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Abstract—We propose an approach that uses connectivity information—who is within communications range of whom—to derive the

locations of nodes in a network. The approach can take advantage of additional information, such as estimated distances between

neighbors or known positions for certain anchor nodes, if it is available. It is based on multidimensional scaling (MDS), an efficient data

analysis technique that takes Oðn3Þ time for a network of n nodes. Unlike previous approaches, MDS takes full advantage of

connectivity or distance information between nodes that have yet to be localized. Two methods are presented: a simple method that

builds a global map using MDS and a more complicated one that builds small local maps and then patches them together to form a

global map. Furthermore, least-squares optimization can be incorporated into the methods to further improve the solutions at the

expense of additional computation. Through simulation studies on uniform as well as irregular networks, we show that the methods

achieve more accurate solutions than previous methods, especially when there are few anchor nodes. They can even yield good

relative maps when no anchor nodes are available.

Index Terms—Wireless sensor networks, optimization, position estimation.
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1 INTRODUCTION

LARGE-SCALE networks with hundreds and even thousands
of very small, battery-powered, andwirelessly connected

sensor and actuator nodes are becoming a reality [3]. For
example, future sensor networks will involve a very large
number of nodes densely deployed over physical space. The
nodes are typically highly resource-constrained (processor,
memory, andpower), have limited communication range, are
prone to failure, and are put together in ad hoc networks.

Imagine a network of sensors sprinkled across a large
building or an area such as a forest. Typical tasks for such
networks are to send a message to a node at a given location
(without knowing which node or nodes are there or how to
get there), to retrieve sensor data (e.g., sound or tempera-
ture levels) from nodes in a given region, and to use the
sensor nodes to track nearby events, such as vehicles
moving through the sensor field. Most of these tasks require
knowing the positions of the nodes or at least relative
positions among them. For example, for a vehicle-tracking
application, the sensor nodes would determine the posi-
tions of the tracked vehicles relative to their own positions.

With a network of thousands of nodes, it is unlikely that
the position of each node can be precisely predetermined.
While nodes could be equipped with a global positioning
system (GPS) to provide them with their absolute position,
this is currently a costly solution. Instead, for example, the
sensor nodes might be dropped from an airplane in a rough
grid pattern and would then have to determine their exact

positions by putting themselves in relation to each other
and possibly a few nearby beacons with known positions.

In this paper, we present an approach for computing the
positions of nodes given only basic information that is likely
to be already available, namely, which nodes are within
communications range of which others. At the heart of the
approach is multidimensional scaling (MDS), a data
analysis technique that transforms proximity information
into a geometric embedding. MDS is well-suited to node
localization in communication networks, where the task is
to use the distance information between nodes to determine
the coordinates of nodes in a 2D or 3D space.

We present two methods based on this approach: a
simple centralized one, called MDS-MAP(C), that builds a
global map using classical MDS, and a more complicated
one, MDS-MAP(P), that builds many small local maps and
then patches them together to form a global map. MDS-
MAP(C) has three steps: Starting with the given network
connectivity information (or local distance measurements),
we first compute the shortest-path distance between each
pair of nodes. Then, we use classical MDS to derive node
coordinates that fit those distances. Finally, we normalize
the resulting coordinates to take into account any nodes
whose positions are known.

MDS-MAP(C, R) is a variant of MDS-MAP(C) in which
we add a refinement step to improve the solution computed
by MDS. In the refinement, least-squares minimization is
used to make the distances between neighboring nodes
better match the provided measured distances. This
optimization is more costly than classical MDS.

Like many existing methods, MDS-MAP(C) works well
on networks with relatively uniform node density, but less
well on more irregular networks, where the shortest path
distance between two nodes does not correspond well to
their Euclidean distance. To tackle this difficult problem, we
presentMDS-MAP(P). Its strategy is to build for each node a
local map of the small subnetwork in the node’s vicinity
and then merge these local maps together to form a global
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map. This method avoids using shortest path distances
between far away nodes and, thus, the smaller local maps
constructed using local information are more accurate.
Another advantage of the method is that it can be easily
performed in a distributed fashion, which makes it
appropriate for large-scale networks.

As with MDS-MAP(C), we can add a refinement step to
MDS-MAP(P) to improve the global relative map. We call
the method with refinement MDS-MAP(P, R).

As we will demonstrate, our approach often outperforms
existing methods. Furthermore, it requires only connectivity
information to produce a meaningful result. If the distances
between neighboring nodes can be estimated, that informa-
tion can be easily incorporated into the pairwise shortest-
path computation during the first step of the algorithm.
MDS yields coordinates that provide the best fit to the
estimated pairwise distances, but which lie at an arbitrary
rotation and translation. If the coordinates of any nodes are
known, they can be used to derive the linear transformation
of the MDS coordinates that allows the best match to the
known positions. Usually, only three (or four) such “anchor
nodes” are necessary to provide absolute positions for all
the nodes in a 2D (or 3D) network.

The next section of the paper describes our approach in
detail. Then, we will provide an overview of previous
proposals before presenting our empirical evaluation.

2 LOCALIZATION USING MULTIDIMENSIONAL

SCALING

We consider the node localization problem under two
different scenarios. In the first, only proximity (or con-
nectivity) information is available. Each node only knows
what nodes are nearby, presumably by means of some local
communication channel such as radio or sound, but not
how far away these neighbors are or in what direction they
lie. In the second scenario, the proximity information is
enhanced by knowing the distances, perhaps with limited
accuracy, between neighboring nodes.

In both cases, the network is represented as an undir-
ected graph with vertices V and edges E. The vertices
correspond to the nodes, of which there exist m � 0 special
nodes with known positions, which we will call anchors.
For the proximity-only case, the edges in the graph
correspond to the connectivity information. For the case
with known distances to neighbors, the edges are associated
with values corresponding to the estimated distances. We
assume that all the nodes being considered in the position-
ing problem form a connected graph.

Given a network graph of n nodes and estimated
distances P between a subset of nodes (let pij represent
the estimated distance between nodes i and j), the
localization problem is to find the coordinates of the
nodes X ¼ ðX1; X2; . . . ; XnÞ such that the Euclidean dis-
tances between the nodes, D, equal to P , i.e., dij ¼ pij for
available pij, where dij ¼ jjXi �Xjjj2. When the estimates
pij are just the connectivity or inaccurate local distance
measurements, usually there is no exact solution to the
overdetermined system of equations. Thus, the localiza-
tion problem is often formulated as an optimization
problem that minimizes the sum of squared errors. This
optimization problem is generally nonconvex with many
local minima. Traditional local optimization techniques,
such as the Levenberg-Marquardt method, require good
initial points in order to produce good solutions. Global

search methods such as simulated annealing or genetic
algorithms are generally too slow.

There are two possible outputs when solving the
localization problem. One is a relative map and the other
is an absolute map. The task of finding a relative map is to
find an embedding of the nodes into either two or three-
dimensional space that results in the same neighbor
relationships as the underlying network. Such a relative
map can provide correct and useful information even
though it does not necessarily include accurate absolute
coordinates for each node. Relative information may be all
that is obtainable in situations in which powerful sensors or
expensive infrastructure cannot be installed or when there
are not enough anchors present to uniquely determine the
absolute positions of the nodes. Furthermore, some applica-
tions only require relative positions of nodes, such as some
direction-based routing algorithms [4], [5]. Sometimes,
however, an absolute map is required. The task of finding
an absolute map is to determine the absolute geographic
coordinates of all the nodes. This is needed in applications
such as geographic routing and target discovering and
tracking [6], [7], [8], [9].

As we will show below, our method can generate either
result, depending on the number of anchor nodes. The
method first generates a relative map of the network and
then transforms it to absolute positions if sufficient anchors
are available. Before we describe the details of our method,
we first introduce MDS, which is used in generating the
relative map.

2.1 Multidimensional Scaling (MDS)

Imagine a small cloud of colored beads suspended in mid-
air. To characterize the arrangement, one could measure the
straight line distance between each pair of beads. If the
cloud were shattered and the beads fell to the floor, one
could imagine trying to recreate the arrangement based on
the recorded interpoint distances. One would try to
determine a location for each bead such that the distances
in the new arrangement matched the desired distances. This
recreation process is exactly the problem that MDS solves.
Intuitively, it is clear that while the Oðn2Þ distances will be
more than enough to determine OðnÞ coordinates, the result
of MDS will be an arbitrarily rotated and flipped version of
the true original layout because the interpoint distances
make no reference to any absolute coordinates.

MDS has its origins in psychometrics and psychophysics.
It can be seen as a set of data analysis techniques that
display the structure of distance-like data as a geometrical
picture [10]. MDS starts with one or more distance matrices
(or similarity matrices) that are presumed to have been
derived from points in a multidimensional space. It is
usually used to find a placement of the points in a low-
dimensional space, usually two or three-dimensional,
where the distances between points resemble the original
similarities. MDS is often used as part of exploratory data
analysis or information visualization. By visualizing objects
as points in a low-dimensional space, the complexity in the
original data matrix can often be reduced while preserving
the essential information. MDS is related to principal
component analysis, factor analysis, and cluster analysis.
MDS has been applied in many fields, such as machine
learning [11] and computational chemistry [12].

There are many types of MDS techniques. They can be
classified according to whether the similarity data is
qualitative (nonmetric MDS) or quantitative (metric MDS).
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They can also be classified according to the number of
similarity matrices and the nature of the MDS model.
Classical MDS uses one matrix. Replicated MDS uses
several matrices, representing distances measurements
taken from several subjects or under different conditions.
Weighted MDS uses a distance model which assigns a
different weight to each dimension. Finally, there is a
distinction between deterministic and probabilistic MDS. In
deterministic MDS, each object is represented as a single
point in a multidimensional space, whereas, in probabilistic
MDS, each object is represented as a probability distribution
over the entire space.

We focus on classical metric MDS in this paper. Classical
metric MDS is the simplest case of MDS: The data is
quantitative and the proximities of objects are treated as
distances in a Euclidean space [13]. The goal of metric MDS
is to find a configuration of points in a multidimensional
space such that the interpoint distances are related to the
provided proximities by some transformation (e.g., a linear
transformation). If the proximity data were measured
without error in a Euclidean space, then classical metric
MDS would exactly recreate the configuration of points. In
practice, the technique tolerates error gracefully due to the
overdetermined nature of the solution. This will be very
helpful when we apply it to localization, as our distance
estimates can be very rough indeed. Because classical
metric MDS has an analytical solution, it can be performed
efficiently on large matrices.

Let pij refer to theproximitymeasurebetweenobjects iand

j. The Euclidean distance between two points Xi ¼ ðxi1;

xi2; � � � ; ximÞ and Xj ¼ ðxj1; xj2; � � � ; xjmÞ in an m-dimensional

space is

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

k¼1

ðxik � xjkÞ
2

s

:

When the geometrical model of the objects fits the
proximity data perfectly, the Euclidean distances are related
to the proximities by a transformation dij ¼ fðpijÞ. In
classical metric MDS, a linear transformation model is
assumed, i.e., dij ¼ aþ bpij.

The distances D are determined so that they are as close
to the proximities P as possible. There are a variety of ways
to define “close.” A common one is a least-squares
definition, which is used by classical metric MDS. In this
case, we define IðP Þ ¼ Dþ E, where IðP Þ is a linear
transformation of the proximities and E is a matrix of
errors (residuals). SinceD is a function of the coordinatesX,
the goal of classical metric MDS is to calculate the X such
that the sum of squares of E is minimized.

In classical metric MDS, the coordinates X can be
computed from P through singular value decomposition
(SVD) on the double centered squared P . Double centering
a matrix is subtracting the row and column means of the
matrix from its elements, adding the grand mean, and
multiplying by -1/2. For an n� n P matrix for n points and
m dimensions of each point, it can be shown that
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Let’s call the double centered matrix on the left-hand side
B. Performing singular value decomposition on B gives us
B ¼ UVU 0 and coordinates X ¼ UV 1=2.

B is an indefinite matrix. It may have negative as well as
zero or positive roots. It can be shown that if we define Vr

by selecting the r largest singular values and the corre-
sponding singular vectors Ur and define Xr ¼ UrV

1=2
r , then

Br ¼ XrX
0
r is an optimal least squares approximation to B.

In applying MDS to the node localization problem, the
estimated distances between nodes form the P matrix. To
compute the coordinates of nodes from P , we take the two
largest singular and singular vectors of B for 2D networks
and take the three largest singular and singular vectors of B
for 3D networks. There is little overhead for computing the
coordinates in 3D space as compared to 2D space, which is a
nice property that previous triangulation-based localization
methods do not have.

In nonmetric (also called ordinal) MDS [14], the goal is to
establish a monotonic relationship between interpoint
distances and the desired distances. Instead of trying to
directly match the given distances, one is satisfied if the
distances between the points in the solution fall in the same
ranked order as the corresponding distances in the input
matrix. The advantage of nonmetric MDS is that no
assumptions need to be made about the underlying
transformation function. The only assumption is that the
data is measured at the ordinal level. Just as classical MDS,
nonmetric MDS can also be applied to the localization
problem. By adopting a more flexible model, the effects of a
few highly incorrect measurements might be more easily
tolerated.

2.2 MDS-MAP(C) and MDS-MAP(C, R)

Based on MDS, we have developed several localization
methods, called MDS-MAP methods. The simplest MDS-
MAP method, MDS-MAP(C), builds a global map using a
single application of classical MDS. The parameter C refers
to centralized as the connectivity information of the
network is sent to a central location where the computation
is carried out. The method with additional refinement to
MDS-MAP(C) is called MDS-MAP(C, R), where the para-
meter R is for refinement.

MDS-MAP(C) consists of three steps:

1. Compute the shortest paths between all pairs of
nodes in the region of consideration. The shortest
path distances are used to construct the distance
matrix for MDS.

2. Apply MDS to the distance matrix, retaining the first
two (or three) largest eigenvalues and eigenvectors
to construct a 2D (or 3D) relative map.

3. Given sufficient anchor nodes (three or more for 2D,
four or more for 3D), transform the relative map to
an absolute map based on the absolute positions of
anchors.

In Step 1, we first assign distances to the edges in the
connectivity graph. When the distance of a pair of neighbor
nodes is known, the value of the corresponding edge is the
measured distance. When we only have connectivity
information, a simple approximation is to assign value 1
to all edges. Then, an all-pairs shortest-path algorithm, such
as Dijkstra’s or Floyd’s, can be applied. The time complexity
is Oðn3Þ, where n is the number of nodes.
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In Step 2, classical MDS is applied directly to the distance
matrix. The core of classical MDS is singular value
decomposition, which has complexity of Oðn3Þ. The result
of MDS is a relative map that gives a location for each node.
Although these locations may be accurate relative to one
another, the entire map will be arbitrarily rotated and
flipped relative to the true node positions.

In Step 3, the relative map is transformed through a
linear transformation, which may include scaling, rotation,
and reflection. The goal is to minimize the sum of the
squares of the errors between the true positions of the
anchors and their transformed positions in the MDS map.
Computing the transformation parameters takes Oðm3Þ
time, where m is the number of anchors. Applying the
transformation to the whole relative map takes OðnÞ time.

In MDS-MAP(C, R), a refinement step is added between
Steps 2 and 3 of MDS-MAP(C) to improve the relative map:

. Using the position estimates of nodes in the MDS
solution as an initial solution, apply least-squares
minimization to improve the match between the
measured distances between neighboring nodes and
their distances in the solution.

Our formation of the refinement is more general than
previous methods [15], [16] in twoways: 1) In addition to the
information between 1-hop neighbors, information between
multihop neighbors is also used, but with different weights.
2) Instead of refining the coordinates of one node at a time
while all other nodes remain fixed, the coordinates of all
nodes in the relative map are variables in a single optimiza-
tion. We use a refinement rangeRref , defined based on hops,
to specify how much information is considered. Rref ¼ 1

means only information between 1-hop neighbors are used,
Rref ¼ 2means informationof nodeswithin twohops isused,
and so on. Different values of Rref offer a trade off between
computational cost and solution quality.

An important advantage of our approach is that MDS
can provide better starting points for the least-squares
minimization than other triangulation-based or heuristic
methods [15]. The least-squares minimization problem is
high-dimensional and has lots of local minima. Random
starting points usually lead to very bad solutions. MDS is
good at finding the right general topology of a network,
which corresponds to a starting point in the basin of
attraction of an optimal or near-optimal solution.

More formally, let ðxi; yiÞ; i ¼ 1; � � � ; N represent the
coordinates of the N nodes in a 2D local map, dij be the
Euclidean distance between two nodes i and j in a candidate
solution, and pij be the measured proximity of nodes i and j.
When only connectivity information is available, pij ¼ 1 if i
and j are 1-hop neighbors. When distance measurements
between 1-hop neighbors are available, pij is the distance
between i and j if they are 1-hop neighbors or the shortest
path distance if i and j are further apart. The objective of the
refinement step is

min
xk;yk

X

i;j

wijðdij � pijÞ
2; for k ¼ 1; � � �N; ð2Þ

where wij is the weight. In the experiments reported below,
we set Rref to 2; also, wij ¼ 1when i and j are one hop apart
and wij ¼ 1=4 when they are two hops apart.

For a 2D n-node network, the problem has 2n variables
and no constraints. The Jacobian can be computed
analytically. In our experiments, we use the Levenberg-
Marquardt method (lsqnonlin in Matlab’s optimization
toolbox) to solve the problem. Usually, only the first few
iterations of lsqnonlin give significant improvement. Thus,
the maximum number of iteration is set to a small number,
such as 20. Although this local optimization algorithm is
fast, it is considerably slower than classical MDS. For 100-
node networks, it is more than an order of magnitude
slower. For larger networks, the time difference becomes
larger.

We will use four example problems to illustrate the
results of various MDS-MAP methods. Two have uniform
topologies and the other two have irregular topologies.
They are shown in Fig. 1. In the graphs, circles represent
sensor nodes and edges represent connections between
nodes that are within communication range of each other.

Fig. 2 shows the results ofMDS-MAP(C) andMDS-MAP(C,
R) using only connectivity information on the random
uniform example. Both relative maps and absolute maps
are shown for the two algorithms. Four random anchor
nodes, denoted by asterisks, are used to estimate the
transformation to absolute coordinates. (Note that the chosen
nodes represent a rather unlucky selection as they are almost
colinear.) The circles represent the true locations of the nodes
and the solid lines represent the errors of the estimated
positions from the true positions. The longer the line, the
larger the error is. The average errors of MDS-MAP(C) and
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Fig. 1. Four example problems: (a) random uniform placement—200 nodes are randomly placed in a 10r� 10r square. (b) Random irregular
placement—160 nodes are randomly placed in an area of C shape within a 10r� 10r square. (c) Regular uniform placement—100 nodes are placed
on a grid with 10%r placement errors. (d) Regular irregular placement—79 nodes are placed on a C shape grid with 10%r placement errors. The
radio range is 1:5r, where the placement unit length r ¼ 1. The average connectivity levels of the four problems are 12.1, 11.5, 6.0, and 5.1,
respectively.



MDS-MAP(C, R) are 0:67r and 0:35r, respectively, where the
field in which the nodes are places measures 10r by 10r.

When distances between one-hop neighbors are known,
the result of MDS-MAP(C) can be improved. Fig. 3 shows
results on the same network, but when distances between
one-hop neighbors are known with 5 percent measurement
error. The estimates of MDS-MAP(C) based on the same
four anchor nodes have an average error of 0:25r, much
better than the result when using connectivity only (0:67r).
The result after refinement in MDS-MAP(C, R) is excellent.
The average error is reduced to 0:06r. r is the placement
unit length and is set to 1 in the experiments.

Irregular topologies are much harder than uniform
topologies. Fig. 4 shows the results on the random irregular
example. Again, there are four random anchor nodes. The
result of MDS-MAP(C) is poor. Although the result of MDS-
MAP(C, R) is better than that of MDS-MAP(C), it is much
worse than its result on the uniform example. MDS-MAP(C)
does not work well because the shortest-path distance
between two nodes in different wings of the network is
much larger than their actual Euclidean distance. The error
of MDS-MAP(C) using connectivity information is very
large, 2:4r. The refinement in MDS-MAP(C, R) is useful and
reduces the error to 0:55r.
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Fig. 2. Results of MDS-MAP(C) ((a) and (b)) and MDS-MAP(C, R) ((c) and (d)) on the example of random uniform placement using connectivity
information only.

Fig. 3. Results of MDS-MAP(C) ((a) and (b)) and MDS-MAP(C, R) ((c) and (d)) on the example of random uniform placement using distances
between neighboring nodes (5 percent distance measurement errors).

Fig. 4. Position estimation errors of MDS-MAP(C) and MDS-MAP(C, R) on the example of random irregular placement. (a) and (b) show results using
connectivity information only, whereas (c) and (d) show results using distance measures between neighboring nodes with 5 percent distance errors.



The distances between one-hop neighbors are not helpful
to the basic algorithm in the irregular case. Fig. 4 shows
that, even when this information is provided, MDS-MAP(C)
finds a poor solution with error 2:3r, with MDS-MAP(C, R)
improving the solution only slightly, reducing the error to
1:2r, which is still large.

When the network has a relatively regular topology, such
as nodes placed near grid points, MDS-MAP(C) and MDS-
MAP(C, R) usually obtain good solutions. Fig. 5 shows the
results on the uniform grid example. Again, there are four
random anchor nodes. Comparing this grid example with
the random example (Fig. 2), MDS-MAP(C) and MDS-
MAP(C, R) obtain better solutions with lower connectivity
levels. The connectivity levels of the two examples are 6.0
versus 12.1. Using connectivity information only, the errors
of MDS-MAP(C) for the grid example versus the random
example are 0:42r versus 0.67r, whereas the errors of MDS-
MAP(C, R) are 0:23r versus 0.35r. Using local distances,
their errors on the grid example are much smaller, 0:17r and
0:085r, respectively.

It is adifferent story for the irregulargridexample.AsFig. 6
shows, basicMDS-MAP(C)performspoorly, almost aspoorly
as on the random irregular placement example (Figs. 3 and 4).
MDS-MAP(C) suffers from long-range distance estimation
errors. In contrast,MDS-MAP(C, R) performsmuch better on
the irregular grid example, especially when local distances
are known. This is because the general topology of the
solution obtained by MDS is accurate. Even though the
distances between nodes are way off, by starting from the

right topology, the refinement can successfully make the
distances match the measured distances and thus generate a
good relative map.

2.3 MDS-MAP Based on Patches of Local Maps:
MDS-MAP(P) and MDS-MAP(P, R)

MDS-MAP(C) and MDS-MAP(C, R) do not work well on
irregular networks because they rely on shortest-path
distance estimation, which can have large errors for remote
nodes. Another problem with these centralized methods is
that they are not applied easily to large networks for which
reading out the connectivity and distance information is
potentially prohibitive. In such cases, in-network computa-
tion of coordinates would be much more attractive. MDS-
MAP(P) addresses both of these problems.

MDS-MAP(P) is more complicated than MDS-MAP(C). It
builds many local maps and then patches them together to
form a global map. This method relies on local information
and avoids using the distance estimation between remote
notes. As we will show, it achieves better results on
irregular networks. Another benefit of MDS-MAP(P) is that
it can be easily executed in a distributed fashion. When we
add refinement to improve the global map, we call the
method MDS-MAP(P, R).

In MDS-MAP(P), individual nodes simultaneously com-
pute their own local maps using their local information.
Then, these maps can be incrementally merged to form a
global map. The steps of MDS-MAP(P) are as follows:
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Fig. 5. Position estimation errors of MDS-MAP(C) and MDS-MAP(C, R) on the example of uniform grid placement.

Fig. 6. Position estimation errors of MDS-MAP(C) and MDS-MAP(C, R) on the example of irregular grid placement.



1. Set the range for local maps, Rlm. For each node,
neighbors within Rlm hops are involved in building
its local map. We use Rlm ¼ 2 in our experiments.

2. For each node, apply MDS-MAP(C, R) to the nodes
within range Rlm to generate its local map.

3. Merge local maps. Local maps can be merged in
various ways. We use a simple strategy: First,
randomly pick a node and start with its local map;
then, merge in the maps of neighboring nodes one
by one. Each time, we choose the neighbor to merge
whose local map shares the most nodes with the
current map. Thus, the initial local map grows by
incorporating other local maps and can eventually
cover the entire network.

4. Given sufficient anchor nodes (three or more for 2D,
four or more for 3D), transform the relative map to
an absolute map based on the absolute positions of
anchors.

Two maps are merged together based on the coordinates
of their common nodes. The best linear transformation
(minimizing discrepancy errors) is computed to transform
the coordinates of the common nodes in one map to those in
the other map. Given the coordinates of common nodes in
mapsA andB asmatricesXA andXB, a linear transformation
(translation, reflection, orthogonal rotation, and scaling) of
XB to best conform to XA is determined. The “goodness-of-
fit” criterion is the sum of squared errors, i.e., minT

jjT ðXBÞ �XAjj2, where T ð�Þ is the linear transformation.
This method allows for parallel and distributed imple-

mentations in several ways. First, the computation of local
maps can be done locally at each node in parallel with the
others. Second, the local maps can be merged in parallel in
different parts of the network. Because the method does not
require anchor nodes in order to build a relative map of a
subnetwork, it can be applied to many subnetworks in
parallel. Third, the computation of absolute maps from
anchor nodes could be applied to relative local maps and,
thus, also be distributed in the network. For example, as
soon as three or more anchors are present in a subnetwork,
an absolute map could be computed. Furthermore, all local
maps bordering on this absolute map could be absorbed in
parallel into that map using the merger step. For large
networks and a sufficient number of anchor nodes, it
should never be necessary to compute a single global map
anywhere. Distributed map merging has a number of
benefits, including more balanced computation and com-
munication among the nodes, faster construction of the
global map, and distribution of map information in the
network at multiple levels of granularity, giving the
opportunity for better flexibility and robustness.

The amount of error generated when two maps are
merged depends on several factors, including the accuracy

of the two maps and the number of common nodes. The
error will propagate when a linear sequence of maps is
merged. In dense networks, the adjacent local maps usually
have many common nodes and, thus, the error introduced
in merging is small.

In MDS-MAP(P, R), a refinement step (as in MDS-

MAP(C, R)) is added between Steps 3 and 4 ofMDS-MAP(P)
to improve the global relative map.

Table 1 shows the typical time taken by the major steps
of MDS-MAP(P, R) in our prototype implementation. The
program was run in Matlab 6.5 on a Dell Latitude C640 with
a 2GHz Mobile Pentium 4M and 512MB RAM. All networks
have connectivity 10. The data shows that MDS is very fast
and the least-squares minimization of local maps is more
than an order of magnitude slower. (This may be due in
part to our use of the lsqnonlin function in Matlab, which
calculates many terms that will have weight zero in the
objective function.) The cost of merging local maps grows
faster than linear due to the larger maps being manipulated.
The cost of refining the global map grows the fastest and
becomes dominant for large networks.

Again, using the four example problems from Fig. 1, we
illustrate the performance of MDS-MAP(P) and MDS-
MAP(P, R). Fig. 7 shows the results of MDS-MAP(P) and
MDS-MAP(P, R) on the random uniform placement exam-
ple. Using connectivity information only, the average error
of MDS-MAP(P) is 0:40r, about 60 percent of the error of
MDS-MAP(C) in Fig. 2, and slightly worse than MDS-
MAP(C, R). After refinement, the error ofMDS-MAP(P, R) is
0.31r, better than that of MDS-MAP(C, R). Using local
distances, MDS-MAP(P) and MDS-MAP(P, R) obtain much
better results. The error of MDS-MAP(P) is 0:16r, better than
the 0:25r error of MDS-MAP(C) in Fig. 3. After refinement,
the error of MDS-MAP(P, R) is 0.06r, at the level of the
distance estimation errors.

Fig. 8 shows results on the random irregular placement
example. MDS-MAP(P) returns a solution (error 1:2r) better
thanMDS-MAP(C) (error 2:4r), but the error is still very large.
The refinement inMDS-MAP(P, R) helps to reduce the error
to 0:43r, better than the solution of MDS-MAP(C, R) (error
0:55r). Using local distances, the solution of MDS-MAP(P)

(error 0:72r) is quite reasonable. The solution ofMDS-MAP(P,
R) is even better (error 0:29r).

For networks with regular topologies, MDS-MAP(P) and
MDS-MAP(P, R) usually obtain very good results. Figs. 9
and 10 show their results on the uniform and irregular grid
examples with four random anchors. The results on the
uniform network are excellent. The results on the irregular
example are also very good.
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TABLE 1
The Typical Time in Seconds Taken by the Major Steps of MDS-MAP(P, R) for Different Size Networks



3 RELATED WORK

Node localization has been a topic of active research in
recent years. A detailed survey of the area is provided by
Hightower and Borriello [17]. Many systems use some kind
of range or distance information and rely on powerful
beacon nodes with unusual capabilities, such as radio, laser
ranging devices, or directional signals. Distance estimates
can also be obtained from received signal strength indica-
tions (RSSI) or time-of-arrival (ToA) measurements. Due to
nonuniform signal propagation, RSSI methods are not very
reliable and accurate. ToA methods have better accuracy,
but may require additional hardware at the nodes to receive
a signal that has a smaller propagation speed than radio,
such as ultrasound [18], [19]. Localization techniques for
mobile robots often use additional odometric measurements
[20], [21] which are not available on nodes in many
networks.

Among existing localization methods for communication
networks, several perform localization from connectivity
information only. The GPS-less system by Bulusu et al. [22]
employs a grid of beacon nodes with known positions. Each
unknown node sets its position to the centroid of the
beacons near the unknown. The position accuracy is about
one-third of the separation distance between beacons. The
method needs a high beacon density to work well.

Doherty et al.’s [23] convex constraint satisfaction
approach localizes nodes based only on connectivity. The
method formulates the localization problem with uniform

communication as a feasibility problem with convex radial
constraints. The method requires centralized computation.
For the method to work well, it needs anchor nodes to be
placed on the outer boundary, preferably at the corners, to
make the constraints tight enough. When all anchors are
located in the interior of the network, the position
estimation of outer nodes can easily collapse toward the
center, which leads to large estimation errors.

Several distributed localization methods are developed
based on triangulation or multilateration. The “DV-hop”
approach by Niculescu and Nath [24] is simple and efficient
and among the best of triangulation-based methods. First,
the anchors flood their location to all nodes in the network.
Then, each unknown node performs a triangulation to three
or more anchors to estimate its position. The method works
well in dense and uniform topologies and poorly for sparse
and irregular networks. The “DV-distance” method uses
distance between neighboring nodes to reduces the location
errors, but still works poorly on irregular networks.

Savarese et al. propose another distributed method [16]
that consists of two phases: start-up and refinement. For the
start-upphase, theyuseHop-TERRAIN, an algorithm similar
to DV-hop. Hop-TERRAIN is run once at the beginning to
generate a rough initial estimate of thenodes’ locations. Then,
the refinement algorithm is run iteratively to improve and
refine the position estimates. The algorithm is concerned only
with nodes within a one-hop neighborhood and uses a least-
squares triangulation method to determine a node’s position
based on its neighbors’ positions and distances to them. The
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Fig. 7. Position estimation errors of MDS-MAP(P) and MDS-MAP(P, R) on the example of random uniform placement.

Fig. 8. Results of MDS-MAP(P) and MDS-MAP(P, R) on the random irregular example.



Hop-TERRAIN phase is slightly worse than the DV-hop or
DV-distance method. The refinement improves accuracy
significantly, but reduces coverage since it only works for
well-connected nodes.

Savvides et al. propose a collaborative multilateration
method [15]. The method estimates node locations by using
anchor locations that are several hops away and distances to
neighboring nodes. The method has three main phases:
1) formation of a collaborative subtree, which only includes
nodes whose positions can be uniquely determined,
2) computation of initial position estimates with respect to
anchor nodes, and 3) position refinement by minimizing the
residual between the measured distances between the nodes
and the distances computed using the node location
estimates. The method needs more anchors than the other
methods to work well.

A key advantage of our approach over previous methods
is the utilization of all connectivity or distance information
among many nodes simultaneously. Most previous meth-
ods based on triangulation localize one unknown node at a
time from the anchors and the information between nodes
of unknown position is not utilized fully. Using all the
information together, MDS generates correct topologies and
better starting points for subsequent refinement techniques
than previous methods. Without anchors, our approach can
generate good relative maps using connectivity information
only, an important capability not possessed by previous
methods.

4 EXPERIMENTAL RESULTS

In these experiments, we assess the average-case perfor-
mance of MDS-MAP methods. For each of several different
types of network, the algorithms are run on 30 randomly
generated examples. The same types of networks are used as
in Section 2 (Fig. 1): 1) uniform random, 200 nodes randomly
placed inside a10r� 10r square,where r ¼ 1 is theplacement
unit length, 2) irregular random, 160 nodes randomly placed
inside anC-shaped areawithin a 10r� 10r square; 1) uniform
grid, 100 nodes placed according to a 10r� 10r grid, and
2) irregular grid, 79 nodes placed according to a C-shaped
grid within a 10r� 10r square.

To model the errors in grid placements, we add Gaussian
noise to the coordinates of nodes. For a 10%r placement
error, a random variable from Nð0; 10%rÞ is added to each
coordinate of a grid point. Thus, the nodes are not placed
exactly on the grid points. The distance measure is modeled
as the true distance blurred with Gaussian noise. Assume
the true distance is d� and range error is er; then, the
measured distance is a random value drawing from a
normal distribution d�ð1þNð0; erÞÞ.

The connectivity (average number of neighbors) is
controlled by specifying radio range R. The errors of
position estimates are normalized to R (i.e., 50 percent
position error means half of the range of the radio). We do
not consider models of nonuniform radio propagation or
widely varying ranging errors. Both modeling these
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Fig. 9. Results of MDS-MAP(P) and MDS-MAP(P, R) on the uniform grid example.

Fig. 10. Results of MDS-MAP(P) and MDS-MAP(P, R) on the irregular grid example.



phenomena and simulating their effects are very important
directions for future work.

4.1 Random Placement

4.1.1 Uniform Networks

Fig. 11 shows the performance of MDS-MAP(C) as a
function of connectivity and number of anchors, using 4,
6, or 10 random anchors. Position estimates by MDS-
MAP(C) have an average error under 100%R in scenarios
with just four anchor nodes and an average connectivity
level of 8.9 or greater. On the other hand, when the
connectivity is low, e.g., 5.9, the errors can be large. Having
good estimates of the distances between neighbors leads to
much better solutions when the connectivity is high. When
the connectivity level is 12.2 or greater, the errors are about
half of those by MDS-MAP using proximity information
only. On the other hand, when the connectivity is low, e.g.,
5.9, knowing the local distance does not help much.

Fig. 12 shows the number of nodes participating in the
location estimation in MDS-MAP(C). Recall that the largest
connected subnetwork is extracted for processing. When the
connectivity level is low, such as 5.9, about 7 percent of the
nodes are not connected to the main subnetwork and their
positions are not estimated. Among the nodes that are part
of the main subnetwork, many of them have only one or
two connections to their neighbors. The lack of sufficient
information to determine the position of a node causes large
errors in MDS-MAP(C) solutions. When the connectivity is
over 12.2, the network is fully connected and all nodes are
processed. Fig. 12 also shows the effects of increasing range
errors on the estimation errors of MDS-MAP(C). Four
random anchors are used. The range errors vary from 0 to
50 percent. Estimation error increases steadily as the range
error increases. The errors with a larger connectivity (20.7)
are more than 10%R lower than those with a smaller

connectivity (12.2) in most cases. The estimation error goes
up faster after the range error is more than 30 percent. The
large increase in error at range error 40 percent is due to an
outlier that is very bad.

Next, we compare the performance of the four MDS-
MAP methods. Fig. 13 shows their results on the random
uniform networks with 200 nodes. The errors are plotted
against the average connectivity level. The radio range (R)
goes from 1:25r to 2:5r, in increments of 0:25r, which leads
to average connectivity levels of 8.9, 12.2, 16.4, 20.9, 25.9,
and 31.1. Three, four, six, or 10 random anchors are used.

When using only connectivity information,MDS-MAP(P)
is consistently better than MDS-MAP(C), more than 10%R
better when the connectivity is low. MDS-MAP(C, R) and
MDS-MAP(P, R) have comparable results and are better than
MDS-MAP(P). Although more anchors lead to better results,
the improvement with more than six anchors is small.

Using connectivity information only, MDS-MAP algo-
rithms are much better than the convex optimization
approach in [23] when the number of anchor nodes is
low. For example, with 4 to 10 anchors in a 200-node
random network, the convex optimization approach has an
average estimation error of more than twice the radio range
when the connectivity is 8.9 and above. The results are also
better than Hop-TERRAIN [16], especially when the
number of anchors is small. For example, with four anchors
(2 percent of the network) and a connectivity level 12.2,
MDS-MAP(P) using connectivity information only has an
average error of about 27%R, whereas Hop-TERRAIN has
an average error of about 90%R.

Using local distances with 5 percent error improves the
performance of the MDS-MAP algorithms. Their errors are
about half of those obtained using only proximity informa-
tion. MDS-MAP(P) is comparable to MDS-MAP(C, R) and
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Fig. 11. Results of MDS-MAP(C) for 200-node random uniform networks.

Fig. 12. The coverage of MDS-MAP(C) and the effect of the range error on the estimation error for 200-node random uniform networks.



MDS-MAP(P, R) when the connectivity level is 12.2 and
above.

MDS-MAP succeeds in localizing a higher fraction of the
nodes in a network than most previous methods.MDS-MAP
localizes all nodes in a connected network. The methods are
not subject to constraints such as requiring that a node have
at least three neighbors as in other methods. In our
experiments, when the connectivity is 12.2 or more, the
network is usually a connected graph and all nodes are
located.

4.1.2 Irregular Networks

Irregular topologies are much harder than uniform topolo-
gies and previous methods reported very poor results on
them [24]. Fig. 14 shows the performance of the MDS-MAP
algorithms on the C-shaped random irregular networks with
160 nodes. The radio ranges (R) are the same as before, from
1:25r to 2:5r, in increments of 0:25r, which leads to average
connectivity levels of 8.8, 12.0, 15.4, 19.2, 23.1, and 27.1.

On the C-shaped random irregular networks, MDS-
MAP(C) returns bad solutions because the distance estima-
tions for nodes in separate wings of the network are very
different from their actual Euclidean distances.

The refinement in MDS-MAP(C, R) improves the solu-
tions significantly. The result can be misleading because it
seems that the refinement is the most important and does
all the work. This is not the case. From a random starting
point, the refinement usually does not do much and just
returns a bad solution, because there are many local
minima. Thanks to MDS, the relative map often has the
right topology, which corresponds to a good starting point
in the same basin as the optimal or near-optimal solution.
This is why the refinement performs so well.

The results show thatMDS-MAP(P)performs verywell on
these irregular networks, especially when the connectivity
level is 12.0 ormore, finding solutions just slightlyworse than
those returned byMDS-MAP(C, R) andMDS-MAP(P, R). The
results of MDS-MAP(P, R) are slightly better than those of
MDS-MAP(C, R).
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Fig. 13. Results of MDS-MAP methods on the random uniform networks
and 3 to 10 anchors.

Fig. 14. Results of MDS-MAP methods on the random irregular networks
and 3 to 10 anchors.



Onnetworkswith similar connectivity levels, the results of
MDS-MAP(C) on the irregular networks areworse than those
on the uniformnetworks. In contrast,MDS-MAP(C, R),MDS-
MAP(P), and MDS-MAP(P, R) perform well when the
connectivity is relatively high.

Having accurate estimates of local distances does not
improve the performance of MDS-MAP(C), but helps MDS-
MAP(P) and MDS-MAP(P, R) tremendously. The results of
MDS-MAP(P) andMDS-MAP(P, R) are very close, indicating
that the refinement step inMDS-MAP(P,R)doesnotdomuch.

Finally, we compare MDS-MAP(P) and MDS-MAP(P, R)
with DV-hop and DV-distance [24]. The results are shown
in Fig. 15. For the uniform networks, when using con-
nectivity information only, the errors of MDS-MAP(P) and
MDS-MAP(P, R) are consistently less than half of those of
DV-hop. When using accurate local distances, the errors of
MDS-MAP(P) and MDS-MAP(P, R) are just one quarter of
those of DV-distance when the connectivity is low.

For the irregular networks, MDS-MAP(P) and MDS-
MAP(P, R) are not better than DV-hop and DV-distance
when the connectivity is low. That is because the local maps
of MDS-MAP(P) are not very accurate for low connectivity.
The error of a local map in an irregular network can
significantly affect the global map. It is a different story
when the connectivity is high. When using connectivity
information only, the errors of MDS-MAP(P) and MDS-
MAP(P, R) are about half of those of DV-hop. When using
accurate local distances, the errors of MDS-MAP(P) and
MDS-MAP(P, R) are just one quarter of those of DV-
distance.

4.2 Grid Placement

We have done similar experiments on the grid networks.
Fig. 16 compares the results on uniform grid networks with
6 or 10 random anchors. Unlike our results on the random
networks, the estimation errors may increase when the
connectivity increases in the connectivity-only case. This is

due to the special structures of the grids. As the radio range
increases, nodes lying at diagonally adjacent intersections
come within range of each other. For example, when the
radio range increases from 1:25r (connectivity 5.8) to 1:5r
(connectivity 6.9), nodes that are actually either 1r or 1:414r
apart both are 1-hop apart, increasing the error in the
distance estimates.

In general, all the methods obtain much better results at a
given connectivity level on the grid networks than on the
random networks, either using connectivity or distance
information. Better relative maps are computed given more
regular, although fewer, connections.

MDS-MAP(C) is consistently the worst among the four
methods. MDS-MAP(P) performs comparably with MDS-
MAP(C, R) and MDS-MAP(P, R) when the connectivity is
high. In general, theMDS-MAPmethods perform well when
the level of connectivity is over 6 for the grid placements and
over 12 for the random placement.

Fig. 17 shows their results on irregular grid networks.
MDS-MAP(C) performs poorly, whereas MDS-MAP(P) and
MDS-MAP(P, R) perform well. The refinement in MDS-
MAP(C, R) significantly improves the solutions of MDS-
MAP(C), but it is still not as good as the other two methods.

5 POSSIBLE EXTENSIONS

As we have shown, the proposed algorithms work well for
near-uniform radio propagation. However, in the real world,
radio propagation indoors and in cluttered circumstances is
far fromuniform. Local distance estimationmay also be poor.
Further simulations will be needed to determine how robust
MDS-based algorithms can be to such errors. Efficiently
handling changes in a dynamic network may also be
important in some applications [25], [26], [27].

Aswehavedescribed it,MDS-MAP(P)builds local relative
maps and merges these smaller maps to get a larger relative
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Fig. 15. Comparison of MDS-MAP(P), MDS-MAP(P, R), DV-hop, and
DV-distance on random uniform (upper) and irregular networks (lower),
using connectivity information (left) or local distances between 1-hop
neighbors with 5 percent errors (right). Four anchors were randomly
selected for each case.

Fig. 16. Comparison of the MDS-MAP methods on uniform grid-like
networks with 6 or 10 random anchors.



map.This is useful for applications that use relativemaps. For

applications that require absolute coordinates of nodes,

waiting until a large map has formed before transforming

to absolute coordinates may be a poor choice. Using the

methodsdescribedhere,distributedalgorithms that compute

absolute coordinates of individual nodes or subnetworks

independently can be developed.
One interesting feature of MDS-MAP(P) is that it shows

how information at different length scales can be used

differently. Long distance shortest-path information is used

only for rough layoutdecisions,while two-hop information is

used to determine precise node positions. It would be

interesting to develop a framework that precisely charac-

terizes the contribution of each datum to the position

estimation. The main question is whether an approach based

on unified statistical inference could be as efficient as the

special-purpose algorithms explored here.
MDS-MAP algorithms can be extended by applying more

advanced MDS techniques. Instead of classical metric MDS,

other MDS techniques such as ordinal MDS and MDS with

missing data can be applied. We have done some experi-

ments with ordinal MDS. Our results show that ordinal

MDS is better than classical MDS when the connectivity

level of the network is low and is comparable with classical

MDS when the connectivity level is high. However, the

computational cost of ordinal MDS is much higher than that

of classical MDS. In another direction, developing MDS

techniques that take advantage of anchor node locations

directly might allow immediate computation of absolute

coordinates.
Finally, it would be nice to obtain error bounds for MDS-

MAP algorithms on regular and random networks. Such
theoretical results may well guide the development of more
efficient methods.

6 CONCLUSIONS

We presented a new approach for localization that works
well with mere connectivity information. It can also
incorporate distance information between neighboring
nodes when it is available. The strength of the approach is
that it can be used when there are few or no anchor nodes.
Previous methods often require well-placed anchors to
work well. Our approach does not have this limitation. It
builds a relative map of the nodes even when no anchor
nodes are available. With three or more anchor nodes, the
relative map can be transformed into absolute coordinates.
Extensive simulations using various network topologies
and different levels of ranging error show that the method
is effective and surpasses previous methods, especially
when there are few anchors. An optional refinement step
can be used to further improve the quality of the solution, at
the expense of additional computation. A patching-based
variation not only allows distributed and parallel computa-
tion, but also gives better solutions, especially on irregu-
larly-shaped networks.
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