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Slowing down light on a chip can lead to the development of
optical buffers1, filters2,3 and memory elements4 useful for
optical interconnects and for resonantly enhanced chip-based
nonlinear optics5,6. Several approaches to slow light rely on
the phenomenon of light interference in a sequence of
coupled resonators1–4,7–11; however, light interference is also
responsible, in disordered structures, for the localization of
light, an effect particularly prominent in one-dimensional
devices12,13. Until now, the length of the waveguides
investigated has been less than the localization length. Here
we report the first observation of light localization in compact
silicon nanophotonic slow-light waveguides consisting of long
sequences of coupled resonators. Our results show that
disorder limits how much light can be slowed, and that
localization leads to spatially concentrated and locally trapped
light in a quasi-one-dimensional waveguide at wavelengths
near the band edge.

Optical slow-wave structures, like their microwave
counterparts14, consist of a chain or network of repeated unit
cells in which light propagates by tunnelling from one unit cell
to its nearest neighbours2. Each unit cell could consist, for
example, of a microring resonator1,3, a defect resonator in a
photonic crystal10,15, or a microsphere16,17. This underlying
physical principle of nearest-neighbour coupling can be used to
derive an analytical description of the waveguide dispersion,
similar to the tight-binding theory used in solid-state
physics8,18. Another model uses matrices to describe the
interactions between adjacent resonators19, or the entire slow-
wave structure20 and this model is especially well suited to
understanding the effects of disorder.

In computing the fields in a slow-wave structure, which consists
of a concatenation of unit cells, the field amplitude is described by a
column vector u, which lists the fields in the individual unit cells
that comprise the structure. The evolution of u is described by a
matrix equation i du/dt ¼Mu, where the coupling matrix M is
typically band tri-diagonal in form, because the field in each unit
cell couples only to the fields in its nearest neighbours.
Consequently, the dispersion relationship has the familiar tight-
binding form8, v/V ¼ 1 þ 2k cos(KR), where v is the frequency,
k is the coupling coefficient, R is the centre-to-centre distance
between unit cells, K is the Bloch wavenumber and Dv ; 2kV is
the half-width of the waveguiding band around the centre
frequency V (see Supplementary Information). Slow light is
particularly observed near the band edges V+Dv (see Fig. 1a),

where the group velocity, defined as the slope of the dispersion
curve vg ; dv/dK, goes to zero. However, in practice, the unit
cells cannot be exactly identical because of fabrication tolerances.
As shown in the inset to Fig. 1a, a closer examination of the edge
shows the existence of a band tail, and the slope of the dispersion
curve (and hence vg) is no longer zero21.

To understand why the group velocity does not go to zero, it is
necessary to consider the connection between group velocity and
the density of states. In a weakly disordered one-dimensional
slow-wave structure consisting of N unit cells with periodicity R,
the group velocity vg is inversely proportional to the density of
states, and is given by21

vg ¼
1

r̂ðvÞ
1

2p=R
1þ 1

NR

df

dk

� �
ð1Þ

where r̂ is the optical density of states (normalized to the unit
integral over the waveguide band as indicated by ˆ), and f is the
disorder-induced (scattering) phase shift. In a perfectly ordered
structure, r̂(vedge)!1 at the band edges22 and thus vg! 0,
whereas, as shown in Fig. 1b, in a disordered structure, r̂(vedge)
only reaches a certain maximum value that depends on the
statistics of variation of the elements of M—most importantly,
the mean and standard deviation of the distribution of coupling
coefficients, k and dk, respectively21. The slowing factor is (see
Supplementary Information)

S ;
c

vg at band edge
¼ l

R

1

ðdk2 � kÞ1=3
; ð2Þ

where c is the speed of light in a vacuum. Equation (2) shows that S
!1 (because vg at the band edge! 0) if dk ! 0. However, for a
typical structure, if k ¼ 1022 (see Supplementary Information),
dk ¼ 5% of k, and R ¼ 10l, then S ¼ 74, a much more modest
slowing factor. Experimental observations also indicate S �
102100 (refs 1, 3).

If we examine the field distributions corresponding to the
band tail in the dispersion relationship, we see that those field
distributions are localized by disorder, as shown in Fig. 2.
From such profiles, a localization length may be defined as the
root-mean-squared width of the intensity distribution for the
localized modes. From Monte Carlo simulations of such
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profiles, we observe, as shown in Fig. 2d, that the localization
length decreases exponentially with increasing disorder but has
a finite non-zero lower limit, given by the offset of the
exponential fit, which was calculated to be 5.6 unit cells for a
finite-length structure consisting of a chain of 100 coupled
resonators. Notice also that, even for small changes in v in the
farthest part of the tail, the location of the localized modal
field patterns in the chain can vary—an observation that we
shall refer to later. Devices fabricated so far have consisted of
only a few unit cells, because of lithographic challenges in
patterning long chains of identical optical resonators, and if
the localization length exceeds the device length, light
propagates from input to output without clear evidence of
localization. However, because, formally, all the eigenmodes are
localized for any value of disorder in one-dimensional
waveguide structures23, localization is indeed possible in
sufficiently long chains, which are necessary for practical
applications as optical interconnects4.

To observe localization effects, long slow-wave structures
consisting of a large number of coupled resonators are needed,
as well as the use of a material system with a high index
contrast between core and cladding, such as the 100-microring
chain demonstrated recently1. In silicon-on-insulator (SOI)
photonics, the absence of a practical optical gain mechanism for
1,550-nm light suggests the use of a more compact form of
resonator for this study, and one with higher light throughput,

because it is not necessary to use very high quality factors to
create a coupled-resonator slow-wave waveguide. Furthermore,
it is difficult in practice to measure a transfer function
resembling the theoretical ideal in long sequences of coupled
microrings, because each unit cell (a single microring of
diameter D) typically supports a large number of modes of the
order of �pD/l which can be coupled by very weak
imperfections; the transmission spectrum shows many spurious
ripples1 and the resultant bandstructure is highly complicated.
Our structure is shown in Fig. 3 and consists of a sequence of
cuboidal resonators (with rounded edges to reduce scattering),
which load a single-mode optical waveguide. The volume of
each resonator is �1.1 mm3. We calculate, using a three-
dimensional vectorial plane-wave expansion (PWE) algorithm,
that a slow-wave mode of this structure has a band edge in the
vicinity of 1,575 nm, as shown in Fig. 4a, and there are no other
propagating slow-wave modes in a window of +5 nm around
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Figure 1 Dispersion and density of states for a weakly disordered

slow-wave structure. a, Dispersion relationship calculated ab initio21 for a

slow-wave structure with 1% disorder in the nearest-neighbour coupling

coefficient. For such weak disorder, the dispersion follows the tight-binding

(cosine) function almost exactly, except at the band edge, shown by the inset.

The band-edge tail shows that vg ; dv/dK is non-zero. b, Over the same range

of frequencies, the density of states is calculated, showing that the density of

states r̂(v ) does not diverge to infinity at the band edges in the presence of

disorder, as it should in the ideal model22.
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Figure 2 Spectral distribution of localization. a, The density of states near

the band edge calculated for a slow-wave structure. The results of 32 Monte

Carlo simulations are shown. b, Eigenfrequencies from a single Monte Carlo

calculation are labelled from the band edge inwards (1 ¼ farthest detuning

from band centre), showing that disorder creates states beyond the band edge

of the ideal structure. c, The corresponding field distributions along the

(normalized) length of the slow-wave structure, showing that field distributions

for frequencies near the band edge, at the bottom of the figure, are localized,

and those inside the band, towards the top of the figure, are extended.

d, The minimum localization length (in unit cells) for a finite-length structure

consisting of 100 coupled resonators, as a function of the disorder, dk/k.

The points are calculated from Monte Carlo simulations, and the dashed line is

an exponential fit, from which can be inferred a minimum localization length of

six unit cells.
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this wavelength. In the absence of disorder, we would expect to see
a ‘frozen light’ mode spanning the entire length of the structure,
similar to the in-phase supermode of a waveguide array. In
contrast, we would expect disorder, unavoidable in the
fabrication process, to create localized states in this region, with
a localization length that increases as the input optical
wavelength is increased, that is, moving inside the band, away
from the edge.

The photonic slow-wave structures were fabricated on an
SOI wafer using electron-beam lithography and dry-etching
techniques (see Methods). The photonic-wire waveguides
were single-moded and had a modal cross-section of
0.25 mm � 0.5 mm, and the resonators had dimensions of
1.5 mm � 1.5 mm � 0.5 mm, with R ¼ 2.75 mm along the
waveguide axis. On excitation with a tunable continuous-wave
(c.w.) laser, field profiles as shown in Fig. 4d were recorded at
wavelengths of interest near the band edge. The measurements
shown in Fig. 4 were performed on devices with 100
resonators in the slow-wave section (as shown in Fig. 3a). An
estimate of the number of unit cells N* needed to observe
localization without encountering boundary effects is given
by24 N* ¼ 9(k/dk)2/3, which evaluates to 93 unit cells for 3%
disorder and 66 unit cells for 5% disorder. (Higher values of
disorder may not obey the ballistic propagation model in this
waveguide geometry.) In fact, structures with 5 or 50
resonators did not reveal evidence of localization, showing that
longer slow-wave structures are necessary to observe
localization in slow-light structures, even with the high index
contrast of the SOI material system.

The band structure shown in Fig. 4a was calculated using the
PWE method—the blue dots (without squares) are numerical
artefact. The field profiles corresponding to the blue dots are
found to contain spurious transverse resonances spanning the
whole width of the calculation cell, because the PWE algorithm
imposes periodic boundary conditions along all the cellular
boundaries. These mathematical solutions do not correspond to
physically realistic fields and are ignored.

At the band-edge wavelengths predicted by Fig. 4a, the
transmission spectrum decreases rapidly, as shown in Fig. 4b.
Some fluctuation in the measured power is seen in this regime,
indicated by the shaded blue region, which is thicker around the
band-edge transition (for example, at 1,576 nm compared with
1,576.5 nm or longer wavelengths). Although not fully studied at
this time, this observation agrees with the theoretical prediction

from Fig. 2 that small changes in v can lead to large changes in
the spatial pattern of localized fields, which affects the
transmission in finite-length structures. This spectral region, which
lies between the localized and extended modes, could possibly
support ‘necklace’ modes25, which are multiresonance states with
fast temporal behaviour. The presence of a small peak (�1.5 dB)
in the transmission at the band edge has also been recently
observed in a different slow-wave structure26 and is conjectured to
be related to enhanced coupling to the slow-light mode.

The normalized localization length is calculated from the field
profiles by numerically finding the root-mean-squared width of the
intensity distribution, and dividing by the unit cell length. Figure 4c
plots the localization length (ĵ) versus frequency (v̂), both in
normalized units, for the localized profiles shown in Fig. 4d. The
figure shows that ĵ/ v̂22—that is, it is a straight line with slope
22 on a log–log plot27, near the band-edge, v̂ [ (20.2, 0)—and
is flat for positive detuning from the frequency of maximum
localization, in agreement with the theoretically predicted
behaviour of localization23 calculated using a Green’s function
formalism with the coherent potential approximation. Based on
simulations, we predict in Fig. 2d that for a finite-length
structure consisting of a chain of 100 coupled resonators, the
localization length should be approximately 5.6 unit cells. By way
of comparison, from Fig. 4c, the smallest localization length
measured was 6 unit cells (17 mm).

In conclusion, we have shown the presence of localization in
nanophotonic SOI structures. Optical slow-wave structures, such
as coupled photonic-crystal cavities, coupled microrings, coupled
Fabry–Pérot cavities, and so on, are promising ‘engineered
dispersion’ slow-light waveguides, which can slow light
significantly in a small device footprint because they can be
lithographically patterned or self-assembled on length scales

Coupled resonator slow-wave waveguide 
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Figure 3 Slow-wave coupled-resonator waveguides. a, The fabricated

structure on an SOI chip consists of a single-mode waveguide loaded periodically

with 100 resonators (about 70 resonators are shown here), with two transition

sections to better match impedances between the input/output sections and the

slow-wave section. The top and side claddings are air, and the bottom cladding is

silicon dioxide. b, A magnified view of the transition section. c, A magnified view of

the slow-wave section, with the periodicity R being 2.75mm.
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Figure 4 Experimental measurements of localization. a, Band structure

calculated using a vectorial three-dimensional plane-wave method, showing the

coupled-resonator slow-wave band (squares). Blue dots are non-physical solutions

explained in the text. b, Measured transmission spectrum for the band-edge

wavelengths indicated by the dashed box in a. The maximum–minimum range of

measurements over repeated scans, shown in blue, is discussed in the text.

c, Log–log plot of the localization length ĵ (normalized units) versus frequency v̂

(normalized units), in agreement with the theoretically calculated shape (ref. 23,

Fig. 8.8). d, Measured spatial profiles of a representative extended field distribution

at 1,576.16 nm, and localized field distributions at 1,575.64 nm, 1,575.60 nm,

1,575.10 nm and 1,575.00 nm (from bottom to top).
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comparable to the optical wavelength. However, this regime is
particularly susceptible to localization, as has been theoretically
predicted and as we have shown experimentally. Unlike in the
perfectly ordered theoretical model, practical structures (and
those models that do take into account the effects of disorder21)
do not exhibit a divergence in the density of states at the band
edge. Consequently, the zero-group-velocity light distribution
predicted for the ordered structure is not sustained, and
applications of slow-light devices that rely on this feature are not
robust to real-world fabrication tolerances28,29. Practical devices
display the intertwined effects of order and disorder, manifest
particularly in localization near the band edge. Future work will
involve a study of dynamic field confinement and the order–
disorder transition, possibly controllable in SOI structures by
electrically induced optical modulation. Also of interest are the
coupled-resonator structures with true bandgap characteristics,
such as coupled cavities in photonic crystals. Such structures will
enable research in a new generation of photonic devices that
combine engineered functionality with naturally occurring
phenomena such as localization.

METHODS

FABRICATION

The structures shown in Fig. 3 were prepared on an SOI wafer, with 0.5-mm
silicon layer and 1-mm buried oxide. Electron-beam resist poly(methyl
methacrylate) (PMMA) 495 K 4% in chlorobenzene was spin-coated at
3,000 r.p.m. to a thickness of 280 nm, and baked at 180 8C for 5 min. Patterns
were exposed using a Raith50 electron-beam lithography instrument, followed
by development in methyl isobutyl ketone:isopropyl alcohol (MIBK:IPA) (1:3)
for 1 min. Nickel was evaporated onto the pattern to a thickness of 35 nm using a
Temescal BJD 1800 electron-beam evaporator. Acetone was used to lift off the
PMMA, leaving the nickel mask for the following etching step.

First, an oxygen plasma descum step was performed (200 W radiofrequency,
r.f.) power, 30 mtorr pressure, 10 min), followed by a reactive ion etch using a
mixture of BCl3 (10 s.c.c.m.) and Ar (10 s.c.c.m.) at 100 W r.f. power and
30 mtorr pressure for a total of 10 min. The nickel was removed by immersing
the chip in Nickel Etchant (Transene, Type TFB) for 10 s. The chip was
lapped down to a thickness of 200 mm, cleaved and mounted on a sample
holder for measurement

MEASUREMENT

Coupling into and out of the waveguides was achieved using tapered and lensed
polarization-maintaining fibres (Oz-Optics), aligned to the chip using six-axis
micrometer stages (Newport Ultralign) equipped with differential micrometers.
A CþL band mode-hop-free tunable c.w. laser (Agilent 81640A) was used as the
input source with a typical input power of 100 mW. The spectrum (Fig. 4b) was
recorded by sweeping the laser wavelength and monitoring the output using an
InGaAs photodiode, while simultaneously recording the wavelength.

To record the spatial distribution of the field (Fig. 4d), a modified knife-
edge method was used, a simple and robust method that is insensitive to
misalignment, knife edge diffraction and geometric aperturing30. The device
plane of the chip (as shown in Fig. 3a) was confocally imaged using a
microscope (Olympus BX series, with Mitutoyo M-Plan-APO NIR objective)
focused onto a highly sensitive InGaAs photoreceiver (New Focus Femtowatt
2153). The magnification was chosen so that the field of view at the detector
images the slow-wave section, and not the input/output fibres or chip facets.
The laser source was set to the particular wavelength of interest and was
modulated at a frequency less than 750 Hz, and the photoreceiver output was
measured by a lock-in amplifier (Stanford Research Systems SR830). As the
knife edge was scanned across the field of view at a constant speed (using a
Newport ILS translation stage and ESP300 motion controller), the resultant
trace was recorded. The field profiles were obtained from the measured traces
by smoothing, using a moving average filter with a window of 250 nm, which is
not more than the calibrated precision of the linear stage, and differentiating
the resultant trace. To factor out the coupling and background absorption
features, all traces were normalized by dividing each by the same ‘control’ trace,

measured at a wavelength at which the field was extended. It is implicitly
assumed that the coupling and background loss coefficient do not vary over the
2-nm spectral window of interest, which is substantially narrower than the
narrowest bandwidth of any optical elements in the measurement set-up.
When measured in this way, traces for localized fields show broad dark regions
(local normalized field intensity �1) compared with extended fields at the
same input optical power levels.
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