory of periodic Schrodinger operators we know that

so that
â(ë) = ßç£({Åç(#Ìï)(ë));Ì 6 Í} Ð .7). (2.5)

We will show below that there exists C > 0, such that

~Åç(ÇÌè)(ë)) > ̂  and ̂ Åç(#ÌÏ)(ë)) > C (2.6)

for all ë € [-ëé,Ï] and En(H^k^(X)) € J where ̂ - denotes the right and left
derivatives with respect to ë.

Let us first note that (2.6) will imply the desired estimate

â(ë) ~ á(0) < C\ for ë € [-ëé, 0].

In fact, by (2.5) we find for å > 0 natural numbers n, k such that
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Together with  (2.6) this gives

< α(0) + å + CX.

To verify  (2.6) we use Proposition  2.1. The set J  has already been  defined.  Let

^ • = ( u  A*W)C

so that
W >á÷

for ÷ =  1 — XF  and  the  assumption

dist(F U A*(0)c, {V  +  APF f  tWi ö V + AW}) >

holds (use  < 1). Thus we can apply Proposition 2.1 with the choice H\ = H
Ç%  =  jFf Λ  4 tWi,  and ì  =  Ε €  .7.  (2.4) and an argument using relative  boundedness
show that  the constant  in front of \\xf\\  in  (2.1) is uniformly  bounded  in λ  € [λι,Ο],
k  and E  € J.  This  implies that  every normalized eigenfunction  /  of H^h^(X)  with
eigenvalue E  € J  satisfies

\\xf\\2 > C.  (2.7)

An  application of the  FeynmanHellmann theorem (see [34], p. 151) gives that for every
normalized eigenfunction /  of H^h (0) (λ) with eigenvalue £η(#Λ»,(ο)(λ)) we have

^£n(HMO)(A)) = (Wf\f) > a\\Xf\\2.  (2.8)

If  jE?n(//Afc(o)(0))  is  degenerate  equation  (2.8)  holds  for  an  appropriate  choice  of  the
eigenfunction  (see [13, VII, 3, Thm.  3.6]).  Since eigenvalue crossings might appear,  the
equation only holds for right and  left  derivatives.  This, together with the estimate  from
(2.7) implies (2.6). We use the  same idea for a lower band edge and  λ  > 0; here again,
an auxiliary potential —tW\ will shift  the spectrum away from a.  Similar  considerations
hold for upper  band  edges:  (2.6) holds with  sup replacing inf  and  we again  can  apply
Proposition  2.1 after shifting  the spectrum to the right by tW\  if λ  < 0 and to the  left
by -tWi  i f A > 0 .

3. THE WEGNER ESTIMATE

In this section we are concerned  with an inequality  concerning the  box hamiltonians

where A =  A^(i) with t € N, i €  Zrf  and we impose periodic boundary conditions.  Here
H per +K/  is the  random Schr  dinger operator given by Assumption A of Section 1.  The



localization for random perturbations of periodic Schrodinger operators 249

Wegner estimate expresses quantitatively that it is quite unlikely to hit an eigenvalue
of HA(U) for fixed A, varying ù.

THEOREM 3.1. Let á € 9Ó. Then there is an open interval I containing á and a C\v
such that for all intervals J C I and all Ë = Ë^(é') with ß € N, t € Zd we have:

) ç j Ö 0} < cw\*/É|Ë|2 (3.1)

Since the spectrum of Ç\(ù) consists of eigenvalues of finite multiplicity it is clear
that an analysis of the mobility of these eigenvalues under varying ù will be crucial for
the proof of Theorem 3.1. The Uk have absolutely continuous distribution. Thus it is
no surprise that we will have to study the derivatives of eigenvalues with respect to a
coupling constant in the potential, which, as we already saw in the preceding section, is
related to estimates of eigenfunctions. In fact, to obtain Theorem 3.1 we use the proof
of the Wegner estimate in [14] verbatim, relying on the following result. Recall that s
is one of the parameters of our model as defined in Assumption A.

PROPOSITION 3.2. Let á € 9Ó. Then tAere is an open interval I containing á and
C > 0 such that for all Ë = A*(i) with I € N,z € Zd, all ù € Ù and all normalized
eigenfunctions f of Ç\(ù) corresponding to an eigenvalue ì £ I we have:

\f(x)\*dx>C. (3.2)

Proof. We want to apply Proposition 2.1. Thus for Ç = Ç\(ù) we want to find a
comparison operator Ç%(ù) = -Ä + \¼,ù with the following property: For

•(u H'
we have

dist({V0,u, Ö Vper -f- Ê,}, Ñ)=:ý>0 (3.3)

independently of ù. Assume first that á is a lower band edge. We set

Vo.« = Vper + K,(l - Xr) + XXr Ó /(· - *)

k

for some ë € (g_, g+) and 0 < r < s, where

Clearly, (3.3) is satisfied for each ë, á;, A. Moreover, for some / as asserted,

di8t(/ fa(J3j(u;))>i>0 (3.4)

for all ù € Ù and A. To verify this we use Theorem 2.2:
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Note that á is a lower band edge of Hpcr + ò. · Ó^æ* /(' ~" *)· Consequently, for ë
as above the corresponding band edge á(ë) of H(\) := Hper + Q- - ÓëòÆ'1 /(' ""
Xr) + ë · ÓË€Æ4ß /(' - *)Xr satisfies

á(ë) > á,

since the difference is (ë - q~) · SjbeZ'1 /(' ~ ̂ )» so *^at we can aPPty Theorem 2.2.
For the restriction H\(X) of -ff(A) to the cube with periodic boundary conditions we
have that

min{a(A) - a,dist(a,SE \ {a})} < dist(<r(#A(A)),a) < dist(a(fft(<j),a).

Here, the latter inequality follows from g_ < Qk(u) by the min-max principle. Therefore,
(3.4) follows for a suitable open interval / containing a.

(3.4) implies that ||(jFfjJ(cj) - ì)~é\\ is uniformly bounded in ì G /, ù and Ë, and an
argument using uniform relative bounds in ù shows the same for \\(Ç^(ù) - /x)~1V||.
Thus we can apply Proposition 2.1 and get the asserted (3.2).

In the case of upper band edges, which are band edges of Hper + q+ · ÓË€Æ^ /(· — k)
we add the same auxiliary potential to shift the band edge to the left (this follows from
ë < q+) and use the same arguments as above, incl. Proposition 2.1.

4. INITIAL LENGTH SCALE ESTIMATES

In this section we will prove the initial length scale estimates which are necessary for
multi-scale analysis. Let us first consider the case of band edges above the bottom of
the spectrum and recall that in this case, i.e. the case of Theorem 1.1 we assume that
the coupling constant density g satisfies:

/

0-+Ë Ã9+
g(s)ds < hr and / g(s) ds < hr for some r > d/2 and small h > 0.

Jq+-h

By standard Combes-Thomas estimates, the exponential decay rates for resolvents we
are aiming at will be reduced to proving a lower bound on the distance of the spectrum
of the box hamiltonians Ç\(ù) to a given band edge a.

PROPOSITION 4.1. Assume (4.1) and let á G 5Ó. Then for any î € (0,2r - d) there
is a â > 0 and ß* = Ã(ô,î) such that

Ñ {dist(<7(#A(u)) Ð (á, ïï), á) < ßâ~2} < Ãî if á is a lower band edge (4.2)

and

Ñ {dist(<7(#AM) Ð (-ïï, a), a) < ^~2} < Ã* if a is an upper band edge (4.3)

andl>C.
Proof. Assume that á is a lower band edge. We use Theorem 2.2 with

= Ó /(' -*) ùá V = VP -
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and choose C and ëé as asserted there. For 0 < h = C~l£0~2, â < 2, 1 € Í consider

fy Ë = {cj € Ù; qk(<j) > q- + h for all k € Ë*(0)}. (4.4)

Then

~+ pW ds > l - |A|/ir - l - G-^ -r(2-«.

Moreover, for LJ € Ù^Ë, we have by monotonicity that

<j)) Ð (á, oo), á) > dist(a(-A 4- V + h - W) Ð (á, ïï), á)
> ( 7 · Ë

Starting with Ï < £ < 2ô - d we find â > 0 such that î<ô(2-â)- d, and these /J, î
will do for large enough t.

For an upper band edge we use

iltth = {ù € Ù; qk(u) < q+ - h for all A: € MO)}

and apply Theorem 2.2 in the same way as above. We now turn to the discussion of
the infimum of the spectrum. Here we will use results from the theory of Lifshitz tails
(see [23, Chapter IV], [15] for a general discussion) in order to arrive at the analog of
Proposition 4.1 without a disorder assumption of the form (4.1).

PROPOSITION 4.2. Let á = infE. Then for any î > 0 and â G (0,2) there is an
Ã =Ã(î,/3) such that

P {dist(*(JffA( ;))f á) < l0"2} < Ã* (4.5)

forA = A,(0) and t > P.
Proof. Let us first consider the case of reflection invariant potentials which is treated

in [17]. Denoting the Schr dinger operator -Ä+íñ€Ã+Õù on A with Neumann boundary
conditions by Ç^(ù) it is clear from the min-max principle (compare [8, Ch.6.3]) that
the first eigenvalues obey

where the latter refers, as usual, to the operator with periodic boundary conditions.
Hence it is enough to prove

Ñ {Åé(Ç%(ù)) < á + 10~1} < Ã*.

To this effect infer from [17], p. 804 that

^(ù)) < á + Ã2} < exp(- W/2) (4.6)

for some K > 0. This is on the one hand not enough distance to á but on the other
hand a much better decay in t, the sidelength of the cube. Consider the bigger cube
Á÷, as a union of ( j)d cubes of sidelength ß € Í. Using the fact that
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we get that

As there are ( j)d smaller cubes in ë L and the probability that a fixed one of them
contributes an eigenvalue below á 4- 1"

2 is given by (4.6) we obtain:

Ì) < á + r2} < exp(-^/2) (4.8)

Choosing Ã"2 « I/3"2, i.e. ^ « I/1""? integer, we arrive at an estimate

) < á 4- L0
'
2

for some á > 0 and 7. Clearly this implies the desired polynomial decay in L.
In the general case we use the ideas from [22] in order to get the analog of (4.5). To

this end consider boundary conditions of the type Ç%(ù) which are defined in [22] by
the help of a periodic strictly positive generalized eigenfunction h of Hper. In [22] it
is described how to modify the proof of [17] in order to show that these operators still
satisfy (4.6) above. Moreover, from Proposition 1 in [22] it follows that (4.7) is valid.
The final observation necessary to adopt the above proof to the general case is the fact
that, as for the Neumann boundary conditions, we have

which is apparent from the special choice of ÷ in [22].

5. MULTI-SCALE ANALYSIS

Let ßï > 0 be fixed, \y\ := max,· |j/j| for y € Rd and dist(·, ·) be the corresponding
distance function. For a cube At(x) = {y £ Rd : \x - y\ < 1/2} with center ÷ €
Z

d and sidelength I € Í let øé,÷ € Cg°(A/(z)) be chosen such that øé,÷ = 0 for
dist(y,dAt(x)) < ß0ß and (pt,x(y) = 1 for dist(y,d\t(x)) > 20Q. We can choose the ö^÷

such that |9,·</3^é2.| and \didj öé,÷\ are uniformly bounded in t and ÷ for all z,j. ÷é^÷ will
denote the characteristic function of ë^÷ and (with [·, ·] denoting the commutator)

for suitable functions ö. A tool which we use throughout the following sections is
the geometric resolvent equation which is the following relation between resolvents of
Hamiltonians restricted to different regions A C A'. If ^Ë denotes a C^-function on A
it reads

- æ)~
é

for æ in the resolvent set of H\ and HA> .
For operators on cubes we introduce some more notation in order to facilitate the

following calculations. With Vper and V = K, as in Section 1 let

HltX = -Ä + Vper + V on L2(Mx))
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with periodic boundary conditions and RttX(z)(HttX — z)~l. For ÷ = 0 the subscript ÷
will be dropped from the terminology defined above.

In the following we work with a fixed energy Å € R.

Definition 5.1. A cube A^(z) is called 7-good for some 7 > 0 if

sup \\W(<pi.x)Rt,x(E + ßå)÷</3, J < *~7'·
e*0

Note that by independence the probability Ñ (Ë/ß× is 7-good) does not depend on x.
For the following lemma let ß be a multiple of 3, Ã := |Zrf and l1 > L By ngood we

denote the subset of those ù € Ù for which no two disjoint 7-bad cubes of size I with
center in Ã Ð A3/> exist. This means that diam!^ < §£ for the union Ã& of 7-bad boxes.

ttLEMMA 5.2. (i) ff P (A* 7-good) > 1 - ô?, then P (ngood) > 1 - c fi) ç2.
( ) Let ù € ^OO^- Hz € Ã and y € Ã such that A//3(j/) U A*/3(z) C A^, then

(5.1)

Proof, (i) follows from elementary combinatorics.
(ii) At first, suppose that A/(x) is 7-good and Ë/(÷)ÐË^/3(ß/) = 0. Then öé,÷÷é/3,í =

0 and therefore the geometric resolvent equation implies

Xi/3t*jRwXi/3,y·

Let x\ be chosen from the Xj such that ||x//3,2JA3^'X^/3,1/|| becomes maximal. Thus,
using also that \t(x) is 7-good,

This process can now be repeated to construct points x\ , . . . , Xk G Ã as long as
is 7-good and does not hit A^/3(j/) or 9A3^. The same type of estimate (using adjoints)
can be applied to y as a starting point, yielding points j/i, . . . , j/j. The process moves
in steps of i/3. Therefore, it follows from A^/3(y) U A^/3(x) C Af and the assumption
on diam Ã& that j -f k > 3|x - y\l~l - 4 iterations can be performed before the process
stops on both sides. Estimating finally \\Xt/3,XllR3t'Xi/3,yj\\ < ||A3 '̂|| yields (5.1). The
lemma is proved.

LEMMA 5.3. Let î > 0 and assume that Å satisfies a Wegner estimate as given in
Theorem 3.1. Then there exist constants ci, ci and cs such that: If

P (A/ 7-good) > 1 - ç

for some multiple t of 3, 7 > 0 and ç > 0, then

Ñ (Ë/' V-good) > 1 - ç'
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for every multiple ß' of 3 with £' > 4i and

id ,

/ 4 A c2 log/'
7 = 7 ( l - y J - T - C 3 —

Proof. Choose öß € C§°(At) with $t(y) = 1 for dist(t/, dAt) > 6Q and such that \di<pt\
and \d{dj(pt\ are unifornuy bounded in ß for all i,j. The geometric resolvent equation
implies

Thus
t./i\\ (5.2)

OAs^'/sll + C (\\Re\\ + HVAdl) \\W((pt,)R^xt,^l (5.3)

To further estimate

IIWfoOAa^'/all < \\(^t')Ru'Xt'/^\\ -f 2||(V^) · í^^÷^/3|| (5.4)

we first note that by covering supp(A<^') and Ë^/3 with cubes of sidelength £/3 one
can conclude from Lemma 5.2 that

/ pi\2d
 f>

\\(^(>)R3(-Xt;3\\<c(j) (^-^-Ë\\Ñ.3(.\\ (5.5)

with probability Ñ > 1 - c(l' /^)2V-
To control the second term on the r.h.s. of (5.4) we use the following standard esti-

mate: There exist constants C\ and Ci (independent of L and ù) such that

(5.6)

for every g G D(Hi) and ö € CQ°(AL). This estimate uses uniform (in ù and L) relative
form boundedness of Vper 4- K, with respect to Hi and can be proven by a calculation
as for example in [35, p. 317ff].

Choosing L = 3ß', ö = (äøé>) and g = Rzt'Xt'/zf, f € É/2(Ë3^) in (5.6) yields after
a simple calculation that ||(V<^') · ̂ Rzt'Xt'/3\\ can be estimated by a sum of terms of
the form H^-Rs^x^/sH, where ö is a first or second order partial derivative of øé>. All
these terms can be estimated as in (5.5) and therefore by (5.4) this estimate also holds
for \\W((pi>)R3t>Xt,/3\\. In exactly the same way we estimate \\Vi(^t'}Rzi'Xf/^\\ in (5.2)
and arrive at

,,
< C (jj (3de-*)*-4|| HI(l + IM + IIVA-II) (5.7)

with probability P > 1 - ci ( ã)
o j
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By the Wegner estimate (3.1) we know with probability P > 1 - 2Cw^L2d that
dist(E,a(HL)) > å, i.e. \\RL\\ < É/å. The choice L = U1 and å = ^^d(iT^2d

gives

\\R3f\\ < C(t')W with Ñ > 1 - 3(Ï"
î· (5.8)

Furthermore

VRL(E + ie) = VAL(C) 4- (£ + \ç - c)VRL(c)RL(E + is),

where arguments using relative form boundedness guarantee the existence of c € B. with
c -f 1 < inf ó(Çé) and ||V-Ri,(c)|| < C uniformly in L and u. Thus

||AL|| -f HVAL|| < (7(1 -f i) with P > 1 -

The choice L = (! and å = 1 ( / ' ) - ^ - 2 r f proves that

\\Rf\\ + I IVAf l l < ó(/')î+2ß| with Ñ > é - (i')-«. (5.9)

From (5.7), (5.8) and (5.9) we get

/ / / \ 2 r f
\\W((p?)Ri'Xi*/z\\ < C ( — ) (S^e"7*)^"4^')^"4"44 (5.10)

with P > 1 - Ci( j)2rf772 - %(l')~t. A simple calculation shows that the r.h.s. of (5.10)
is

f m \ é Ë 4^÷ dlog3 logC (2£ + 6d)log<'l< exp —£ 7(1 ) ^--= —— '
- * V L £' £ £' £'

The proof of Lemma 5.3 is therefore completed by choosing 03 = 2£ + 6d and estimating

LEMMA 5.4. Let a € ÏÓ and 0 < î < 2r - d under the assumptions of Theorem 1.1
or let á = inf Ó and æ > 0 under the assumptions of Theorem 1.2. Let á € (1,3g+|f )·

Then there exists a neighborhood I of á such that for every Å € / there is an £* € Í
and 7 > 0 with the property

Ñ (\tk is 7-good) > 1 - tj* for k = 0,1,2,...,

where 4) > (-* & an arbitrary multiple of 3 and tk = UQ | . Here [x]a denotes the
largest multiple of 3 which is smaller or equal to x.

The rest of this section will be used to prove Lemma 5.4. Under the given assumptions
we know from Propositions 4.1 resp. 4.2 that there exist â > 0 and I* such that

dist(a, ó(Çé)) > ̂ ~2 with Ñ >\-Ã*

for £>£*i i.e. for Å € / := (a - |^~2, a 4- %£0~*) we have

dist(J5,(j(H*)) > i^"2 with Ñ > 1 - Ã*. (5.11)
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We will now use the following Lemma whose proof is given in an Appendix and based
on an improved version of the Combes-Thomas method as introduced in [1].

LEMMA 5.5. Let 7, î and â be given as above. Then for Å € I it holds with
probability Ñ > 1 - t~* that

if 0 < â < â/2 and£>£* with ß* sufficiently large.

Therefore, if we choose £Q > I* a multiple of 3, 70 = £Q~~I , and ô/ï = ß^, then

~ (Ë ±-\ °2 - °g*+l / å é ï Ëºk+é = 7*(1 ~ 7 - ) - Ô - c*— - (5.13)
4 4+1

With this £Q and 4 = ^ï we have 4+i > 44 for all k if Ã is large enough.
Since Å satisfies a Wegner estimate by Theorem 3.1 we can therefore inductively apply
Lemma 5.3 and conclude that

P (A,fc is 7*-good) > 1 - ifo, (5.12)

where

and

By a calculation as in [2, Proof of Lemma A.3] one can check that the 7* are strictly
bounded from below by a positive number, i.e.

7/fe > 7 > 0 for all k. (5.15)

From the definition of 4 we get 4+1 < (24)a if I* is large enough. This and (5.14)
yield the estimate

1\ î
+ 2 J *+!'

The term in brackets is bounded by 1 for all k if ß* is sufficiently large since á €

C+i for * = 0,1,2 I . . . . (5.16)

Lemma 5.4 follows from (5.12), (5.15) and (5.16).

â. FROM FINITE BOXES TO THE WHOLE SPACE

The goal of this section is to turn the finite box resolvent estimates proven in Section 5
into the basic estimates for Ç(æ,ù) = (Ç(ù) - æ)"1 needed to prove localization and
exponential decay for eigenfunctions. The main result is

THEOREM 6.1. Let Q : Rd -+ R be bounded, measurable and of compact support.
Under the assumptions of Theorem 1.1 there exists a neighborhood U Ï/9Ó and under
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the assumptions of Theorem 1.2 there exists a neighborhood U of inf Ó such that the
following holds with probability one:

(a) For almost every Å £U

<oo.

(b) For almost every Å € U there exist C and 7 > 0 such that

for every ÷ G Zd. Here ÷÷ := *AI(*)·

Although the above statements could be proven "from first principles" (compare [2,
Theorems 2.1 and 2.4], we have decided to base our proof on the following deterministic
fact:

PROPOSITION 6.2. Let Ç = -Ä + V where VI is in the Kato class and V+ is locally
in the Kato class. Then there exists a subset SO C R of full measure, i.e. |R \ 5o| =0,
such that

sup \\÷Á(Ç -Å- éå)-é÷Â\\ < oo
e^O

for every Å € So and every pair of compact subsets A and Â of Rrf.

Results of this type go back to de Brange's work [5]. The above formulation is found
in [33, Lemma 3]. The Kato class includes all the potentials discussed in the present
paper.

As additional preparation for the proof of Theorem 6.1 we need

LEMMA 6.3. Let 7 be as in Lemma 5.4 and E £ I be fixed. With Ã, tk and 7 > 0 as
in Lemma 5.4 let ifrk := Xzth - X3^»,-i- Then, if I* is sufficiently large, with probability
P > 1 - l~* it holds that

)\\ < e " , (6.1)
**o

and
ie)Q\\ < C I I Q U e o " - 5 ^ - 1 . (6.2)

Proof. By Lemma 5.4 we have P(A/fc_17-good) > 1 - ß^À÷, and therefore we can
apply Lemma 5.3 with t = lk-é and ß1 = 94, yielding

with

where
c2 log 94

~4À7~~° 3 94
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If i* is sufficiently large, then 7' > 7/2 for all k and, by a calculation as in the proof
of Lemma 5.4, the probability in (6.3) can be estimated by P > 1 - (j~*. This proves
(6.1).

To prove (6.2) we use Lemma 5.2 with I = 4_!, i' = 34 and ç = 4li (possible
by Lemma 5.4). We have |Q| < HQHooX^.j/a.o if ^* is sufficiently large, and supp^
can be covered with C(4/4-i)rf < Ï<%~Ü/á cubes of sidelength 4-i A a·11 of whose
centers having at least distance 34-1 to 0. Thus (5.1) proves

with Ñ > 1 - c(tk/lk-i)2dtk-r Wegner's estimate yields

I|AQ<JI < Cli+2d with Ñ > 1 - i^. (6.5)

This and (6.4) imply (6.2) using C(4/4-i)2^*.!l + \^ < ̂  for large I*.
We are now in a position to complete the Proof of Theorem 6.1 (a): Take U to be the

(union of) neighborhood (s) provided by Lemma 5.4. Since £fc t^ < oo we conclude
from the Borel Cantelli lemma that for every fixed E € U and almost every ù there exists
ko = ko(u) such that (6.1) and (6.2) hold for every k > ko. For these ù and arbitrary
/ € L2(Rd) we get the following estimate using the geometric resolvent equation and
Lemma 6.3:

k>kQ

2

If we choose fco sufficiently large such that 2e~97*fco < I, then it follows that

Ó (
k>k0

< c\\f\\2

uniformly in å ̂  0. Thus we have proven that if Å € U is fixed, then for almost every
ù there exists a compact subset Ê = Ê (ù) C Rd such that

Bup||(l -÷ê)Á(Å + ßå | ù)ÏÉÉ < oo. (6.6)
**o

Fubini's theorem implies that the following holds with probability 1: For almost
every Å € U there exists a compact subset K = K (E) C Rrf such that (6.6) holds. For
almost all of these E's it is by Proposition 6.2 also true that

sup \\÷ê(Å)Ê(Å + ie, cj)Q|| < oo.
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This combines to prove part (a) of Theorem 6.1, i.e. the existence of a subset i/o C U
with \U \ UQ\ = 0 and such that supff^0 \\R(E + ie)Q\\ < oo for E € i/o with probability
1.

For the following proof of part (b) of Theorem 6.1 assume that E € i/o· Given
÷ € Zrf, choose fc such that ÷ € Ë3^ \ AS^^ and assume that suppQ C A/fc->1/3. One
more application of the geometric resolvent equation gives

\\XXRQ\\ < \\X,Kt>Q\\ + \\XzR9tkW&9tli)RQ\\. (6.7)

From (a) above and (6.1) we se that the second term on the r.h.s. can be estimated by

M < Ce-H» < <7â-Ç"' (6.8)

with Ñ > 1 — Cj~*. Lemma 5.2, Wegner's estimate (compare (6.5), and some calculations
are used to estimate the first term on the r.h.s. of (6.7):

(6 9)
x e "

< e-^l*l

for 0 < 7' < 7/3 and |x| sufficiently large (note á < 2) with probability Ñ > 1 —
C(3lk/lk-i)*dfj;li - \^ > 1 -Ctk* (compare (5.16). Inserting (6.8) and (6.9) in
(6.7) we see that

(6.10)

holds for every Å e C/b and large |x| with Ñ > 1 - Ci^. Summability of ̂  implies
that for every Å € UQ with probability 1 there exists fco such that (6.10) holds for every
x € R d \ A 8 £ f c e .

Fubini's Theorem shows that with probability 1 (6.10) holds for large \x\ and almost
every E € t/o, and therefore almost every E € C/. Finally, part (a) of Theorem 6.1 allows
us to drop the restriction 'large |x|7 from the preceding statement, thus completing the
proof of part (b).

7. GENERALIZED EIGENFUNCTIONS AND SPECTRAL AVERAGING

In this section we will introduce two more basic results from spectral theory which will
be used in the conclusion of the proofs of our main results.

Theorem 6.1 says that certain properties of the resolvent hold with probability one
for almost every E in a given set. To use this in the proof of our main results we
will need to know that the exceptional energies, where these properties do not hold,
can be ignored, i.e. with probability one have no effect on the spectrum of Ç (ù). To
this end we will use a result on spectral averaging, which is essentially due to [21] with
generalized versions given in [2] and [3].

PROPOSITION 7.1. Let HQ = -Ä + W, where W is locally uniformly in Lfoc(R
d),

where p = 2 ifd < 3 and p > | if d > 4. Let f be defined as in Section 1, H\ :=
and E\(') be the spectral resolution of H\.

Then for any Borel set L with \L\ — 0 it holds that E\(L) = 0 for almost every ë.
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Since / is relatively bounded with respect to -Ä and g > ÷ := ÷÷(ï) it is seen that
Ç ÷ satisfies the general assumptions used in the proof of spectral averaging in [3]. By
Proposition A.2.2 of [2] it also holds that ^(Ç÷)÷ö : g € L°°(R),<£ € L2(R )} is dense
in L*(Rd). Thus Proposition 7.1 is a special case of Corollary 1.3 in [3].

We will also use a result on generalized eigenfunctions of Schr dinger operators.
First, recall that every self-adjoint operator Ç in a separable Hubert space Ç has an
ordered spectral representation, i.e. a unitary operator

Í

suchthat UHU"1 = M,^, the operator of multiplication by the variablem
Here the pj are bounded Borel measures and pj+é is absolutely continuous with respect
to PJ for all j (see e.g. [36, Theorem 8.1]). The measure ì := p\ is a spectral measure
for H, i.e. for Borel sets L we have ì(Æ/) = 0 if and only if E(L) = 0, where E(-) is the
spectral resolution for Ç [25].

For the following proposition let H] = {f\(x)'f £ H1}, where Hl is the first order
(L2-) Sobolev space over Rrf and (x) = (1 4- N2)1/2.

PROPOSITION 7.2. Let Ç = -Ä + V in L2(Rd), where V is uniformly locally in LP
with p = 2ifd<3 and p > | ifd > 4. Let ì be a spectral measure and s > d/2.

Then for ì- almost every Å € R there exists a non-trivial weak solution ö of Ç ö = Åö
with ö € Hl8.

Results of this type are quite standard and follow from the theory of expansions in
generalized eigenfunctions. In the concrete case we may use that V is -Ä-bounded with
relative bound 0. Theorem 3.6 of [24] shows that under this assumption (p)(x) ~'(H -
z)~m is a Hubert-Schmidt operator for s > d/2, z € p(H), and m sufficiently large
(depending on d), here (p) = F~l(x)F, F the Fourier transform.

This allows to apply the results of [25], which, in particular, establish the existence
of weak solutions ö of Çö = Åö with ö € {{^)*(p)~1/l/ € £2} == #i« f°r ì-almost
every E. Non-triviality of the ö follows from the expansion theorem in [25].

8. PROOF OP LACALIZATION

Let U be the neighborhood of 9Ó resp. inf Ó provided in Theorem 6.1. To ù G Ù let

3ù := {Å € U : for all y e Zd there existC, 7 > 0 such that

sup \\xxR(E + ßå,ù)÷í\\ < Ce^^for all ÷ € Zd}
e*0

and
3ù := 50; \ {eigenvalues of #(u;)}.

For energies in S;%? we will be able to establish exponential decay of generalized eigen-
functions using

LEMMA 8.1. Let Å £ 3ù and ö € H±8 be a weak solution of(H(uj) + ×/)ö = Åö.
Then there exist C and 7 > 0 such that

\<p(y)\ < Ce-^M for every y G Rrf.
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Proof. For R > 0 choose functions gR € C§°(\x\ < R) with gR(x) = I for |x| < R - I
and such that \VgR\ < C and \AgR\ < C uniformly in R.

By the spectral theorem and dominated convergence it holds for general self-adjoint
operators H and their spectral resolution P that s-lime->o(H — E — éÝ)"1 (Ç — E) =
/ - P ({E}). Since E is not an eigenvalue of H (ù) it follows that

lim R(E + ßå,ù)(Ç(ù) - E)gR<p = 9çø. (8.1)

Since (Ç(ù) - Å) ö = -ë/<£ we have (Ç(ù) - E)gRip = W(gR)(p + gR(H(u) - Å) ö =
<Ñ - ë/V for large A. Thus we can use (8.1) to get that for arbitrary y G Zrf and

large

The first term on the r.h.s. of (8.2) is estimated by

ç\\ + 2\\(VgR)R(E - ie, ù)

Using Å € 5u, and (/: € #1, we can further estimate this by p(R)e~^R with 7 > 0 and
a polynomial p. Thus, after taking the limit R -* oo, we conclude from (8.2) that

\\Xyf\\ < |A| sup ||÷,Á(Å + Àå, a;)XSupp / II ||/vll < C^M\\M (8.3)

for some 7 > 0, where Å æ 3ù was used again.
For the weak solution <p of (Ç(ù) 4- ë/)<£ = E<p we have the subsolution estimate

(e.g. [4, p. 18])

for every ÷ € Rd. This implies <ñ € £{£., i.e. ||/̂ || < oo, and also
Ce'iM by (8.3).

From the definition of 5^ and 3ù and Theorem 6.1 together with a count ability
argument it follows that \U \8ù\ = 0 with probability one, i.e. there exists Ù0 C Ù with
Ñ (Ù0) = 1 and

|i/\Su,| = 0 for every c j€ Ù0. (8.4)

Let ù G ÙÏ be fixed, H\ := Ç (ù) + ë/ and P\(-) the spectral resolution of H\. By
Theorem 7.1 there exists a subset M0 C R with |R \ M0| = 0 and

Ñ÷(õ\8ù) = 0 for every ë € M0. (8.5)

Let now also ë € MO be fixed and ì be a spectral measure for H\. By (8.5) we have

ù) = 0. (8.6)

Proposition 7.2 yields that for ì-almost every Å there exists a non-trivial weak solution
ö G #1, of Ç\ö = £<p. By (8.6) and Lemma 8.1 it follows that for ì-almost every
Å £ U there exists a non-trivial exponentially decaying solution ö of Ç\ö = J5<£, in
particular, <p is an eigenfunction of #ë· Thus ì-almost every Å € U is an eigenvalue of
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H ÷. The set of eigenvalues is countable and therefore ì\õ is a point measure, i.e. H\
has pure point spectrum in U. All its eigenfunctions decay exponentially.

Using Ñ (Ùü) = 1 in an application of Fubini's theorem to (ùâ,ù1) with ù' = (uk\k ^
0), together with the fact that |R \ M0| = 0 and the distribution of UQ is absolutely
continuous, we conclude that Ç (ù) has pure point spectrum in U with exponentially
decaying eigenfunctions for almost every ù.

9. DISCUSSION

Our main results allow several extensions and generalizations which we have not in-
cluded in the main body of the text for the sake of clarity of the presentation:

Extensions, (i) Compactly supported /:

In A. 2 we can allow / of arbitrary compact support. This leads to minor changes in the
proof of formula (1.1). Proposition 4.2 can first be applied to Vper = Vper 4- q~ ÓÇ /(· -
Á;), î- = 0, and / := %AI(O)/· It then follows from monotonicity that (4.4) holds under
the more general assumptions on /. Finally the definition of the set Slg0od in Lemma
5.2 has to be changed. It should now be the set of those ù € Ù such that no two 7-bad
cubes of sidelength I with centers in Ã Ð Ë/» and of distance larger than the diameter of
the support of / should exist, thus guaranteeing the independence of the corresponding
box hamiltonians.
The basic methods used in this paper to prove localization also apply to non-compactly
supported / which decay at infinity like |x|~m for sufficiently large m. This will be
discussed in a separate publication [8].

(ii) General lattices:

Our results extend to the case of a Ã-periodic potential Vper and
K;(#) = Ó/ker 0* (<*>)/(' ~~ *) where Ã is a general d-dimensional lattice, i.e.
Ã = {53<=1 á,·õ,·;á,· € Æ} for some basis {vi,...,Vd} of Rrf. In Theorem 1.2 one then has
to assume reflection symmetry with respect to Ã, cf. [17]. All necessary modifications
in the proofs are straightforward.

(iii) Closing gaps:

Theorem 1.1 also applies to the case of a "closing gap", i.e. the situation where an
upper band edge á of Hper + q+ ̂ k /(· - k) coincides with a lower band edge of Hper 4-
q- ^2k /(· — k). For example this happens if Hper has a gap of length a, / = ×Ëé(ï)
and q+ - g_ = a. In this case ï is an interior point of Ó, but nevertheless our methods
show that Çù is pure point P-a.s. with exponentially decaying eigenfunctions in a
neighborhood of a. In fact, with the method of proof of Proposition 3.2 we see that
adding an auxiliary potential we get an operator whose spectrum does not contain a.
Hence we have a Wegner estimate near a. For the initial length scale, we have to
consider the event Ù^Ë = {ù € Ù; c?jb(^) € [g_ + h,q+ - ft] for all fc € Ë/(0)} and then
use the same arguments as before.

(iv) The support of g is not an interval:

In fact this case is closely related to the preceding remark: we still have

«esuppa
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for the almost sure spectrum Ó. We can not exclude however, that boundary points of
Ó are no fluctuation boundaries. The latter are given by

á/é*«* = â (J

which is a subset of Ó since g is supported near <?_ and g+. Our Theorem 1.2 then
holds with 9Ó replaced by ä/ß^Ó which can be easily seen from the proof. Note that
this includes the case of closing gaps, since those appear in d/iuct£ by use of the open
interval (?-,?+).

(v) p = $ for d > 5:

As a general assumption concerning the potentials involved we posed V € L$oc for
p > | and d > 4. The reason is that this implies that the potentials encountered
are in the Kato class. It is easy to see that all the necessary background concerning
deterministic Schrodinger operator is available for the limiting case p = | for d > 5,
since those potentials are operator small with respect to — Ä (cf. [27]). In particular,
for the Combes-Thomas estimates and the trace estimates needed in Section 6 it is not
hard to see that the limiting case can be included.

Comparison with other results on band edge localization:

Apart from results for Landau hamiltonians (see the references in [1]) we want to men-
tion mainly the recent papers [10], [11] and [1]:

While presenting their results for acoustic and electromagnetic models, the methods
used by Figotin and Klein in [10] and [11] also apply to random perturbations of periodic
Schrodinger operators and lead to a result like our Theorem 1.1, see Remark 10 in [10].
However, their methods of proving the Wegner estimate and the initial length scale
estimate require the assumption (in the Schrodinger case)

0 < IL < Ó f(x-k) <U+ <oo for a.e. ÷ € Rd

on the single site potential / and also boundedness of Vper. This excludes unbounded
/ and fs with small support as allowed by our Assumption A.

In [1] Barbaroux, Combes and Hislop provide a very general and powerful framework
for band edge localization. This work includes periodic background potentials as a
special case. However, in the periodic case it does not cover our results in full generality.
In particular, their general result requires a condition ((H9) in [1]) which needs to be
verified in concrete cases. In Proposition 6.4 of [1] and the remark following its proof
this is done for the case of large disorder, i.e. that the support of the distribution
density g is R or at least large. In the case of a periodic background our Theorem 2.2
provides the equivalent of condition (H9) in [1] for arbitrary, possibly small, disorder.
Furthermore, the proof of the Wegner estimate in [1] is given for bounded single site
potential while we have included singularities. Also the localization result of [1] needs
r > 3d/2 rather then ô > d/2 in the decay assumption (1.2). The reason for this is that
in addition to the improved Combes-Thomas method of [1] we also use an improved
multiscale analysis based on the de Dranges result. In [1] the assumption ô > d is used
in a similar context and it is noted in Remark 11 that r > d/2 would be sufficient if
the improved Combes-Thomas method would be exploited.
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An important advantage of [1] is that a "linear" version of the Wegner estimate (3.1)
is proven, i.e. the term |Ë|2 is replaced by |Ë|. This improved form of the Wegner
estimate is not needed in the proof of localization and is found at considerably higher
effort than our proof of Theorem 3.1 . It allows, however, to show Lipshitz continuity
for the integrated density of states.

APPENDIX: Proof of Lemma 5.5

Here we give a proof of Lemma 5.5. In order to do this we first give a result for the
resolvent of deterministic Schrodinger operators with a spectral gap and then apply
it to the random operators Çé(ù) studied in Section 5. The deterministic result is
an improved Combes-Thomas-type estimate, which differs from the 'classical' estimate
by yielding a better exponential decay rate for localized resolvents at fixed energy E.
Basically the rate is found to be proportional to the square root of the distance of Å to
the spectrum, while the original method only gave a rate proportional to the distance.
This improvement was first used in [1, Ch.3], from where we also take all essential parts
of the proof. The main difference in the result and proof given below is that we need to
apply the method to complex energies E -f is. Some other steps in the proof are taken
from a version of 'classical Combes-Thomas' in [32, Lemma 3.1].

Let V be a potential on Rrf which is locally uniformly in If with ñ as in assumption
A of Section 1. Let Ë = A/(i) for some I € Í and i € Zrf, Ç = (-Ä + V)\ in L2(A) with
periodic boundary conditions, and let (r, s) be a spectral gap of H. Also let <5o > Ï, ÷,
÷ € L°°(A) with Hxlloo < 1, Hxlloo < 1, dist(suppx,OA) > <50, dist(supp ÷, ÏË) > J0,
and ä := dist(suppx,suppx) > 1.

LEMMA A.I Under the above assumptions there exist positive constants CO, C\ and
€2 only depending on SQ and supx HVHi,?^^)) auch that for every E € (r, è), å > Ï
and i € {l, ... , d} the following estimates hold:

- Å - te)-'

and

- * - "Ã'÷ÉÉ < «p -

where ç = dist(E, ó(Ç)).

Proof. We will need a smooth function measuring the distance to suppx. For this
we use the regularized distance (see [30, p.l70f]):

There exist constants ci > 0, 02 > 0 and Ba such that every closed set F C Rrf

admits a C^-function È/r : Rd \ F -> (0, oo) with the following properties:

ddist(x, F) < QF(x) < c2dist(a:, F) for ÷ € R* \ F,

\daQF(x)\ < ̂ (distfoF))1-!0! for ÷ € Rd \ F.

The constants ci, 02 and Ba do not depend on Fl
Fix a C°°-function u : R -4 R such that u(x) = 0 for ÷ < 1/2 and u(x) = ÷ for

÷ > 1. Also choose ö € C£°(A) such that ö(÷) = 1 for distfoflA) > <J0, ö(÷) = 0 for
dist(x,9A) < io/2, and ||V<p||oo is bounded by a constant only depending on ßï. With
F = suppx define ñ € C£°(A) by p(x) = ö(÷]ç(&ñ(÷)É^) for ÷ € A \ F and p(x) = 0
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for ÷ € F. One gets ||Vp||oo < C with a bound only depending on ci, 02, Ba and Jo,
but not on F.

For 0 < â < 1 a calculation shows that

(A3)

on D(H), where H := H - /32|Vp|2 and ÑÃ := (-iV) · (Vp) + (Vp) · (-<V). Note here
that D (A) = D(H) C D(W) and that D(H) is invariant under multiplication by e"^.

The discussion of relative operator bounds in Section 1 and the fact that this implies
form bounds [26, Theorem X.18] shows that there is a constant CO > —s only depending
on supz ÉÀíºÉé÷Ë,Ì) such that Ç + C0 > 1 and ||(jff 4- CQ)~l'2W(H + C0)"

1/2|| < 1.
It follows that for every w € D(H)

with the bounded operators

and
B = (H + C0)

There is a constant c' > 0 only depending on |Vp|oo such that for â < cV/2 one
has dist(E,(7(#)) > ç/2. For such â it follows that 0 £ ó(ÊâË) since Re A = (H -h
Co)-1^-^).
Let d+ := dist(0, a(Re Á) Ð (0, oo)), d_ := dist(0, ó(Êâ >l) Ð (-ïï, 0)), and let P±(Re A)
be the spectral projections on (Ï,ïï) respectively (~oo,0) for Re A.

Â is symmetric, thus for u € L2 (ë) and u± := P±(Re A)u a calculation leads to

||u|| \\(A + i

where at the end it was used that Im A = —e(H -h CO)""1 commutes with P±(ReA).
if has the spectral gap (r,s - ç/2). Thus

and

UO t· s oo i- ^V^o "f" *V

It follows that

Thus, if
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and therefore â < minc /,^^y ô?1/2 it follows that â < \^d+d-. Using that
||B|| < 1 we get for such â that

\2Im(u+, Bu.)\ < id+||u+ll2 + \d-\\u-\\\

Therefore (A.5), (A.6) and (A.7) imply

||u|| \\(A + i B)u\\ > id+IMI2 + id-|M|2 > _2_||u||2,

i B)u\\> ç \\u\\.
4(Go 4- s)

Inserting this with u = (H+C )l/2w in (A.3) gives the conclusion that H — Å-ºå—i W
is invertible and

(H + Co)12(£ - E - ºå + i II r;

for â as in (A.8). From (A.3) it follows that for the same â

and

(A9)

< ||0,(Á + Co)'1/2!! IK» + Co)1/2(# - Å + i^W - éÝ)'1!

+ |/3(â,·ñ)ïï|| \\eP'(H -Å- Àå)-^-0ñ\\
C(Cp + a)

(Al) follows by choosing â = 4(c0
r+/\ *?1^2 a11^ using (A.9) in

Here we finally used that QF(X) > cidist(x,F) > áä for ÷ £ suppx and ä > 1. (A. 2)
follows in the same way from (A. 10).

We can now prove Lemma 5.5 from Lemma A.I. The expression \\W((pt)Ri(E 4·
ßå)÷£/3|| is estimated by a sum of terms as in (A.I) or (A. 2) with jFf — Çß(ù) and coef-
ficients bounded uniformly in L The <$o required in Lemma A.I coincides with the SQ of
Section 5 and the functions appearing for ÷ and ÷ all satisfy ä := dist(supp ÷, supp ÷) >
1/6 > 1 for t sufficiently large. If á € 9Ó is a lower band edge, then we choose
(r,s) := (sup{E Ð (-ïï,á)},á 4- 10"2). Since ó(Çé(ù}) Ð (-ïï,á) C Ó Ð (-ïï,á) it
follows from Proposition 4.1 that (r, s) is a spectral gap of Ç^(ù) for ù € ÙÏ with
Ñ (Ùü) > l — 1~*. (A more direct argument using Proposition 4.2 applies for á = inf Ó
under the assumptions of Theorem 1.2.)
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For every ù € Ù0 and Å € /(á - |̂ "2, á + \ß0~2) one has ç = dist(E, ó(ÇÝ(ù))) >
^~2. Inserting all this in the estimates found from (A.I) and (A.2) one gets that

with positive constants which all can be chosen uniformly in ù € ÙÏ and £ because of
the uniform local ZAbounds of the random potential. If 0 < â < â/2 and l>t* with
I* sufficiently large, then the r.h.s. can be estimated by exp (—1&). A similar argument
holds when á € 9Ó is an upper band edge, which completes the proof of Lemma 5.5.
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